MicroMIPS kernels may be expected to run on microMIPS only cores which
don't support the normal MIPS instruction set, so be sure to pass the
-mmicromips flag through to the VDSO cflags.
Fixes: ebb5e78cc6 ("MIPS: Initial implementation of a VDSO")
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paul Burton <paul.burton@imgtec.com>
Cc: linux-mips@linux-mips.org
Cc: <stable@vger.kernel.org> # 4.4.x-
Patchwork: https://patchwork.linux-mips.org/patch/13349/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
In microMIPS kernels, handle_signal() sets the isa16 mode bit in the
vdso address so that the sigreturn trampolines (which are offset from
the VDSO) get executed as microMIPS.
However commit ebb5e78cc6 ("MIPS: Initial implementation of a VDSO")
changed the offsets to come from the VDSO image, which already have the
isa16 mode bit set correctly since they're extracted from the VDSO
shared library symbol table.
Drop the isa16 mode bit handling from handle_signal() to fix sigreturn
for cores which support both microMIPS and normal MIPS. This doesn't fix
microMIPS only cores, since the VDSO is still built for normal MIPS, but
thats a separate problem.
Fixes: ebb5e78cc6 ("MIPS: Initial implementation of a VDSO")
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paul Burton <paul.burton@imgtec.com>
Cc: linux-mips@linux-mips.org
Cc: <stable@vger.kernel.org> # 4.4.x-
Patchwork: https://patchwork.linux-mips.org/patch/13348/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
Here is the quote from [1]:
The unit-address must match the first address specified
in the reg property of the node. If the node has no reg property,
the @ and unit-address must be omitted and the node-name alone
differentiates the node from other nodes at the same level
This patch adjusts MIPS dts-files and devicetree binding
documentation in accordance with [1].
[1] Power.org(tm) Standard for Embedded Power Architecture(tm)
Platform Requirements (ePAPR). Version 1.1 – 08 April 2011.
Chapter 2.2.1.1 Node Name Requirements
Signed-off-by: Antony Pavlov <antonynpavlov@gmail.com>
Cc: Paul Burton <paul.burton@imgtec.com>
Cc: Zubair Lutfullah Kakakhel <Zubair.Kakakhel@imgtec.com>
Cc: Rob Herring <robh+dt@kernel.org>
Cc: Pawel Moll <pawel.moll@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Ian Campbell <ijc+devicetree@hellion.org.uk>
Cc: Kumar Gala <galak@codeaurora.org>
Cc: linux-mips@linux-mips.org
Cc: devicetree@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Patchwork: https://patchwork.linux-mips.org/patch/13345/
Acked-by: Rob Herring <robh@kernel.org>
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
Avoid an aliasing issue causing a build error in VDSO:
In file included from include/linux/srcu.h:34:0,
from include/linux/notifier.h:15,
from ./arch/mips/include/asm/uprobes.h:9,
from include/linux/uprobes.h:61,
from include/linux/mm_types.h:13,
from ./arch/mips/include/asm/vdso.h:14,
from arch/mips/vdso/vdso.h:27,
from arch/mips/vdso/gettimeofday.c:11:
include/linux/workqueue.h: In function 'work_static':
include/linux/workqueue.h:186:2: error: dereferencing type-punned pointer will break strict-aliasing rules [-Werror=strict-aliasing]
return *work_data_bits(work) & WORK_STRUCT_STATIC;
^
cc1: all warnings being treated as errors
make[2]: *** [arch/mips/vdso/gettimeofday.o] Error 1
with a CONFIG_DEBUG_OBJECTS_WORK configuration and GCC 5.2.0. Include
`-fno-strict-aliasing' along with compiler options used, as required for
kernel code, fixing a problem present since the introduction of VDSO
with commit ebb5e78cc6 ("MIPS: Initial implementation of a VDSO").
Thanks to Tejun for diagnosing this properly!
Signed-off-by: Maciej W. Rozycki <macro@imgtec.com>
Reviewed-by: James Hogan <james.hogan@imgtec.com>
Fixes: ebb5e78cc6 ("MIPS: Initial implementation of a VDSO")
Cc: Tejun Heo <tj@kernel.org>
Cc: linux-mips@linux-mips.org
Cc: stable@vger.kernel.org # v4.3+
Patchwork: https://patchwork.linux-mips.org/patch/13357/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
Allow KASLR to be selected on Pistachio based systems. Tested on a
Creator Ci40.
Signed-off-by: Matt Redfearn <matt.redfearn@imgtec.com>
Reviewed-by: James Hogan <james.hogan@imgtec.com>
Cc: Andrew Bresticker <abrestic@chromium.org>
Cc: Jonas Gorski <jogo@openwrt.org>
Cc: linux-kernel@vger.kernel.org
Cc: linux-mips@linux-mips.org
Patchwork: https://patchwork.linux-mips.org/patch/13356/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
On certain MIPS32 devices, the ftrace tracer "function_graph" uses
__lshrdi3() during the capturing of trace data. ftrace then attempts to
trace __lshrdi3() which leads to infinite recursion and a stack overflow.
