Some events can provide a guest with information about other guests or the
host (e.g. L3 cache stats); providing the capability to restrict access
to a "safe" set of events would limit the potential for the PMU to be used
in any side channel attacks. This change introduces a new VM ioctl that
sets an event filter. If the guest attempts to program a counter for
any blacklisted or non-whitelisted event, the kernel counter won't be
created, so any RDPMC/RDMSR will show 0 instances of that event.
Signed-off-by: Eric Hankland <ehankland@google.com>
[Lots of changes. All remaining bugs are probably mine. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
We get a warning when build kernel W=1:
arch/x86/kvm/../../../virt/kvm/eventfd.c:48:1: warning: no previous prototype for ‘kvm_arch_irqfd_allowed’ [-Wmissing-prototypes]
kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args)
^
The reason is kvm_arch_irqfd_allowed() is declared in arch/x86/kvm/irq.h,
which is not included by eventfd.c. Considering kvm_arch_irqfd_allowed()
is a weakly defined function in eventfd.c, remove the declaration to
kvm_host.h can fix this.
Signed-off-by: Yi Wang <wang.yi59@zte.com.cn>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Pull x86 CPU feature updates from Thomas Gleixner:
"Updates for x86 CPU features:
- Support for UMWAIT/UMONITOR, which allows to use MWAIT and MONITOR
instructions in user space to save power e.g. in HPC workloads
which spin wait on synchronization points.
The maximum time a MWAIT can halt in userspace is controlled by the
kernel and can be adjusted by the sysadmin.
- Speed up the MTRR handling code on CPUs which support cache
self-snooping correctly.
On those CPUs the wbinvd() invocations can be omitted which speeds
up the MTRR setup by a factor of 50.
- Support for the new x86 vendor Zhaoxin who develops processors
based on the VIA Centaur technology.
- Prevent 'cat /proc/cpuinfo' from affecting isolated NOHZ_FULL CPUs
by sending IPIs to retrieve the CPU frequency and use the cached
values instead.
- The addition and late revert of the FSGSBASE support. The revert
was required as it turned out that the code still has hard to
diagnose issues. Yet another engineering trainwreck...
- Small fixes, cleanups, improvements and the usual new Intel CPU
family/model addons"
* 'x86-cpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (41 commits)
x86/fsgsbase: Revert FSGSBASE support
selftests/x86/fsgsbase: Fix some test case bugs
x86/entry/64: Fix and clean up paranoid_exit
x86/entry/64: Don't compile ignore_sysret if 32-bit emulation is enabled
selftests/x86: Test SYSCALL and SYSENTER manually with TF set
x86/mtrr: Skip cache flushes on CPUs with cache self-snooping
x86/cpu/intel: Clear cache self-snoop capability in CPUs with known errata
Documentation/ABI: Document umwait control sysfs interfaces
x86/umwait: Add sysfs interface to control umwait maximum time
x86/umwait: Add sysfs interface to control umwait C0.2 state
x86/umwait: Initialize umwait control values
x86/cpufeatures: Enumerate user wait instructions
x86/cpu: Disable frequency requests via aperfmperf IPI for nohz_full CPUs
x86/acpi/cstate: Add Zhaoxin processors support for cache flush policy in C3
ACPI, x86: Add Zhaoxin processors support for NONSTOP TSC
x86/cpu: Create Zhaoxin processors architecture support file
x86/cpu: Split Tremont based Atoms from the rest
Documentation/x86/64: Add documentation for GS/FS addressing mode
x86/elf: Enumerate kernel FSGSBASE capability in AT_HWCAP2
x86/cpu: Enable FSGSBASE on 64bit by default and add a chicken bit
...
Pull timer updates from Thomas Gleixner:
"The timer and timekeeping departement delivers:
Core:
- The consolidation of the VDSO code into a generic library including
the conversion of x86 and ARM64. Conversion of ARM and MIPS are en
route through the relevant maintainer trees and should end up in
5.4.
This gets rid of the unnecessary different copies of the same code
and brings all architectures on the same level of VDSO
functionality.
- Make the NTP user space interface more robust by restricting the
TAI offset to prevent undefined behaviour. Includes a selftest.
- Validate user input in the compat settimeofday() syscall to catch
invalid values which would be turned into valid values by a
multiplication overflow
- Consolidate the time accessors
- Small fixes, improvements and cleanups all over the place
Drivers:
- Support for the NXP system counter, TI davinci timer
- Move the Microsoft HyperV clocksource/events code into the
drivers/clocksource directory so it can be shared between x86 and
ARM64.
- Overhaul of the Tegra driver
- Delay timer support for IXP4xx
- Small fixes, improvements and cleanups as usual"
* 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (71 commits)
time: Validate user input in compat_settimeofday()
timer: Document TIMER_PINNED
clocksource/drivers: Continue making Hyper-V clocksource ISA agnostic
clocksource/drivers: Make Hyper-V clocksource ISA agnostic
MAINTAINERS: Fix Andy's surname and the directory entries of VDSO
hrtimer: Use a bullet for the returns bullet list
arm64: vdso: Fix compilation with clang older than 8
arm64: compat: Fix __arch_get_hw_counter() implementation
arm64: Fix __arch_get_hw_counter() implementation
lib/vdso: Make delta calculation work correctly
MAINTAINERS: Add entry for the generic VDSO library
arm64: compat: No need for pre-ARMv7 barriers on an ARMv8 system
arm64: vdso: Remove unnecessary asm-offsets.c definitions
vdso: Remove superfluous #ifdef __KERNEL__ in vdso/datapage.h
clocksource/drivers/davinci: Add support for clocksource
clocksource/drivers/davinci: Add support for clockevents
clocksource/drivers/tegra: Set up maximum-ticks limit properly
clocksource/drivers/tegra: Cycles can't be 0
clocksource/drivers/tegra: Restore base address before cleanup
clocksource/drivers/tegra: Add verbose definition for 1MHz constant
...
Retry tune per-vCPU timer_advance_ns if adaptive tuning goes insane which
can happen sporadically in product environment.
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Replace a magic 64-bit mask with a list of valid registers, computing
the same mask in the end.
Suggested-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
kvm-unit-tests were adjusted to match bare metal behavior, but KVM
itself was not doing what bare metal does; fix that.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
According to section "Checks on Host Segment and Descriptor-Table
Registers" in Intel SDM vol 3C, the following checks are performed on
vmentry of nested guests:
- In the selector field for each of CS, SS, DS, ES, FS, GS and TR, the
RPL (bits 1:0) and the TI flag (bit 2) must be 0.
- The selector fields for CS and TR cannot be 0000H.
- The selector field for SS cannot be 0000H if the "host address-space
size" VM-exit control is 0.
- On processors that support Intel 64 architecture, the base-address
fields for FS, GS and TR must contain canonical addresses.
Signed-off-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Reviewed-by: Karl Heubaum <karl.heubaum@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
KVM does not have 100% coverage of VMX consistency checks, i.e. some
checks that cause VM-Fail may only be detected by hardware during a
nested VM-Entry. In such a case, KVM must restore L1's state to the
pre-VM-Enter state as L2's state has already been loaded into KVM's
software model.
L1's CR3 and PDPTRs in particular are loaded from vmcs01.GUEST_*. But
when EPT is disabled, the associated fields hold KVM's shadow values,
not L1's "real" values. Fortunately, when EPT is disabled the PDPTRs
come from memory, i.e. are not cached in the VMCS. Which leaves CR3
as the sole anomaly.
A previously applied workaround to handle CR3 was to force nested early
checks if EPT is disabled:
commit 2b27924bb1 ("KVM: nVMX: always use early vmcs check when EPT
is disabled")
Forcing nested early checks is undesirable as doing so adds hundreds of
cycles to every nested VM-Entry. Rather than take this performance hit,
handle CR3 by overwriting vmcs01.GUEST_CR3 with L1's CR3 during nested
VM-Entry when EPT is disabled *and* nested early checks are disabled.
By stuffing vmcs01.GUEST_CR3, nested_vmx_restore_host_state() will
naturally restore the correct vcpu->arch.cr3 from vmcs01.GUEST_CR3.
These shenanigans work because nested_vmx_restore_host_state() does a
full kvm_mmu_reset_context(), i.e. unloads the current MMU, which
guarantees vmcs01.GUEST_CR3 will be rewritten with a new shadow CR3
prior to re-entering L1.
vcpu->arch.root_mmu.root_hpa is set to INVALID_PAGE via:
nested_vmx_restore_host_state() ->
kvm_mmu_reset_context() ->
kvm_mmu_unload() ->
kvm_mmu_free_roots()
kvm_mmu_unload() has WARN_ON(root_hpa != INVALID_PAGE), i.e. we can bank
on 'root_hpa == INVALID_PAGE' unless the implementation of
kvm_mmu_reset_context() is changed.
On the way into L1, VMCS.GUEST_CR3 is guaranteed to be written (on a
successful entry) via:
vcpu_enter_guest() ->
kvm_mmu_reload() ->
kvm_mmu_load() ->
kvm_mmu_load_cr3() ->
vmx_set_cr3()
Stuff vmcs01.GUEST_CR3 if and only if nested early checks are disabled
as a "late" VM-Fail should never happen win that case (KVM WARNs), and
the conditional write avoids the need to restore the correct GUEST_CR3
when nested_vmx_check_vmentry_hw() fails.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20190607185534.24368-1-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Note that in such a case it is quite likely that KVM will BUG_ON
in __pte_list_remove when the VM is closed. However, there is no
immediate risk of memory corruption in the host so a WARN_ON is
enough and it lets you gather traces for debugging.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
After the previous patch, the low bits of the gfn are masked in
both FNAME(fetch) and __direct_map, so we do not need to clear them
in transparent_hugepage_adjust.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
These two functions are basically doing the same thing through
kvm_mmu_get_page, link_shadow_page and mmu_set_spte; yet, for historical
reasons, their code looks very different. This patch tries to take the
best of each and make them very similar, so that it is easy to understand
changes that apply to both of them.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Release the page at the call-site where it was originally acquired.
This makes the exit code cleaner for most call sites, since they
do not need to duplicate code between success and the failure
label.
Signed-off-by: Junaid Shahid <junaids@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The has_leaf_count member was originally added for KVM's paravirtualization
CPUID leaves. However, since then the leaf count _has_ been added to those
leaves as well, so we can drop that special case.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
do_cpuid_1_ent does not do the entire processing for a CPUID entry, it
only retrieves the host's values. Rename it to match reality.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
do_cpuid_1_ent is typically called in two places by __do_cpuid_func
for CPUID functions that have subleafs. Both places have to set
the KVM_CPUID_FLAG_SIGNIFCANT_INDEX. Set that flag, and
KVM_CPUID_FLAG_STATEFUL_FUNC as well, directly in do_cpuid_1_ent.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
CPUID function 7 has multiple subleafs. Instead of having nested
switch statements, move the logic to filter supported features to
a separate function, and call it for each subleaf.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Rename it as well as __do_cpuid_ent and __do_cpuid_ent_emulated to have
"func" in its name, and drop the index parameter which is always 0.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The trailing newlines will lead to extra newlines in the trace file
which looks like the following output, so remove it.
qemu-system-x86-15695 [002] ...1 15774.839240: kvm_hv_timer_state: vcpu_id 0 hv_timer 1
qemu-system-x86-15695 [002] ...1 15774.839309: kvm_hv_timer_state: vcpu_id 0 hv_timer 1
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Allow testing code for old processors that lack the next RIP save
feature, by disabling usage of the next_rip field.
Nested hypervisors however get the feature unconditionally.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Thomas reported that:
| Background:
|
| In preparation of supporting IPI shorthands I changed the CPU offline
| code to software disable the local APIC instead of just masking it.
| That's done by clearing the APIC_SPIV_APIC_ENABLED bit in the APIC_SPIV
| register.
|
| Failure:
|
| When the CPU comes back online the startup code triggers occasionally
| the warning in apic_pending_intr_clear(). That complains that the IRRs
| are not empty.
|
| The offending vector is the local APIC timer vector who's IRR bit is set
| and stays set.
|
| It took me quite some time to reproduce the issue locally, but now I can
| see what happens.
|
| It requires apicv_enabled=0, i.e. full apic emulation. With apicv_enabled=1
| (and hardware support) it behaves correctly.
|
| Here is the series of events:
|
| Guest CPU
|
| goes down
|
| native_cpu_disable()
|
| apic_soft_disable();
|
| play_dead()
|
| ....
|
| startup()
|
| if (apic_enabled())
| apic_pending_intr_clear() <- Not taken
|
| enable APIC
|
| apic_pending_intr_clear() <- Triggers warning because IRR is stale
|
| When this happens then the deadline timer or the regular APIC timer -
| happens with both, has fired shortly before the APIC is disabled, but the
| interrupt was not serviced because the guest CPU was in an interrupt
| disabled region at that point.
|
| The state of the timer vector ISR/IRR bits:
|
| ISR IRR
| before apic_soft_disable() 0 1
| after apic_soft_disable() 0 1
|
| On startup 0 1
|
| Now one would assume that the IRR is cleared after the INIT reset, but this
| happens only on CPU0.
|
| Why?
|
| Because our CPU0 hotplug is just for testing to make sure nothing breaks
| and goes through an NMI wakeup vehicle because INIT would send it through
| the boots-trap code which is not really working if that CPU was not
| physically unplugged.
|
| Now looking at a real world APIC the situation in that case is:
|
| ISR IRR
| before apic_soft_disable() 0 1
| after apic_soft_disable() 0 1
|
| On startup 0 0
|
| Why?
|
| Once the dying CPU reenables interrupts the pending interrupt gets
| delivered as a spurious interupt and then the state is clear.
|
| While that CPU0 hotplug test case is surely an esoteric issue, the APIC
| emulation is still wrong, Even if the play_dead() code would not enable
| interrupts then the pending IRR bit would turn into an ISR .. interrupt
| when the APIC is reenabled on startup.
