Nonlinear mappings are (AFAIKS) simply a virtual memory concept that encodes
the virtual address -> file offset differently from linear mappings.
->populate is a layering violation because the filesystem/pagecache code
should need to know anything about the virtual memory mapping. The hitch here
is that the ->nopage handler didn't pass down enough information (ie. pgoff).
But it is more logical to pass pgoff rather than have the ->nopage function
calculate it itself anyway (because that's a similar layering violation).
Having the populate handler install the pte itself is likewise a nasty thing
to be doing.
This patch introduces a new fault handler that replaces ->nopage and
->populate and (later) ->nopfn. Most of the old mechanism is still in place
so there is a lot of duplication and nice cleanups that can be removed if
everyone switches over.
The rationale for doing this in the first place is that nonlinear mappings are
subject to the pagefault vs invalidate/truncate race too, and it seemed stupid
to duplicate the synchronisation logic rather than just consolidate the two.
After this patch, MAP_NONBLOCK no longer sets up ptes for pages present in
pagecache. Seems like a fringe functionality anyway.
NOPAGE_REFAULT is removed. This should be implemented with ->fault, and no
users have hit mainline yet.
[akpm@linux-foundation.org: cleanup]
[randy.dunlap@oracle.com: doc. fixes for readahead]
[akpm@linux-foundation.org: build fix]
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com>
Cc: Mark Fasheh <mark.fasheh@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix the race between invalidate_inode_pages and do_no_page.
Andrea Arcangeli identified a subtle race between invalidation of pages from
pagecache with userspace mappings, and do_no_page.
The issue is that invalidation has to shoot down all mappings to the page,
before it can be discarded from the pagecache. Between shooting down ptes to
a particular page, and actually dropping the struct page from the pagecache,
do_no_page from any process might fault on that page and establish a new
mapping to the page just before it gets discarded from the pagecache.
The most common case where such invalidation is used is in file truncation.
This case was catered for by doing a sort of open-coded seqlock between the
file's i_size, and its truncate_count.
Truncation will decrease i_size, then increment truncate_count before
unmapping userspace pages; do_no_page will read truncate_count, then find the
page if it is within i_size, and then check truncate_count under the page
table lock and back out and retry if it had subsequently been changed (ptl
will serialise against unmapping, and ensure a potentially updated
truncate_count is actually visible).
Complexity and documentation issues aside, the locking protocol fails in the
case where we would like to invalidate pagecache inside i_size. do_no_page
can come in anytime and filemap_nopage is not aware of the invalidation in
progress (as it is when it is outside i_size). The end result is that
dangling (->mapping == NULL) pages that appear to be from a particular file
may be mapped into userspace with nonsense data. Valid mappings to the same
place will see a different page.
Andrea implemented two working fixes, one using a real seqlock, another using
a page->flags bit. He also proposed using the page lock in do_no_page, but
that was initially considered too heavyweight. However, it is not a global or
per-file lock, and the page cacheline is modified in do_no_page to increment
_count and _mapcount anyway, so a further modification should not be a large
performance hit. Scalability is not an issue.
This patch implements this latter approach. ->nopage implementations return
with the page locked if it is possible for their underlying file to be
invalidated (in that case, they must set a special vm_flags bit to indicate
so). do_no_page only unlocks the page after setting up the mapping
completely. invalidation is excluded because it holds the page lock during
invalidation of each page (and ensures that the page is not mapped while
holding the lock).
This also allows significant simplifications in do_no_page, because we have
the page locked in the right place in the pagecache from the start.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When changing the file size by a truncate() call, we log the change in the
inode size. However, we do not flush any outstanding data that might not
have been written to disk, thereby violating the data/inode size update
order. This can leave files full of NULLs on crash.
Hence if we are truncating the file, flush any unwritten data that may lie
between the curret on disk inode size and the new inode size that is being
logged to ensure that ordering is preserved.
SGI-PV: 966308
SGI-Modid: xfs-linux-melb:xfs-kern:29174a
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Tim Shimmin <tes@sgi.com>
Make the free file space transaction able to dip into the reserved blocks
to ensure that we can successfully free blocks when the filesystem is at
ENOSPC.
SGI-PV: 967788
SGI-Modid: xfs-linux-melb:xfs-kern:29167a
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Vlad Apostolov <vapo@sgi.com>
Signed-off-by: Tim Shimmin <tes@sgi.com>
Hook XFS up to ->page_mkwrite to ensure that we know about mmap pages
being written to. This allows use to do correct delayed allocation and
ENOSPC checking as well as remap unwritten extents so that they get
converted correctly during writeback. This is done via the generic
block_page_mkwrite code.
SGI-PV: 940392
SGI-Modid: xfs-linux-melb:xfs-kern:29149a
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Tim Shimmin <tes@sgi.com>
currently the export_operation structure and helpers related to it are in
fs.h. fs.h is already far too large and there are very few places needing the
export bits, so split them off into a separate header.
[akpm@linux-foundation.org: fix cifs build]
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Neil Brown <neilb@suse.de>
Cc: Steven French <sfrench@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, the freezer treats all tasks as freezable, except for the kernel
threads that explicitly set the PF_NOFREEZE flag for themselves. This
approach is problematic, since it requires every kernel thread to either
set PF_NOFREEZE explicitly, or call try_to_freeze(), even if it doesn't
care for the freezing of tasks at all.
It seems better to only require the kernel threads that want to or need to
be frozen to use some freezer-related code and to remove any
freezer-related code from the other (nonfreezable) kernel threads, which is
done in this patch.
The patch causes all kernel threads to be nonfreezable by default (ie. to
have PF_NOFREEZE set by default) and introduces the set_freezable()
function that should be called by the freezable kernel threads in order to
unset PF_NOFREEZE. It also makes all of the currently freezable kernel
threads call set_freezable(), so it shouldn't cause any (intentional)
change of behaviour to appear. Additionally, it updates documentation to
describe the freezing of tasks more accurately.
[akpm@linux-foundation.org: build fixes]
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Acked-by: Nigel Cunningham <nigel@nigel.suspend2.net>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Oleg Nesterov <oleg@tv-sign.ru>
Cc: Gautham R Shenoy <ego@in.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
I can never remember what the function to register to receive VM pressure
is called. I have to trace down from __alloc_pages() to find it.
It's called "set_shrinker()", and it needs Your Help.
1) Don't hide struct shrinker. It contains no magic.
2) Don't allocate "struct shrinker". It's not helpful.
3) Call them "register_shrinker" and "unregister_shrinker".
4) Call the function "shrink" not "shrinker".
5) Reduce the 17 lines of waffly comments to 13, but document it properly.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Cc: David Chinner <dgc@sgi.com>
Cc: Trond Myklebust <trond.myklebust@fys.uio.no>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* 32bit struct xfs_fsop_bulkreq has different size and layout of
members, no matter the alignment. Move the code out of the #else
branch (why was it there in the first place?). Define _32 variants of
the ioctl constants.
* 32bit struct xfs_bstat is different because of time_t and on
i386 because of different padding. Make xfs_bulkstat_one() accept a
custom "output formatter" in the private_data argument which takes care
of the xfs_bulkstat_one_compat() that takes care of the different
layout in the compat case.
* i386 struct xfs_inogrp has different padding.
Add a similar "output formatter" mecanism to xfs_inumbers().
SGI-PV: 967354
SGI-Modid: xfs-linux-melb:xfs-kern:29102a
Signed-off-by: Michal Marek <mmarek@suse.cz>
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Tim Shimmin <tes@sgi.com>
32bit struct xfs_fsop_handlereq has different size and offsets (due to
pointers). TODO: case XFS_IOC_{FSSETDM,ATTRLIST,ATTRMULTI}_BY_HANDLE still
not handled.
SGI-PV: 967354
SGI-Modid: xfs-linux-melb:xfs-kern:29101a
Signed-off-by: Michal Marek <mmarek@suse.cz>
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Tim Shimmin <tes@sgi.com>
i386 struct xfs_fsop_geom_v1 has no padding after the last member, so the
size is different.
SGI-PV: 967354
SGI-Modid: xfs-linux-melb:xfs-kern:29100a
Signed-off-by: Michal Marek <mmarek@suse.cz>
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Tim Shimmin <tes@sgi.com>
Remove the hardcoded "fnames" for tracing, and just embed them in tracing
macros via __FUNCTION__. Kills a lot of #ifdefs too.
SGI-PV: 967353
SGI-Modid: xfs-linux-melb:xfs-kern:29099a
Signed-off-by: Eric Sandeen <sandeen@sandeen.net>
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Tim Shimmin <tes@sgi.com>
Avoid using a special "zero inode" as the parent of the quota inode as
this can confuse the filestreams code into thinking the quota inode has a
parent. We do not want the quota inode to follow filestreams allocation
rules, so pass a NULL as the parent inode and detect this condition when
doing stream associations.
SGI-PV: 964469
SGI-Modid: xfs-linux-melb:xfs-kern:29098a
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Tim Shimmin <tes@sgi.com>
In media spaces, video is often stored in a frame-per-file format. When
dealing with uncompressed realtime HD video streams in this format, it is
crucial that files do not get fragmented and that multiple files a placed
contiguously on disk.
When multiple streams are being ingested and played out at the same time,
it is critical that the filesystem does not cross the streams and
interleave them together as this creates seek and readahead cache miss
latency and prevents both ingest and playout from meeting frame rate
targets.
This patch set creates a "stream of files" concept into the allocator to
place all the data from a single stream contiguously on disk so that RAID
array readahead can be used effectively. Each additional stream gets
placed in different allocation groups within the filesystem, thereby
ensuring that we don't cross any streams. When an AG fills up, we select a
new AG for the stream that is not in use.
The core of the functionality is the stream tracking - each inode that we
create in a directory needs to be associated with the directories' stream.
Hence every time we create a file, we look up the directories' stream
object and associate the new file with that object.
Once we have a stream object for a file, we use the AG that the stream
object point to for allocations. If we can't allocate in that AG (e.g. it
is full) we move the entire stream to another AG. Other inodes in the same
stream are moved to the new AG on their next allocation (i.e. lazy
update).
Stream objects are kept in a cache and hold a reference on the inode.
Hence the inode cannot be reclaimed while there is an outstanding stream
reference. This means that on unlink we need to remove the stream
association and we also need to flush all the associations on certain
events that want to reclaim all unreferenced inodes (e.g. filesystem
freeze).
SGI-PV: 964469
SGI-Modid: xfs-linux-melb:xfs-kern:29096a
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Barry Naujok <bnaujok@sgi.com>
Signed-off-by: Donald Douwsma <donaldd@sgi.com>
Signed-off-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Tim Shimmin <tes@sgi.com>
Signed-off-by: Vlad Apostolov <vapo@sgi.com>
Appease gcc in regards to "warning: 'rtx' is used uninitialized in
this function".
SGI-PV: 907752
SGI-Modid: xfs-linux-melb:xfs-kern:29007a
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Tim Shimmin <tes@sgi.com>
A check for file_count is always a bad idea. Linux has the ->release
method to deal with cleanups on last close and ->flush is only for the
very rare case where we want to perform an operation on every drop of a
reference to a file struct.
This patch gets rid of vop_close and surrounding code in favour of simply
doing the page flushing from ->release.
SGI-PV: 966562
SGI-Modid: xfs-linux-melb:xfs-kern:28952a
Signed-off-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Tim Shimmin <tes@sgi.com>
xfs_count_bits is only called once, and is then compared to 0. IOW, what
it really wants to know is, is the bitmap empty. This can be done more
simply, certainly.