Fix this by marking __lshrdi3() as notrace. Mark the other compiler
intrinsics as notrace in case the compiler decides to use them in the
ftrace path.
Signed-off-by: Harvey Hunt <harvey.hunt@imgtec.com>
Cc: <linux-mips@linux-mips.org>
Cc: <linux-kernel@vger.kernel.org>
Cc: <stable@vger.kernel.org> # 4.2.x-
Patchwork: https://patchwork.linux-mips.org/patch/13354/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
The Hardware page Table Walker (HTW) is being misconfigured on 64-bit
kernels. The PWSize.PS (pointer size) bit determines whether pointers
within directories are loaded as 32-bit or 64-bit addresses, but was
never being set to 1 for 64-bit kernels where the unsigned long in pgd_t
is 64-bits wide.
This actually reduces rather than improves performance when the HTW is
enabled on P6600 since the HTW is initiated lots, but walks are all
aborted due I think to bad intermediate pointers.
Since we were already taking the width of the PTEs into account by
setting PWSize.PTEW, which is the left shift applied to the page table
index *in addition to* the native pointer size, we also need to reduce
PTEW by 1 when PS=1. This is done by calculating PTEW based on the
relative size of pte_t compared to pgd_t.
Finally in order for the HTW to be used when PS=1, the appropriate
XK/XS/XU bits corresponding to the different 64-bit segments need to be
set in PWCtl. We enable only XU for now to enable walking for XUSeg.
Supporting walking for XKSeg would be a bit more involved so is left for
a future patch. It would either require the use of a per-CPU top level
base directory if supported by the HTW (a bit like pgd_current but with
a second entry pointing at swapper_pg_dir), or the HTW would prepend bit
63 of the address to the global directory index which doesn't really
match how we split user and kernel page directories.
Fixes: cab25bc753 ("MIPS: Extend hardware table walking support to MIPS64")
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paul Burton <paul.burton@imgtec.com>
Cc: linux-mips@linux-mips.org
Patchwork: https://patchwork.linux-mips.org/patch/13364/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
Add field definitions for some of the 64-bit specific Hardware page
Table Walker (HTW) register fields in PWSize and PWCtl, in preparation
for fixing the 64-bit HTW configuration.
Also print these fields out along with the others in print_htw_config().
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paul Burton <paul.burton@imgtec.com>
Cc: linux-mips@linux-mips.org
Patchwork: https://patchwork.linux-mips.org/patch/13363/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
Simplify the DSP instruction wrapper macros which use explicit encodings
for microMIPS and normal MIPS by using the new encoding macros and
removing duplication.
To me this makes it easier to read since it is much shorter, but it also
ensures .insn is used, preventing objdump disassembling the microMIPS
code as normal MIPS.
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: linux-mips@linux-mips.org
Patchwork: https://patchwork.linux-mips.org/patch/13314/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
Hardcoded MIPS instruction encodings are provided for tlbinvf, mfhc0 &
mthc0 instructions, but microMIPS encodings are missing. I doubt any
microMIPS cores exist at present which support these instructions, but
the microMIPS encodings exist, and microMIPS cores may support them in
the future. Add the missing microMIPS encodings using the new macros.
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: linux-mips@linux-mips.org
Patchwork: https://patchwork.linux-mips.org/patch/13313/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
When the toolchain doesn't support MSA we encode MSA instructions
explicitly in assembly. Unfortunately we use .word for both MIPS and
microMIPS encodings which is wrong, since 32-bit microMIPS instructions
are made up from a pair of halfwords.
- The most significant halfword always comes first, so for little endian
builds the halves will be emitted in the wrong order.
- 32-bit alignment isn't guaranteed, so the assembler may insert a
16-bit nop instruction to pad the instruction stream to a 32-bit
boundary.
Use the new instruction encoding macros to encode microMIPS MSA
instructions correctly.
Fixes: d96cc3d1ec ("MIPS: Add microMIPS MSA support.")
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paul Burton <Paul.Burton@imgtec.com>
Cc: linux-mips@linux-mips.org
Patchwork: https://patchwork.linux-mips.org/patch/13312/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
Toolchains may be used which support microMIPS but not VZ instructions
(i.e. binutis 2.22 & 2.23), so extend the explicitly encoded versions of
the guest COP0 register & guest TLB access macros to support microMIPS
encodings too, using the new macros.
This prevents non-microMIPS instructions being executed in microMIPS
mode during CPU probe on cores supporting VZ (e.g. M5150), which cause
reserved instruction exceptions early during boot.