From SDM 10.4.7.2 Local APIC State After It Has Been Software Disabled
* Pending interrupts in the IRR and ISR registers are held and require
masking or handling by the CPU.
In Thomas's testing, hardware cpu will not respect soft disable LAPIC
when IRR has already been set or APICv posted-interrupt is in flight,
so we can skip soft disable APIC checking when clearing IRR and set ISR,
continue to respect soft disable APIC when attempting to set IRR.
Reported-by: Rong Chen <rong.a.chen@intel.com>
Reported-by: Feng Tang <feng.tang@intel.com>
Reported-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Rong Chen <rong.a.chen@intel.com>
Cc: Feng Tang <feng.tang@intel.com>
Cc: stable@vger.kernel.org
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Currently KVM_STATE_NESTED_EVMCS is used to signal that eVMCS
capability is enabled on vCPU.
As indicated by vmx->nested.enlightened_vmcs_enabled.
This is quite bizarre as userspace VMM should make sure to expose
same vCPU with same CPUID values in both source and destination.
In case vCPU is exposed with eVMCS support on CPUID, it is also
expected to enable KVM_CAP_HYPERV_ENLIGHTENED_VMCS capability.
Therefore, KVM_STATE_NESTED_EVMCS is redundant.
KVM_STATE_NESTED_EVMCS is currently used on restore path
(vmx_set_nested_state()) only to enable eVMCS capability in KVM
and to signal need_vmcs12_sync such that on next VMEntry to guest
nested_sync_from_vmcs12() will be called to sync vmcs12 content
into eVMCS in guest memory.
However, because restore nested-state is rare enough, we could
have just modified vmx_set_nested_state() to always signal
need_vmcs12_sync.
From all the above, it seems that we could have just removed
the usage of KVM_STATE_NESTED_EVMCS. However, in order to preserve
backwards migration compatibility, we cannot do that.
(vmx_get_nested_state() needs to signal flag when migrating from
new kernel to old kernel).
Returning KVM_STATE_NESTED_EVMCS when just vCPU have eVMCS enabled
have a bad side-effect of userspace VMM having to send nested-state
from source to destination as part of migration stream. Even if
guest have never used eVMCS as it doesn't even run a nested
hypervisor workload. This requires destination userspace VMM and
KVM to support setting nested-state. Which make it more difficult
to migrate from new host to older host.
To avoid this, change KVM_STATE_NESTED_EVMCS to signal eVMCS is
not only enabled but also active. i.e. Guest have made some
eVMCS active via an enlightened VMEntry. i.e. vmcs12 is copied
from eVMCS and therefore should be restored into eVMCS resident
in memory (by copy_vmcs12_to_enlightened()).
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Maran Wilson <maran.wilson@oracle.com>
Reviewed-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
As comment in code specifies, SMM temporarily disables VMX so we cannot
be in guest mode, nor can VMLAUNCH/VMRESUME be pending.
However, code currently assumes that these are the only flags that can be
set on kvm_state->flags. This is not true as KVM_STATE_NESTED_EVMCS
can also be set on this field to signal that eVMCS should be enabled.
Therefore, fix code to check for guest-mode and pending VMLAUNCH/VMRESUME
explicitly.
Reviewed-by: Joao Martins <joao.m.martins@oracle.com>
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This warning can be triggered easily by userspace, so it should certainly not
cause a panic if panic_on_warn is set.
Reported-by: syzbot+c03f30b4f4c46bdf8575@syzkaller.appspotmail.com
Suggested-by: Alexander Potapenko <glider@google.com>
Acked-by: Alexander Potapenko <glider@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This bit is purely advisory. Passing it through to the guest indicates
that the virtual processor, like the physical processor, prefers that
STIBP is only set once during boot and not changed.
Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When L0 is executing handle_invept(), the TDP MMU is active. Emulating
an L1 INVEPT does require synchronizing the appropriate shadow EPT
root(s), but a call to kvm_mmu_sync_roots in this context won't do
that. Similarly, the hardware TLB and paging-structure-cache entries
associated with the appropriate shadow EPT root(s) must be flushed,
but requesting a TLB_FLUSH from this context won't do that either.
How did this ever work? KVM always does a sync_roots and TLB flush (in
the correct context) when transitioning from L1 to L2. That isn't the
best choice for nested VM performance, but it effectively papers over
the mistakes here.
Remove the unnecessary operations and leave a comment to try to do
better in the future.
Reported-by: Junaid Shahid <junaids@google.com>
Fixes: bfd0a56b90 ("nEPT: Nested INVEPT")
Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Cc: Nadav Har'El <nyh@il.ibm.com>
Cc: Jun Nakajima <jun.nakajima@intel.com>
Cc: Xinhao Xu <xinhao.xu@intel.com>
Cc: Yang Zhang <yang.z.zhang@Intel.com>
Cc: Gleb Natapov <gleb@redhat.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by Peter Shier <pshier@google.com>
Reviewed-by: Junaid Shahid <junaids@google.com>
Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Expose PV_SCHED_YIELD feature bit to guest, the guest can check this
feature bit before using paravirtualized sched yield.
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The target vCPUs are in runnable state after vcpu_kick and suitable
as a yield target. This patch implements the sched yield hypercall.
17% performance increasement of ebizzy benchmark can be observed in an
over-subscribe environment. (w/ kvm-pv-tlb disabled, testing TLB flush
call-function IPI-many since call-function is not easy to be trigged
by userspace workload).
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When Enlightened VMCS is in use, it is valid to do VMCLEAR and,
according to TLFS, this should "transition an enlightened VMCS from the
active to the non-active state". It is, however, wrong to assume that
it is only valid to do VMCLEAR for the eVMCS which is currently active
on the vCPU performing VMCLEAR.
Currently, the logic in handle_vmclear() is broken: in case, there is no
active eVMCS on the vCPU doing VMCLEAR we treat the argument as a 'normal'
VMCS and kvm_vcpu_write_guest() to the 'launch_state' field irreversibly
corrupts the memory area.
So, in case the VMCLEAR argument is not the current active eVMCS on the
vCPU, how can we know if the area it is pointing to is a normal or an
enlightened VMCS?
Thanks to the bug in Hyper-V (see commit 72aeb60c52 ("KVM: nVMX: Verify
eVMCS revision id match supported eVMCS version on eVMCS VMPTRLD")) we can
not, the revision can't be used to distinguish between them. So let's
assume it is always enlightened in case enlightened vmentry is enabled in
the assist page. Also, check if vmx->nested.enlightened_vmcs_enabled to
minimize the impact for 'unenlightened' workloads.
Fixes: b8bbab928f ("KVM: nVMX: implement enlightened VMPTRLD and VMCLEAR")
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Apparently, Windows doesn't maintain clean fields data after it does
VMCLEAR for an enlightened VMCS so we can only use it on VMRESUME.
The issue went unnoticed because currently we do nested_release_evmcs()
in handle_vmclear() and the consecutive enlightened VMPTRLD invalidates
clean fields when a new eVMCS is mapped but we're going to change the
logic.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This allows userspace to know which MSRs are supported by the hypervisor.
Unfortunately userspace must resort to tricks for everything except
MSR_IA32_VMX_VMFUNC (which was just added in the previous patch).
One possibility is to use the feature control MSR, which is tied to nested
VMX as well and is present on all KVM versions that support feature MSRs.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Allow userspace to set a custom value for the VMFUNC controls MSR, as long
as the capabilities it advertises do not exceed those of the host.
Fixes: 27c42a1bb ("KVM: nVMX: Enable VMFUNC for the L1 hypervisor", 2017-08-03)
Reviewed-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Some secondary controls are automatically enabled/disabled based on the CPUID
values that are set for the guest. However, they are still available at a
global level and therefore should be present when KVM_GET_MSRS is sent to
/dev/kvm.
Fixes: 1389309c81 ("KVM: nVMX: expose VMX capabilities for nested hypervisors to userspace", 2018-02-26)
Reviewed-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This makes boot uniformly boottime and tai uniformly clocktai, to
address the remaining oversights.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Arnd Bergmann <arnd@arndb.de>
Link: https://lkml.kernel.org/r/20190621203249.3909-2-Jason@zx2c4.com
Another round of SPDX updates for 5.2-rc6
Here is what I am guessing is going to be the last "big" SPDX update for
5.2. It contains all of the remaining GPLv2 and GPLv2+ updates that
were "easy" to determine by pattern matching. The ones after this are
going to be a bit more difficult and the people on the spdx list will be
discussing them on a case-by-case basis now.
Another 5000+ files are fixed up, so our overall totals are:
Files checked: 64545
Files with SPDX: 45529
Compared to the 5.1 kernel which was:
Files checked: 63848
Files with SPDX: 22576
This is a huge improvement.
Also, we deleted another 20000 lines of boilerplate license crud, always
nice to see in a diffstat.
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-----BEGIN PGP SIGNATURE-----
iG0EABECAC0WIQT0tgzFv3jCIUoxPcsxR9QN2y37KQUCXQyQYA8cZ3JlZ0Brcm9h
aC5jb20ACgkQMUfUDdst+ymnGQCghETUBotn1p3hTjY56VEs6dGzpHMAnRT0m+lv
kbsjBGEJpLbMRB2krnaU
=RMcT
-----END PGP SIGNATURE-----
Merge tag 'spdx-5.2-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/spdx
Pull still more SPDX updates from Greg KH:
"Another round of SPDX updates for 5.2-rc6
Here is what I am guessing is going to be the last "big" SPDX update
for 5.2. It contains all of the remaining GPLv2 and GPLv2+ updates
that were "easy" to determine by pattern matching. The ones after this
are going to be a bit more difficult and the people on the spdx list
will be discussing them on a case-by-case basis now.
Another 5000+ files are fixed up, so our overall totals are:
Files checked: 64545
Files with SPDX: 45529
Compared to the 5.1 kernel which was:
Files checked: 63848
Files with SPDX: 22576
This is a huge improvement.
Also, we deleted another 20000 lines of boilerplate license crud,
always nice to see in a diffstat"
* tag 'spdx-5.2-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/spdx: (65 commits)
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 507
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 506
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 505
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 504
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 503
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 502
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 501
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 500
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 499
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 498
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 497
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 496
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 495
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 491
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 490
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 489
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 488
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 487
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 486
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 485
...
for nested state save/restore.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJdC7NHAAoJEL/70l94x66DHm0H/R8L80sWe1OJbHHK8caPpwm2
mPt6JNcG/ysbG/uoMuVsdRAjZsg9l8JZB9xfA2m/ZPQQThjSG/WX0rU+gWMMI3X8
8ZbN4BCFoiNpOzOkhmStwzMWnvovKvMfhFW0BAI3HLUfM9A+XyVvNM/JbLOvEMRk
WB2SxYRc38ZvIbi8eXgsoFrVyLFB2Fj/0jps4FbKnkjkl37PTDehYLWQ1pt9KsWS
2KdGoXm7/18ottqf0DPfLe0hiiiDuK3akKz7WQBMsAJHi4Fm5j39NuseeRdlablk
uE4vM/sVaLn4xwM9JfrsBl9TzZ2qHsOTRlMQG4iNWjEAuPKa45lt0Jo7OBs6DSY=
=Lzxe
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm fixes from Paolo Bonzini:
"Fixes for ARM and x86, plus selftest patches and nicer structs for
nested state save/restore"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
KVM: nVMX: reorganize initial steps of vmx_set_nested_state
KVM: arm/arm64: Fix emulated ptimer irq injection
tests: kvm: Check for a kernel warning
kvm: tests: Sort tests in the Makefile alphabetically
KVM: x86/mmu: Allocate PAE root array when using SVM's 32-bit NPT
KVM: x86: Modify struct kvm_nested_state to have explicit fields for data
KVM: fix typo in documentation
KVM: nVMX: use correct clean fields when copying from eVMCS
KVM: arm/arm64: vgic: Fix kvm_device leak in vgic_its_destroy
KVM: arm64: Filter out invalid core register IDs in KVM_GET_REG_LIST
KVM: arm64: Implement vq_present() as a macro
Commit 332d079735 ("KVM: nVMX: KVM_SET_NESTED_STATE - Tear down old EVMCS
state before setting new state", 2019-05-02) broke evmcs_test because the
eVMCS setup must be performed even if there is no VMXON region defined,
as long as the eVMCS bit is set in the assist page.
While the simplest possible fix would be to add a check on
kvm_state->flags & KVM_STATE_NESTED_EVMCS in the initial "if" that
covers kvm_state->hdr.vmx.vmxon_pa == -1ull, that is quite ugly.
Instead, this patch moves checks earlier in the function and
conditionalizes them on kvm_state->hdr.vmx.vmxon_pa, so that
vmx_set_nested_state always goes through vmx_leave_nested
and nested_enable_evmcs.
Fixes: 332d079735 ("KVM: nVMX: KVM_SET_NESTED_STATE - Tear down old EVMCS state before setting new state")
Cc: Aaron Lewis <aaronlewis@google.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The function kvm_create_lapic() attempts to allocate the apic structure
and sets a pointer to it in the virtual processor structure. However, if
get_zeroed_page() failed, the function frees the apic chunk, but forgets
to set the pointer in the vcpu to NULL. It's not a security issue since
there isn't a use of that pointer if kvm_create_lapic() returns error,
but it's more accurate that way.