SGI-PV: 966503
SGI-Modid: xfs-linux-melb:xfs-kern:28944a
Signed-off-by: Eric Sandeen <sandeen@sandeen.net>
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Tim Shimmin <tes@sgi.com>
The remount readonly path can fail to writeback properly because we still
have active transactions after calling xfs_quiesce_fs(). Further
investigation shows that this path is broken in the same ways that the xfs
freeze path was broken so fix it the same way.
SGI-PV: 964464
SGI-Modid: xfs-linux-melb:xfs-kern:28869a
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Tim Shimmin <tes@sgi.com>
During delayed allocation extent conversion or unwritten extent
conversion, we need to reserve some blocks for transactions reservations.
We need to reserve these blocks in case a btree split occurs and we need
to allocate some blocks.
Unfortunately, we've only ever reserved the number of data blocks we are
allocating, so in both the unwritten and delalloc case we can get ENOSPC
to the transaction reservation. This is bad because in both cases we
cannot report the failure to the writing application.
The fix is two-fold:
1 - leverage the reserved block infrastructure XFS already
has to reserve a small pool of blocks by default to allow
specially marked transactions to dip into when we are at
ENOSPC.
Default setting is min(5%, 1024 blocks).
2 - convert critical transaction reservations to be allowed
to dip into this pool. Spots changed are delalloc
conversion, unwritten extent conversion and growing a
filesystem at ENOSPC.
This also allows growing the filesytsem to succeed at ENOSPC.
SGI-PV: 964468
SGI-Modid: xfs-linux-melb:xfs-kern:28865a
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Tim Shimmin <tes@sgi.com>
When we are unmounting the filesystem, we flush all the inodes to disk.
Unfortunately, if we have an inode cluster that has just been freed and
marked stale sitting in an incore log buffer (i.e. hasn't been flushed to
disk), it will be holding all the flush locks on the inodes in that
cluster.
xfs_iflush_all() which is called during unmount walks all the inodes
trying to reclaim them, and it doing so calls xfs_finish_reclaim() on each
inode. If the inode is dirty, if grabs the flush lock and flushes it.
Unfortunately, find dirty inodes that already have their flush lock held
and so we sleep.
At this point in the unmount process, we are running single-threaded.
There is nothing more that can push on the log to force the transaction
holding the inode flush locks to disk and hence we deadlock.
The fix is to issue a log force before flushing the inodes on unmount so
that all the flush locks will be released before we start flushing the
inodes.
SGI-PV: 964538
SGI-Modid: xfs-linux-melb:xfs-kern:28862a
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Tim Shimmin <tes@sgi.com>
If we have multiple unwritten extents within a single page, we fail to
tell the I/o completion construction handlers we need a new handle for the
second and subsequent blocks in the page. While we still issue the I/O
correctly, we do not have the correct ranges recorded in the ioend
structures and hence when we go to convert the unwritten extents we screw
it up.
Make sure we start a new ioend every time the mapping changes so that we
convert the correct ranges on I/O completion.
SGI-PV: 964647
SGI-Modid: xfs-linux-melb:xfs-kern:28797a
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Tim Shimmin <tes@sgi.com>
With the per-cpu superblock counters, batch updates are no longer atomic
across the entire batch of changes. This is not an issue if each
individual change in the batch is applied atomically. Unfortunately, free
block count changes are not applied atomically, and they are applied in a
manner guaranteed to cause problems.
Essentially, the free block count reservation that the transaction took
initially is returned to the in core counters before a second delta takes
away what is used. because these two operations are not atomic, we can
race with another thread that can use the returned transaction reservation
before the transaction takes the space away again and we can then get
ENOSPC being reported in a spot where we don't have an ENOSPC condition,
nor should we ever see one there.
Fix it up by rolling the two deltas into the one so it can be applied
safely (i.e. atomically) to the incore counters.
SGI-PV: 964465
SGI-Modid: xfs-linux-melb:xfs-kern:28796a
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Tim Shimmin <tes@sgi.com>
Currently we do not wait on extent conversion to occur, and hence we can
return to userspace from a synchronous direct I/O write without having
completed all the actions in the write. Hence a read after the write may
see zeroes (unwritten extent) rather than the data that was written.
Block the I/O completion by triggering a synchronous workqueue flush to
ensure that the conversion has occurred before we return to userspace.
SGI-PV: 964092
SGI-Modid: xfs-linux-melb:xfs-kern:28775a
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Tim Shimmin <tes@sgi.com>
When processing multiple extent maps, xfs_bmapi needs to keep track of the
extent behind the one it is currently working on to be able to trim extent
ranges correctly. Failing to update the previous pointer can result in
corrupted extent lists in memory and this will result in panics or assert
failures.
Update the previous pointer correctly when we move to the next extent to
process.
SGI-PV: 965631
SGI-Modid: xfs-linux-melb:xfs-kern:28773a
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Vlad Apostolov <vapo@sgi.com>
Signed-off-by: Tim Shimmin <tes@sgi.com>
When we have a couple of hundred transactions on the fly at once, they all
typically modify the on disk superblock in some way.
create/unclink/mkdir/rmdir modify inode counts, allocation/freeing modify
free block counts.
When these counts are modified in a transaction, they must eventually lock
the superblock buffer and apply the mods. The buffer then remains locked
until the transaction is committed into the incore log buffer. The result
of this is that with enough transactions on the fly the incore superblock
buffer becomes a bottleneck.
The result of contention on the incore superblock buffer is that
transaction rates fall - the more pressure that is put on the superblock
buffer, the slower things go.
The key to removing the contention is to not require the superblock fields
in question to be locked. We do that by not marking the superblock dirty
in the transaction. IOWs, we modify the incore superblock but do not
modify the cached superblock buffer. In short, we do not log superblock
modifications to critical fields in the superblock on every transaction.
In fact we only do it just before we write the superblock to disk every
sync period or just before unmount.
This creates an interesting problem - if we don't log or write out the
fields in every transaction, then how do the values get recovered after a
crash? the answer is simple - we keep enough duplicate, logged information
in other structures that we can reconstruct the correct count after log
recovery has been performed.
It is the AGF and AGI structures that contain the duplicate information;
after recovery, we walk every AGI and AGF and sum their individual
counters to get the correct value, and we do a transaction into the log to
correct them. An optimisation of this is that if we have a clean unmount
record, we know the value in the superblock is correct, so we can avoid
the summation walk under normal conditions and so mount/recovery times do
not change under normal operation.
One wrinkle that was discovered during development was that the blocks
used in the freespace btrees are never accounted for in the AGF counters.
This was once a valid optimisation to make; when the filesystem is full,
the free space btrees are empty and consume no space. Hence when it
matters, the "accounting" is correct. But that means the when we do the
AGF summations, we would not have a correct count and xfs_check would
complain. Hence a new counter was added to track the number of blocks used
by the free space btrees. This is an *on-disk format change*.
As a result of this, lazy superblock counters are a mkfs option and at the
moment on linux there is no way to convert an old filesystem. This is
possible - xfs_db can be used to twiddle the right bits and then
xfs_repair will do the format conversion for you. Similarly, you can
convert backwards as well. At some point we'll add functionality to
xfs_admin to do the bit twiddling easily....
SGI-PV: 964999
SGI-Modid: xfs-linux-melb:xfs-kern:28652a
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Tim Shimmin <tes@sgi.com>
If hole punching at EOF is done as two steps (i.e. truncate then extend)
the file is in a transient state between the two steps where an
application can see the incorrect file size. Punching a hole to EOF needs
to be treated in teh same way as all other hole punching cases so that the
file size is never seen to change.
SGI-PV: 962012
SGI-Modid: xfs-linux-melb:xfs-kern:28641a
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Vlad Apostolov <vapo@sgi.com>
Signed-off-by: Tim Shimmin <tes@sgi.com>
When setting the length of the iclogbuf to write out we should just be
changing the desired byte count rather completely reassociating the buffer
memory with the buffer. Reassociating the buffer memory changes the
apparent length of the buffer and hence when we free the buffer, we don't
free all the vmap()d space we originally allocated.
SGI-PV: 964983
SGI-Modid: xfs-linux-melb:xfs-kern:28640a
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Tim Shimmin <tes@sgi.com>
Don't reference the log buffer after running the callbacks as the callback
can trigger the log buffers to be freed during unmount.
SGI-PV: 964545
SGI-Modid: xfs-linux-melb:xfs-kern:28567a
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Tim Shimmin <tes@sgi.com>
Recent fixes to the filesystem freezing code introduced a vn_iowait call
in the middle of the sync code. Unfortunately, at the point where this
call was added we are holding the ilock. The ilock is needed by I/O
completion for unwritten extent conversion and now updating the file size.
Hence I/o cannot complete if we hold the ilock while waiting for I/O
completion.
Fix up the bug and clean the code up around it.
SGI-PV: 963674
SGI-Modid: xfs-linux-melb:xfs-kern:28566a
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Tim Shimmin <tes@sgi.com>
When growing a filesystem we don't check to see if the new size overflows
the page cache index range, so we can do silly things like grow a
filesystem page 16TB on a 32bit. Check new filesystem sizes against the
limits the kernel can support.
SGI-PV: 957886
SGI-Modid: xfs-linux-melb:xfs-kern:28563a
Signed-Off-By: Nathan Scott <nscott@aconex.com>
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Tim Shimmin <tes@sgi.com>
Many block drivers (aoe, iscsi) really want refcountable pages in bios,
which is what almost everyone send down. XFS unfortunately has a few
places where it sends down buffers that may come from kmalloc, which
breaks them.
Fix the places that use kmalloc()d buffers.
SGI-PV: 964546
SGI-Modid: xfs-linux-melb:xfs-kern:28562a
Signed-Off-By: Christoph Hellwig <hch@infradead.org>
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Tim Shimmin <tes@sgi.com>
They can use generic_file_splice_read() instead. Since sys_sendfile() now
prefers that, there should be no change in behaviour.
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
The recent fix for preventing NULL files from being left around does not
update the file size corectly in all cases. The missing case is a write
extending the file that does not need to allocate a block.
In that case we used a read mapping of the extent which forced the use of
the read I/O completion handler instead of the write I/O completion
handle. Hence the file size was not updated on I/O completion.
SGI-PV: 965068
SGI-Modid: xfs-linux-melb:xfs-kern:28657a
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Nathan Scott <nscott@aconex.com>
Signed-off-by: Tim Shimmin <tes@sgi.com>
SLAB_CTOR_CONSTRUCTOR is always specified. No point in checking it.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Jens Axboe <jens.axboe@oracle.com>
Cc: Steven French <sfrench@us.ibm.com>
Cc: Michael Halcrow <mhalcrow@us.ibm.com>
Cc: OGAWA Hirofumi <hirofumi@mail.parknet.co.jp>
Cc: Miklos Szeredi <miklos@szeredi.hu>
Cc: Steven Whitehouse <swhiteho@redhat.com>
Cc: Roman Zippel <zippel@linux-m68k.org>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Dave Kleikamp <shaggy@austin.ibm.com>
Cc: Trond Myklebust <trond.myklebust@fys.uio.no>
Cc: "J. Bruce Fields" <bfields@fieldses.org>
Cc: Anton Altaparmakov <aia21@cantab.net>
Cc: Mark Fasheh <mark.fasheh@oracle.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Jan Kara <jack@ucw.cz>
Cc: David Chinner <dgc@sgi.com>
Cc: "David S. Miller" <davem@davemloft.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* git://git.kernel.org/pub/scm/linux/kernel/git/bunk/trivial: (25 commits)
sound: convert "sound" subdirectory to UTF-8
MAINTAINERS: Add cxacru website/mailing list
include files: convert "include" subdirectory to UTF-8
general: convert "kernel" subdirectory to UTF-8
documentation: convert the Documentation directory to UTF-8
Convert the toplevel files CREDITS and MAINTAINERS to UTF-8.
remove broken URLs from net drivers' output
Magic number prefix consistency change to Documentation/magic-number.txt
trivial: s/i_sem /i_mutex/
fix file specification in comments
drivers/base/platform.c: fix small typo in doc
misc doc and kconfig typos
Remove obsolete fat_cvf help text
Fix occurrences of "the the "
Fix minor typoes in kernel/module.c
Kconfig: Remove reference to external mqueue library
Kconfig: A couple of grammatical fixes in arch/i386/Kconfig
Correct comments in genrtc.c to refer to correct /proc file.