Fixes: bad50d7925 ("MIPS: Fix VZ probe gas errors with binutils <2.24")
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: linux-mips@linux-mips.org
Patchwork: https://patchwork.linux-mips.org/patch/13311/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
To allow simplification of macros which use inline assembly to
explicitly encode instructions, add a few simple abstractions to
mipsregs.h which expand to specific microMIPS or normal MIPS encodings
depending on what type of kernel is being built:
_ASM_INSN_IF_MIPS(_enc) : Emit a 32bit MIPS instruction if microMIPS is
not enabled.
_ASM_INSN32_IF_MM(_enc) : Emit a 32bit microMIPS instruction if enabled.
_ASM_INSN16_IF_MM(_enc) : Emit a 16bit microMIPS instruction if enabled.
The macros can be used one after another since the MIPS / microMIPS
macros are mutually exclusive, for example:
__asm__ __volatile__(
".set push\n\t"
".set noat\n\t"
"# mfgc0 $1, $%1, %2\n\t"
_ASM_INSN_IF_MIPS(0x40610000 | %1 << 11 | %2)
_ASM_INSN32_IF_MM(0x002004fc | %1 << 16 | %2 << 11)
"move %0, $1\n\t"
".set pop"
: "=r" (__res)
: "i" (source), "i" (sel));
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: linux-mips@linux-mips.org
Patchwork: https://patchwork.linux-mips.org/patch/13310/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
As noticed by Sergei in the discussion of Andrea Gelmini's patch series.
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
Reported-by: Sergei Shtylyov <sergei.shtylyov@cogentembedded.com>
The versions of the __write_{32,64}bit_gc0_register() macros for when
there is no virt support in the assembler use the "J" inline asm
constraint to allow integer zero, but this needs to be accompanied by
the "z" formatting string so that it turns into $0. Fix both macros to
do this.
Fixes: bad50d7925 ("MIPS: Fix VZ probe gas errors with binutils <2.24")
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: linux-mips@linux-mips.org
Patchwork: https://patchwork.linux-mips.org/patch/13289/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
When starting secondary VPEs which support EVA and the SegCtl registers,
copy the memory segmentation configuration from the running VPE to ensure
that all VPEs in the core have a consistent virtual memory map.
The EVA configuration of secondary cores is dealt with when starting the
core via the CM.
Signed-off-by: Matt Redfearn <matt.redfearn@imgtec.com>
Cc: Paul Burton <paul.burton@imgtec.com>
Cc: linux-mips@linux-mips.org
Cc: linux-kernel@vger.kernel.org
Patchwork: https://patchwork.linux-mips.org/patch/13291/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
The SegCtl registers are standard for MIPSr3..MIPSr5. Add definitions of
these registers and use them rather than constants
Signed-off-by: Matt Redfearn <matt.redfearn@imgtec.com>
Cc: Joshua Kinard <kumba@gentoo.org>
Cc: James Hogan <james.hogan@imgtec.com>
Cc: Chris Packham <judge.packham@gmail.com>
Cc: Paul Burton <paul.burton@imgtec.com>
Cc: linux-mips@linux-mips.org
Cc: linux-kernel@vger.kernel.org
Patchwork: https://patchwork.linux-mips.org/patch/13290/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
Commit 12822570a2 ("MIPS: Separate XPA CPU feature into LPA and MVH")
wasn't fully applied, possibly due to a conflict with commit
f270d881fa ("MIPS: Detect MIPSr6 Virtual Processor support"). This
left decode_config5() referring to the non-existent MIPS_CPU_XPA, which
breaks the build when XPA is enabled:
arch/mips/kernel/cpu-probe.c In function ‘decode_config5’:
arch/mips/kernel/cpu-probe.c:838:17: error: ‘MIPS_CPU_XPA’ undeclared (first use in this function)
c->options |= MIPS_CPU_XPA;
^
Apply the missing hunk, dropping the CONFIG_XPA ifdef and setting the
MIPS_CPU_MVH option when Config5.MVH is set.
Fixes: 12822570a2 ("MIPS: Separate XPA CPU feature into LPA and MVH")
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paul Burton <paul.burton@imgtec.com>
Cc: linux-mips@linux-mips.org
Link: https://patchwork.linux-mips.org/patch/13112/
Patchwork: https://patchwork.linux-mips.org/patch/13277/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
When using an external interrupt controller (EIC) the interrupt mask
bits in the cop0 Status register are reused for the Interrupt Priority
Level, and any interrupts with a priority lower than the field will be
ignored. Clear the field to 0 by default such that all interrupts are
serviced.
Signed-off-by: Paul Burton <paul.burton@imgtec.com>
Reviewed-by: Matt Redfearn <matt.redfearn@imgtec.com>
Tested-by: Matt Redfearn <matt.redfearn@imgtec.com>
Cc: Qais Yousef <qsyousef@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-mips@linux-mips.org
Cc: linux-kernel@vger.kernel.org
Patchwork: https://patchwork.linux-mips.org/patch/13273/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
When using an external interrupt controller (EIC) the interrupt mask
bits in the cop0 Status register are reused for the Interrupt Priority
Level, and any interrupts with a priority lower than the field will be
ignored. Clear the field to 0 by default such that all interrupts are
serviced. Without doing so we default to arbitrarily ignoring all or
some subset of interrupts.