Signed-off-by: Saar Amar <saaramar@microsoft.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Raise #GP when guest read/write IA32_XSS, but the CPUID bits
say that it shouldn't exist.
Fixes: 203000993d (kvm: vmx: add MSR logic for XSAVES)
Reported-by: Xiaoyao Li <xiaoyao.li@linux.intel.com>
Reported-by: Tao Xu <tao3.xu@intel.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
It's a waste for the four X86_FEATURE_CQM_* feature bits to occupy two
whole feature bits words. To better utilize feature words, re-define
word 11 to host scattered features and move the four X86_FEATURE_CQM_*
features into Linux defined word 11. More scattered features can be
added in word 11 in the future.
Rename leaf 11 in cpuid_leafs to CPUID_LNX_4 to reflect it's a
Linux-defined leaf.
Rename leaf 12 as CPUID_DUMMY which will be replaced by a meaningful
name in the next patch when CPUID.7.1:EAX occupies world 12.
Maximum number of RMID and cache occupancy scale are retrieved from
CPUID.0xf.1 after scattered CQM features are enumerated. Carve out the
code into a separate function.
KVM doesn't support resctrl now. So it's safe to move the
X86_FEATURE_CQM_* features to scattered features word 11 for KVM.
Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Aaron Lewis <aaronlewis@google.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Babu Moger <babu.moger@amd.com>
Cc: "Chang S. Bae" <chang.seok.bae@intel.com>
Cc: "Sean J Christopherson" <sean.j.christopherson@intel.com>
Cc: Frederic Weisbecker <frederic@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: kvm ML <kvm@vger.kernel.org>
Cc: Masahiro Yamada <yamada.masahiro@socionext.com>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Nadav Amit <namit@vmware.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Pavel Tatashin <pasha.tatashin@oracle.com>
Cc: Peter Feiner <pfeiner@google.com>
Cc: "Peter Zijlstra (Intel)" <peterz@infradead.org>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: "Rafael J. Wysocki" <rafael.j.wysocki@intel.com>
Cc: Ravi V Shankar <ravi.v.shankar@intel.com>
Cc: Sherry Hurwitz <sherry.hurwitz@amd.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Thomas Lendacky <Thomas.Lendacky@amd.com>
Cc: x86 <x86@kernel.org>
Link: https://lkml.kernel.org/r/1560794416-217638-2-git-send-email-fenghua.yu@intel.com
Based on 1 normalized pattern(s):
this work is licensed under the terms of the gnu gpl version 2 see
the copying file in the top level directory
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-only
has been chosen to replace the boilerplate/reference in 35 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Enrico Weigelt <info@metux.net>
Reviewed-by: Allison Randal <allison@lohutok.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190604081206.797835076@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
SVM's Nested Page Tables (NPT) reuses x86 paging for the host-controlled
page walk. For 32-bit KVM, this means PAE paging is used even when TDP
is enabled, i.e. the PAE root array needs to be allocated.
Fixes: ee6268ba3a ("KVM: x86: Skip pae_root shadow allocation if tdp enabled")
Cc: stable@vger.kernel.org
Reported-by: Jiri Palecek <jpalecek@web.de>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Improve the KVM_{GET,SET}_NESTED_STATE structs by detailing the format
of VMX nested state data in a struct.
In order to avoid changing the ioctl values of
KVM_{GET,SET}_NESTED_STATE, there is a need to preserve
sizeof(struct kvm_nested_state). This is done by defining the data
struct as "data.vmx[0]". It was the most elegant way I found to
preserve struct size while still keeping struct readable and easy to
maintain. It does have a misfortunate side-effect that now it has to be
accessed as "data.vmx[0]" rather than just "data.vmx".
Because we are already modifying these structs, I also modified the
following:
* Define the "format" field values as macros.
* Rename vmcs_pa to vmcs12_pa for better readability.
Signed-off-by: Liran Alon <liran.alon@oracle.com>
[Remove SVM stubs, add KVM_STATE_NESTED_VMX_VMCS12_SIZE. - Paolo]
Reviewed-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The VMX_PREEMPTION_TIMER flag may be toggled frequently, though not
*very* frequently. Since it does not affect KVM's dirty logic, e.g.
the preemption timer value is loaded from vmcs12 even if vmcs12 is
"clean", there is no need to mark vmcs12 dirty when L1 writes pin
controls, and shadowing the field achieves that.
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
VMWRITEs to the major VMCS controls, pin controls included, are
deceptively expensive. CPUs with VMCS caching (Westmere and later) also
optimize away consistency checks on VM-Entry, i.e. skip consistency
checks if the relevant fields have not changed since the last successful
VM-Entry (of the cached VMCS). Because uops are a precious commodity,
uCode's dirty VMCS field tracking isn't as precise as software would
prefer. Notably, writing any of the major VMCS fields effectively marks
the entire VMCS dirty, i.e. causes the next VM-Entry to perform all
consistency checks, which consumes several hundred cycles.
As it pertains to KVM, toggling PIN_BASED_VMX_PREEMPTION_TIMER more than
doubles the latency of the next VM-Entry (and again when/if the flag is
toggled back). In a non-nested scenario, running a "standard" guest
with the preemption timer enabled, toggling the timer flag is uncommon
but not rare, e.g. roughly 1 in 10 entries. Disabling the preemption
timer can change these numbers due to its use for "immediate exits",
even when explicitly disabled by userspace.
Nested virtualization in particular is painful, as the timer flag is set
for the majority of VM-Enters, but prepare_vmcs02() initializes vmcs02's
pin controls to *clear* the flag since its the timer's final state isn't
known until vmx_vcpu_run(). I.e. the majority of nested VM-Enters end
up unnecessarily writing pin controls *twice*.
Rather than toggle the timer flag in pin controls, set the timer value
itself to the largest allowed value to put it into a "soft disabled"
state, and ignore any spurious preemption timer exits.
Sadly, the timer is a 32-bit value and so theoretically it can fire
before the head death of the universe, i.e. spurious exits are possible.
But because KVM does *not* save the timer value on VM-Exit and because
the timer runs at a slower rate than the TSC, the maximuma timer value
is still sufficiently large for KVM's purposes. E.g. on a modern CPU
with a timer that runs at 1/32 the frequency of a 2.4ghz constant-rate
TSC, the timer will fire after ~55 seconds of *uninterrupted* guest
execution. In other words, spurious VM-Exits are effectively only
possible if the host is completely tickless on the logical CPU, the
guest is not using the preemption timer, and the guest is not generating
VM-Exits for any other reason.
To be safe from bad/weird hardware, disable the preemption timer if its
maximum delay is less than ten seconds. Ten seconds is mostly arbitrary
and was selected in no small part because it's a nice round number.
For simplicity and paranoia, fall back to __kvm_request_immediate_exit()
if the preemption timer is disabled by KVM or userspace. Previously
KVM continued to use the preemption timer to force immediate exits even
when the timer was disabled by userspace. Now that KVM leaves the timer
running instead of truly disabling it, allow userspace to kill it
entirely in the unlikely event the timer (or KVM) malfunctions.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
... now that it is fully redundant with the pin controls shadow.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
KVM dynamically toggles SECONDARY_EXEC_DESC to intercept (a subset of)
instructions that are subject to User-Mode Instruction Prevention, i.e.
VMCS.SECONDARY_EXEC_DESC == CR4.UMIP when emulating UMIP. Preset the
VMCS control when preparing vmcs02 to avoid unnecessarily VMWRITEs,
e.g. KVM will clear VMCS.SECONDARY_EXEC_DESC in prepare_vmcs02_early()
and then set it in vmx_set_cr4().
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
KVM dynamically toggles the CPU_BASED_USE_MSR_BITMAPS execution control
for nested guests based on whether or not both L0 and L1 want to pass
through the same MSRs to L2. Preserve the last used value from vmcs02
so as to avoid multiple VMWRITEs to (re)set/(re)clear the bit on nested
VM-Entry.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Or: Don't re-initialize vmcs02's controls on every nested VM-Entry.
VMWRITEs to the major VMCS controls are deceptively expensive. Intel
CPUs with VMCS caching (Westmere and later) also optimize away
consistency checks on VM-Entry, i.e. skip consistency checks if the
relevant fields have not changed since the last successful VM-Entry (of
the cached VMCS). Because uops are a precious commodity, uCode's dirty
VMCS field tracking isn't as precise as software would prefer. Notably,
writing any of the major VMCS fields effectively marks the entire VMCS
dirty, i.e. causes the next VM-Entry to perform all consistency checks,
which consumes several hundred cycles.
Zero out the controls' shadow copies during VMCS allocation and use the
optimized setter when "initializing" controls. While this technically
affects both non-nested and nested virtualization, nested virtualization
is the primary beneficiary as avoid VMWRITEs when prepare vmcs02 allows
hardware to optimizie away consistency checks.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
... now that the shadow copies are per-VMCS.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
... to pave the way for not preserving the shadow copies across switches
between vmcs01 and vmcs02, and eventually to avoid VMWRITEs to vmcs02
when the desired value is unchanged across nested VM-Enters.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Prepare to shadow all major control fields on a per-VMCS basis, which
allows KVM to avoid costly VMWRITEs when switching between vmcs01 and
vmcs02.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Prepare to shadow all major control fields on a per-VMCS basis, which
allows KVM to avoid VMREADs when switching between vmcs01 and vmcs02,
and more importantly can eliminate costly VMWRITEs to controls when
preparing vmcs02.
Shadowing exec controls also saves a VMREAD when opening virtual
INTR/NMI windows, yay...
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Prepare to shadow all major control fields on a per-VMCS basis, which
allows KVM to avoid costly VMWRITEs when switching between vmcs01 and
vmcs02.
Shadowing pin controls also allows a future patch to remove the per-VMCS
'hv_timer_armed' flag, as the shadow copy is a superset of said flag.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
... to pave the way for shadowing all (five) major VMCS control fields
without massive amounts of error prone copy+paste+modify.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
KVM provides a module parameter to allow disabling virtual NMI support
to simplify testing (hardware *without* virtual NMI support is hard to
come by but it does have users). When preparing vmcs02, use the accessor
for pin controls to ensure that the module param is respected for nested
guests.
Opportunistically swap the order of applying L0's and L1's pin controls
to better align with other controls and to prepare for a future patche
that will ignore L1's, but not L0's, preemption timer flag.
Fixes: d02fcf5077 ("kvm: vmx: Allow disabling virtual NMI support")
Cc: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Per Intel's SDM:
... the logical processor uses PAE paging if CR0.PG=1, CR4.PAE=1 and
IA32_EFER.LME=0. A VM entry to a guest that uses PAE paging loads the
PDPTEs into internal, non-architectural registers based on the setting
of the "enable EPT" VM-execution control.
and:
[GUEST_PDPTR] values are saved into the four PDPTE fields as follows:
- If the "enable EPT" VM-execution control is 0 or the logical
processor was not using PAE paging at the time of the VM exit,
the values saved are undefined.
In other words, if EPT is disabled or the guest isn't using PAE paging,
then the PDPTRS aren't consumed by hardware on VM-Entry and are loaded
with junk on VM-Exit. From a nesting perspective, all of the above hold
true, i.e. KVM can effectively ignore the VMCS PDPTRs. E.g. KVM already
loads the PDPTRs from memory when nested EPT is disabled (see
nested_vmx_load_cr3()).
Because KVM intercepts setting CR4.PAE, there is no danger of consuming
a stale value or crushing L1's VMWRITEs regardless of whether L1
intercepts CR4.PAE. The vmcs12's values are unchanged up until the
VM-Exit where L2 sets CR4.PAE, i.e. L0 will see the new PAE state on the
subsequent VM-Entry and propagate the PDPTRs from vmcs12 to vmcs02.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Checking for 32-bit PAE is quite common around code that fiddles with
the PDPTRs. Add a function to compress all checks into a single
invocation.
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
L1 is responsible for dirtying GUEST_GRP1 if it writes GUEST_BNDCFGS.
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
KVM unconditionally intercepts WRMSR to MSR_IA32_DEBUGCTLMSR. In the
unlikely event that L1 allows L2 to write L1's MSR_IA32_DEBUGCTLMSR, but
but saves L2's value on VM-Exit, update vmcs12 during L2's WRMSR so as
to eliminate the need to VMREAD the value from vmcs02 on nested VM-Exit.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
For L2, KVM always intercepts WRMSR to SYSENTER MSRs. Update vmcs12 in
the WRMSR handler so that they don't need to be (re)read from vmcs02 on
every nested VM-Exit.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
As alluded to by the TODO comment, KVM unconditionally intercepts writes
to the PAT MSR. In the unlikely event that L1 allows L2 to write L1's
PAT directly but saves L2's PAT on VM-Exit, update vmcs12 when L2 writes
the PAT. This eliminates the need to VMREAD the value from vmcs02 on
VM-Exit as vmcs12 is already up to date in all situations.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
If nested_get_vmcs12_pages() fails to map L1's APIC_ACCESS_ADDR into
L2, then it disables SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES in vmcs02.