Fix more "deprecated" spellos.
Fix "deprecated" typoes.
...
Fix trivial comment conflict in kernel/relay.c.
Since nonboot CPUs are now disabled after tasks and devices have been
frozen and the CPU hotplug infrastructure is used for this purpose, we need
special CPU hotplug notifications that will help the CPU-hotplug-aware
subsystems distinguish normal CPU hotplug events from CPU hotplug events
related to a system-wide suspend or resume operation in progress. This
patch introduces such notifications and causes them to be used during
suspend and resume transitions. It also changes all of the
CPU-hotplug-aware subsystems to take these notifications into consideration
(for now they are handled in the same way as the corresponding "normal"
ones).
[oleg@tv-sign.ru: cleanups]
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Cc: Gautham R Shenoy <ego@in.ibm.com>
Cc: Pavel Machek <pavel@ucw.cz>
Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* git://oss.sgi.com:8090/xfs/xfs-2.6:
[XFS] Add lockdep support for XFS
[XFS] Fix race in xfs_write() b/w dmapi callout and direct I/O checks.
[XFS] Get rid of redundant "required" in msg.
[XFS] Export via a function xfs_buftarg_list for use by kdb/xfsidbg.
[XFS] Remove unused ilen variable and references.
[XFS] Fix to prevent the notorious 'NULL files' problem after a crash.
[XFS] Fix race condition in xfs_write().
[XFS] Fix uquota and oquota enforcement problems.
[XFS] propogate return codes from flush routines
[XFS] Fix quotaon syscall failures for group enforcement requests.
[XFS] Invalidate quotacheck when mounting without a quota type.
[XFS] reducing the number of random number functions.
[XFS] remove more misc. unused args
[XFS] the "aendp" arg to xfs_dir2_data_freescan is always NULL, remove it.
[XFS] The last argument "lsn" of xfs_trans_commit() is always called with
In xfs_write() the iolock is dropped and reacquired in XFS_SEND_DATA()
which means that the file could change from not-cached to cached and we
need to redo the direct I/O checks. We should also redo the direct I/O
checks when the file size changes regardless if O_APPEND is set or not.
SGI-PV: 963483
SGI-Modid: xfs-linux-melb:xfs-kern:28440a
Signed-off-by: Lachlan McIlroy <lachlan@sgi.com>
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Tim Shimmin <tes@sgi.com>
The problem that has been addressed is that of synchronising updates of
the file size with writes that extend a file. Without the fix the update
of a file's size, as a result of a write beyond eof, is independent of
when the cached data is flushed to disk. Often the file size update would
be written to the filesystem log before the data is flushed to disk. When
a system crashes between these two events and the filesystem log is
replayed on mount the file's size will be set but since the contents never
made it to disk the file is full of holes. If some of the cached data was
flushed to disk then it may just be a section of the file at the end that
has holes.
There are existing fixes to help alleviate this problem, particularly in
the case where a file has been truncated, that force cached data to be
flushed to disk when the file is closed. If the system crashes while the
file(s) are still open then this flushing will never occur.
The fix that we have implemented is to introduce a second file size,
called the in-memory file size, that represents the current file size as
viewed by the user. The existing file size, called the on-disk file size,
is the one that get's written to the filesystem log and we only update it
when it is safe to do so. When we write to a file beyond eof we only
update the in- memory file size in the write operation. Later when the I/O
operation, that flushes the cached data to disk completes, an I/O
completion routine will update the on-disk file size. The on-disk file
size will be updated to the maximum offset of the I/O or to the value of
the in-memory file size if the I/O includes eof.
SGI-PV: 958522
SGI-Modid: xfs-linux-melb:xfs-kern:28322a
Signed-off-by: Lachlan McIlroy <lachlan@sgi.com>
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Tim Shimmin <tes@sgi.com>
This change addresses a race in xfs_write() where, for direct I/O, the
flags need_i_mutex and need_flush are setup before the iolock is acquired.
The logic used to setup the flags may change between setting the flags and
acquiring the iolock resulting in these flags having incorrect values. For
example, if a file is not currently cached then need_i_mutex is set to
zero and then if the file is cached before the iolock is acquired we will
fail to do the flushinval before the direct write.
The flush (and also the call to xfs_zero_eof()) need to be done with the
iolock held exclusive so we need to acquire the iolock before checking for
cached data (or if the write begins after eof) to prevent this state from
changing. For direct I/O I've chosen to always acquire the iolock in
shared mode initially and if there is a need to promote it then drop it
and reacquire it.
There's also some other tidy-ups including removing the O_APPEND offset
adjustment since that work is done in generic_write_checks() (and we don't
use offset as an input parameter anywhere).
SGI-PV: 962170
SGI-Modid: xfs-linux-melb:xfs-kern:28319a
Signed-off-by: Lachlan McIlroy <lachlan@sgi.com>
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Tim Shimmin <tes@sgi.com>
When uquota and oquota (gquota/pquota) are enabled for accounting both are
enforced if ether has enforcement active.
Conditions:
- Both XFS_UQUOTA_ACCT and XFS_GQUOTA_ACCT are enabled.
- Either XFS_UQUOTA_ENFD or XFS_OQUOTA_ENFD is enabled.
- The usage without enforce is reached at the soft limit.
Problems:
1. "repquota" shows all grace time even if no enforcement.
2. we cannot make a file over a hard limits even if no enforcement.
SGI-PV: 962291
SGI-Modid: xfs-linux-melb:xfs-kern:28272a
Signed-off-by: Kouta Ooizumi <k-ooizumi@tnes.nec.co.jp>
Signed-off-by: Donald Douwsma <donaldd@sgi.com>
Signed-off-by: Tim Shimmin <tes@sgi.com>
This patch handles error return values in fs_flush_pages and
fs_flushinval_pages. It changes the prototype of fs_flushinval_pages so we
can propogate the errors and handle them at higher layers. I also modified
xfs_itruncate_start so that it could propogate the error further.
SGI-PV: 961990
SGI-Modid: xfs-linux-melb:xfs-kern:28231a
Signed-off-by: Lachlan McIlroy <lachlan@sgi.com>
Signed-off-by: Stewart Smith <stewart@flamingspork.com>
Signed-off-by: Tim Shimmin <tes@sgi.com>
xfs_qm_scall_quotaon was incorrectly failing requests to enable group
quota enforcement. Fixes logic error in OQUOTA handling.
SGI-PV: 961964
SGI-Modid: xfs-linux-melb:xfs-kern:28227a
Signed-off-by: Donald Douwsma <donaldd@sgi.com>
Signed-off-by: Tim Shimmin <tes@sgi.com>
When quotas are mounted or remounted without a particular quota type the
quota accounting for that type becomes invalid. Previously we were
ignoring this leading to accounting errors.
SGI-PV: 961964
SGI-Modid: xfs-linux-melb:xfs-kern:28225a
Signed-off-by: Donald Douwsma <donaldd@sgi.com>
Signed-off-by: Utako Kusaka <utako@tnes.nec.co.jp>
Signed-off-by: Vlad Apostolov <vapo@sgi.com>
Signed-off-by: Tim Shimmin <tes@sgi.com>
I have never seen a use of SLAB_DEBUG_INITIAL. It is only supported by
SLAB.
I think its purpose was to have a callback after an object has been freed
to verify that the state is the constructor state again? The callback is
performed before each freeing of an object.
I would think that it is much easier to check the object state manually
before the free. That also places the check near the code object
manipulation of the object.
Also the SLAB_DEBUG_INITIAL callback is only performed if the kernel was
compiled with SLAB debugging on. If there would be code in a constructor
handling SLAB_DEBUG_INITIAL then it would have to be conditional on
SLAB_DEBUG otherwise it would just be dead code. But there is no such code
in the kernel. I think SLUB_DEBUG_INITIAL is too problematic to make real
use of, difficult to understand and there are easier ways to accomplish the
same effect (i.e. add debug code before kfree).
There is a related flag SLAB_CTOR_VERIFY that is frequently checked to be
clear in fs inode caches. Remove the pointless checks (they would even be
pointless without removeal of SLAB_DEBUG_INITIAL) from the fs constructors.
This is the last slab flag that SLUB did not support. Remove the check for
unimplemented flags from SLUB.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since freezable workqueues are broken in 2.6.21-rc
(cf. http://marc.theaimsgroup.com/?l=linux-kernel&m=116855740612755,
http://marc.theaimsgroup.com/?l=linux-kernel&m=117261312523921&w=2)
it's better to change the only user of them, which is XFS, to use "normal"
nonfreezable workqueues.
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: David Chinner <dgc@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The semantic effect of insert_at_head is that it would allow new registered
sysctl entries to override existing sysctl entries of the same name. Which is
pain for caching and the proc interface never implemented.
I have done an audit and discovered that none of the current users of
register_sysctl care as (excpet for directories) they do not register
duplicate sysctl entries.
So this patch simply removes the support for overriding existing entries in
the sys_sysctl interface since no one uses it or cares and it makes future
enhancments harder.
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Acked-by: Ralf Baechle <ralf@linux-mips.org>
Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Russell King <rmk@arm.linux.org.uk>
Cc: David Howells <dhowells@redhat.com>
Cc: "Luck, Tony" <tony.luck@intel.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Andi Kleen <ak@muc.de>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Corey Minyard <minyard@acm.org>
Cc: Neil Brown <neilb@suse.de>
Cc: "John W. Linville" <linville@tuxdriver.com>
Cc: James Bottomley <James.Bottomley@steeleye.com>
Cc: Jan Kara <jack@ucw.cz>
Cc: Trond Myklebust <trond.myklebust@fys.uio.no>
Cc: Mark Fasheh <mark.fasheh@oracle.com>
Cc: David Chinner <dgc@sgi.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Patrick McHardy <kaber@trash.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
After Al Viro (finally) succeeded in removing the sched.h #include in module.h
recently, it makes sense again to remove other superfluous sched.h includes.
There are quite a lot of files which include it but don't actually need
anything defined in there. Presumably these includes were once needed for
macros that used to live in sched.h, but moved to other header files in the
course of cleaning it up.
To ease the pain, this time I did not fiddle with any header files and only
removed #includes from .c-files, which tend to cause less trouble.
Compile tested against 2.6.20-rc2 and 2.6.20-rc2-mm2 (with offsets) on alpha,
arm, i386, ia64, mips, powerpc, and x86_64 with allnoconfig, defconfig,
allmodconfig, and allyesconfig as well as a few randconfigs on x86_64 and all
configs in arch/arm/configs on arm. I also checked that no new warnings were
introduced by the patch (actually, some warnings are removed that were emitted
by unnecessarily included header files).
Signed-off-by: Tim Schmielau <tim@physik3.uni-rostock.de>
Acked-by: Russell King <rmk+kernel@arm.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Many struct inode_operations in the kernel can be "const". Marking them const
moves these to the .rodata section, which avoids false sharing with potential
dirty data. In addition it'll catch accidental writes at compile time to
these shared resources.
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Don't hide buffer_unwritten behind buffer_delay() and remove the hack that
clears unexpected buffer_unwritten() states now that it can't happen.