Signed-off-by: Paul Burton <paul.burton@imgtec.com>
Reviewed-by: Matt Redfearn <matt.redfearn@imgtec.com>
Tested-by: Matt Redfearn <matt.redfearn@imgtec.com>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: Sergei Shtylyov <sergei.shtylyov@cogentembedded.com>
Cc: Joe Perches <joe@perches.com>
Cc: James Hogan <james.hogan@imgtec.com>
Cc: linux-mips@linux-mips.org
Cc: linux-kernel@vger.kernel.org
Patchwork: https://patchwork.linux-mips.org/patch/13272/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
Pull perf updates from Ingo Molnar:
"Mostly tooling and PMU driver fixes, but also a number of late updates
such as the reworking of the call-chain size limiting logic to make
call-graph recording more robust, plus tooling side changes for the
new 'backwards ring-buffer' extension to the perf ring-buffer"
* 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (34 commits)
perf record: Read from backward ring buffer
perf record: Rename variable to make code clear
perf record: Prevent reading invalid data in record__mmap_read
perf evlist: Add API to pause/resume
perf trace: Use the ptr->name beautifier as default for "filename" args
perf trace: Use the fd->name beautifier as default for "fd" args
perf report: Add srcline_from/to branch sort keys
perf evsel: Record fd into perf_mmap
perf evsel: Add overwrite attribute and check write_backward
perf tools: Set buildid dir under symfs when --symfs is provided
perf trace: Only auto set call-graph to "dwarf" when syscalls are being traced
perf annotate: Sort list of recognised instructions
perf annotate: Fix identification of ARM blt and bls instructions
perf tools: Fix usage of max_stack sysctl
perf callchain: Stop validating callchains by the max_stack sysctl
perf trace: Fix exit_group() formatting
perf top: Use machine->kptr_restrict_warned
perf trace: Warn when trying to resolve kernel addresses with kptr_restrict=1
perf machine: Do not bail out if not managing to read ref reloc symbol
perf/x86/intel/p4: Trival indentation fix, remove space
...
First cycle with Boris as NAND maintainer! Many (most) bullets stolen from him.
Generic:
* Migrated NAND LED trigger to be a generic MTD trigger
NAND:
* Introduction of the "ECC algorithm" concept, to avoid overloading the ECC
mode field too much more
* Replaced the nand_ecclayout infrastructure with something a little more
flexible (finally!) and future proof
* Rework of the OMAP GPMC and NAND drivers; the TI folks pulled some of
this into their own tree as well
* Prepare the sunxi NAND driver to receive DMA support
* Handle bitflips in erased pages on GPMI revisions that do not support
this in hardware.
SPI NOR:
* Start using the spi_flash_read() API for SPI drivers that support it (i.e.,
SPI drivers with special memory-mapped flash modes)
And other small scattered improvments.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJXQ9oUAAoJEFySrpd9RFgttf0P/3oIVCvLHSFIsi7XiUusWJWk
Cb+xW3ujFd2kNUqAQGnyvPUGU1amgjAjy2kwMpvpOG07DVgSnxQVGaQLins8Zwpw
auWxH8llISmC6UkNsS1jV0d7KzSMCT2Ne+BenRAn68kq3ovXPPB3B19B6dFj8ail
s83ajoZhsn1+eyctiKtbhXgZWkJHlRmBeXPKAJcS0lBcSibR+6N+O//JEAMnyYvc
7azuw0KMVwQNnNYFAfd9dilV5juZ9bZptTJYH7XuF+44FhxmSKvTX2a9gmp0C4Bm
FszUiPrIWF+t98nSQxxSn/zPlyllFyoisa6F7eGnDHIz+bH0Emf2oVwsSG5ASl42
XTml0kB0jCfuBfgAiyhYU2Uds7rSYs/ZcHr3iPgpUY3Sc3dgoArDdahMJXwqaoa8
UdChu6A+rjhi9PqhzNNVTarbilp3pOVgKAUVEWTdpQ1wGU4c+9SNlTTwhPy4g7RB
uKlqbMeiZ/5rPiihaMUNtzxMxSe9OGYW2HVNVExvmlF2Ca42M1xJJBMlAA6IIXyS
35d3Y4F5zPP7U6GCVla06WHkL5ahXJWmI0Xhf+2jCnDMipeAl6eCEiAJY5EmvAnr
FTpZ4qkspED69mO8oZW9ORje0n6PCm4XPOi4Vl8kci8tlBsEJMk9jaedWwGlZkRk
I5leUP4NEougvuHce2Cn
=J6KN
-----END PGP SIGNATURE-----
Merge tag 'for-linus-20160523' of git://git.infradead.org/linux-mtd
Pull MTD updates from Brian Norris:
"First cycle with Boris as NAND maintainer! Many (most) bullets stolen
from him.
