We have a debug printk on every exit that is usually #ifdef'ed out. Using
tracepoints makes a lot more sense here though, as they can be dynamically
enabled.
This patch converts the most commonly used debug printks of EXIT_DEBUG to
tracepoints.
Signed-off-by: Alexander Graf <agraf@suse.de>
When CONFIG_KVM_GUEST is selected, but CONFIG_KVM is not, we were missing
some defines in asm-offsets.c and included too many headers at other places.
This patch makes above configuration work.
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
Add kvm_release_page_clean() after is_error_page() to avoid
leakage of error page.
Signed-off-by: Wei Yongjun <yjwei@cn.fujitsu.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
When using a relocatable kernel we need to make sure that the trampline code
and the interrupt handlers are both copied to low memory. The only way to do
this reliably is to put them in the copied section.
This patch should make relocated kernels work with KVM.
KVM-Stable-Tag
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
On Book3S KVM we directly expose some asm pointers to C code as
variables. These need to be relocated and thus break on relocatable
kernels.
To make sure we can at least build, let's mark them as long instead
of u32 where 64bit relocations don't work.
This fixes the following build error:
WARNING: 2 bad relocations^M
> c000000000008590 R_PPC64_ADDR32 .text+0x4000000000008460^M
> c000000000008594 R_PPC64_ADDR32 .text+0x4000000000008598^M
Please keep in mind that actually using KVM on a relocated kernel
might still break. This only fixes the compile problem.
Reported-by: Subrata Modak <subrata@linux.vnet.ibm.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
Book3S_32 requires MSR_DR to be disabled during load_up_xxx while on Book3S_64
it's supposed to be enabled. I misread the code and disabled it in both cases,
potentially breaking the PS3 which has a really small RMA.
This patch makes KVM work on the PS3 again.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
On Book3s_32 the tlbie instruction flushed effective addresses by the mask
0x0ffff000. This is pretty hard to reflect with a hash that hashes ~0xfff, so
to speed up that target we should also keep a special hash around for it.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
On failure gfn_to_pfn returns bad_page so use correct function to check
for that.
Signed-off-by: Gleb Natapov <gleb@redhat.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
So far we've been running all code without locking of any sort. This wasn't
really an issue because I didn't see any parallel access to the shadow MMU
code coming.
But then I started to implement dirty bitmapping to MOL which has the video
code in its own thread, so suddenly we had the dirty bitmap code run in
parallel to the shadow mmu code. And with that came trouble.
So I went ahead and made the MMU modifying functions as parallelizable as
I could think of. I hope I didn't screw up too much RCU logic :-). If you
know your way around RCU and locking and what needs to be done when, please
take a look at this patch.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
Due to previous changes, the Book3S_32 guest MMU code didn't compile properly
when enabling debugging.
This patch repairs the broken code paths, making it possible to define DEBUG_MMU
and friends again.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
We need to tell the guest the opcodes that make up a hypercall through
interfaces that are controlled by userspace. So we need to add a call
for userspace to allow it to query those opcodes so it can pass them
on.
This is required because the hypercall opcodes can change based on
the hypervisor conditions. If we're running in hardware accelerated
hypervisor mode, a hypercall looks different from when we're running
without hardware acceleration.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
On BookE the preferred way to write the EE bit is the wrteei instruction. It
already encodes the EE bit in the instruction.
So in order to get BookE some speedups as well, let's also PV'nize thati
instruction.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
There is also a form of mtmsr where all bits need to be addressed. While the
PPC64 Linux kernel behaves resonably well here, on PPC32 we do not have an
L=1 form. It does mtmsr even for simple things like only changing EE.
So we need to hook into that one as well and check for a mask of bits that we
deem safe to change from within guest context.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
The PowerPC ISA has a special instruction for mtmsr that only changes the EE
and RI bits, namely the L=1 form.
Since that one is reasonably often occuring and simple to implement, let's
go with this first. Writing EE=0 is always just a store. Doing EE=1 also
requires us to check for pending interrupts and if necessary exit back to the
hypervisor.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
When we hook an instruction we need to make sure we don't clobber any of
the registers at that point. So we write them out to scratch space in the
magic page. To make sure we don't fall into a race with another piece of
hooked code, we need to disable interrupts.