Signed-off-by: Dave Chinner <dgc@sgi.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Cc: Timothy Shimmin <tes@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, XFS uses BH_PrivateStart for flagging unwritten extent state in a
bufferhead. Recently, I found the long standing mmap/unwritten extent
conversion bug, and it was to do with partial page invalidation not clearing
the unwritten flag from bufferheads attached to the page but beyond EOF. See
here for a full explaination:
http://oss.sgi.com/archives/xfs/2006-12/msg00196.html
The solution I have checked into the XFS dev tree involves duplicating code
from block_invalidatepage to clear the unwritten flag from the bufferhead(s),
and then calling block_invalidatepage() to do the rest.
Christoph suggested that this would be better solved by pushing the unwritten
flag into the common buffer head flags and just adding the call to
discard_buffer():
http://oss.sgi.com/archives/xfs/2006-12/msg00239.html
The following patch makes BH_Unwritten a first class citizen.
Signed-off-by: Dave Chinner <dgc@sgi.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
kmap() is inefficient and does not scale well. kmap_atomic() is a better
choice. Use the generic wrapper function instead of open coding the
kmap-memset-dcache flush-kunmap stuff.
SGI-PV: 960904
SGI-Modid: xfs-linux-melb:xfs-kern:28041a
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Tim Shimmin <tes@sgi.com>
Patch provided by Eric Sandeen (sandeen@sandeen.net).
SGI-PV: 960897
SGI-Modid: xfs-linux-melb:xfs-kern:28038a
Signed-off-by: Eric Sandeen <sandeen@sandeen.net>
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Tim Shimmin <tes@sgi.com>
It makes it incrementally clearer to read the code when the top of a macro
spaghetti-pile only receives the 3 arguments it uses, rather than 2 extra
ones which are not used. Also when you start pulling this thread out of
the sweater (i.e. remove unused args from XFS_BTREE_*_ADDR), a couple
other third arms etc fall off too. If they're not used in the macro, then
they sometimes don't need to be passed to the function calling the macro
either, etc....
Patch provided by Eric Sandeen (sandeen@sandeen.net).
SGI-PV: 960197
SGI-Modid: xfs-linux-melb:xfs-kern:28037a
Signed-off-by: Eric Sandeen <sandeen@sandeen.net>
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Tim Shimmin <tes@sgi.com>
xfs_mac.h and xfs_cap.h provide definitions and macros that aren't used
anywhere in XFS at all. They are left-overs from "to be implement at some
point in the future" functionality that Irix XFS has. If this
functionality ever goes into Linux, it will be provided at a different
layer, most likely through the security hooks in the kernel so we will
never need this functionality in XFS.
Patch provided by Eric Sandeen (sandeen@sandeen.net).
SGI-PV: 960895
SGI-Modid: xfs-linux-melb:xfs-kern:28036a
Signed-off-by: Eric Sandeen <sandeen@sandeen.net>
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Tim Shimmin <tes@sgi.com>
Fixes a few small issues (mostly cosmetic) that were picked up during the
review cycle for the last set of freeze path changes.
SGI-PV: 959267
SGI-Modid: xfs-linux-melb:xfs-kern:28035a
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Tim Shimmin <tes@sgi.com>
The firstblock argument to xfs_bmap_finish is not used by that function.
Remove it and cleanup the code a bit.
Patch provided by Eric Sandeen.
SGI-PV: 960196
SGI-Modid: xfs-linux-melb:xfs-kern:28034a
Signed-off-by: Eric Sandeen <sandeen@sandeen.net>
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Tim Shimmin <tes@sgi.com>
Use the the generic VFS attr flags where appropriate instead of open
coding them to the same values.
Patch provided by Eric Sandeen.
SGI-PV: 960868
SGI-Modid: xfs-linux-melb:xfs-kern:28033a
Signed-off-by: Eric Sandeen <sandeen@sandeen.net>
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Tim Shimmin <tes@sgi.com>
wake_up's implementation does an implicit memory barrier so the explicit
memory barrier is not needed in vfs_sync_worker.
Patch provided by Ralf Baechle.
SGI-PV: 960867
SGI-Modid: xfs-linux-melb:xfs-kern:28032a
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Tim Shimmin <tes@sgi.com>
Removes unneeded sysctl insert at head behaviour. Cleans up sysctl
definitions to use C99 initialisers. Patch provided by Eric W. Biederman.
SGI-PV: 960192
SGI-Modid: xfs-linux-melb:xfs-kern:28031a
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Tim Shimmin <tes@sgi.com>
The problem is the two callers of xfs_iozero() are rounding out the range
to be zeroed to the end of a fsb and in some cases this extends past the
new eof. The call to commit_write() in xfs_iozero() will cause the Linux
inode's file size to be set too high.
SGI-PV: 960788
SGI-Modid: xfs-linux-melb:xfs-kern:28013a
Signed-off-by: Lachlan McIlroy <lachlan@sgi.com>
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Tim Shimmin <tes@sgi.com>
record.
The current Linux XFS freeze code is a mess. We flush the metadata buffers
out while we are still allowing new transactions to start and then fail to
flush the dirty buffers back out before writing the unmount and dummy
records to the log.
This leads to problems when the frozen filesystem is used for snapshots -
we do log recovery on a readonly image and often it appears that the log
image in the snapshot is not correct. Hence we end up with hangs, oops and
mount failures when trying to mount a snapshot image that has been created
when the filesystem has not been correctly frozen.
To fix this, we need to move th metadata flush to after we wait for all
current transactions to complete in teh second stage of the freeze. This
means that when we write the final log records, the log should be clean
and recovery should never occur on a snapshot image created from a frozen
filesystem.
SGI-PV: 959267
SGI-Modid: xfs-linux-melb:xfs-kern:28010a
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Donald Douwsma <donaldd@sgi.com>
Signed-off-by: Tim Shimmin <tes@sgi.com>
When writing less than a filesystem block of data into an unwritten extent
via buffered I/O, __xfs_get_blocks fails to set the buffer new flag. As a
result, the generic code will not zero either edge of the block resulting
in garbage being written to disk either side of the real data. Set the
buffer new state on bufferd writes to unwritten extents to ensure that
zeroing occurs.
SGI-PV: 960328
SGI-Modid: xfs-linux-melb:xfs-kern:28000a
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Lachlan McIlroy <lachlan@sgi.com>
Signed-off-by: Tim Shimmin <tes@sgi.com>
After filesystem recovery the superblock is re-read to bring in any
changes. If the per-cpu superblock counters are not re-initialized from
the superblock then the next time the per-cpu counters are disabled they
might overwrite the global counter with a bogus value.
SGI-PV: 957348
SGI-Modid: xfs-linux-melb:xfs-kern:27999a
Signed-off-by: Lachlan McIlroy <lachlan@sgi.com>
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Tim Shimmin <tes@sgi.com>
SGI-PV: 956323
SGI-Modid: xfs-linux-melb:xfs-kern:27940a
Signed-off-by: Kevin Jamieson <kjamieson@bycast.com>
Signed-off-by: David Chatterton <chatz@sgi.com>
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Tim Shimmin <tes@sgi.com>
The block reservation mechanism has been broken since the per-cpu
superblock counters were introduced. Make the block reservation code work
with the per-cpu counters by syncing the counters, snapshotting the amount
of available space and then doing a modifcation of the counter state
according to the result. Continue in a loop until we either have no space
available or we reserve some space.
SGI-PV: 956323
SGI-Modid: xfs-linux-melb:xfs-kern:27895a
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Tim Shimmin <tes@sgi.com>
The free block modification code has a 32bit interface, limiting the size
the filesystem can be grown even on 64 bit machines. On 32 bit machines,
there are other 32bit variables in transaction structures and interfaces
that need to be expanded to allow this to work.
SGI-PV: 959978
SGI-Modid: xfs-linux-melb:xfs-kern:27894a
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Tim Shimmin <tes@sgi.com>
functions, but they
a) ignore the flags parameter completely, and b) are never called
directly, only via the flag-less defines anyway
So, drop the #define indirection, and rename mraccessf to mraccess, etc.
SGI-PV: 959138
SGI-Modid: xfs-linux-melb:xfs-kern:27711a
Signed-off-by: Lachlan McIlroy <lachlan@sgi.com>
Signed-off-by: Eric Sandeen <sandeen@sandeen.net>
Signed-off-by: Tim Shimmin <tes@sgi.com>
The existing per-cpu superblock counter code uses the global superblock
spin lock when we approach ENOSPC for global synchronisation. On larger
machines than this code was originally tested on this can still get
catastrophic spinlock contention due increasing rebalance frequency near
ENOSPC.
By introducing a sleeping lock that is used to serialise balances and
modifications near ENOSPC we prevent contention from needlessly from
wasting the CPU time of potentially hundreds of CPUs.
To reduce the number of balances occuring, we separate the need rebalance
case from the slow allocate case. Now, a counter running dry will trigger
a rebalance during which counters are disabled. Any thread that sees a
disabled counter enters a different path where it waits on the new mutex.
When it gets the new mutex, it checks if the counter is disabled. If the
counter is disabled, then we _know_ that we have to use the global counter
and lock and it is safe to do so immediately. Otherwise, we drop the mutex
and go back to trying the per-cpu counters which we know were re-enabled.
SGI-PV: 952227
SGI-Modid: xfs-linux-melb:xfs-kern:27612a
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Lachlan McIlroy <lachlan@sgi.com>
Signed-off-by: Tim Shimmin <tes@sgi.com>
gcc-4.1 and more recent aggressively inline static functions which
increases XFS stack usage by ~15% in critical paths. Prevent this from
occurring by adding noinline to the STATIC definition.
Also uninline some functions that are too large to be inlined and were
causing problems with CONFIG_FORCED_INLINING=y.
Finally, clean up all the different users of inline, __inline and
__inline__ and put them under one STATIC_INLINE macro. For debug kernels
the STATIC_INLINE macro uninlines those functions.
SGI-PV: 957159
SGI-Modid: xfs-linux-melb:xfs-kern:27585a
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: David Chatterton <chatz@sgi.com>
Signed-off-by: Tim Shimmin <tes@sgi.com>
The {test,set,clear}_bit() operations take a bit index for the bit to
operate on. The XBT_* flags are defined as bit fields which is incorrect,
not to mention the way the bit fields are enumerated is broken too. This
was only working by chance.
Fix the definitions of the flags and make the code using them use the
{test,set,clear}_bit() operations correctly.
SGI-PV: 958639
SGI-Modid: xfs-linux-melb:xfs-kern:27565a
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Tim Shimmin <tes@sgi.com>
The message buffer used by cmn_err() is only 256 bytes and some CXFS
messages were exceeding this length. Since we were using vsprintf() and
not checking for buffer overruns we were clobbering memory beyond the
buffer. The size of the buffer has been increased to 1024 bytes so we can
capture these larger messages and we are now using vsnprintf() to prevent
overrunning the buffer size.
SGI-PV: 958599
SGI-Modid: xfs-linux-melb:xfs-kern:27561a
Signed-off-by: Lachlan McIlroy <lachlan@sgi.com>
Signed-off-by: Geoffrey Wehrman <gwehrman@sgi.com>
Signed-off-by: Tim Shimmin <tes@sgi.com>
At the last stage of a freeze, we flush the buftarg synchronously over and
over again until it succeeds twice without skipping any buffers.
The delwri list flush skips pinned buffers, but tries to flush all others.
It removes the buffers from the delwri list, then tries to lock them one
at a time as it traverses the list to issue the I/O. It holds them locked
until we issue all of the I/O and then unlocks them once we've waited for
it to complete.
The problem is that during a freeze, the filesystem may still be doing
stuff - like flushing delalloc data buffers - in the background and hence
we can be trying to lock buffers that were on the delwri list at the same
time. Hence we can get ABBA deadlocks between threads doing allocation and
the buftarg flush (freeze) thread.