Generic:
- Migrated NAND LED trigger to be a generic MTD trigger
NAND:
- Introduction of the "ECC algorithm" concept, to avoid overloading
the ECC mode field too much more
- Replaced the nand_ecclayout infrastructure with something a little
more flexible (finally!) and future proof
- Rework of the OMAP GPMC and NAND drivers; the TI folks pulled some
of this into their own tree as well
- Prepare the sunxi NAND driver to receive DMA support
- Handle bitflips in erased pages on GPMI revisions that do not
support this in hardware.
SPI NOR:
- Start using the spi_flash_read() API for SPI drivers that support
it (i.e., SPI drivers with special memory-mapped flash modes)
And other small scattered improvments"
* tag 'for-linus-20160523' of git://git.infradead.org/linux-mtd: (155 commits)
mtd: spi-nor: support GigaDevice gd25lq64c
mtd: nand_bch: fix spelling of "probably"
mtd: brcmnand: respect ECC algorithm set by NAND subsystem
gpmi-nand: Handle ECC Errors in erased pages
Documentation: devicetree: deprecate "soft_bch" nand-ecc-mode value
mtd: nand: add support for "nand-ecc-algo" DT property
mtd: mtd: drop NAND_ECC_SOFT_BCH enum value
mtd: drop support for NAND_ECC_SOFT_BCH as "soft_bch" mapping
mtd: nand: read ECC algorithm from the new field
mtd: nand: fsmc: validate ECC setup by checking algorithm directly
mtd: nand: set ECC algorithm to Hamming on fallback
staging: mt29f_spinand: set ECC algorithm explicitly
CRIS v32: nand: set ECC algorithm explicitly
mtd: nand: atmel: set ECC algorithm explicitly
mtd: nand: davinci: set ECC algorithm explicitly
mtd: nand: bf5xx: set ECC algorithm explicitly
mtd: nand: omap2: Fix high memory dma prefetch transfer
mtd: nand: omap2: Start dma request before enabling prefetch
mtd: nandsim: add __init attribute
mtd: nand: move of_get_nand_xxx() helpers into nand_base.c
...
most architectures are relying on mmap_sem for write in their
arch_setup_additional_pages. If the waiting task gets killed by the oom
killer it would block oom_reaper from asynchronous address space reclaim
and reduce the chances of timely OOM resolving. Wait for the lock in
the killable mode and return with EINTR if the task got killed while
waiting.
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Andy Lutomirski <luto@amacapital.net> [x86 vdso]
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This option was replaced by PAGE_COUNTER which is selected by MEMCG.
Signed-off-by: Konstantin Khlebnikov <koct9i@gmail.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Balbir Singh <bsingharora@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
CONFIG_MIPS32_N32=y but CONFIG_BINFMT_ELF disabled results in the
following linker errors:
arch/mips/built-in.o: In function `elf_core_dump':
binfmt_elfn32.c:(.text+0x23dbc): undefined reference to `elf_core_extra_phdrs'
binfmt_elfn32.c:(.text+0x246e4): undefined reference to `elf_core_extra_data_size'
binfmt_elfn32.c:(.text+0x248d0): undefined reference to `elf_core_write_extra_phdrs'
binfmt_elfn32.c:(.text+0x24ac4): undefined reference to `elf_core_write_extra_data'
CONFIG_MIPS32_O32=y but CONFIG_BINFMT_ELF disabled results in the following
linker errors:
arch/mips/built-in.o: In function `elf_core_dump':
binfmt_elfo32.c:(.text+0x28a04): undefined reference to `elf_core_extra_phdrs'
binfmt_elfo32.c:(.text+0x29330): undefined reference to `elf_core_extra_data_size'
binfmt_elfo32.c:(.text+0x2951c): undefined reference to `elf_core_write_extra_phdrs'
binfmt_elfo32.c:(.text+0x29710): undefined reference to `elf_core_write_extra_data'
This is because binfmt_elfn32 and binfmt_elfo32 are using symbols from
elfcore but for these configurations elfcore will not be built.
Fixed by making elfcore selectable by a separate config symbol which
unlike the current mechanism can also be used from other directories
than kernel/, then having each flavor of ELF that relies on elfcore.o,
select it in Kconfig, including CONFIG_MIPS32_N32 and CONFIG_MIPS32_O32
which fixes this issue.