To make the later patches and code in general easier readable, let's introduce
a set of defines that save and restore r30, r31 and cr. Let's also define some
helpers to read the lower 32 bits of a 64 bit field on 32 bit systems.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
We will need to patch several instruction streams over to a different
code path, so we need a way to patch a single instruction with a branch
somewhere else.
This patch adds a helper to facilitate this patching.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
We will soon require more sophisticated methods to replace single instructions
with multiple instructions. We do that by branching to a memory region where we
write replacement code for the instruction to.
This region needs to be within 32 MB of the patched instruction though, because
that's the furthest we can jump with immediate branches.
So we keep 1MB of free space around in bss. After we're done initing we can just
tell the mm system that the unused pages are free, but until then we have enough
space to fit all our code in.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
With our current MMU scheme we don't need to know about the tlbsync instruction.
So we can just nop it out.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
Some instructions can simply be replaced by load and store instructions to
or from the magic page.
This patch replaces often called instructions that fall into the above category.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
We will soon start and replace instructions from the text section with
other, paravirtualized versions. To ease the readability of those patches
I split out the generic looping and magic page mapping code out.
This patch still only contains stubs. But at least it loops through the
text section :).
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
We have all the hypervisor pieces in place now, but the guest parts are still
missing.
This patch implements basic awareness of KVM when running Linux as guest. It
doesn't do anything with it yet though.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
Now that we have the shared page in place and the MMU code knows about
the magic page, we can expose that capability to the guest!
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
We need to override EA as well as PA lookups for the magic page. When the guest
tells us to project it, the magic page overrides any guest mappings.
In order to reflect that, we need to hook into all the MMU layers of KVM to
force map the magic page if necessary.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
We will be introducing a method to project the shared page in guest context.
As soon as we're talking about this coupling, the shared page is colled magic
page.
This patch introduces simple defines, so the follow-up patches are easier to
read.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
On PowerPC it's very normal to not support all of the physical RAM in real mode.
To check if we're matching on the shared page or not, we need to know the limits
so we can restrain ourselves to that range.
So let's make it a define instead of open-coding it. And while at it, let's also
increase it.
Signed-off-by: Alexander Graf <agraf@suse.de>
v2 -> v3:
- RMO -> PAM (non-magic page)
Signed-off-by: Avi Kivity <avi@redhat.com>
When the guest turns on interrupts again, it needs to know if we have an
interrupt pending for it. Because if so, it should rather get out of guest
context and get the interrupt.
So we introduce a new field in the shared page that we use to tell the guest
that there's a pending interrupt lying around.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
While running in hooked code we need to store register contents out because
we must not clobber any registers.
So let's add some fields to the shared page we can just happily write to.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
When running in hooked code we need a way to disable interrupts without
clobbering any interrupts or exiting out to the hypervisor.
To achieve this, we have an additional critical field in the shared page. If
that field is equal to the r1 register of the guest, it tells the hypervisor
that we're in such a critical section and thus may not receive any interrupts.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
To communicate with KVM directly we need to plumb some sort of interface
between the guest and KVM. Usually those interfaces use hypercalls.
This hypercall implementation is described in the last patch of the series
in a special documentation file. Please read that for further information.
This patch implements stubs to handle KVM PPC hypercalls on the host and
guest side alike.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
When in kernel mode there are 4 additional registers available that are
simple data storage. Instead of exiting to the hypervisor to read and
write those, we can just share them with the guest using the page.
This patch converts all users of the current field to the shared page.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
The SRR0 and SRR1 registers contain cached values of the PC and MSR
respectively. They get written to by the hypervisor when an interrupt
occurs or directly by the kernel. They are also used to tell the rfi(d)
instruction where to jump to.
Because it only gets touched on defined events that, it's very simple to
share with the guest. Hypervisor and guest both have full r/w access.
This patch converts all users of the current field to the shared page.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
The DAR register contains the address a data page fault occured at. This
register behaves pretty much like a simple data storage register that gets
written to on data faults. There is no hypervisor interaction required on
read or write.
