Commit Graph

6 Commits

Author SHA1 Message Date
Wei Yongjun 6b65bc2972 tipc: fix imbalance read_unlock_bh in __tipc_nl_add_monitor()
In the error handling case of nla_nest_start() failed read_unlock_bh()
is called  to unlock a lock that had not been taken yet. sparse warns
about the context imbalance as the following:

net/tipc/monitor.c:799:23: warning:
 context imbalance in '__tipc_nl_add_monitor' - different lock contexts for basic block

Fixes: cf6f7e1d51 ('tipc: dump monitor attributes')
Signed-off-by: Wei Yongjun <weiyj.lk@gmail.com>
Acked-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-07-30 20:38:22 -07:00
Parthasarathy Bhuvaragan cf6f7e1d51 tipc: dump monitor attributes
In this commit, we dump the monitor attributes when queried.
The link monitor attributes are separated into two kinds:
1. general attributes per bearer
2. specific attributes per node/peer
This style resembles the socket attributes and the nametable
publications per socket.

Reviewed-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: Parthasarathy Bhuvaragan <parthasarathy.bhuvaragan@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-07-26 14:26:42 -07:00
Parthasarathy Bhuvaragan bf1035b2ff tipc: get monitor threshold for the cluster
In this commit, we add support to fetch the configured
cluster monitoring threshold.

Reviewed-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: Parthasarathy Bhuvaragan <parthasarathy.bhuvaragan@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-07-26 14:26:42 -07:00
Parthasarathy Bhuvaragan 7b3f522964 tipc: make cluster size threshold for monitoring configurable
In this commit, we introduce support to configure the minimum
threshold to activate the new link monitoring algorithm.

Reviewed-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: Parthasarathy Bhuvaragan <parthasarathy.bhuvaragan@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-07-26 14:26:42 -07:00
Dan Carpenter 0350cb48fb tipc: potential shift wrapping bug in map_set()
"up_map" is a u64 type but we're not using the high 32 bits.

Fixes: 35c55c9877 ('tipc: add neighbor monitoring framework')
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-06-17 21:26:03 -07:00
Jon Paul Maloy 35c55c9877 tipc: add neighbor monitoring framework
TIPC based clusters are by default set up with full-mesh link
connectivity between all nodes. Those links are expected to provide
a short failure detection time, by default set to 1500 ms. Because
of this, the background load for neighbor monitoring in an N-node
cluster increases with a factor N on each node, while the overall
monitoring traffic through the network infrastructure increases at
a ~(N * (N - 1)) rate. Experience has shown that such clusters don't
scale well beyond ~100 nodes unless we significantly increase failure
discovery tolerance.

This commit introduces a framework and an algorithm that drastically
reduces this background load, while basically maintaining the original
failure detection times across the whole cluster. Using this algorithm,
background load will now grow at a rate of ~(2 * sqrt(N)) per node, and
at ~(2 * N * sqrt(N)) in traffic overhead. As an example, each node will
now have to actively monitor 38 neighbors in a 400-node cluster, instead
of as before 399.

This "Overlapping Ring Supervision Algorithm" is completely distributed
and employs no centralized or coordinated state. It goes as follows:

- Each node makes up a linearly ascending, circular list of all its N
  known neighbors, based on their TIPC node identity. This algorithm
  must be the same on all nodes.

- The node then selects the next M = sqrt(N) - 1 nodes downstream from
  itself in the list, and chooses to actively monitor those. This is
  called its "local monitoring domain".

- It creates a domain record describing the monitoring domain, and
  piggy-backs this in the data area of all neighbor monitoring messages
  (LINK_PROTOCOL/STATE) leaving that node. This means that all nodes in
  the cluster eventually (default within 400 ms) will learn about
  its monitoring domain.

- Whenever a node discovers a change in its local domain, e.g., a node
  has been added or has gone down, it creates and sends out a new
  version of its node record to inform all neighbors about the change.

- A node receiving a domain record from anybody outside its local domain
  matches this against its own list (which may not look the same), and
  chooses to not actively monitor those members of the received domain
  record that are also present in its own list. Instead, it relies on
  indications from the direct monitoring nodes if an indirectly
  monitored node has gone up or down. If a node is indicated lost, the
  receiving node temporarily activates its own direct monitoring towards
  that node in order to confirm, or not, that it is actually gone.

- Since each node is actively monitoring sqrt(N) downstream neighbors,
  each node is also actively monitored by the same number of upstream
  neighbors. This means that all non-direct monitoring nodes normally
  will receive sqrt(N) indications that a node is gone.

- A major drawback with ring monitoring is how it handles failures that
  cause massive network partitionings. If both a lost node and all its
  direct monitoring neighbors are inside the lost partition, the nodes in
  the remaining partition will never receive indications about the loss.
  To overcome this, each node also chooses to actively monitor some
  nodes outside its local domain. Those nodes are called remote domain
  "heads", and are selected in such a way that no node in the cluster
  will be more than two direct monitoring hops away. Because of this,
  each node, apart from monitoring the member of its local domain, will
  also typically monitor sqrt(N) remote head nodes.

- As an optimization, local list status, domain status and domain
  records are marked with a generation number. This saves senders from
  unnecessarily conveying  unaltered domain records, and receivers from
  performing unneeded re-adaptations of their node monitoring list, such
  as re-assigning domain heads.

- As a measure of caution we have added the possibility to disable the
  new algorithm through configuration. We do this by keeping a threshold
  value for the cluster size; a cluster that grows beyond this value
  will switch from full-mesh to ring monitoring, and vice versa when
  it shrinks below the value. This means that if the threshold is set to
  a value larger than any anticipated cluster size (default size is 32)
  the new algorithm is effectively disabled. A patch set for altering the
  threshold value and for listing the table contents will follow shortly.

- This change is fully backwards compatible.

Acked-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-06-15 14:06:28 -07:00