Fix it by skipping locked (and pinned) buffers as we traverse the delwri
buffer list.
SGI-PV: 957195
SGI-Modid: xfs-linux-melb:xfs-kern:27535a
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Tim Shimmin <tes@sgi.com>
The XFS quiet mount logic was inverted making quiet mounts noisy and vice
versa. Fix it.
SGI-PV: 958469
SGI-Modid: xfs-linux-melb:xfs-kern:27520a
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Eric Sandeen <sandeen@sandeen.net>
Signed-off-by: Tim Shimmin <tes@sgi.com>
XFS appears to call clear_page_dirty to get the mapping tree dirty tag
set correctly at the same time the page dirty flag is cleared. I note
that this can be done by set_page_writeback() if we clear the dirty flag
on the page first when we are writing back the entire page.
Hence it seems to me that the XFS call to clear_page_dirty() could
easily be substituted by clear_page_dirty_for_io() followed by a call to
set_page_writeback() to get the mapping tree tags set correctly after
the page has been marked clean.
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
The only time it is safe to call aio_complete() is when the ->ki_retry
function returns -EIOCBQUEUED to the AIO core. direct_io_worker() has
historically done this by relying on its caller to translate positive return
codes into -EIOCBQUEUED for the aio case. It did this by trying to keep
conditionals in sync. direct_io_worker() knew when finished_one_bio() was
going to call aio_complete(). It would reverse the test and wait and free the
dio in the cases it thought that finished_one_bio() wasn't going to.
Not surprisingly, it ended up getting it wrong. 'ret' could be a negative
errno from the submission path but it failed to communicate this to
finished_one_bio(). direct_io_worker() would return < 0, it's callers
wouldn't raise -EIOCBQUEUED, and aio_complete() would be called. In the
future finished_one_bio()'s tests wouldn't reflect this and aio_complete()
would be called for a second time which can manifest as an oops.
The previous cleanups have whittled the sync and async completion paths down
to the point where we can collapse them and clearly reassert the invariant
that we must only call aio_complete() after returning -EIOCBQUEUED.
direct_io_worker() will only return -EIOCBQUEUED when it is not the last to
drop the dio refcount and the aio bio completion path will only call
aio_complete() when it is the last to drop the dio refcount.
direct_io_worker() can ensure that it is the last to drop the reference count
by waiting for bios to drain. It does this for sync ops, of course, and for
partial dio writes that must fall back to buffered and for aio ops that saw
errors during submission.
This means that operations that end up waiting, even if they were issued as
aio ops, will not call aio_complete() from dio. Instead we return the return
code of the operation and let the aio core call aio_complete(). This is
purposely done to fix a bug where AIO DIO file extensions would call
aio_complete() before their callers have a chance to update i_size.
Now that direct_io_worker() is explicitly returning -EIOCBQUEUED its callers
no longer have to translate for it. XFS needs to be careful not to free
resources that will be used during AIO completion if -EIOCBQUEUED is returned.
We maintain the previous behaviour of trying to write fs metadata for O_SYNC
aio+dio writes.
Signed-off-by: Zach Brown <zach.brown@oracle.com>
Cc: Badari Pulavarty <pbadari@us.ibm.com>
Cc: Suparna Bhattacharya <suparna@in.ibm.com>
Acked-by: Jeff Moyer <jmoyer@redhat.com>
Cc: <xfs-masters@oss.sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Change all the uses of f_{dentry,vfsmnt} to f_path.{dentry,mnt} in the xfs
filesystem.
Signed-off-by: Josef "Jeff" Sipek <jsipek@cs.sunysb.edu>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Make the workqueues used by XFS freezeable, so their worker threads don't
submit any I/O after the suspend image has been created.
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Acked-by: Pavel Machek <pavel@ucw.cz>
Cc: Nigel Cunningham <nigel@suspend2.net>
Cc: David Chinner <dgc@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Move process freezing functions from include/linux/sched.h to freezer.h, so
that modifications to the freezer or the kernel configuration don't require
recompiling just about everything.
[akpm@osdl.org: fix ueagle driver]
Signed-off-by: Nigel Cunningham <nigel@suspend2.net>
Cc: "Rafael J. Wysocki" <rjw@sisk.pl>
Cc: Pavel Machek <pavel@ucw.cz>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
The previous fixes for the use after free in xfs_iunpin left a nasty log
deadlock when xfslogd unpinned the inode and dropped the last reference to
the inode. the ->clear_inode() method can issue transactions, and if the
log was full, the transaction could push on the log and get stuck trying
to push the inode it was currently unpinning.
To fix this, we provide xfs_iunpin a guarantee that it will always have a
valid xfs_inode <-> linux inode link or a particular flag will be set on
the inode. We then use log forces during lookup to ensure transactions are
completed before we recycle the inode. This ensures that xfs_iunpin will
never use the linux inode after it is being freed, and any lookup on an
inode on the reclaim list will wait until it is safe to attach a new linux
inode to the xfs inode.
SGI-PV: 956832
SGI-Modid: xfs-linux-melb:xfs-kern:27359a
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Shailendra Tripathi <stripathi@agami.com>
Signed-off-by: Takenori Nagano <t-nagano@ah.jp.nec.com>
Signed-off-by: Tim Shimmin <tes@sgi.com>
CONFIG_XFS_TRACE is on
SGI-PV: 956618
SGI-Modid: xfs-linux-melb:xfs-kern:27196a
Signed-off-by: Vlad Apostolov <vapo@sgi.com>
Signed-off-by: Tim Shimmin <tes@sgi.com>
Separate out the concept of "queue congestion" from "backing-dev congestion".
Congestion is a backing-dev concept, not a queue concept.
The blk_* congestion functions are retained, as wrappers around the core
backing-dev congestion functions.
This proper layering is needed so that NFS can cleanly use the congestion
functions, and so that CONFIG_BLOCK=n actually links.
Cc: "Thomas Maier" <balagi@justmail.de>
Cc: "Jens Axboe" <jens.axboe@oracle.com>
Cc: Trond Myklebust <trond.myklebust@fys.uio.no>
Cc: David Howells <dhowells@redhat.com>
Cc: Peter Osterlund <petero2@telia.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This patch converts two if () BUG(); construct to BUG_ON();
which occupies less space, uses unlikely and is safer when
BUG() is disabled.
Signed-off-by: Eric Sesterhenn <snakebyte@gmx.de>
Signed-off-by: Adrian Bunk <bunk@stusta.de>
This patch cleans up generic_file_*_read/write() interfaces. Christoph
Hellwig gave me the idea for this clean ups.
In a nutshell, all filesystems should set .aio_read/.aio_write methods and use
do_sync_read/ do_sync_write() as their .read/.write methods. This allows us
to cleanup all variants of generic_file_* routines.
Final available interfaces:
generic_file_aio_read() - read handler
generic_file_aio_write() - write handler
generic_file_aio_write_nolock() - no lock write handler
__generic_file_aio_write_nolock() - internal worker routine
Signed-off-by: Badari Pulavarty <pbadari@us.ibm.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This patch removes readv() and writev() methods and replaces them with
aio_read()/aio_write() methods.
Signed-off-by: Badari Pulavarty <pbadari@us.ibm.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This patch vectorizes aio_read() and aio_write() methods to prepare for
collapsing all aio & vectored operations into one interface - which is
aio_read()/aio_write().
Signed-off-by: Badari Pulavarty <pbadari@us.ibm.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Cc: Michael Holzheu <HOLZHEU@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Make it possible to disable the block layer. Not all embedded devices require
it, some can make do with just JFFS2, NFS, ramfs, etc - none of which require
the block layer to be present.
This patch does the following:
(*) Introduces CONFIG_BLOCK to disable the block layer, buffering and blockdev
support.
(*) Adds dependencies on CONFIG_BLOCK to any configuration item that controls
an item that uses the block layer. This includes:
(*) Block I/O tracing.
(*) Disk partition code.
(*) All filesystems that are block based, eg: Ext3, ReiserFS, ISOFS.
(*) The SCSI layer. As far as I can tell, even SCSI chardevs use the
block layer to do scheduling. Some drivers that use SCSI facilities -
such as USB storage - end up disabled indirectly from this.
(*) Various block-based device drivers, such as IDE and the old CDROM
drivers.
(*) MTD blockdev handling and FTL.
(*) JFFS - which uses set_bdev_super(), something it could avoid doing by
taking a leaf out of JFFS2's book.
(*) Makes most of the contents of linux/blkdev.h, linux/buffer_head.h and
linux/elevator.h contingent on CONFIG_BLOCK being set. sector_div() is,
however, still used in places, and so is still available.
(*) Also made contingent are the contents of linux/mpage.h, linux/genhd.h and
parts of linux/fs.h.
(*) Makes a number of files in fs/ contingent on CONFIG_BLOCK.
(*) Makes mm/bounce.c (bounce buffering) contingent on CONFIG_BLOCK.
(*) set_page_dirty() doesn't call __set_page_dirty_buffers() if CONFIG_BLOCK
is not enabled.
(*) fs/no-block.c is created to hold out-of-line stubs and things that are
required when CONFIG_BLOCK is not set:
(*) Default blockdev file operations (to give error ENODEV on opening).
(*) Makes some /proc changes:
(*) /proc/devices does not list any blockdevs.
(*) /proc/diskstats and /proc/partitions are contingent on CONFIG_BLOCK.
(*) Makes some compat ioctl handling contingent on CONFIG_BLOCK.
(*) If CONFIG_BLOCK is not defined, makes sys_quotactl() return -ENODEV if
given command other than Q_SYNC or if a special device is specified.
(*) In init/do_mounts.c, no reference is made to the blockdev routines if
CONFIG_BLOCK is not defined. This does not prohibit NFS roots or JFFS2.
(*) The bdflush, ioprio_set and ioprio_get syscalls can now be absent (return
error ENOSYS by way of cond_syscall if so).
(*) The seclvl_bd_claim() and seclvl_bd_release() security calls do nothing if
CONFIG_BLOCK is not set, since they can't then happen.
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
The previous attempts to fix the linux inode use-after-free in xfs_iunpin
simply made the problem harder to hit. We actually need complete exclusion
between xfs_reclaim and xfs_iunpin, as well as ensuring that the i_flags
are consistent during both of these functions. Introduce a new spinlock
for exclusion and the i_flags, and fix up xfs_iunpin to use igrab before
marking the inode dirty.
SGI-PV: 952967
SGI-Modid: xfs-linux-melb:xfs-kern:26964a
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Tim Shimmin <tes@sgi.com>
One sema to rule them all, one sema to find them...
SGI-PV: 907752
SGI-Modid: xfs-linux-melb:xfs-kern:26911a
Signed-off-by: Eric Sandeen <sandeen@sandeen.net>
Signed-off-by: Nathan Scott <nathans@sgi.com>
Signed-off-by: Tim Shimmin <tes@sgi.com>
space for the unmount record - which becomes a problem in the freeze/thaw
scenario.
SGI-PV: 942533
SGI-Modid: xfs-linux-melb:xfs-kern:26815a
Signed-off-by: Tim Shimmin <tes@sgi.com>
xfs_trans_delete_ail
xfs_trans_update_ail and xfs_trans_delete_ail get called with the AIL lock
held, and release it. Add lock annotations to these two functions so that
sparse can check callers for lock pairing, and so that sparse will not
complain about these functions since they intentionally use locks in this
manner.
SGI-PV: 954580
SGI-Modid: xfs-linux-melb:xfs-kern:26807a
Signed-off-by: Josh Triplett <josh@freedesktop.org>
Signed-off-by: Nathan Scott <nathans@sgi.com>
Signed-off-by: Tim Shimmin <tes@sgi.com>
handling.