This patch converts all users of the current field to the shared page.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
The DSISR register contains information about a data page fault. It is fully
read/write from inside the guest context and we don't need to worry about
interacting based on writes of this register.
This patch converts all users of the current field to the shared page.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
One of the most obvious registers to share with the guest directly is the
MSR. The MSR contains the "interrupts enabled" flag which the guest has to
toggle in critical sections.
So in order to bring the overhead of interrupt en- and disabling down, let's
put msr into the shared page. Keep in mind that even though you can fully read
its contents, writing to it doesn't always update all state. There are a few
safe fields that don't require hypervisor interaction. See the documentation
for a list of MSR bits that are safe to be set from inside the guest.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
For transparent variable sharing between the hypervisor and guest, I introduce
a shared page. This shared page will contain all the registers the guest can
read and write safely without exiting guest context.
This patch only implements the stubs required for the basic structure of the
shared page. The actual register moving follows.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
Since powerpc uses -Werror on arch powerpc, the build was broken like
this:
cc1: warnings being treated as errors
arch/powerpc/kernel/module.c: In function 'module_finalize':
arch/powerpc/kernel/module.c:66: error: unused variable 'err'
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
With all the recent module loading cleanups, we've minimized the code
that sits under module_mutex, fixing various deadlocks and making it
possible to do most of the module loading in parallel.
However, that whole conversion totally missed the rather obscure code
that adds a new module to the list for BUG() handling. That code was
doubly obscure because (a) the code itself lives in lib/bugs.c (for
dubious reasons) and (b) it gets called from the architecture-specific
"module_finalize()" rather than from generic code.
Calling it from arch-specific code makes no sense what-so-ever to begin
with, and is now actively wrong since that code isn't protected by the
module loading lock any more.
So this commit moves the "module_bug_{finalize,cleanup}()" calls away
from the arch-specific code, and into the generic code - and in the
process protects it with the module_mutex so that the list operations
are now safe.
Future fixups:
- move the module list handling code into kernel/module.c where it
belongs.
- get rid of 'module_bug_list' and just use the regular list of modules
(called 'modules' - imagine that) that we already create and maintain
for other reasons.
Reported-and-tested-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Adrian Bunk <bunk@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: stable@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Make sigreturn zero regs->trap, make do_signal() do the same on all
paths. As it is, signal interrupting e.g. read() from fd 512 (==
ERESTARTSYS) with another signal getting unblocked when the first
handler finishes will lead to restart one insn earlier than it ought
to. Same for multiple signals with in-kernel handlers interrupting
that sucker at the same time. Same for multiple signals of any kind
interrupting that sucker on 64bit...
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Acked-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
compat_alloc_user_space() expects the caller to independently call
access_ok() to verify the returned area. A missing call could
introduce problems on some architectures.
This patch incorporates the access_ok() check into
compat_alloc_user_space() and also adds a sanity check on the length.
The existing compat_alloc_user_space() implementations are renamed
arch_compat_alloc_user_space() and are used as part of the
implementation of the new global function.
This patch assumes NULL will cause __get_user()/__put_user() to either
fail or access userspace on all architectures. This should be
followed by checking the return value of compat_access_user_space()
for NULL in the callers, at which time the access_ok() in the callers
can also be removed.
Reported-by: Ben Hawkes <hawkes@sota.gen.nz>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Acked-by: Chris Metcalf <cmetcalf@tilera.com>
Acked-by: David S. Miller <davem@davemloft.net>
Acked-by: Ingo Molnar <mingo@elte.hu>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Tony Luck <tony.luck@intel.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Helge Deller <deller@gmx.de>
Cc: James Bottomley <jejb@parisc-linux.org>
Cc: Kyle McMartin <kyle@mcmartin.ca>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: <stable@kernel.org>
The slab.h header is required to use the kmalloc() family of functions.
Due to recent kernel changes, this header must be directly included by
code that calls into the memory allocator.
Without this patch, any code which includes this header fails to build.
Signed-off-by: Ira W. Snyder <iws@ovro.caltech.edu>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Tighten up time timing around the gpio reset functionality. Add a 200ns
delay before remuxing the pins back to ac97 to comply with the ac97 spec.