Link: http://lkml.kernel.org/r/20160520141705.GA1913@linux-mips.org
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
Reviewed-by: James Hogan <james.hogan@imgtec.com>
Cc: "Maciej W. Rozycki" <macro@linux-mips.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Merge more updates from Andrew Morton:
- the rest of MM
- KASAN updates
- procfs updates
- exit, fork updates
- printk updates
- lib/ updates
- radix-tree testsuite updates
- checkpatch updates
- kprobes updates
- a few other misc bits
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (162 commits)
samples/kprobes: print out the symbol name for the hooks
samples/kprobes: add a new module parameter
kprobes: add the "tls" argument for j_do_fork
init/main.c: simplify initcall_blacklisted()
fs/efs/super.c: fix return value
checkpatch: improve --git <commit-count> shortcut
checkpatch: reduce number of `git log` calls with --git
checkpatch: add support to check already applied git commits
checkpatch: add --list-types to show message types to show or ignore
checkpatch: advertise the --fix and --fix-inplace options more
checkpatch: whine about ACCESS_ONCE
checkpatch: add test for keywords not starting on tabstops
checkpatch: improve CONSTANT_COMPARISON test for structure members
checkpatch: add PREFER_IS_ENABLED test
lib/GCD.c: use binary GCD algorithm instead of Euclidean
radix-tree: free up the bottom bit of exceptional entries for reuse
dax: move RADIX_DAX_ definitions to dax.c
radix-tree: make radix_tree_descend() more useful
radix-tree: introduce radix_tree_replace_clear_tags()
radix-tree: tidy up __radix_tree_create()
...
Here's the large TTY and Serial driver update for 4.7-rc1.
A few new serial drivers are added here, and Peter has fixed a bunch of
long-standing bugs in the tty layer and serial drivers as normal. Full
details in the shortlog.
All of these have been in linux-next for a while with no reported issues.
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2
iEYEABECAAYFAlc/0/oACgkQMUfUDdst+ynzyQCgsa54VNijdAzU6AA5HEfqmf2M
cGMAn1boH7hUWlAbJmzzihx4JASoGjYW
=V5VH
-----END PGP SIGNATURE-----
Merge tag 'tty-4.7-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/tty
Pull tty and serial driver updates from Greg KH:
"Here's the large TTY and Serial driver update for 4.7-rc1.
A few new serial drivers are added here, and Peter has fixed a bunch
of long-standing bugs in the tty layer and serial drivers as normal.
Full details in the shortlog.
All of these have been in linux-next for a while with no reported
issues"
* tag 'tty-4.7-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/tty: (88 commits)
MAINTAINERS: 8250: remove website reference
serial: core: Fix port mutex assert if lockdep disabled
serial: 8250_dw: fix wrong logic in dw8250_check_lcr()
tty: vt, finish looping on duplicate
tty: vt, return error when con_startup fails
QE-UART: add "fsl,t1040-ucc-uart" to of_device_id
serial: mctrl_gpio: Drop support for out1-gpios and out2-gpios
serial: 8250dw: Add device HID for future AMD UART controller
Fix OpenSSH pty regression on close
serial: mctrl_gpio: add IRQ locking
serial: 8250: Integrate Fintek into 8250_base
serial: mps2-uart: add support for early console
serial: mps2-uart: add MPS2 UART driver
dt-bindings: document the MPS2 UART bindings
serial: sirf: Use generic uart-has-rtscts DT property
serial: sirf: Introduce helper variable struct device_node *np
serial: mxs-auart: Use generic uart-has-rtscts DT property
serial: imx: Use generic uart-has-rtscts DT property
doc: DT: Add Generic Serial Device Tree Bindings
serial: 8250: of: Make tegra_serial_handle_break() static
...
The binary GCD algorithm is based on the following facts:
1. If a and b are all evens, then gcd(a,b) = 2 * gcd(a/2, b/2)
2. If a is even and b is odd, then gcd(a,b) = gcd(a/2, b)
3. If a and b are all odds, then gcd(a,b) = gcd((a-b)/2, b) = gcd((a+b)/2, b)
Even on x86 machines with reasonable division hardware, the binary
algorithm runs about 25% faster (80% the execution time) than the
division-based Euclidian algorithm.
On platforms like Alpha and ARMv6 where division is a function call to
emulation code, it's even more significant.
There are two variants of the code here, depending on whether a fast
__ffs (find least significant set bit) instruction is available. This
allows the unpredictable branches in the bit-at-a-time shifting loop to
be eliminated.
If fast __ffs is not available, the "even/odd" GCD variant is used.