In other words, the APIC_ACCESS_ADDR in vmcs02 is guaranteed to be
written with the correct value before being consumed by hardware, drop
the unneessary VMWRITE.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The VIRTUAL_APIC_PAGE_ADDR in vmcs02 is guaranteed to be updated before
it is consumed by hardware, either in nested_vmx_enter_non_root_mode()
or via the KVM_REQ_GET_VMCS12_PAGES callback. Avoid an extra VMWRITE
and only stuff a bad value into vmcs02 when mapping vmcs12's address
fails. This also eliminates the need for extra comments to connect the
dots between prepare_vmcs02_early() and nested_get_vmcs12_pages().
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
... as a malicious userspace can run a toy guest to generate invalid
virtual-APIC page addresses in L1, i.e. flood the kernel log with error
messages.
Fixes: 690908104e ("KVM: nVMX: allow tests to use bad virtual-APIC page address")
Cc: stable@vger.kernel.org
Cc: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When switching between vmcs01 and vmcs02, there is no need to update
state tracking for values that aren't tied to any particular VMCS as
the per-vCPU values are already up-to-date (vmx_switch_vmcs() can only
be called when the vCPU is loaded).
Avoiding the update eliminates a RDMSR, and potentially a RDPKRU and
posted-interrupt update (cmpxchg64() and more).
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When switching between vmcs01 and vmcs02, KVM isn't actually switching
between guest and host. If guest state is already loaded (the likely,
if not guaranteed, case), keep the guest state loaded and manually swap
the loaded_cpu_state pointer after propagating saved host state to the
new vmcs0{1,2}.
Avoiding the switch between guest and host reduces the latency of
switching between vmcs01 and vmcs02 by several hundred cycles, and
reduces the roundtrip time of a nested VM by upwards of 1000 cycles.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
vmx->loaded_cpu_state can only be NULL or equal to vmx->loaded_vmcs,
so change it to a bool. Because the direction of the bool is
now the opposite of vmx->guest_msrs_dirty, change the direction of
vmx->guest_msrs_dirty so that they match.
Finally, do not imply that MSRs have to be reloaded when
vmx->guest_state_loaded is false; instead, set vmx->guest_msrs_ready
to false explicitly in vmx_prepare_switch_to_host.
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Emulation of GUEST_PML_INDEX for a nested VMM is a bit weird. Because
L0 flushes the PML on every VM-Exit, the value in vmcs02 at the time of
VM-Enter is a constant -1, regardless of what L1 thinks/wants.
Fixes: 09abe32002 ("KVM: nVMX: split pieces of prepare_vmcs02() to prepare_vmcs02_early()")
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
KVM doesn't yet support SGX virtualization, i.e. writes a constant value
to ENCLS_EXITING_BITMAP so that it can intercept ENCLS and inject a #UD.
Fixes: 0b665d3040 ("KVM: vmx: Inject #UD for SGX ENCLS instruction in guest")
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
If L1 does not set VM_ENTRY_LOAD_BNDCFGS, then L1's BNDCFGS value must
be propagated to vmcs02 since KVM always runs with VM_ENTRY_LOAD_BNDCFGS
when MPX is supported. Because the value effectively comes from vmcs01,
vmcs02 must be updated even if vmcs12 is clean.
Fixes: 62cf9bd811 ("KVM: nVMX: Fix emulation of VM_ENTRY_LOAD_BNDCFGS")
Cc: stable@vger.kernel.org
Cc: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The behavior of WRMSR is in no way dependent on whether or not KVM
consumes the value.
Fixes: 4566654bb9 ("KVM: vmx: Inject #GP on invalid PAT CR")
Cc: stable@vger.kernel.org
Cc: Nadav Amit <nadav.amit@gmail.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
These function do not prepare the entire state of the vmcs02, only the
rarely needed parts. Rename them to make this clearer.
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Many guest fields are rarely read (or written) by VMMs, i.e. likely
aren't accessed between runs of a nested VMCS. Delay pulling rarely
accessed guest fields from vmcs02 until they are VMREAD or until vmcs12
is dirtied. The latter case is necessary because nested VM-Entry will
consume all manner of fields when vmcs12 is dirty, e.g. for consistency
checks.
Note, an alternative to synchronizing all guest fields on VMREAD would
be to read *only* the field being accessed, but switching VMCS pointers
is expensive and odds are good if one guest field is being accessed then
others will soon follow, or that vmcs12 will be dirtied due to a VMWRITE
(see above). And the full synchronization results in slightly cleaner
code.
Note, although GUEST_PDPTRs are relevant only for a 32-bit PAE guest,
they are accessed quite frequently for said guests, and a separate patch
is in flight to optimize away GUEST_PDTPR synchronziation for non-PAE
guests.
Skipping rarely accessed guest fields reduces the latency of a nested
VM-Exit by ~200 cycles.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
So that future optimizations related to shadowed fields don't need to
define their own switch statement.
Add a BUILD_BUG_ON() to ensure at least one of the types (RW vs RO) is
defined when including vmcs_shadow_fields.h (guess who keeps mistyping
SHADOW_FIELD_RO as SHADOW_FIELD_R0).
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Nested virtualization involves copying data between many different types
of VMCSes, e.g. vmcs02, vmcs12, shadow VMCS and eVMCS. Rename a variety
of functions and flags to document both the source and destination of
each sync.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
... to make it more obvious that sync_vmcs12() is invoked on all nested
VM-Exits, e.g. hiding sync_vmcs12() in prepare_vmcs12() makes it appear
that guest state is NOT propagated to vmcs12 for a normal VM-Exit.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The vmcs12 fields offsets are constant and known at compile time. Store
the associated offset for each shadowed field to avoid the costly lookup
in vmcs_field_to_offset() when copying between vmcs12 and the shadow
VMCS. Avoiding the costly lookup reduces the latency of copying by
~100 cycles in each direction.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
VMMs frequently read the guest's CS and SS AR bytes to detect 64-bit
mode and CPL respectively, but effectively never write said fields once
the VM is initialized. Intercepting VMWRITEs for the two fields saves
~55 cycles in copy_shadow_to_vmcs12().
Because some Intel CPUs, e.g. Haswell, drop the reserved bits of the
guest access rights fields on VMWRITE, exposing the fields to L1 for
VMREAD but not VMWRITE leads to inconsistent behavior between L1 and L2.
On hardware that drops the bits, L1 will see the stripped down value due
to reading the value from hardware, while L2 will see the full original
value as stored by KVM. To avoid such an inconsistency, emulate the
behavior on all CPUS, but only for intercepted VMWRITEs so as to avoid
introducing pointless latency into copy_shadow_to_vmcs12(), e.g. if the
emulation were added to vmcs12_write_any().
Since the AR_BYTES emulation is done only for intercepted VMWRITE, if a
future patch (re)exposed AR_BYTES for both VMWRITE and VMREAD, then KVM
would end up with incosistent behavior on pre-Haswell hardware, e.g. KVM
would drop the reserved bits on intercepted VMWRITE, but direct VMWRITE
to the shadow VMCS would not drop the bits. Add a WARN in the shadow
field initialization to detect any attempt to expose an AR_BYTES field
without updating vmcs12_write_any().
Note, emulation of the AR_BYTES reserved bit behavior is based on a
patch[1] from Jim Mattson that applied the emulation to all writes to
vmcs12 so that live migration across different generations of hardware
would not introduce divergent behavior. But given that live migration
of nested state has already been enabled, that ship has sailed (not to
mention that no sane VMM will be affected by this behavior).
[1] https://patchwork.kernel.org/patch/10483321/
Cc: Jim Mattson <jmattson@google.com>
Cc: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Allowing L1 to VMWRITE read-only fields is only beneficial in a double
nesting scenario, e.g. no sane VMM will VMWRITE VM_EXIT_REASON in normal
non-nested operation. Intercepting RO fields means KVM doesn't need to
sync them from the shadow VMCS to vmcs12 when running L2. The obvious
downside is that L1 will VM-Exit more often when running L3, but it's
likely safe to assume most folks would happily sacrifice a bit of L3
performance, which may not even be noticeable in the grande scheme, to
improve L2 performance across the board.
Not intercepting fields tagged read-only also allows for additional
optimizations, e.g. marking GUEST_{CS,SS}_AR_BYTES as SHADOW_FIELD_RO
since those fields are rarely written by a VMMs, but read frequently.
When utilizing a shadow VMCS with asymmetric R/W and R/O bitmaps, fields
that cause VM-Exit on VMWRITE but not VMREAD need to be propagated to
the shadow VMCS during VMWRITE emulation, otherwise a subsequence VMREAD
from L1 will consume a stale value.
Note, KVM currently utilizes asymmetric bitmaps when "VMWRITE any field"
is not exposed to L1, but only so that it can reject the VMWRITE, i.e.
propagating the VMWRITE to the shadow VMCS is a new requirement, not a
bug fix.
Eliminating the copying of RO fields reduces the latency of nested
VM-Entry (copy_shadow_to_vmcs12()) by ~100 cycles (plus 40-50 cycles
if/when the AR_BYTES fields are exposed RO).
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Per commit 1b6269db3f ("KVM: VMX: Handle NMIs before enabling
interrupts and preemption"), NMIs are handled directly in vmx_vcpu_run()
to "make sure we handle NMI on the current cpu, and that we don't
service maskable interrupts before non-maskable ones". The other
exceptions handled by complete_atomic_exit(), e.g. async #PF and #MC,
have similar requirements, and are located there to avoid extra VMREADs
since VMX bins hardware exceptions and NMIs into a single exit reason.
Clean up the code and eliminate the vaguely named complete_atomic_exit()
by moving the interrupts-disabled exception and NMI handling into the
existing handle_external_intrs() callback, and rename the callback to
a more appropriate name. Rename VMexit handlers throughout so that the
atomic and non-atomic counterparts have similar names.
In addition to improving code readability, this also ensures the NMI
handler is run with the host's debug registers loaded in the unlikely
event that the user is debugging NMIs. Accuracy of the last_guest_tsc
field is also improved when handling NMIs (and #MCs) as the handler
will run after updating said field.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
[Naming cleanups. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
VMX can conditionally call kvm_{before,after}_interrupt() since KVM
always uses "ack interrupt on exit" and therefore explicitly handles
interrupts as opposed to blindly enabling irqs.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Although the kernel may use multiple IDTs, KVM should only ever see the
"real" IDT, e.g. the early init IDT is long gone by the time KVM runs
and the debug stack IDT is only used for small windows of time in very
specific flows.
Before commit a547c6db4d ("KVM: VMX: Enable acknowledge interupt on
vmexit"), the kernel's IDT base was consumed by KVM only when setting
constant VMCS state, i.e. to set VMCS.HOST_IDTR_BASE. Because constant
host state is done once per vCPU, there was ostensibly no need to cache
the kernel's IDT base.
When support for "ack interrupt on exit" was introduced, KVM added a
second consumer of the IDT base as handling already-acked interrupts
requires directly calling the interrupt handler, i.e. KVM uses the IDT
base to find the address of the handler. Because interrupts are a fast
path, KVM cached the IDT base to avoid having to VMREAD HOST_IDTR_BASE.
Presumably, the IDT base was cached on a per-vCPU basis simply because
the existing code grabbed the IDT base on a per-vCPU (VMCS) basis.
Note, all post-boot IDTs use the same handlers for external interrupts,
i.e. the "ack interrupt on exit" use of the IDT base would be unaffected
even if the cached IDT somehow did not match the current IDT. And as
for the original use case of setting VMCS.HOST_IDTR_BASE, if any of the
above analysis is wrong then KVM has had a bug since the beginning of
time since KVM has effectively been caching the IDT at vCPU creation
since commit a8b732ca01c ("[PATCH] kvm: userspace interface").
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Generic x86 code invokes the kvm_x86_ops external interrupt handler on
all VM-Exits regardless of the actual exit type. Use the already-cached
EXIT_REASON to determine if the VM-Exit was due to an interrupt, thus
avoiding an extra VMREAD (to query VM_EXIT_INTR_INFO) for all other
types of VM-Exit.
In addition to avoiding the extra VMREAD, checking the EXIT_REASON
instead of VM_EXIT_INTR_INFO makes it more obvious that
vmx_handle_external_intr() is called for all VM-Exits, e.g. someone
unfamiliar with the flow might wonder under what condition(s)
VM_EXIT_INTR_INFO does not contain a valid interrupt, which is
simply not possible since KVM always runs with "ack interrupt on exit".
WARN once if VM_EXIT_INTR_INFO doesn't contain a valid interrupt on
an EXTERNAL_INTERRUPT VM-Exit, as such a condition would indicate a
hardware bug.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The reason for skipping handling of NMI and #MC in handle_exception is
the same, namely they are handled earlier by vmx_complete_atomic_exit.
Calling the machine check handler (which just returns 1) is misleading,
don't do it.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
A previous fix to prevent KVM from consuming stale VMCS state after a
failed VM-Entry inadvertantly blocked KVM's handling of machine checks
that occur during VM-Entry.
Per Intel's SDM, a #MC during VM-Entry is handled in one of three ways,
depending on when the #MC is recognoized. As it pertains to this bug
fix, the third case explicitly states EXIT_REASON_MCE_DURING_VMENTRY
is handled like any other VM-Exit during VM-Entry, i.e. sets bit 31 to
indicate the VM-Entry failed.
If a machine-check event occurs during a VM entry, one of the following occurs:
- The machine-check event is handled as if it occurred before the VM entry:
...
- The machine-check event is handled after VM entry completes:
...
- A VM-entry failure occurs as described in Section 26.7. The basic
exit reason is 41, for "VM-entry failure due to machine-check event".
Explicitly handle EXIT_REASON_MCE_DURING_VMENTRY as a one-off case in
vmx_vcpu_run() instead of binning it into vmx_complete_atomic_exit().