SGI-PV: 955302
SGI-Modid: xfs-linux-melb:xfs-kern:26804a
Signed-off-by: Nathan Scott <nathans@sgi.com>
Signed-off-by: Tim Shimmin <tes@sgi.com>
one page.
SGI-PV: 955302
SGI-Modid: xfs-linux-melb:xfs-kern:26800a
Signed-off-by: Nathan Scott <nathans@sgi.com>
Signed-off-by: Tim Shimmin <tes@sgi.com>
list, to increase our potential readahead window and in turn improve
bulkstat performance.
SGI-PV: 944409
SGI-Modid: xfs-linux-melb:xfs-kern:26607a
Signed-off-by: Nathan Scott <nathans@sgi.com>
Signed-off-by: Tim Shimmin <tes@sgi.com>
batches of inode cluster buffers at once, before any blocking reads are
issued.
SGI-PV: 944409
SGI-Modid: xfs-linux-melb:xfs-kern:26606a
Signed-off-by: Nathan Scott <nathans@sgi.com>
Signed-off-by: Tim Shimmin <tes@sgi.com>
extract inline attributes out of the bulkstat buffer (for that case),
rather than using an (extremely expensive for large icount filesystems)
iget for fetching attrs.
SGI-PV: 944409
SGI-Modid: xfs-linux-melb:xfs-kern:26602a
Signed-off-by: Nathan Scott <nathans@sgi.com>
Signed-off-by: Tim Shimmin <tes@sgi.com>
current kernels
SGI-PV: 954580
SGI-Modid: xfs-linux-melb:xfs-kern:26564a
Signed-off-by: Nathan Scott <nathans@sgi.com>
Signed-off-by: Tim Shimmin <tes@sgi.com>
__be64 and let the callers use the proper macros.
SGI-PV: 954580
SGI-Modid: xfs-linux-melb:xfs-kern:26560a
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Nathan Scott <nathans@sgi.com>
Signed-off-by: Tim Shimmin <tes@sgi.com>
handling with sparse now, no need for comments.
SGI-PV: 954580
SGI-Modid: xfs-linux-melb:xfs-kern:26557a
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Nathan Scott <nathans@sgi.com>
Signed-off-by: Tim Shimmin <tes@sgi.com>
used for ondisk values.
SGI-PV: 954580
SGI-Modid: xfs-linux-melb:xfs-kern:26553a
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Nathan Scott <nathans@sgi.com>
Signed-off-by: Tim Shimmin <tes@sgi.com>
Avoids doing an unnecessary inode to vnode conversion and avoids a memory
allocation.
SGI-PV: 904196
SGI-Modid: xfs-linux-melb:xfs-kern:26492a
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Nathan Scott <nathans@sgi.com>
Signed-off-by: Tim Shimmin <tes@sgi.com>
analysis.
Under a sequential create+allocate workload, blktrace reported backward
writes being issued by xfsbufd, and frequent inappropriate queue unplugs.
We now insert at the tail when moving from the delwri lists to the temp
lists, which maintains correct ordering, and we avoid unplugging queues
deep in the submit paths when we'd shortly do it at a higher level anyway.
blktrace now reports much healthier write patterns from xfsbufd for this
workload (and likely many others).
SGI-PV: 954310
SGI-Modid: xfs-linux-melb:xfs-kern:26396a
Signed-off-by: Nathan Scott <nathans@sgi.com>
Signed-off-by: Tim Shimmin <tes@sgi.com>
"inode => vnode => inode" conversion, but only flags and mode of final
inode are looked at. Pass original inode instead.
SGI-PV: 904196
SGI-Modid: xfs-linux-melb:xfs-kern:26395a
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Nathan Scott <nathans@sgi.com>
Signed-off-by: Tim Shimmin <tes@sgi.com>
This eliminates the i_blksize field from struct inode. Filesystems that want
to provide a per-inode st_blksize can do so by providing their own getattr
routine instead of using the generic_fillattr() function.
Note that some filesystems were providing pretty much random (and incorrect)
values for i_blksize.
[bunk@stusta.de: cleanup]
[akpm@osdl.org: generic_fillattr() fix]
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* Rougly half of callers already do it by not checking return value
* Code in drivers/acpi/osl.c does the following to be sure:
(void)kmem_cache_destroy(cache);
* Those who check it printk something, however, slab_error already printed
the name of failed cache.
* XFS BUGs on failed kmem_cache_destroy which is not the decision
low-level filesystem driver should make. Converted to ignore.
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
xfs_splice_write() failed to update the on disk inode size when extending
the so when the file was closed the range extended by splice was truncated
off. Hence any region of a file written to by splice would end up as a
hole full of zeros.
SGI-PV: 955939
SGI-Modid: xfs-linux-melb:xfs-kern:26920a
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: David Chatterton <chatz@sgi.com>
__blockdev_direct_IO for the DIO_OWN_LOCKING case for direct I/O reads
since it drops and reacquires the i_mutex while holding the iolock and
this violates the locking order.
SGI-PV: 955696
SGI-Modid: xfs-linux-melb:xfs-kern:26898a
Signed-off-by: Lachlan McIlroy <lachlan@sgi.com>
Signed-off-by: David Chatterton <chatz@sgi.com>
The fix for recent ENOSPC deadlocks introduced certain limitations on
allocations. The fix could cause xfssyncd to loop endlessly if we did not
leave some space free for the allocator to work correctly. Basically, we
needed to ensure that we had at least 4 blocks free for an AG free list
and a block for the inode bmap btree at all times.
However, this did not take into account the fact that each AG has a free
list that needs 4 blocks. Hence any filesystem with more than one AG could
cause oversubscription of free space and make xfssyncd spin forever trying
to allocate space needed for AG freelists that was not available in the
AG.
The following patch reserves space for the free lists in all AGs plus the
inode bmap btree which prevents oversubscription. It also prevents those
blocks from being reported as free space (as they can never be used) and
makes the SMP in-core superblock accounting code and the reserved block
ioctl respect this requirement.
SGI-PV: 955674
SGI-Modid: xfs-linux-melb:xfs-kern:26894a
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: David Chatterton <chatz@sgi.com>
conversion.
Since bma.conv is a char and XFS_BMAPI_CONVERT is 0x1000, bma.conv was
always assigned zero. Spotted by the GNU C compiler (SVN version).
SGI-PV: 947312
SGI-Modid: xfs-linux-melb:xfs-kern:26887a
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Nathan Scott <nathans@sgi.com>
We recently fixed an out-of-space deadlock in XFS, and part of that fix
involved the addition of the XFS_ALLOC_FLAG_FREEING flag to some of the
space allocator calls to indicate they're freeing space, not allocating
it. There was a missed xfs_alloc_fix_freelist condition test that did not
correctly test "flags". The same test would also test an uninitialised
structure field (args->userdata) and depending on its value either would
or would not return early with a critical buffer pointer set to NULL.
This fixes that up, adds asserts to several places to catch future botches
of this nature, and skips sections of xfs_alloc_fix_freelist that are
irrelevent for the space-freeing case.
SGI-PV: 955303
SGI-Modid: xfs-linux-melb:xfs-kern:26743a
Signed-off-by: Nathan Scott <nathans@sgi.com>
flags from iclog buffers before submitting them for writing.
SGI-PV: 954772
SGI-Modid: xfs-linux-melb:xfs-kern:26605a
Signed-off-by: Nathan Scott <nathans@sgi.com>
Before putting them into struct statfs they should be endian-swapped.
SGI-PV: 954580
SGI-Modid: xfs-linux-melb:xfs-kern:26550a
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Nathan Scott <nathans@sgi.com>
Move the roundup() macro from binfmt_elf.c into linux/kernel.h as it's
generally useful.
[akpm@osdl.org: nuke all the other implementations]
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Same as with already do with the file operations: keep them in .rodata and
prevents people from doing runtime patching.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Cc: Steven French <sfrench@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* git://oss.sgi.com:8090/nathans/xfs-2.6:
[XFS] Fixup whitespace damage in log_write, remove final warning.
[XFS] Rework code snippets slightly to remove remaining recent-gcc
[XFS] Fix realtime subvolume expansion, a porting bug b0rked it. Coverity
[XFS] Remove a race condition where a linked inode could BUG_ON in
[XFS] Remove redundant directory checks from inode link operation.
[XFS] Remove a couple of no-longer-used macros.
[XFS] Reduce size of xfs_trans_t structure. * remove ->t_forw, ->t_back --
[XFS] remove unused behaviour lock - shrink XFS vnode as a side effect.
[XFS] * There is trivial "inode => vnode => inode" conversion, but only
[XFS] link(2) on directory is banned in VFS.
Make use the of newly defined hotplug version of cpu_notifier functionality
wherever appropriate.
Signed-off-by: Chandra Seetharaman <sekharan@us.ibm.com>
Cc: Ashok Raj <ashok.raj@intel.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
made me look at this code (bug id #344). We only return with
XFS_ERROR(EINVAL) if mp->m_rtdev_targp is valid and pass it otherwise to
xfs_read_buf() where some function calls later it gets dereferenced by an
assert.
SGI-PV: 954266
SGI-Modid: xfs-linux-melb:xfs-kern:26363a
Signed-off-by: Eric Sesterhenn <snakebyte@gmx.de>
Signed-off-by: Nathan Scott <nathans@sgi.com>
d_instantiate, due to fast transaction committal removing the last
remaining reference before we were all done.
SGI-PV: 953287
SGI-Modid: xfs-linux-melb:xfs-kern:26347a
Signed-off-by: Nathan Scott <nathans@sgi.com>
unused * ->t_ag_freeblks_delta, ->t_ag_flist_delta, ->t_ag_btree_delta
are debugging aid -- wrap them in everyone's favourite way. As a
result, cut "xfs_trans" slab object size from 592 to 572 bytes here.
SGI-PV: 904196
SGI-Modid: xfs-linux-melb:xfs-kern:26319a
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Nathan Scott <nathans@sgi.com>
flags and mode of final inode are looked at. Pass original inode
instead. * Two occurences of bhv_vnode_t go out.
SGI-PV: 904196
SGI-Modid: xfs-linux-melb:xfs-kern:26298a
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Nathan Scott <nathans@sgi.com>
for_each_cpu() actually iterates across all possible CPUs. We've had mistakes
in the past where people were using for_each_cpu() where they should have been
iterating across only online or present CPUs. This is inefficient and
possibly buggy.
We're renaming for_each_cpu() to for_each_possible_cpu() to avoid this in the
future.
This patch replaces for_each_cpu with for_each_possible_cpu.
in xfs.
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Nathan Scott <nathans@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Enable XFS to limit the statfs() results to the project quota covering the
dentry used as a base for call.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Nathan Scott <nathans@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Give the statfs superblock operation a dentry pointer rather than a superblock
pointer.
This complements the get_sb() patch. That reduced the significance of
sb->s_root, allowing NFS to place a fake root there. However, NFS does
require a dentry to use as a target for the statfs operation. This permits
the root in the vfsmount to be used instead.
linux/mount.h has been added where necessary to make allyesconfig build
successfully.
Interest has also been expressed for use with the FUSE and XFS filesystems.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Cc: Nathan Scott <nathans@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Extend the get_sb() filesystem operation to take an extra argument that
permits the VFS to pass in the target vfsmount that defines the mountpoint.
The filesystem is then required to manually set the superblock and root dentry
pointers. For most filesystems, this should be done with simple_set_mnt()
which will set the superblock pointer and then set the root dentry to the
superblock's s_root (as per the old default behaviour).
The get_sb() op now returns an integer as there's now no need to return the
superblock pointer.