I use the following code to benchmark:
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <time.h>
#include <unistd.h>
#define swap(a, b) \
do { \
a ^= b; \
b ^= a; \
a ^= b; \
} while (0)
unsigned long gcd0(unsigned long a, unsigned long b)
{
unsigned long r;
if (a < b) {
swap(a, b);
}
if (b == 0)
return a;
while ((r = a % b) != 0) {
a = b;
b = r;
}
return b;
}
unsigned long gcd1(unsigned long a, unsigned long b)
{
unsigned long r = a | b;
if (!a || !b)
return r;
b >>= __builtin_ctzl(b);
for (;;) {
a >>= __builtin_ctzl(a);
if (a == b)
return a << __builtin_ctzl(r);
if (a < b)
swap(a, b);
a -= b;
}
}
unsigned long gcd2(unsigned long a, unsigned long b)
{
unsigned long r = a | b;
if (!a || !b)
return r;
r &= -r;
while (!(b & r))
b >>= 1;
for (;;) {
while (!(a & r))
a >>= 1;
if (a == b)
return a;
if (a < b)
swap(a, b);
a -= b;
a >>= 1;
if (a & r)
a += b;
a >>= 1;
}
}
unsigned long gcd3(unsigned long a, unsigned long b)
{
unsigned long r = a | b;
if (!a || !b)
return r;
b >>= __builtin_ctzl(b);
if (b == 1)
return r & -r;
for (;;) {
a >>= __builtin_ctzl(a);
if (a == 1)
return r & -r;
if (a == b)
return a << __builtin_ctzl(r);
if (a < b)
swap(a, b);
a -= b;
}
}
unsigned long gcd4(unsigned long a, unsigned long b)
{
unsigned long r = a | b;
if (!a || !b)
return r;
r &= -r;
while (!(b & r))
b >>= 1;
if (b == r)
return r;
for (;;) {
while (!(a & r))
a >>= 1;
if (a == r)
return r;
if (a == b)
return a;
if (a < b)
swap(a, b);
a -= b;
a >>= 1;
if (a & r)
a += b;
a >>= 1;
}
}
static unsigned long (*gcd_func[])(unsigned long a, unsigned long b) = {
gcd0, gcd1, gcd2, gcd3, gcd4,
};
#define TEST_ENTRIES (sizeof(gcd_func) / sizeof(gcd_func[0]))
#if defined(__x86_64__)
#define rdtscll(val) do { \
unsigned long __a,__d; \
__asm__ __volatile__("rdtsc" : "=a" (__a), "=d" (__d)); \
(val) = ((unsigned long long)__a) | (((unsigned long long)__d)<<32); \
} while(0)
static unsigned long long benchmark_gcd_func(unsigned long (*gcd)(unsigned long, unsigned long),
unsigned long a, unsigned long b, unsigned long *res)
{
unsigned long long start, end;
unsigned long long ret;
unsigned long gcd_res;
rdtscll(start);
gcd_res = gcd(a, b);
rdtscll(end);
if (end >= start)
ret = end - start;
else
ret = ~0ULL - start + 1 + end;
*res = gcd_res;
return ret;
}
#else
static inline struct timespec read_time(void)
{
struct timespec time;
clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &time);
return time;
}
static inline unsigned long long diff_time(struct timespec start, struct timespec end)
{
struct timespec temp;
if ((end.tv_nsec - start.tv_nsec) < 0) {
temp.tv_sec = end.tv_sec - start.tv_sec - 1;
temp.tv_nsec = 1000000000ULL + end.tv_nsec - start.tv_nsec;
} else {
temp.tv_sec = end.tv_sec - start.tv_sec;
temp.tv_nsec = end.tv_nsec - start.tv_nsec;
}
return temp.tv_sec * 1000000000ULL + temp.tv_nsec;
}
static unsigned long long benchmark_gcd_func(unsigned long (*gcd)(unsigned long, unsigned long),
unsigned long a, unsigned long b, unsigned long *res)
{
struct timespec start, end;
unsigned long gcd_res;
start = read_time();
gcd_res = gcd(a, b);
end = read_time();
*res = gcd_res;
return diff_time(start, end);
}
#endif
static inline unsigned long get_rand()
{
if (sizeof(long) == 8)
return (unsigned long)rand() << 32 | rand();
else
return rand();
}
int main(int argc, char **argv)
{
unsigned int seed = time(0);
int loops = 100;
int repeats = 1000;
unsigned long (*res)[TEST_ENTRIES];
unsigned long long elapsed[TEST_ENTRIES];
int i, j, k;
for (;;) {
int opt = getopt(argc, argv, "n:r:s:");
/* End condition always first */
if (opt == -1)
break;
switch (opt) {
case 'n':
loops = atoi(optarg);
break;
case 'r':
repeats = atoi(optarg);
break;
case 's':
seed = strtoul(optarg, NULL, 10);
break;
default:
/* You won't actually get here. */
break;
}
}
res = malloc(sizeof(unsigned long) * TEST_ENTRIES * loops);
memset(elapsed, 0, sizeof(elapsed));
srand(seed);
for (j = 0; j < loops; j++) {
unsigned long a = get_rand();
/* Do we have args? */
unsigned long b = argc > optind ? strtoul(argv[optind], NULL, 10) : get_rand();
unsigned long long min_elapsed[TEST_ENTRIES];
for (k = 0; k < repeats; k++) {
for (i = 0; i < TEST_ENTRIES; i++) {
unsigned long long tmp = benchmark_gcd_func(gcd_func[i], a, b, &res[j][i]);