Doing so allows vmx_vcpu_run() to handle VMX_EXIT_REASONS_FAILED_VMENTRY
in a sane fashion and also simplifies vmx_complete_atomic_exit() since
VMCS.VM_EXIT_INTR_INFO is guaranteed to be fresh.
Fixes: b060ca3b2e ("kvm: vmx: Handle VMLAUNCH/VMRESUME failure properly")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Make it available to AMD hosts as well, just in case someone is trying
to use an Intel processor's CPUID setup.
Suggested-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In function apic_mmio_write(), the offset has been checked in:
* apic_mmio_in_range()
* offset & 0xf
These two ensures offset is in range [0x010, 0xff0].
Signed-off-by: Wei Yang <richardw.yang@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
apic_clear_vector() is the counterpart of kvm_lapic_set_vector(),
while they have different naming convention.
Rename it and move together to arch/x86/kvm/lapic.h. Also fix one typo
in comment by hand.
Signed-off-by: Wei Yang <richardw.yang@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
On delivering irq to apic, we iterate on vcpu and do the check like
this:
kvm_apic_present(vcpu)
kvm_lapic_enabled(vpu)
kvm_apic_present(vcpu) && kvm_apic_sw_enabled(vcpu->arch.apic)
Since we have already checked kvm_apic_present(), it is reasonable to
replace kvm_lapic_enabled() with kvm_apic_sw_enabled().
Signed-off-by: Wei Yang <richardw.yang@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add an MSRs which allows the guest to disable
host polling (specifically the cpuidle-haltpoll,
when performing polling in the guest, disables
host side polling).
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
There is an imperfection in get_vmx_mem_address(): access length is ignored
when checking the limit. To fix this, pass access length as a function argument.
The access length is usually obvious since it is used by callers after
get_vmx_mem_address() call, but for vmread/vmwrite it depends on the
state of 64-bit mode.
Signed-off-by: Eugene Korenevsky <ekorenevsky@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Intel SDM vol. 3, 5.3:
The processor causes a
general-protection exception (or, if the segment is SS, a stack-fault
exception) any time an attempt is made to access the following addresses
in a segment:
- A byte at an offset greater than the effective limit
- A word at an offset greater than the (effective-limit – 1)
- A doubleword at an offset greater than the (effective-limit – 3)
- A quadword at an offset greater than the (effective-limit – 7)
Therefore, the generic limit checking error condition must be
exn = (off > limit + 1 - access_len) = (off + access_len - 1 > limit)
but not
exn = (off + access_len > limit)
as for now.
Also avoid integer overflow of `off` at 32-bit KVM by casting it to u64.
Note: access length is currently sizeof(u64) which is incorrect. This
will be fixed in the subsequent patch.
Signed-off-by: Eugene Korenevsky <ekorenevsky@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add support to expose Intel V2 Extended Topology Enumeration Leaf for
some new systems with multiple software-visible die within each package.
Because unimplemented and unexposed leaves should be explicitly reported
as zero, there is no need to limit cpuid.0.eax to the maximum value of
feature configuration but limit it to the highest leaf implemented in
the current code. A single clamping seems sufficient and cheaper.
Co-developed-by: Xiaoyao Li <xiaoyao.li@linux.intel.com>
Signed-off-by: Xiaoyao Li <xiaoyao.li@linux.intel.com>
Signed-off-by: Like Xu <like.xu@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Make all code consistent with kvm_deliver_exception_payload() by using
appropriate symbolic constant instead of hard-coded number.
Reviewed-by: Nikita Leshenko <nikita.leshchenko@oracle.com>
Reviewed-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Even when asynchronous page fault is disabled, KVM does not want to pause
the host if a guest triggers a page fault; instead it will put it into
an artificial HLT state that allows running other host processes while
allowing interrupt delivery into the guest.
However, the way this feature is triggered is a bit confusing.
First, it is not used for page faults while a nested guest is
running: but this is not an issue since the artificial halt
is completely invisible to the guest, either L1 or L2. Second,
it is used even if kvm_halt_in_guest() returns true; in this case,
the guest probably should not pay the additional latency cost of the
artificial halt, and thus we should handle the page fault in a
completely synchronous way.
By introducing a new function kvm_can_deliver_async_pf, this patch
commonizes the code that chooses whether to deliver an async page fault
(kvm_arch_async_page_not_present) and the code that chooses whether a
page fault should be handled synchronously (kvm_can_do_async_pf).
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Unfortunately, a couple of mistakes were made while implementing
Enlightened VMCS support, in particular, wrong clean fields were
used in copy_enlightened_to_vmcs12():
- exception_bitmap is covered by CONTROL_EXCPN;
- vm_exit_controls/pin_based_vm_exec_control/secondary_vm_exec_control
are covered by CONTROL_GRP1.
Fixes: 945679e301 ("KVM: nVMX: add enlightened VMCS state")
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Based on 1 normalized pattern(s):
this program is free software you can redistribute it and or modify
it under the terms and conditions of the gnu general public license
version 2 as published by the free software foundation this program
is distributed in the hope it will be useful but without any
warranty without even the implied warranty of merchantability or
fitness for a particular purpose see the gnu general public license
for more details you should have received a copy of the gnu general
public license along with this program if not write to the free
software foundation inc 59 temple place suite 330 boston ma 02111
1307 usa
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-only
has been chosen to replace the boilerplate/reference in 33 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Alexios Zavras <alexios.zavras@intel.com>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190530000435.254582722@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
It doesn't seem as if there is any particular need for kvm_lock to be a
spinlock, so convert the lock to a mutex so that sleepable functions (in
particular cond_resched()) can be called while holding it.
Signed-off-by: Junaid Shahid <junaids@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
__vmcs_writel uses volatile asm, so there is no need to insert another
one between the first and the second call to __vmcs_writel in order
to prevent unwanted code moves for 32bit targets.
Signed-off-by: Uros Bizjak <ubizjak@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
While upstream gcc doesn't detect conflicts on cc (yet), it really
should, and hence "cc" should not be specified for asm()-s also having
"=@cc<cond>" outputs. (It is quite pointless anyway to specify a "cc"
clobber in x86 inline assembly, since the compiler assumes it to be
always clobbered, and has no means [yet] to suppress this behavior.)
Signed-off-by: Jan Beulich <jbeulich@suse.com>
Fixes: bbc0b82392 ("KVM: nVMX: Capture VM-Fail via CC_{SET,OUT} in nested early checks")
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
MSR IA32_MISC_ENABLE bit 18, according to SDM:
| When this bit is set to 0, the MONITOR feature flag is not set (CPUID.01H:ECX[bit 3] = 0).
| This indicates that MONITOR/MWAIT are not supported.
|
| Software attempts to execute MONITOR/MWAIT will cause #UD when this bit is 0.
|
| When this bit is set to 1 (default), MONITOR/MWAIT are supported (CPUID.01H:ECX[bit 3] = 1).
The CPUID.01H:ECX[bit 3] ought to mirror the value of the MSR bit,
CPUID.01H:ECX[bit 3] is a better guard than kvm_mwait_in_guest().
kvm_mwait_in_guest() affects the behavior of MONITOR/MWAIT, not its
guest visibility.
This patch implements toggling of the CPUID bit based on guest writes
to the MSR.
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: Liran Alon <liran.alon@oracle.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
[Fixes for backwards compatibility - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Allow guest reads CORE cstate when exposing host CPU power management capabilities
to the guest. PKG cstate is restricted to avoid a guest to get the whole package
information in multi-tenant scenario.
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
1. Using X86_FEATURE_ARCH_CAPABILITIES to enumerate the existence of
MSR_IA32_ARCH_CAPABILITIES to avoid using rdmsrl_safe().
2. Since kvm_get_arch_capabilities() is only used in this file, making
it static.
Signed-off-by: Xiaoyao Li <xiaoyao.li@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add a wrapper to invoke kvm_arch_check_processor_compat() so that the
boilerplate ugliness of checking virtualization support on all CPUs is
hidden from the arch specific code. x86's implementation in particular
is quite heinous, as it unnecessarily propagates the out-param pattern
into kvm_x86_ops.
While the x86 specific issue could be resolved solely by changing
kvm_x86_ops, make the change for all architectures as returning a value
directly is prettier and technically more robust, e.g. s390 doesn't set
the out param, which could lead to subtle breakage in the (highly
unlikely) scenario where the out-param was not pre-initialized by the
caller.
Opportunistically annotate svm_check_processor_compat() with __init.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Cornelia Huck <cohuck@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
AVIC doorbell is used to notify a running vCPU that interrupts
has been injected into the vCPU AVIC backing page. Current logic
checks only if a VCPU is running before sending a doorbell.
However, the doorbell is not necessary if the destination
CPU is itself.
Add logic to check currently running CPU before sending doorbell.
Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Reviewed-by: Alexander Graf <graf@amazon.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Advance lapic timer tries to hidden the hypervisor overhead between the
host emulated timer fires and the guest awares the timer is fired. However,
it just hidden the time between apic_timer_fn/handle_preemption_timer ->
wait_lapic_expire, instead of the real position of vmentry which is
mentioned in the orignial commit d0659d946b ("KVM: x86: add option to
advance tscdeadline hrtimer expiration"). There is 700+ cpu cycles between
the end of wait_lapic_expire and before world switch on my haswell desktop.
This patch tries to narrow the last gap(wait_lapic_expire -> world switch),
it takes the real overhead time between apic_timer_fn/handle_preemption_timer
and before world switch into consideration when adaptively tuning timer
advancement. The patch can reduce 40% latency (~1600+ cycles to ~1000+ cycles
on a haswell desktop) for kvm-unit-tests/tscdeadline_latency when testing
busy waits.
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: Liran Alon <liran.alon@oracle.com>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
wait_lapic_expire() call was moved above guest_enter_irqoff() because of
its tracepoint, which violated the RCU extended quiescent state invoked
by guest_enter_irqoff()[1][2]. This patch simply moves the tracepoint
below guest_exit_irqoff() in vcpu_enter_guest(). Snapshot the delta before
VM-Enter, but trace it after VM-Exit. This can help us to move
wait_lapic_expire() just before vmentry in the later patch.
[1] Commit 8b89fe1f6c ("kvm: x86: move tracepoints outside extended quiescent state")
[2] https://patchwork.kernel.org/patch/7821111/
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Liran Alon <liran.alon@oracle.com>
Suggested-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
[Track whether wait_lapic_expire was called, and do not invoke the tracepoint
if not. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Extract adaptive tune timer advancement logic to a single function.
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
[Rename new function. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Commit 8c5fbf1a72 ("KVM/nSVM: Use the new mapping API for mapping guest
memory") broke nested SVM completely: kvm_vcpu_map()'s second parameter is
GFN so vmcb_gpa needs to be converted with gpa_to_gfn(), not the other way
around.
Fixes: 8c5fbf1a72 ("KVM/nSVM: Use the new mapping API for mapping guest memory")
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Intel MKTME repurposes several high bits of physical address as 'keyID'
for memory encryption thus effectively reduces platform's maximum
physical address bits. Exactly how many bits are reduced is configured
by BIOS. To honor such HW behavior, the repurposed bits are reduced from
cpuinfo_x86->x86_phys_bits when MKTME is detected in CPU detection.
Similarly, AMD SME/SEV also reduces physical address bits for memory
encryption, and cpuinfo->x86_phys_bits is reduced too when SME/SEV is
detected, so for both MKTME and SME/SEV, boot_cpu_data.x86_phys_bits
doesn't hold physical address bits reported by CPUID anymore.
Currently KVM treats bits from boot_cpu_data.x86_phys_bits to 51 as
reserved bits, but it's not true anymore for MKTME, since MKTME treats
those reduced bits as 'keyID', but not reserved bits. Therefore
boot_cpu_data.x86_phys_bits cannot be used to calculate reserved bits
anymore, although we can still use it for AMD SME/SEV since SME/SEV
treats the reduced bits differently -- they are treated as reserved
bits, the same as other reserved bits in page table entity [1].
Fix by introducing a new 'shadow_phys_bits' variable in KVM x86 MMU code
to store the effective physical bits w/o reserved bits -- for MKTME,
it equals to physical address reported by CPUID, and for SME/SEV, it is
boot_cpu_data.x86_phys_bits.
Note that for the physical address bits reported to guest should remain
unchanged -- KVM should report physical address reported by CPUID to
guest, but not boot_cpu_data.x86_phys_bits. Because for Intel MKTME,
there's no harm if guest sets up 'keyID' bits in guest page table (since
MKTME only works at physical address level), and KVM doesn't even expose
MKTME to guest. Arguably, for AMD SME/SEV, guest is aware of SEV thus it
should adjust boot_cpu_data.x86_phys_bits when it detects SEV, therefore
KVM should still reports physcial address reported by CPUID to guest.
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Kai Huang <kai.huang@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
As a prerequisite to fix several SPTE reserved bits related calculation
errors caused by MKTME, which requires kvm_set_mmio_spte_mask() to use
local static variable defined in mmu.c.
Also move call site of kvm_set_mmio_spte_mask() from kvm_arch_init() to
kvm_mmu_module_init() so that kvm_set_mmio_spte_mask() can be static.
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Kai Huang <kai.huang@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
KVM_CAP_MAX_VCPU_ID is currently always reporting KVM_MAX_VCPU_ID on all
architectures. However, on s390x, the amount of usable CPUs is determined
during runtime - it is depending on the features of the machine the code
is running on. Since we are using the vcpu_id as an index into the SCA
structures that are defined by the hardware (see e.g. the sca_add_vcpu()
function), it is not only the amount of CPUs that is limited by the hard-
ware, but also the range of IDs that we can use.