Signed-off-by: Eric Millbrandt <emillbrandt@dekaresearch.com>
Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
This function is implemented as though the function of_get_next_child does
not increment the reference count of its result, but actually it does.
Thus the patch adds of_node_put in error handling code and drops a call to
of_node_get.
The semantic match that finds this problem is as follows:
(http://coccinelle.lip6.fr/)
// <smpl>
@r exists@
local idexpression x;
expression E1;
position p1,p2;
@@
x@p1 = of_get_next_child(...);
... when != x = E1
of_node_get@p2(x)
@script:python@
p1 << r.p1;
p2 << r.p2;
@@
cocci.print_main("call",p1)
cocci.print_secs("get",p2)
// </smpl>
Signed-off-by: Julia Lawall <julia@diku.dk>
Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
The dlpar code can cause a deadlock to occur when making the RTAS
configure-connector call. This occurs because we make kmalloc calls,
which can block, while parsing the rtas_data_buf and holding the
rtas_data_buf_lock. This an cause issues if someone else attempts
to grab the rtas_data_bug_lock.
This patch alleviates this issue by copying the contents of the rtas_data_buf
to a local buffer before parsing. This allows us to only hold the
rtas_data_buf_lock around the RTAS configure-connector calls.
Signed-off-by: Nathan Fontenot <nfont@austin.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
clk_get() should return an ERR_PTR value on error, not NULL.
Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com>
Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
This is needed for proper PCI-E support on P1021 SoCs.
Signed-off-by: Anton Vorontsov <avorontsov@mvista.com>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
Add a call to of_node_put in the error handling code following a call to
of_find_compatible_node.
The semantic match that finds this problem is as follows:
(http://coccinelle.lip6.fr/)
// <smpl>
@r exists@
local idexpression x;
expression E,E1;
statement S;
@@
*x =
(of_find_node_by_path
|of_find_node_by_name
|of_find_node_by_phandle
|of_get_parent
|of_get_next_parent
|of_get_next_child
|of_find_compatible_node
|of_match_node
)(...);
...
if (x == NULL) S
<... when != x = E
*if (...) {
... when != of_node_put(x)
when != if (...) { ... of_node_put(x); ... }
(
return <+...x...+>;
|
* return ...;
)
}
...>
of_node_put(x);
// </smpl>
Signed-off-by: Julia Lawall <julia@diku.dk>
Acked-by: Timur Tabi <timur@freescale.com>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
The function of_iomap returns the result of calling ioremap, so iounmap
should be called on the result in the error handling code, as done in the
normal exit of the function.
The sematic match that finds this problem is as follows:
(http://coccinelle.lip6.fr/)
// <smpl>
@r exists@
local idexpression x;
expression E,E1;
identifier l;
statement S;
@@
*x = of_iomap(...);
... when != iounmap(x)
when != if (...) { ... iounmap(x); ... }
when != E = x
when any
(
if (x == NULL) S
|
if (...) {
... when != iounmap(x)
when != if (...) { ... iounmap(x); ... }
(
return <+...x...+>;
|
* return ...;
)
}
)
... when != x = E1
when any
iounmap(x);
// </smpl>
Signed-off-by: Julia Lawall <julia@diku.dk>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
Fixes the following compile problem on E500 platforms:
arch/powerpc/sysdev/fsl_rio.c: In function 'fsl_rio_mcheck_exception':
arch/powerpc/sysdev/fsl_rio.c:248: error: 'MCSR_MASK' undeclared (first use in this function)
Also fixes the compile problem on non-E500 platforms.
Signed-off-by: Li Yang <leoli@freescale.com>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
arch/powerpc/platforms/85xx/p1022_ds.c:22:23: error: linux/lmb.h: No such file or directory
arch/powerpc/platforms/85xx/p1022_ds.c: In function 'p1022_ds_setup_arch':
arch/powerpc/platforms/85xx/p1022_ds.c💯 error: implicit declaration of function 'memblock_end_of_DRAM'
arch/powerpc/platforms/85xx/p1022_ds.c: At top level:
arch/powerpc/platforms/85xx/p1022_ds.c:147: error: 'udbg_progress' undeclared here (not in a function)
make[2]: *** [arch/powerpc/platforms/85xx/p1022_ds.o] Error 1
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>