This patch permits a superblock to be implicitly shared amongst several mount
points, such as can be done with NFS to avoid potential inode aliasing. In
such a case, simple_set_mnt() would not be called, and instead the mnt_root
and mnt_sb would be set directly.
The patch also makes the following changes:
(*) the get_sb_*() convenience functions in the core kernel now take a vfsmount
pointer argument and return an integer, so most filesystems have to change
very little.
(*) If one of the convenience function is not used, then get_sb() should
normally call simple_set_mnt() to instantiate the vfsmount. This will
always return 0, and so can be tail-called from get_sb().
(*) generic_shutdown_super() now calls shrink_dcache_sb() to clean up the
dcache upon superblock destruction rather than shrink_dcache_anon().
This is required because the superblock may now have multiple trees that
aren't actually bound to s_root, but that still need to be cleaned up. The
currently called functions assume that the whole tree is rooted at s_root,
and that anonymous dentries are not the roots of trees which results in
dentries being left unculled.
However, with the way NFS superblock sharing are currently set to be
implemented, these assumptions are violated: the root of the filesystem is
simply a dummy dentry and inode (the real inode for '/' may well be
inaccessible), and all the vfsmounts are rooted on anonymous[*] dentries
with child trees.
[*] Anonymous until discovered from another tree.
(*) The documentation has been adjusted, including the additional bit of
changing ext2_* into foo_* in the documentation.
[akpm@osdl.org: convert ipath_fs, do other stuff]
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Cc: Nathan Scott <nathans@sgi.com>
Cc: Roland Dreier <rolandd@cisco.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
(990). Turns out some ye-olde unices used EUCLEAN as
Filesystem-needs-cleaning, so now we use that too.
SGI-PV: 953954
SGI-Modid: xfs-linux-melb:xfs-kern:26286a
Signed-off-by: Nathan Scott <nathans@sgi.com>
is check if semaphore is actually locked, which can be trivially done in
portable way. Code gets more reabable, while we are at it...
SGI-PV: 953915
SGI-Modid: xfs-linux-melb:xfs-kern:26274a
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Nathan Scott <nathans@sgi.com>
getting decremented by 1. Since nused never reaches 0, the "if
(!free->hdr.nused)" check in xfs_dir2_leafn_remove() fails every time and
xfs_dir2_shrink_inode() doesn't get called when it should. This causes
extra blocks to be left on an empty directory and the directory in unable
to be converted back to inline extent mode.
SGI-PV: 951958
SGI-Modid: xfs-linux-melb:xfs-kern:211382a
Signed-off-by: Mandy Kirkconnell <alkirkco@sgi.com>
Signed-off-by: Nathan Scott <nathans@sgi.com>
truncate down followed by delayed allocation (buffered writes) - worst
case scenario for the notorious NULL files problem. This reduces the
window where we are exposed to that problem significantly.
SGI-PV: 917976
SGI-Modid: xfs-linux-melb:xfs-kern:26100a
Signed-off-by: Nathan Scott <nathans@sgi.com>
init_rwsem() has no return value. This is not a problem if init_rwsem()
is a function, but it's a problem if it's a do { ... } while (0) macro.
(which lockdep introduces)
SGI-PV: 904196
SGI-Modid: xfs-linux-melb:xfs-kern:26082a
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Nathan Scott <nathans@sgi.com>
logged version of di_next_unlinked which is actually always stored in the
correct ondisk format. This was pointed out to us by Shailendra Tripathi.
And is evident in the xfs qa test of 121.
SGI-PV: 953263
SGI-Modid: xfs-linux-melb:xfs-kern:26044a
Signed-off-by: Tim Shimmin <tes@sgi.com>
Signed-off-by: Nathan Scott <nathans@sgi.com>
transaction completion from marking the inode dirty while it is being
cleaned up on it's way out of the system.
SGI-PV: 952967
SGI-Modid: xfs-linux-melb:xfs-kern:26040a
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Nathan Scott <nathans@sgi.com>
64bit kernels allow recovery to handle both versions and do the necessary
decoding
SGI-PV: 952214
SGI-Modid: xfs-linux-melb:xfs-kern:26011a
Signed-off-by: Tim Shimmin <tes@sgi.com>
Signed-off-by: Nathan Scott <nathans@sgi.com>
transaction within each such operation may involve multiple locking of AGF
buffer. While the freeing extent function has sorted the extents based on
AGF number before entering into transaction, however, when the file system
space is very limited, the allocation of space would try every AGF to get
space allocated, this could potentially cause out-of-order locking, thus
deadlock could happen. This fix mitigates the scarce space for allocation
by setting aside a few blocks without reservation, and avoid deadlock by
maintaining ascending order of AGF locking.
SGI-PV: 947395
SGI-Modid: xfs-linux-melb:xfs-kern:210801a
Signed-off-by: Yingping Lu <yingping@sgi.com>
Signed-off-by: Nathan Scott <nathans@sgi.com>
ATTR_NOLOCK flag, but this was split off some time ago, as ATTR_DMI needed
to be used separately. Two asserts were added to guard correctness of the
code during the transition. These are no longer required.
SGI-PV: 952145
SGI-Modid: xfs-linux-melb:xfs-kern:209633a
Signed-off-by: Olaf Weber <olaf@sgi.com>
Signed-off-by: Nathan Scott <nathans@sgi.com>
the range spanned by modifications to the in-core extent map. Add
XFS_BUNMAPI() and XFS_SWAP_EXTENTS() macros that call xfs_bunmapi() and
xfs_swap_extents() via the ioops vector. Change all calls that may modify
the in-core extent map for the data fork to go through the ioops vector.
This allows a cache of extent map data to be kept in sync.
SGI-PV: 947615
SGI-Modid: xfs-linux-melb:xfs-kern:209226a
Signed-off-by: Olaf Weber <olaf@sgi.com>
Signed-off-by: Nathan Scott <nathans@sgi.com>
We need not use ->f_pos as the offset for the file input/output. If the
user passed an offset pointer in through sys_splice(), just use that and
leave ->f_pos alone.
Signed-off-by: Jens Axboe <axboe@suse.de>
* 'splice' of git://brick.kernel.dk/data/git/linux-2.6-block:
[PATCH] vfs: add splice_write and splice_read to documentation
[PATCH] Remove sys_ prefix of new syscalls from __NR_sys_*
[PATCH] splice: warning fix
[PATCH] another round of fs/pipe.c cleanups
[PATCH] splice: comment styles
[PATCH] splice: add Ingo as addition copyright holder
[PATCH] splice: unlikely() optimizations
[PATCH] splice: speedups and optimizations
[PATCH] pipe.c/fifo.c code cleanups
[PATCH] get rid of the PIPE_*() macros
[PATCH] splice: speedup __generic_file_splice_read
[PATCH] splice: add direct fd <-> fd splicing support
[PATCH] splice: add optional input and output offsets
[PATCH] introduce a "kernel-internal pipe object" abstraction
[PATCH] splice: be smarter about calling do_page_cache_readahead()
[PATCH] splice: optimize the splice buffer mapping
[PATCH] splice: cleanup __generic_file_splice_read()
[PATCH] splice: only call wake_up_interruptible() when we really have to
[PATCH] splice: potential !page dereference
[PATCH] splice: mark the io page as accessed
Introduce GFP_NOWAIT, as an alias for GFP_ATOMIC & ~__GFP_HIGH.
This also changes XFS, which is the only in-tree user of this idiom that I
could find. The XFS piece is compile-tested only.
Signed-off-by: Jeff Dike <jdike@addtoit.com>
Acked-by: Nathan Scott <nathans@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
that have been unlinked, we may need to execute transactions during
reclaim. By the time the transaction has hit the disk, the linux inode and
xfs vnode may already have been freed so we can't reference them safely.
Use the known xfs inode state to determine if it is safe to reference the
vnode and linux inode during the unpin operation.
SGI-PV: 946321
SGI-Modid: xfs-linux-melb:xfs-kern:25687a
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Nathan Scott <nathans@sgi.com>
millions of inodes cached and has sparse cluster population, removing
inodes from the cluster hash consumes excessive amounts of CPU time.
Reduce the CPU cost by making removal O(1) via use of a double linked list
for the hash chains.
SGI-PV: 951551
SGI-Modid: xfs-linux-melb:xfs-kern:25683a
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Nathan Scott <nathans@sgi.com>
nonblock mode with the new IO path code (since 2.6.16).
SGI-PV: 951662
SGI-Modid: xfs-linux-melb:xfs-kern:25676a
Signed-off-by: Nathan Scott <nathans@sgi.com>
separate out the 'internal pipe object' abstraction, and make it
usable to splice. This cleans up and fixes several aspects of the
internal splice APIs and the pipe code:
- pipes: the allocation and freeing of pipe_inode_info is now more symmetric
and more streamlined with existing kernel practices.
- splice: small micro-optimization: less pointer dereferencing in splice
methods
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Update XFS for the ->splice_read/->splice_write changes.
Signed-off-by: Jens Axboe <axboe@suse.de>
contiguous with the most recently allocated chunk. On a striped
filesystem, this will fill a stripe unit with inodes before allocating new
inodes in another stripe unit.
SGI-PV: 951416
SGI-Modid: xfs-linux-melb:xfs-kern:208488a
Signed-off-by: Glen Overby <overby@sgi.com>
Signed-off-by: Nathan Scott <nathans@sgi.com>
This is a conversion to make the various file_operations structs in fs/
const. Basically a regexp job, with a few manual fixups
The goal is both to increase correctness (harder to accidentally write to
shared datastructures) and reducing the false sharing of cachelines with
things that get dirty in .data (while .rodata is nicely read only and thus
cache clean)
Signed-off-by: Arjan van de Ven <arjan@infradead.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Now that get_block() can handle mapping multiple disk blocks, no need to have
->get_blocks(). This patch removes fs specific ->get_blocks() added for DIO
and makes it users use get_block() instead.
Signed-off-by: Badari Pulavarty <pbadari@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This patch changes mpage_readpages() and get_block() to get the disk mapping
information for multiple blocks at the same time.
b_size represents the amount of disk mapping that needs to mapped. On the
successful get_block() b_size indicates the amount of disk mapping thats
actually mapped. Only the filesystems who care to use this information and
provide multiple disk blocks at a time can choose to do so.
No changes are needed for the filesystems who wants to ignore this.
[akpm@osdl.org: cleanups]
Signed-off-by: Badari Pulavarty <pbadari@us.ibm.com>
Cc: Mingming Cao <cmm@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Modify well over a dozen mempool users to call mempool_create_slab_pool()
rather than calling mempool_create() with extra arguments, saving about 30
lines of code and increasing readability.
Signed-off-by: Matthew Dobson <colpatch@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
The return value of this function is never used, so let's be honest and
declare it as void.
Some places where invalidatepage returned 0, I have inserted comments
suggesting a BUG_ON.
[akpm@osdl.org: JBD BUG fix]
[akpm@osdl.org: rework for git-nfs]
[akpm@osdl.org: don't go BUG in block_invalidate_page()]
Signed-off-by: Neil Brown <neilb@suse.de>
Acked-by: Dave Kleikamp <shaggy@austin.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Change the kmem_cache_create calls for certain slab caches to support cpuset
memory spreading.
See the previous patches, cpuset_mem_spread, for an explanation of cpuset
memory spreading, and cpuset_mem_spread_slab_cache for the slab cache support
for memory spreading.
The slab caches marked for now are: dentry_cache, inode_cache, some xfs slab
caches, and buffer_head. This list may change over time. In particular,
other file system types that are used extensively on large NUMA systems may
want to allow for spreading their directory and inode slab cache entries.
Signed-off-by: Paul Jackson <pj@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Use ARRAY_SIZE macro instead of sizeof(x)/sizeof(x[0]) and remove a
duplicate of ARRAY_SIZE. Some trailing whitespaces are also deleted.
