Commit Graph

4 Commits

Author SHA1 Message Date
Robert Shearman a59166e470 mpls: allow TTL propagation from IP packets to be configured
Allow TTL propagation from IP packets to MPLS packets to be
configured. Add a new optional LWT attribute, MPLS_IPTUNNEL_TTL, which
allows the TTL to be set in the resulting MPLS packet, with the value
of 0 having the semantics of enabling propagation of the TTL from the
IP header (i.e. non-zero values disable propagation).

Also allow the configuration to be overridden globally by reusing the
same sysctl to control whether the TTL is propagated from IP packets
into the MPLS header. If the per-LWT attribute is set then it
overrides the global configuration. If the TTL isn't propagated then a
default TTL value is used which can be configured via a new sysctl,
"net.mpls.default_ttl". This is kept separate from the configuration
of whether IP TTL propagation is enabled as it can be used in the
future when non-IP payloads are supported (i.e. where there is no
payload TTL that can be propagated).

Signed-off-by: Robert Shearman <rshearma@brocade.com>
Acked-by: David Ahern <dsa@cumulusnetworks.com>
Tested-by: David Ahern <dsa@cumulusnetworks.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-03-13 15:29:22 -07:00
Robert Shearman 5b441ac878 mpls: allow TTL propagation to IP packets to be configured
Provide the ability to control on a per-route basis whether the TTL
value from an MPLS packet is propagated to an IPv4/IPv6 packet when
the last label is popped as per the theoretical model in RFC 3443
through a new route attribute, RTA_TTL_PROPAGATE which can be 0 to
mean disable propagation and 1 to mean enable propagation.

In order to provide the ability to change the behaviour for packets
arriving with IPv4/IPv6 Explicit Null labels and to provide an easy
way for a user to change the behaviour for all existing routes without
having to reprogram them, a global knob is provided. This is done
through the addition of a new per-namespace sysctl,
"net.mpls.ip_ttl_propagate", which defaults to enabled. If the
per-route attribute is set (either enabled or disabled) then it
overrides the global configuration.

Signed-off-by: Robert Shearman <rshearma@brocade.com>
Acked-by: David Ahern <dsa@cumulusnetworks.com>
Tested-by: David Ahern <dsa@cumulusnetworks.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-03-13 15:29:22 -07:00
Eric W. Biederman 7720c01f3f mpls: Add a sysctl to control the size of the mpls label table
This sysctl gives two benefits.  By defaulting the table size to 0
mpls even when compiled in and enabled defaults to not forwarding
any packets.  This prevents unpleasant surprises for users.

The other benefit is that as mpls labels are allocated locally a dense
table a small dense label table may be used which saves memory and
is extremely simple and efficient to implement.

This sysctl allows userspace to choose the restrictions on the label
table size userspace applications need to cope with.

Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-03-04 00:26:06 -05:00
Eric W. Biederman 0189197f44 mpls: Basic routing support
This change adds a new Kconfig option MPLS_ROUTING.

The core of this change is the code to look at an mpls packet received
from another machine.  Look that packet up in a routing table and
forward the packet on.

Support of MPLS over ATM is not considered or attempted here.  This
implemntation follows RFC3032 and implements the MPLS shim header that
can pass over essentially any network.

What RFC3021 refers to as the as the Incoming Label Map (ILM) I call
net->mpls.platform_label[].  What RFC3031 refers to as the Next Label
Hop Forwarding Entry (NHLFE) I call mpls_route.  Though calling it the
label fordwarding information base (lfib) might also be valid.

Further the implemntation forwards packets as described in RFC3032.
There is no need and given the original motivation for MPLS a strong
discincentive to have a flexible label forwarding path.  In essence
the logic is the topmost label is read, looked up, removed, and
replaced by 0 or more new lables and the sent out the specified
interface to it's next hop.

Quite a few optional features are not implemented here.  Among them
are generation of ICMP errors when the TTL is exceeded or the packet
is larger than the next hop MTU (those conditions are detected and the
packets are dropped instead of generating an icmp error).  The traffic
class field is always set to 0.  The implementation focuses on IP over
MPLS and does not handle egress of other kinds of protocols.

Instead of implementing coordination with the neighbour table and
sorting out how to input next hops in a different address family (for
which there is value).  I was lazy and implemented a next hop mac
address instead.  The code is simpler and there are flavor of MPLS
such as MPLS-TP where neither an IPv4 nor an IPv6 next hop is
appropriate so a next hop by mac address would need to be implemented
at some point.

Two new definitions AF_MPLS and PF_MPLS are exposed to userspace.

Decoding the mpls header must be done by first byeswapping a 32bit bit
endian word into the local cpu endian and then bit shifting to extract
the pieces.  There is no C bit-field that can represent a wire format
mpls header on a little endian machine as the low bits of the 20bit
label wind up in the wrong half of third byte.  Therefore internally
everything is deal with in cpu native byte order except when writing
to and reading from a packet.

For management simplicity if a label is configured to forward out
an interface that is down the packet is dropped early.  Similarly
if an network interface is removed rt_dev is updated to NULL
(so no reference is preserved) and any packets for that label
are dropped.  Keeping the label entries in the kernel allows
the kernel label table to function as the definitive source
of which labels are allocated and which are not.

Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-03-04 00:26:06 -05:00