if (k == 0 || min_elapsed[i] > tmp)
min_elapsed[i] = tmp;
}
}
for (i = 0; i < TEST_ENTRIES; i++)
elapsed[i] += min_elapsed[i];
}
for (i = 0; i < TEST_ENTRIES; i++)
printf("gcd%d: elapsed %llu\n", i, elapsed[i]);
k = 0;
srand(seed);
for (j = 0; j < loops; j++) {
unsigned long a = get_rand();
unsigned long b = argc > optind ? strtoul(argv[optind], NULL, 10) : get_rand();
for (i = 1; i < TEST_ENTRIES; i++) {
if (res[j][i] != res[j][0])
break;
}
if (i < TEST_ENTRIES) {
if (k == 0) {
k = 1;
fprintf(stderr, "Error:\n");
}
fprintf(stderr, "gcd(%lu, %lu): ", a, b);
for (i = 0; i < TEST_ENTRIES; i++)
fprintf(stderr, "%ld%s", res[j][i], i < TEST_ENTRIES - 1 ? ", " : "\n");
}
}
if (k == 0)
fprintf(stderr, "PASS\n");
free(res);
return 0;
}
Compiled with "-O2", on "VirtualBox 4.4.0-22-generic #38-Ubuntu x86_64" got:
zhaoxiuzeng@zhaoxiuzeng-VirtualBox:~/develop$ ./gcd -r 500000 -n 10
gcd0: elapsed 10174
gcd1: elapsed 2120
gcd2: elapsed 2902
gcd3: elapsed 2039
gcd4: elapsed 2812
PASS
zhaoxiuzeng@zhaoxiuzeng-VirtualBox:~/develop$ ./gcd -r 500000 -n 10
gcd0: elapsed 9309
gcd1: elapsed 2280
gcd2: elapsed 2822
gcd3: elapsed 2217
gcd4: elapsed 2710
PASS
zhaoxiuzeng@zhaoxiuzeng-VirtualBox:~/develop$ ./gcd -r 500000 -n 10
gcd0: elapsed 9589
gcd1: elapsed 2098
gcd2: elapsed 2815
gcd3: elapsed 2030
gcd4: elapsed 2718
PASS
zhaoxiuzeng@zhaoxiuzeng-VirtualBox:~/develop$ ./gcd -r 500000 -n 10
gcd0: elapsed 9914
gcd1: elapsed 2309
gcd2: elapsed 2779
gcd3: elapsed 2228
gcd4: elapsed 2709
PASS
[akpm@linux-foundation.org: avoid #defining a CONFIG_ variable]
Signed-off-by: Zhaoxiu Zeng <zhaoxiu.zeng@gmail.com>
Signed-off-by: George Spelvin <linux@horizon.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
printk() takes some locks and could not be used a safe way in NMI
context.
The chance of a deadlock is real especially when printing stacks from
all CPUs. This particular problem has been addressed on x86 by the
commit a9edc88093 ("x86/nmi: Perform a safe NMI stack trace on all
CPUs").
The patchset brings two big advantages. First, it makes the NMI
backtraces safe on all architectures for free. Second, it makes all NMI
messages almost safe on all architectures (the temporary buffer is
limited. We still should keep the number of messages in NMI context at
minimum).
Note that there already are several messages printed in NMI context:
WARN_ON(in_nmi()), BUG_ON(in_nmi()), anything being printed out from MCE
handlers. These are not easy to avoid.
This patch reuses most of the code and makes it generic. It is useful
for all messages and architectures that support NMI.
The alternative printk_func is set when entering and is reseted when
leaving NMI context. It queues IRQ work to copy the messages into the
main ring buffer in a safe context.
__printk_nmi_flush() copies all available messages and reset the buffer.
Then we could use a simple cmpxchg operations to get synchronized with
writers. There is also used a spinlock to get synchronized with other
flushers.
We do not longer use seq_buf because it depends on external lock. It
would be hard to make all supported operations safe for a lockless use.
It would be confusing and error prone to make only some operations safe.
The code is put into separate printk/nmi.c as suggested by Steven
Rostedt. It needs a per-CPU buffer and is compiled only on
architectures that call nmi_enter(). This is achieved by the new
HAVE_NMI Kconfig flag.
The are MN10300 and Xtensa architectures. We need to clean up NMI
handling there first. Let's do it separately.
The patch is heavily based on the draft from Peter Zijlstra, see
https://lkml.org/lkml/2015/6/10/327
[arnd@arndb.de: printk-nmi: use %zu format string for size_t]
[akpm@linux-foundation.org: min_t->min - all types are size_t here]
Signed-off-by: Petr Mladek <pmladek@suse.com>
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Suggested-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Jan Kara <jack@suse.cz>
Acked-by: Russell King <rmk+kernel@arm.linux.org.uk> [arm part]
Cc: Daniel Thompson <daniel.thompson@linaro.org>
Cc: Jiri Kosina <jkosina@suse.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: David Miller <davem@davemloft.net>
Cc: Daniel Thompson <daniel.thompson@linaro.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>