Signed-off-by: Tobias Klauser <tklauser@nuerscht.ch>
Cc: David Howells <dhowells@redhat.com>
Cc: Dave Kleikamp <shaggy@austin.ibm.com>
Acked-by: Trond Myklebust <trond.myklebust@fys.uio.no>
Cc: Neil Brown <neilb@cse.unsw.edu.au>
Cc: Chris Mason <mason@suse.com>
Cc: Jeff Mahoney <jeffm@suse.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Nathan Scott <nathans@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* git://oss.sgi.com:8090/oss/git/xfs-2.6: (71 commits)
[XFS] Sync up one/two other minor changes missed in previous merges.
[XFS] Reenable the noikeep (delete inode cluster space) option by default.
[XFS] Check that a page has dirty buffers before finding it acceptable for
[XFS] Fixup naming inconsistencies found by Pekka Enberg and one from Jan
[XFS] Explain the race closed by the addition of vn_iowait() to the start
[XFS] Fixing the error caused by the conflict between DIO Write's
[XFS] Fixing KDB's xrwtrc command, also added the current process id into
[XFS] Fix compiler warning from xfs_file_compat_invis_ioctl prototype.
[XFS] remove bogus INT_GET for u8 variables in xfs_dir_leaf.c
[XFS] endianess annotations for xfs_da_node_hdr_t
[XFS] endianess annotations for xfs_da_node_entry_t
[XFS] store xfs_attr_inactive_list_t in native endian
[XFS] store xfs_attr_sf_sort in native endian
[XFS] endianess annotations for xfs_attr_shortform_t
[XFS] endianess annotations for xfs_attr_leaf_name_remote_t
[XFS] endianess annotations for xfs_attr_leaf_name_local_t
[XFS] endianess annotations for xfs_attr_leaf_entry_t
[XFS] endianess annotations for xfs_attr_leaf_hdr_t
[XFS] remove bogus INT_GET on u8 variables in xfs_dir2_block.c
[XFS] endianess annotations for xfs_da_blkinfo_t
...
When we stop allocating percpu memory for not-possible CPUs we must not touch
the percpu data for not-possible CPUs at all. The correct way of doing this
is to test cpu_possible() or to use for_each_cpu().
This patch is a kernel-wide sweep of all instances of NR_CPUS. I found very
few instances of this bug, if any. But the patch converts lots of open-coded
test to use the preferred helper macros.
Cc: Mikael Starvik <starvik@axis.com>
Cc: David Howells <dhowells@redhat.com>
Acked-by: Kyle McMartin <kyle@parisc-linux.org>
Cc: Anton Blanchard <anton@samba.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: Andi Kleen <ak@muc.de>
Cc: Christian Zankel <chris@zankel.net>
Cc: Philippe Elie <phil.el@wanadoo.fr>
Cc: Nathan Scott <nathans@sgi.com>
Cc: Jens Axboe <axboe@suse.de>
Cc: Eric Dumazet <dada1@cosmosbay.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Centralize the page migration functions in anticipation of additional
tinkering. Creates a new file mm/migrate.c
1. Extract buffer_migrate_page() from fs/buffer.c
2. Extract central migration code from vmscan.c
3. Extract some components from mempolicy.c
4. Export pageout() and remove_from_swap() from vmscan.c
5. Make it possible to configure NUMA systems without page migration
and non-NUMA systems with page migration.
I had to so some #ifdeffing in mempolicy.c that may need a cleanup.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
rewrite clustering. This prevents writing excessive amounts of clean data
when doing random rewrites of a cached file.
SGI-PV: 951193
SGI-Modid: xfs-linux-melb:xfs-kern:25531a
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Nathan Scott <nathans@sgi.com>
of xfs_itruncate_start().
SGI-PV: 947420
SGI-Modid: xfs-linux-melb:xfs-kern:25527a
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Nathan Scott <nathans@sgi.com>
conversion and concurrent truncate operations. Use vn_iowait to wait for
the completion of any pending DIOs. Since the truncate requires exclusive
IOLOCK, so this blocks any further DIO operations since DIO write also
needs exclusive IOBLOCK. This serves as a barrier and prevent any
potential starvation.
SGI-PV: 947420
SGI-Modid: xfs-linux-melb:xfs-kern:208088a
Signed-off-by: Yingping Lu <yingping@sgi.com>
Signed-off-by: Nathan Scott <nathans@sgi.com>
the trace.
SGI-PV: 948300
SGI-Modid: xfs-linux-melb:xfs-kern:208069a
Signed-off-by: Yingping Lu <yingping@sgi.com>
Signed-off-by: Nathan Scott <nathans@sgi.com>
else we can hit a delalloc-extents-via-direct-io BUG.
SGI-PV: 949916
SGI-Modid: xfs-linux-melb:xfs-kern:25483a
Signed-off-by: Nathan Scott <nathans@sgi.com>
xfs_bmap_search_multi_extents() wrapper function that I introduced in mod
xfs-linux:xfs-kern:207393a. The function was added as a wrapper around
xfs_bmap_do_search_extents() to avoid breaking the top-of-tree CXFS
interface. The idea of the function was basically to extract the target
extent buffer (if muli- level extent allocation mode), then call
xfs_bmap_do_search_extents() with either a pointer to the first extent in
the target buffer or a pointer to the first extent in the file, depending
on which extent mode was being used. However, in addition to locating the
target extent record for block bno, xfs_bmap_do_search_extents() also sets
four parameters needed by the caller: *lastx, *eofp, *gotp, *prevp.
Passing only the target extent buffer to xfs_bmap_do_search_extents()
causes *eofp to be set incorrectly if the extent is at the end of the
target list but there are actually more extents in the next er_extbuf.
Likewise, if the extent is the first one in the buffer but NOT the first
in the file, *prevp is incorrectly set to NULL. Adding the needed
functionality to xfs_bmap_search_multi_extents() to re-set any incorrectly
set fields is redundant and makes the call to xfs_bmap_do_search_extents()
not make much sense when multi-level extent allocation mode is being used.
This mod basically extracts the two functional components from
xfs_bmap_do_search_extents(), with the intent of obsoleting/removing
xfs_bmap_do_search_extents() after the CXFS mult-level in-core extent
changes are checked in. The two components are: 1) The binary search to
locate the target extent record, and 2) Setting the four parameters needed
by the caller (*lastx, *eofp, *gotp, *prevp). Component 1: I created a
new function in xfs_inode.c called xfs_iext_bno_to_ext(), which executes
the binary search to find the target extent record.
xfs_bmap_search_multi_extents() has been modified to call
xfs_iext_bno_to_ext() rather than xfs_bmap_do_search_extents(). Component
2: The parameter setting functionality has been added to
xfs_bmap_search_multi_extents(), eliminating the need for
xfs_bmap_do_search_extents(). These changes make the removal of
xfs_bmap_do_search_extents() trival once the CXFS changes are in place.
They also allow us to maintain the current XFS interface, using the new
search function introduced in mod xfs-linux:xfs-kern:207393a.
SGI-PV: 928864
SGI-Modid: xfs-linux-melb:xfs-kern:207866a
Signed-off-by: Mandy Kirkconnell <alkirkco@sgi.com>
Signed-off-by: Nathan Scott <nathans@sgi.com>
splitting realtime/btree allocators apart. Based on Glens original
patches.
SGI-PV: 947312
SGI-Modid: xfs-linux-melb:xfs-kern:25372a
Signed-off-by: Nathan Scott <nathans@sgi.com>
reduce stack use. Also re-use vattr in some places so that multiple
copies are not held on-stack.
SGI-PV: 947312
SGI-Modid: xfs-linux-melb:xfs-kern:25369a
Signed-off-by: Nathan Scott <nathans@sgi.com>
into functions and hence reduce the stack footprint there.
SGI-PV: 947312
SGI-Modid: xfs-linux-melb:xfs-kern:25360a
Signed-off-by: Nathan Scott <nathans@sgi.com>
functionality, building upon the new layout introduced in mod
xfs-linux:xfs-kern:207390a. The new multi-level extent allocations are
only required for heavily fragmented files, so the old-style linear extent
list is used on files until the extents reach a pre-determined size of 4k.
4k buffers are used because this is the system page size on Linux i386 and
systems with larger page sizes don't seem to gain much, if anything, by
using their native page size as the extent buffer size. Also, using 4k
extent buffers everywhere provides a consistent interface for CXFS across
different platforms. The 4k extent buffers are managed by an indirection
array (xfs_ext_irec_t) which is basically just a pointer array with a bit
of extra information to keep track of the number of extents in each buffer
as well as the extent offset of each buffer. Major changes include: -
Add multi-level in-core file extent functionality to the xfs_iext_
subroutines introduced in mod: xfs-linux:xfs-kern:207390a - Introduce 13
new subroutines which add functionality for multi-level in-core file
extents: xfs_iext_add_indirect_multi()
xfs_iext_remove_indirect() xfs_iext_realloc_indirect()
xfs_iext_indirect_to_direct() xfs_iext_bno_to_irec()
xfs_iext_idx_to_irec() xfs_iext_irec_init()
xfs_iext_irec_new() xfs_iext_irec_remove()
xfs_iext_irec_compact() xfs_iext_irec_compact_pages()
xfs_iext_irec_compact_full() xfs_iext_irec_update_extoffs()
SGI-PV: 928864
SGI-Modid: xfs-linux-melb:xfs-kern:207393a
Signed-off-by: Mandy Kirkconnell <alkirkco@sgi.com>
Signed-off-by: Nathan Scott <nathans@sgi.com>
code to prepare for an upcoming mod which will introduce multi-level
in-core extent allocations. Although the in-core extent management is
using a new code path in this mod, the functionality remains the same.
Major changes include: - Introduce 10 new subroutines which re-orgainze
the existing code but do NOT change functionality:
xfs_iext_get_ext() xfs_iext_insert() xfs_iext_add()
xfs_iext_remove() xfs_iext_remove_inline()
xfs_iext_remove_direct() xfs_iext_realloc_direct()
xfs_iext_direct_to_inline() xfs_iext_inline_to_direct()
xfs_iext_destroy() - Remove 2 subroutines (functionality moved to new
subroutines above): xfs_iext_realloc() -replaced by xfs_iext_add()
and xfs_iext_remove() xfs_bmap_insert_exlist() - replaced by
xfs_iext_insert() xfs_bmap_delete_exlist() - replaced by
xfs_iext_remove() - Replace all hard-coded (indexed) extent assignments
with a call to xfs_iext_get_ext() - Replace all extent record pointer
arithmetic (ep++, ep--, base + lastx,..) with calls to
xfs_iext_get_ext() - Update comments to remove the idea of a single
"extent list" and introduce "extent record" terminology instead
SGI-PV: 928864
SGI-Modid: xfs-linux-melb:xfs-kern:207390a
Signed-off-by: Mandy Kirkconnell <alkirkco@sgi.com>
Signed-off-by: Nathan Scott <nathans@sgi.com>
a preēmpt counter overflow at 256p and above. Change the exclusion
mechanism to use atomic bit operations and busy wait loops to emulate the
spin lock exclusion mechanism but without the preempt count issues.
SGI-PV: 950027
SGI-Modid: xfs-linux-melb:xfs-kern:25338a
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Nathan Scott <nathans@sgi.com>
to linux.
SGI-PV: 931456
SGI-Modid: xfs-linux-melb:xfs-kern:25238a
Signed-off-by: Tim Shimmin <tes@sgi.com>
Signed-off-by: Nathan Scott <nathans@sgi.com>
swapped with be32_to_cpu.
SGI-PV: 943272
SGI-Modid: xfs-linux-melb:xfs-kern:25232a
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Nathan Scott <nathans@sgi.com>