Thus KVM_CAP_MAX_VCPU_ID must be determined during runtime on s390x, too.
So the handling of KVM_CAP_MAX_VCPU_ID has to be moved from the common
code into the architecture specific code, and on s390x we have to return
the same value here as for KVM_CAP_MAX_VCPUS.
This problem has been discovered with the kvm_create_max_vcpus selftest.
With this change applied, the selftest now passes on s390x, too.
Reviewed-by: Andrew Jones <drjones@redhat.com>
Reviewed-by: Cornelia Huck <cohuck@redhat.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Thomas Huth <thuth@redhat.com>
Message-Id: <20190523164309.13345-9-thuth@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Commit 11988499e6 ("KVM: x86: Skip EFER vs. guest CPUID checks for
host-initiated writes", 2019-04-02) introduced a "return false" in a
function returning int, and anyway set_efer has a "nonzero on error"
conventon so it should be returning 1.
Reported-by: Pavel Machek <pavel@denx.de>
Fixes: 11988499e6 ("KVM: x86: Skip EFER vs. guest CPUID checks for host-initiated writes")
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
According to the SDM, for MSR_IA32_PERFCTR0/1 "the lower-order 32 bits of
each MSR may be written with any value, and the high-order 8 bits are
sign-extended according to the value of bit 31", but the fixed counters
in real hardware are limited to the width of the fixed counters ("bits
beyond the width of the fixed-function counter are reserved and must be
written as zeros"). Fix KVM to do the same.
Reported-by: Nadav Amit <nadav.amit@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This patch will simplify the changes in the next, by enforcing the
masking of the counters to RDPMC and RDMSR.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
After commit:
672ff6cff8 ("KVM: x86: Raise #GP when guest vCPU do not support PMU")
my AMD guests started #GPing like this:
general protection fault: 0000 [#1] PREEMPT SMP
CPU: 1 PID: 4355 Comm: bash Not tainted 5.1.0-rc6+ #3
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.12.0-1 04/01/2014
RIP: 0010:x86_perf_event_update+0x3b/0xa0
with Code: pointing to RDPMC. It is RDPMC because the guest has the
hardware watchdog CONFIG_HARDLOCKUP_DETECTOR_PERF enabled which uses
perf. Instrumenting kvm_pmu_rdpmc() some, showed that it fails due to:
if (!pmu->version)
return 1;
which the above commit added. Since AMD's PMU leaves the version at 0,
that causes the #GP injection into the guest.
Set pmu->version arbitrarily to 1 and move it above the non-applicable
struct kvm_pmu members.
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Janakarajan Natarajan <Janakarajan.Natarajan@amd.com>
Cc: kvm@vger.kernel.org
Cc: Liran Alon <liran.alon@oracle.com>
Cc: Mihai Carabas <mihai.carabas@oracle.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: x86@kernel.org
Cc: stable@vger.kernel.org
Fixes: 672ff6cff8 ("KVM: x86: Raise #GP when guest vCPU do not support PMU")
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Userspace can easily set up invalid processor state in such a way that
dmesg will be filled with VMCS or VMCB dumps. Disable this by default
using a module parameter.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When assigning kvm irqfd we didn't check the irqchip mode but we allow
KVM_IRQFD to succeed with all the irqchip modes. However it does not
make much sense to create irqfd even without the kernel chips. Let's
provide a arch-dependent helper to check whether a specific irqfd is
allowed by the arch. At least for x86, it should make sense to check:
- when irqchip mode is NONE, all irqfds should be disallowed, and,
- when irqchip mode is SPLIT, irqfds that are with resamplefd should
be disallowed.
For either of the case, previously we'll silently ignore the irq or
the irq ack event if the irqchip mode is incorrect. However that can
cause misterious guest behaviors and it can be hard to triage. Let's
fail KVM_IRQFD even earlier to detect these incorrect configurations.
CC: Paolo Bonzini <pbonzini@redhat.com>
CC: Radim Krčmář <rkrcmar@redhat.com>
CC: Alex Williamson <alex.williamson@redhat.com>
CC: Eduardo Habkost <ehabkost@redhat.com>
Signed-off-by: Peter Xu <peterx@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Current logic does not allow VCPU to be loaded onto CPU with
APIC ID 255. This should be allowed since the host physical APIC ID
field in the AVIC Physical APIC table entry is an 8-bit value,
and APIC ID 255 is valid in system with x2APIC enabled.
Instead, do not allow VCPU load if the host APIC ID cannot be
represented by an 8-bit value.
Also, use the more appropriate AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK
instead of AVIC_MAX_PHYSICAL_ID_COUNT.
Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Expose per-vCPU timer_advance_ns to userspace, so it is able to
query the auto-adjusted value.
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
After commit c3941d9e0 (KVM: lapic: Allow user to disable adaptive tuning of
timer advancement), '-1' enables adaptive tuning starting from default
advancment of 1000ns. However, we should expose an int instead of an overflow
uint module parameter.
Before patch:
/sys/module/kvm/parameters/lapic_timer_advance_ns:4294967295
After patch:
/sys/module/kvm/parameters/lapic_timer_advance_ns:-1
Fixes: c3941d9e0 (KVM: lapic: Allow user to disable adaptive tuning of timer advancement)
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: Liran Alon <liran.alon@oracle.com>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
We get a warning when build kernel W=1:
arch/x86/kvm/vmx/vmx.c:6365:6: warning: no previous prototype for ‘vmx_update_host_rsp’ [-Wmissing-prototypes]
void vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
Add the missing declaration to fix this.
Signed-off-by: Yi Wang <wang.yi59@zte.com.cn>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Kvm now supports extended CPUID functions through 0x8000001f. CPUID
leaf 0x8000001e is AMD's Processor Topology Information leaf. This
contains similar information to CPUID leaf 0xb (Intel's Extended
Topology Enumeration leaf), and should be included in the output of
KVM_GET_SUPPORTED_CPUID, even though userspace is likely to override
some of this information based upon the configuration of the
particular VM.
Cc: Brijesh Singh <brijesh.singh@amd.com>
Cc: Borislav Petkov <bp@suse.de>
Fixes: 8765d75329 ("KVM: X86: Extend CPUID range to include new leaf")
Signed-off-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Marc Orr <marcorr@google.com>
Reviewed-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Per the APM, "CPUID Fn8000_001D_E[D,C,B,A]X reports cache topology
information for the cache enumerated by the value passed to the
instruction in ECX, referred to as Cache n in the following
description. To gather information for all cache levels, software must
repeatedly execute CPUID with 8000_001Dh in EAX and ECX set to
increasing values beginning with 0 until a value of 00h is returned in
the field CacheType (EAX[4:0]) indicating no more cache descriptions
are available for this processor."
The termination condition is the same as leaf 4, so we can reuse that
code block for leaf 0x8000001d.
Fixes: 8765d75329 ("KVM: X86: Extend CPUID range to include new leaf")
Cc: Brijesh Singh <brijesh.singh@amd.com>
Cc: Borislav Petkov <bp@suse.de>
Signed-off-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Marc Orr <marcorr@google.com>
Reviewed-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
VMX's nested_run_pending flag is subtly consumed when stuffing state to
enter guest mode, i.e. needs to be set according before KVM knows if
setting guest state is successful. If setting guest state fails, clear
the flag as a nested run is obviously not pending.
Reported-by: Aaron Lewis <aaronlewis@google.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The offset for reading the shadow VMCS is sizeof(*kvm_state)+VMCS12_SIZE,
so the correct size must be that plus sizeof(*vmcs12). This could lead
to KVM reading garbage data from userspace and not reporting an error,
but is otherwise not sensitive.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
* POWER: support for direct access to the POWER9 XIVE interrupt controller,
memory and performance optimizations.
* x86: support for accessing memory not backed by struct page, fixes and refactoring
* Generic: dirty page tracking improvements
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJc3qV/AAoJEL/70l94x66Dn3QH/jX1Bn0P/RZAIt4w0SySklSg
PqxUKDyBQqB9vN9Qeb9jWXAKPH2CtM3+up/rz7oRnBWp7qA6vXcC/R/QJYAvzdXE
nklsR/oYCsflR1KdlVYuDvvPCPP2fLBU5zfN83OsaBQ8fNRkm3gN+N5XQ2SbXbLy
Mo9tybS4otY201UAC96e8N0ipwwyCRpDneQpLcl+F5nH3RBt63cVbs04O+70MXn7
eT4I+8K3+Go7LATzT8hglD21D/7uvE31qQb6yr5L33IfhU4GB51RZzBXTNaAdY8n
hT1rMrRkAMAFWYZPQDfoMadjWU3i5DIfstKjDxOr9oTfuOEp5Z+GvJwvVnUDg1I=
=D0+p
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
"ARM:
- support for SVE and Pointer Authentication in guests
- PMU improvements
POWER:
- support for direct access to the POWER9 XIVE interrupt controller
- memory and performance optimizations
x86:
- support for accessing memory not backed by struct page
- fixes and refactoring
Generic:
- dirty page tracking improvements"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (155 commits)
kvm: fix compilation on aarch64
Revert "KVM: nVMX: Expose RDPMC-exiting only when guest supports PMU"
kvm: x86: Fix L1TF mitigation for shadow MMU
KVM: nVMX: Disable intercept for FS/GS base MSRs in vmcs02 when possible
KVM: PPC: Book3S: Remove useless checks in 'release' method of KVM device
KVM: PPC: Book3S HV: XIVE: Fix spelling mistake "acessing" -> "accessing"
KVM: PPC: Book3S HV: Make sure to load LPID for radix VCPUs
kvm: nVMX: Set nested_run_pending in vmx_set_nested_state after checks complete
tests: kvm: Add tests for KVM_SET_NESTED_STATE
KVM: nVMX: KVM_SET_NESTED_STATE - Tear down old EVMCS state before setting new state
tests: kvm: Add tests for KVM_CAP_MAX_VCPUS and KVM_CAP_MAX_CPU_ID
tests: kvm: Add tests to .gitignore
KVM: Introduce KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2
KVM: Fix kvm_clear_dirty_log_protect off-by-(minus-)one
KVM: Fix the bitmap range to copy during clear dirty
KVM: arm64: Fix ptrauth ID register masking logic
KVM: x86: use direct accessors for RIP and RSP
KVM: VMX: Use accessors for GPRs outside of dedicated caching logic
KVM: x86: Omit caching logic for always-available GPRs
kvm, x86: Properly check whether a pfn is an MMIO or not
...
The RDPMC-exiting control is dependent on the existence of the RDPMC
instruction itself, i.e. is not tied to the "Architectural Performance
Monitoring" feature. For all intents and purposes, the control exists
on all CPUs with VMX support since RDPMC also exists on all VCPUs with
VMX supported. Per Intel's SDM:
The RDPMC instruction was introduced into the IA-32 Architecture in
the Pentium Pro processor and the Pentium processor with MMX technology.
The earlier Pentium processors have performance-monitoring counters, but
they must be read with the RDMSR instruction.
Because RDPMC-exiting always exists, KVM requires the control and refuses
to load if it's not available. As a result, hiding the PMU from a guest
breaks nested virtualization if the guest attemts to use KVM.
While it's not explicitly stated in the RDPMC pseudocode, the VM-Exit
check for RDPMC-exiting follows standard fault vs. VM-Exit prioritization
for privileged instructions, e.g. occurs after the CPL/CR0.PE/CR4.PCE
checks, but before the counter referenced in ECX is checked for validity.
In other words, the original KVM behavior of injecting a #GP was correct,
and the KVM unit test needs to be adjusted accordingly, e.g. eat the #GP
when the unit test guest (L3 in this case) executes RDPMC without
RDPMC-exiting set in the unit test host (L2).
This reverts commit e51bfdb687.
Fixes: e51bfdb687 ("KVM: nVMX: Expose RDPMC-exiting only when guest supports PMU")
Reported-by: David Hill <hilld@binarystorm.net>
Cc: Saar Amar <saaramar@microsoft.com>
Cc: Mihai Carabas <mihai.carabas@oracle.com>
Cc: Jim Mattson <jmattson@google.com>
Cc: Liran Alon <liran.alon@oracle.com>
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Currently KVM sets 5 most significant bits of physical address bits
reported by CPUID (boot_cpu_data.x86_phys_bits) for nonpresent or
reserved bits SPTE to mitigate L1TF attack from guest when using shadow
MMU. However for some particular Intel CPUs the physical address bits
of internal cache is greater than physical address bits reported by
CPUID.
Use the kernel's existing boot_cpu_data.x86_cache_bits to determine the
five most significant bits. Doing so improves KVM's L1TF mitigation in
the unlikely scenario that system RAM overlaps the high order bits of
the "real" physical address space as reported by CPUID. This aligns with
the kernel's warnings regarding L1TF mitigation, e.g. in the above
scenario the kernel won't warn the user about lack of L1TF mitigation
if x86_cache_bits is greater than x86_phys_bits.
Also initialize shadow_nonpresent_or_rsvd_mask explicitly to make it
consistent with other 'shadow_{xxx}_mask', and opportunistically add a
WARN once if KVM's L1TF mitigation cannot be applied on a system that
is marked as being susceptible to L1TF.
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Kai Huang <kai.huang@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
If L1 is using an MSR bitmap, unconditionally merge the MSR bitmaps from
L0 and L1 for MSR_{KERNEL,}_{FS,GS}_BASE. KVM unconditionally exposes
MSRs L1. If KVM is also running in L1 then it's highly likely L1 is
also exposing the MSRs to L2, i.e. KVM doesn't need to intercept L2
accesses.
Based on code from Jintack Lim.
Cc: Jintack Lim <jintack@xxxxxxxxxxxxxxx>
Signed-off-by: Sean Christopherson <sean.j.christopherson@xxxxxxxxx>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
- Fix recent regression causing kernels built with CONFIG_PM
unset to crash on systems that support the Performance and
Energy Bias Hint (EPB) by avoiding to compile the EPB-related
code depending on CONFIG_PM when it is unset (Rafael Wysocki).
- Clean up the transition notifier invocation code in the cpufreq
core and change some users of cpufreq transition notifiers
accordingly (Viresh Kumar).
- Change MAINTAINERS to cover the schedutil governor as part of
cpufreq (Viresh Kumar).
- Simplify cpufreq_init_policy() to avoid redundant computations
(Yue Hu).
- Add explanatory comment to the cpufreq core (Rafael Wysocki).
- Introduce a new flag, GENPD_FLAG_RPM_ALWAYS_ON, to the generic
power domains (genpd) framework along with the first user of it
(Leonard Crestez).
-----BEGIN PGP SIGNATURE-----
iQJGBAABCAAwFiEE4fcc61cGeeHD/fCwgsRv/nhiVHEFAlzb4TASHHJqd0Byand5
c29ja2kubmV0AAoJEILEb/54YlRxiEAP/37uQOx+I8J3IU7HQcPIkdI1hgksLEzo
g2eoREekjszIjFK9xa70X3V/QnGK4YSPQ/cHCjgXfVhwkO5TJzte5T5M2z9gUCDT
7OMYWCI6hP6Mo5UWlP4dQ9Cqce4SB3TdibadevxcVOhFAW/xz42y5Gr6s4WkexJf
Swb2uoLS4gGANyhUhx6XEZ5NpWZkWcK2ygZ8VJZETnoIwxMSUW7FTJkF+4s2tXLZ
GH+F5jWAbwPlg6g2c54lPL1HtiAvK+/018aF8CZMqUBec94RHDFybVOlb5sacfQW
+Y0W/mc/6SMqT3OUcQ0H3Z/qkgwR8mL01hH6gCP1jA5OBljmTjzk0Bbc4c3n9BEN
aRy4M8Qc/GXzEBPO3Z9AlYik6ALH9iUgL2hewGZAFN8kn9ZGPAqYsctdCVkfKL1u
4Esz5+wOsyYmBx910PozL+p2jbTH0x89sSo1qXUQr2JEiNm2iL4I4+ndqhuiq4LO
sQPHCpe4HhYWzIQzJLDurv6hAxxU5PUsGg8XDEGlsyowIPDoIkMgC93RRLGZ/taY
Ivc2FSlwLTSkzBHwVfckakXPvfyFdw8DFL2n66dQbXS9FFNshOF/TFx40iV42i5H
wusyIZIT1y1H74De0EVntUho3xBo3nrrsu1o2NaXsTBoEsYwJiCji4yOZlI1Zh+m
A9coiXKm4hY5
=LqTN
-----END PGP SIGNATURE-----
Merge tag 'pm-5.2-rc1-2' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull more power management updates from Rafael Wysocki:
"These fix a recent regression causing kernels built with CONFIG_PM
unset to crash on systems that support the Performance and Energy Bias
Hint (EPB), clean up the cpufreq core and some users of transition
notifiers and introduce a new power domain flag into the generic power
domains framework (genpd).
Specifics:
- Fix recent regression causing kernels built with CONFIG_PM unset to
crash on systems that support the Performance and Energy Bias Hint
(EPB) by avoiding to compile the EPB-related code depending on
CONFIG_PM when it is unset (Rafael Wysocki).
- Clean up the transition notifier invocation code in the cpufreq
core and change some users of cpufreq transition notifiers
accordingly (Viresh Kumar).
- Change MAINTAINERS to cover the schedutil governor as part of
cpufreq (Viresh Kumar).
- Simplify cpufreq_init_policy() to avoid redundant computations (Yue
Hu).
- Add explanatory comment to the cpufreq core (Rafael Wysocki).
- Introduce a new flag, GENPD_FLAG_RPM_ALWAYS_ON, to the generic
power domains (genpd) framework along with the first user of it
(Leonard Crestez)"
* tag 'pm-5.2-rc1-2' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm:
soc: imx: gpc: Use GENPD_FLAG_RPM_ALWAYS_ON for ERR009619
PM / Domains: Add GENPD_FLAG_RPM_ALWAYS_ON flag
cpufreq: Update MAINTAINERS to include schedutil governor
cpufreq: Don't find governor for setpolicy drivers in cpufreq_init_policy()
cpufreq: Explain the kobject_put() in cpufreq_policy_alloc()
cpufreq: Call transition notifier only once for each policy
x86: intel_epb: Take CONFIG_PM into account
Merge misc updates from Andrew Morton:
- a few misc things and hotfixes
- ocfs2
- almost all of MM
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (139 commits)
kernel/memremap.c: remove the unused device_private_entry_fault() export
mm: delete find_get_entries_tag
mm/huge_memory.c: make __thp_get_unmapped_area static
mm/mprotect.c: fix compilation warning because of unused 'mm' variable
mm/page-writeback: introduce tracepoint for wait_on_page_writeback()
mm/vmscan: simplify trace_reclaim_flags and trace_shrink_flags
mm/Kconfig: update "Memory Model" help text
mm/vmscan.c: don't disable irq again when count pgrefill for memcg
mm: memblock: make keeping memblock memory opt-in rather than opt-out
hugetlbfs: always use address space in inode for resv_map pointer
mm/z3fold.c: support page migration
mm/z3fold.c: add structure for buddy handles
mm/z3fold.c: improve compression by extending search
mm/z3fold.c: introduce helper functions
mm/page_alloc.c: remove unnecessary parameter in rmqueue_pcplist
mm/hmm: add ARCH_HAS_HMM_MIRROR ARCH_HAS_HMM_DEVICE Kconfig
mm/vmscan.c: simplify shrink_inactive_list()
fs/sync.c: sync_file_range(2) may use WB_SYNC_ALL writeback
xen/privcmd-buf.c: convert to use vm_map_pages_zero()
xen/gntdev.c: convert to use vm_map_pages()
...
To facilitate additional options to get_user_pages_fast() change the
singular write parameter to be gup_flags.
This patch does not change any functionality. New functionality will
follow in subsequent patches.
Some of the get_user_pages_fast() call sites were unchanged because they
already passed FOLL_WRITE or 0 for the write parameter.
NOTE: It was suggested to change the ordering of the get_user_pages_fast()
arguments to ensure that callers were converted. This breaks the current
GUP call site convention of having the returned pages be the final
parameter. So the suggestion was rejected.
Link: http://lkml.kernel.org/r/20190328084422.29911-4-ira.weiny@intel.com
Link: http://lkml.kernel.org/r/20190317183438.2057-4-ira.weiny@intel.com
Signed-off-by: Ira Weiny <ira.weiny@intel.com>
Reviewed-by: Mike Marshall <hubcap@omnibond.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: James Hogan <jhogan@kernel.org>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Rich Felker <dalias@libc.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull x86 MDS mitigations from Thomas Gleixner:
"Microarchitectural Data Sampling (MDS) is a hardware vulnerability
which allows unprivileged speculative access to data which is
available in various CPU internal buffers. This new set of misfeatures
has the following CVEs assigned:
CVE-2018-12126 MSBDS Microarchitectural Store Buffer Data Sampling
CVE-2018-12130 MFBDS Microarchitectural Fill Buffer Data Sampling
CVE-2018-12127 MLPDS Microarchitectural Load Port Data Sampling
CVE-2019-11091 MDSUM Microarchitectural Data Sampling Uncacheable Memory
MDS attacks target microarchitectural buffers which speculatively
forward data under certain conditions. Disclosure gadgets can expose
this data via cache side channels.
Contrary to other speculation based vulnerabilities the MDS
vulnerability does not allow the attacker to control the memory target
address. As a consequence the attacks are purely sampling based, but
as demonstrated with the TLBleed attack samples can be postprocessed
successfully.
The mitigation is to flush the microarchitectural buffers on return to
user space and before entering a VM. It's bolted on the VERW
instruction and requires a microcode update. As some of the attacks
exploit data structures shared between hyperthreads, full protection
requires to disable hyperthreading. The kernel does not do that by
default to avoid breaking unattended updates.
The mitigation set comes with documentation for administrators and a
deeper technical view"
* 'x86-mds-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (23 commits)
x86/speculation/mds: Fix documentation typo
Documentation: Correct the possible MDS sysfs values
x86/mds: Add MDSUM variant to the MDS documentation
x86/speculation/mds: Add 'mitigations=' support for MDS
x86/speculation/mds: Print SMT vulnerable on MSBDS with mitigations off
x86/speculation/mds: Fix comment
x86/speculation/mds: Add SMT warning message
x86/speculation: Move arch_smt_update() call to after mitigation decisions
x86/speculation/mds: Add mds=full,nosmt cmdline option
Documentation: Add MDS vulnerability documentation
Documentation: Move L1TF to separate directory
x86/speculation/mds: Add mitigation mode VMWERV
x86/speculation/mds: Add sysfs reporting for MDS
x86/speculation/mds: Add mitigation control for MDS
x86/speculation/mds: Conditionally clear CPU buffers on idle entry
x86/kvm/vmx: Add MDS protection when L1D Flush is not active
x86/speculation/mds: Clear CPU buffers on exit to user
x86/speculation/mds: Add mds_clear_cpu_buffers()
x86/kvm: Expose X86_FEATURE_MD_CLEAR to guests
x86/speculation/mds: Add BUG_MSBDS_ONLY
...
Currently, the notifiers are called once for each CPU of the policy->cpus
cpumask. It would be more optimal if the notifier can be called only
once and all the relevant information be provided to it. Out of the 23
drivers that register for the transition notifiers today, only 4 of them
do per-cpu updates and the callback for the rest can be called only once
for the policy without any impact.
This would also avoid multiple function calls to the notifier callbacks
and reduce multiple iterations of notifier core's code (which does
locking as well).
This patch adds pointer to the cpufreq policy to the struct
cpufreq_freqs, so the notifier callback has all the information
available to it with a single call. The five drivers which perform
per-cpu updates are updated to use the cpufreq policy. The freqs->cpu
field is redundant now and is removed.
Acked-by: David S. Miller <davem@davemloft.net> (sparc)
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
nested_run_pending=1 implies we have successfully entered guest mode.
Move setting from external state in vmx_set_nested_state() until after
all other checks are complete.
Based on a patch by Aaron Lewis.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move call to nested_enable_evmcs until after free_nested() is complete.
Signed-off-by: Aaron Lewis <aaronlewis@google.com>
Reviewed-by: Marc Orr <marcorr@google.com>
Reviewed-by: Peter Shier <pshier@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE7btrcuORLb1XUhEwjrBW1T7ssS0FAlzReuoACgkQjrBW1T7s
sS1uvBAA16pgnhRNxNTrp3LYft6lUWmF4n0baOTVtQNLhPjpwaOxHIrCBugkQCJB
QcQ9IQSOvIkaEW0XAQoPBaeLviiKhHOFw1Fv89OtW6xUidSfSV15lcI9f1F2pCm2
4yCL/8XvL6M0NhxiwftJAkWOXeDNLfjFnLwyLxBfgg3EeyqMgUB8raeosEID0ORR
gm2/g8DYS2r+KNqM/F4xvMSgabfi2bGk+8BtAaVnftJfstpRNrqKwWnSK3Wspj1l
5gkb8gSsiY6ns3V6RgNHrFlhevFg8V+VjcJt7FR+aUEjOkcoiXas/PhvamMzdsn/
FM1F/A0pM8FSybIUClhnnnxNPc+p8ZN/71YQAPs+Mnh3xvbtKea2lkhC+Xv4OpK3
edutSZWFaiIery82Rk00H3vqiSF1+kRIXSpZSS4mElk4FsVljkyH+nSP7rbmE2MR
EQe+kKnZl8QzWrVbnODC+EVvvVpA2bXDvENJmvKqus+t2G0OdV7Iku3F5E3KjF8k
S5RRV1zuBF3ugqnjmYrVmJtpEA8mxClmqvg6okru+qW6ngO5oOgVpPLjWn1CXcdj
wcuQ6Pe1QwAHS54e9WSWgCHVssLvm9nCdCqypdNaoyGWmbTWntwlrY7Y0JUQnAbB
6/G/DQQiCWY9y8bMZlTEydhIpgcsdROuPYv+oHF5+eQQthsWwHc=
=LH11
-----END PGP SIGNATURE-----
Merge tag 'pidfd-v5.2-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux
Pull pidfd updates from Christian Brauner:
"This patchset makes it possible to retrieve pidfds at process creation
time by introducing the new flag CLONE_PIDFD to the clone() system
call. Linus originally suggested to implement this as a new flag to
clone() instead of making it a separate system call.
After a thorough review from Oleg CLONE_PIDFD returns pidfds in the
parent_tidptr argument. This means we can give back the associated pid
and the pidfd at the same time. Access to process metadata information
thus becomes rather trivial.
As has been agreed, CLONE_PIDFD creates file descriptors based on
anonymous inodes similar to the new mount api. They are made
unconditional by this patchset as they are now needed by core kernel
code (vfs, pidfd) even more than they already were before (timerfd,
signalfd, io_uring, epoll etc.). The core patchset is rather small.
The bulky looking changelist is caused by David's very simple changes
to Kconfig to make anon inodes unconditional.
A pidfd comes with additional information in fdinfo if the kernel
supports procfs. The fdinfo file contains the pid of the process in
the callers pid namespace in the same format as the procfs status
file, i.e. "Pid:\t%d".
To remove worries about missing metadata access this patchset comes
with a sample/test program that illustrates how a combination of
CLONE_PIDFD and pidfd_send_signal() can be used to gain race-free
access to process metadata through /proc/<pid>.
Further work based on this patchset has been done by Joel. His work
makes pidfds pollable. It finished too late for this merge window. I
would prefer to have it sitting in linux-next for a while and send it
for inclusion during the 5.3 merge window"
* tag 'pidfd-v5.2-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux:
samples: show race-free pidfd metadata access
signal: support CLONE_PIDFD with pidfd_send_signal
clone: add CLONE_PIDFD
Make anon_inodes unconditional
Pull x86 FPU state handling updates from Borislav Petkov:
"This contains work started by Rik van Riel and brought to fruition by
Sebastian Andrzej Siewior with the main goal to optimize when to load
FPU registers: only when returning to userspace and not on every
context switch (while the task remains in the kernel).
In addition, this optimization makes kernel_fpu_begin() cheaper by
requiring registers saving only on the first invocation and skipping
that in following ones.
What is more, this series cleans up and streamlines many aspects of
the already complex FPU code, hopefully making it more palatable for
future improvements and simplifications.
Finally, there's a __user annotations fix from Jann Horn"
* 'x86-fpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (29 commits)
x86/fpu: Fault-in user stack if copy_fpstate_to_sigframe() fails
x86/pkeys: Add PKRU value to init_fpstate
x86/fpu: Restore regs in copy_fpstate_to_sigframe() in order to use the fastpath
x86/fpu: Add a fastpath to copy_fpstate_to_sigframe()
x86/fpu: Add a fastpath to __fpu__restore_sig()
x86/fpu: Defer FPU state load until return to userspace
x86/fpu: Merge the two code paths in __fpu__restore_sig()
x86/fpu: Restore from kernel memory on the 64-bit path too
x86/fpu: Inline copy_user_to_fpregs_zeroing()
x86/fpu: Update xstate's PKRU value on write_pkru()
x86/fpu: Prepare copy_fpstate_to_sigframe() for TIF_NEED_FPU_LOAD
x86/fpu: Always store the registers in copy_fpstate_to_sigframe()
x86/entry: Add TIF_NEED_FPU_LOAD
x86/fpu: Eager switch PKRU state
x86/pkeys: Don't check if PKRU is zero before writing it
x86/fpu: Only write PKRU if it is different from current
x86/pkeys: Provide *pkru() helpers
x86/fpu: Use a feature number instead of mask in two more helpers
x86/fpu: Make __raw_xsave_addr() use a feature number instead of mask
x86/fpu: Add an __fpregs_load_activate() internal helper
...
The size checks in vmx_nested_state are wrong because the calculations
are made based on the size of a pointer to a struct kvm_nested_state
rather than the size of a struct kvm_nested_state.
Reported-by: Felix Wilhelm <fwilhelm@google.com>
Signed-off-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Drew Schmitt <dasch@google.com>
Reviewed-by: Marc Orr <marcorr@google.com>
Reviewed-by: Peter Shier <pshier@google.com>
Reviewed-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Fixes: 8fcc4b5923
Cc: stable@ver.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use specific inline functions for RIP and RSP instead of
going through kvm_register_read and kvm_register_write,
which are quite a mouthful. kvm_rsp_read and kvm_rsp_write
did not exist, so add them.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
... now that there is no overhead when using dedicated accessors.
Opportunistically remove a bogus "FIXME" in handle_rdmsr() regarding
the upper 32 bits of RAX and RDX. Zeroing the upper 32 bits is
architecturally correct as 32-bit writes in 64-bit mode unconditionally
clear the upper 32 bits.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Except for RSP and RIP, which are held in VMX's VMCS, GPRs are always
treated "available and dirtly" on both VMX and SVM, i.e. are
unconditionally loaded/saved immediately before/after VM-Enter/VM-Exit.
Eliminating the unnecessary caching code reduces the size of KVM by a
non-trivial amount, much of which comes from the most common code paths.
E.g. on x86_64, kvm_emulate_cpuid() is reduced from 342 to 182 bytes and
kvm_emulate_hypercall() from 1362 to 1143, with the total size of KVM
dropping by ~1000 bytes. With CONFIG_RETPOLINE=y, the numbers are even
more pronounced, e.g.: 353->182, 1418->1172 and well over 2000 bytes.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
pfn_valid check is not sufficient because it only checks if a page has a struct
page or not, if "mem=" was passed to the kernel some valid pages won't have a
struct page. This means that if guests were assigned valid memory that lies
after the mem= boundary it will be passed uncached to the guest no matter what
the guest caching attributes are for this memory.
Introduce a new function e820__mapped_raw_any which is equivalent to
e820__mapped_any but uses the original e820 unmodified and use it to
identify real *RAM*.
Signed-off-by: KarimAllah Ahmed <karahmed@amazon.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use page_address_valid in a few more locations that is already checking for
a page aligned address that does not cross the maximum physical address.
Signed-off-by: KarimAllah Ahmed <karahmed@amazon.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use kvm_vcpu_map for accessing the enlightened VMCS since using
kvm_vcpu_gpa_to_page() and kmap() will only work for guest memory that has
a "struct page".
Signed-off-by: KarimAllah Ahmed <karahmed@amazon.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use kvm_vcpu_map for accessing the shadow VMCS since using
kvm_vcpu_gpa_to_page() and kmap() will only work for guest memory that has
a "struct page".
Signed-off-by: KarimAllah Ahmed <karahmed@amazon.de>
Reviewed-by: Konrad Rzessutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use the new mapping API for mapping guest memory to avoid depending on
"struct page".
Signed-off-by: KarimAllah Ahmed <karahmed@amazon.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use kvm_vcpu_map in emulator_cmpxchg_emulated since using
kvm_vcpu_gpa_to_page() and kmap() will only work for guest memory that has
a "struct page".
Signed-off-by: KarimAllah Ahmed <karahmed@amazon.de>
Reviewed-by: Konrad Rzeszutek Wilk <kjonrad.wilk@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use kvm_vcpu_map when mapping the posted interrupt descriptor table since
using kvm_vcpu_gpa_to_page() and kmap() will only work for guest memory
that has a "struct page".
One additional semantic change is that the virtual host mapping lifecycle
has changed a bit. It now has the same lifetime of the pinning of the
interrupt descriptor table page on the host side.
Signed-off-by: KarimAllah Ahmed <karahmed@amazon.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use kvm_vcpu_map when mapping the virtual APIC page since using
kvm_vcpu_gpa_to_page() and kmap() will only work for guest memory that has
a "struct page".
One additional semantic change is that the virtual host mapping lifecycle
has changed a bit. It now has the same lifetime of the pinning of the
virtual APIC page on the host side.
Signed-off-by: KarimAllah Ahmed <karahmed@amazon.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use kvm_vcpu_map when mapping the L1 MSR bitmap since using
kvm_vcpu_gpa_to_page() and kmap() will only work for guest memory that has
a "struct page".
Signed-off-by: KarimAllah Ahmed <karahmed@amazon.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use kvm_vcpu_map to the map the VMCS12 from guest memory because
kvm_vcpu_gpa_to_page() and kmap() will only work for guest memory that has
a "struct page".
Signed-off-by: KarimAllah Ahmed <karahmed@amazon.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
cmpxchg_gpte() calls get_user_pages_fast() to retrieve the number of
pages and the respective struct page to map in the kernel virtual
address space.
This doesn't work if get_user_pages_fast() is invoked with a userspace
virtual address that's backed by PFNs outside of kernel reach (e.g., when
limiting the kernel memory with mem= in the command line and using
/dev/mem to map memory).
If get_user_pages_fast() fails, look up the VMA that back the userspace
virtual address, compute the PFN and the physical address, and map it in
the kernel virtual address space with memremap().
Signed-off-by: Filippo Sironi <sironi@amazon.de>
Signed-off-by: KarimAllah Ahmed <karahmed@amazon.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Update the PML table without mapping and unmapping the page. This also
avoids using kvm_vcpu_gpa_to_page(..) which assumes that there is a "struct
page" for guest memory.
As a side-effect of using kvm_write_guest_page the page is also properly
marked as dirty.
Signed-off-by: KarimAllah Ahmed <karahmed@amazon.de>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Read the data directly from guest memory instead of the map->read->unmap
sequence. This also avoids using kvm_vcpu_gpa_to_page() and kmap() which
assumes that there is a "struct page" for guest memory.
Suggested-by: Jim Mattson <jmattson@google.com>
Signed-off-by: KarimAllah Ahmed <karahmed@amazon.de>
Reviewed-by: Jim Mattson <jmattson@google.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The hardware configuration register has some useful bits which can be
used by guests. Implement McStatusWrEn which can be used by guests when
injecting MCEs with the in-kernel mce-inject module.
For that, we need to set bit 18 - McStatusWrEn - first, before writing
the MCi_STATUS registers (otherwise we #GP).
Add the required machinery to do so.
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Jim Mattson <jmattson@google.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: KVM <kvm@vger.kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Yazen Ghannam <Yazen.Ghannam@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The capabilities header depends on asm/vmx.h but doesn't explicitly
include said file. This currently doesn't cause problems as all users
of capbilities.h first include asm/vmx.h, but the issue often results in
build errors if someone starts moving things around the VMX files.
Fixes: 3077c19108 ("KVM: VMX: Move capabilities structs and helpers to dedicated file")
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Smatch complains about this:
arch/x86/kvm/vmx/vmx.c:5730 dump_vmcs()
warn: KERN_* level not at start of string
The code should be using pr_cont() instead of pr_err().
Fixes: 9d609649bb ("KVM: vmx: print more APICv fields in dump_vmcs")
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Ten percent of nothin' is... let me do the math here. Nothin' into
nothin', carry the nothin'...
Cc: Wanpeng Li <wanpengli@tencent.com>
Reviewed-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Checking for a pending non-periodic interrupt in start_hv_timer() leads
to restart_apic_timer() making an unnecessary call to start_sw_timer()
due to start_hv_timer() returning false.
Alternatively, start_hv_timer() could return %true when there is a
pending non-periodic interrupt, but that approach is less intuitive,
i.e. would require a beefy comment to explain an otherwise simple check.
Cc: Liran Alon <liran.alon@oracle.com>
Cc: Wanpeng Li <wanpengli@tencent.com>
Suggested-by: Liran Alon <liran.alon@oracle.com>
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Refactor kvm_x86_ops->set_hv_timer to use an explicit parameter for
stating that the timer has expired. Overloading the return value is
unnecessarily clever, e.g. can lead to confusion over the proper return
value from start_hv_timer() when r==1.
Cc: Wanpeng Li <wanpengli@tencent.com>
Cc: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Explicitly call cancel_hv_timer() instead of returning %false to coerce
restart_apic_timer() into canceling it by way of start_sw_timer().
Functionally, the existing code is correct in the sense that it doesn't
doing anything visibily wrong, e.g. generate spurious interrupts or miss
an interrupt. But it's extremely confusing and inefficient, e.g. there
are multiple extraneous calls to apic_timer_expired() that effectively
get dropped due to @timer_pending being %true.
Cc: Wanpeng Li <wanpengli@tencent.com>
Cc: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
...now that VMX's preemption timer, i.e. the hv_timer, also adjusts its
programmed time based on lapic_timer_advance_ns. Without the delay, a
guest can see a timer interrupt arrive before the requested time when
KVM is using the hv_timer to emulate the guest's interrupt.
Fixes: c5ce8235cf ("KVM: VMX: Optimize tscdeadline timer latency")
Cc: <stable@vger.kernel.org>
Cc: Wanpeng Li <wanpengli@tencent.com>
Reviewed-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Since commits 668fffa3f8 ("kvm: better MWAIT emulation for guestsâ€)
and 4d5422cea3 ("KVM: X86: Provide a capability to disable MWAIT interceptsâ€),
KVM was modified to allow an admin to configure certain guests to execute
MONITOR/MWAIT inside guest without being intercepted by host.
This is useful in case admin wishes to allocate a dedicated logical
processor for each vCPU thread. Thus, making it safe for guest to
completely control the power-state of the logical processor.
The ability to use this new KVM capability was introduced to QEMU by
commits 6f131f13e68d ("kvm: support -overcommit cpu-pm=on|offâ€) and
2266d4431132 ("i386/cpu: make -cpu host support monitor/mwaitâ€).
However, exposing MONITOR/MWAIT to a Linux guest may cause it's intel_idle
kernel module to execute c1e_promotion_disable() which will attempt to
RDMSR/WRMSR from/to MSR_IA32_POWER_CTL to manipulate the "C1E Enable"
bit. This behaviour was introduced by commit
32e9518005 ("intel_idle: export both C1 and C1Eâ€).
Becuase KVM doesn't emulate this MSR, running KVM with ignore_msrs=0
will cause the above guest behaviour to raise a #GP which will cause
guest to kernel panic.
Therefore, add support for nop emulation of MSR_IA32_POWER_CTL to
avoid #GP in guest in this scenario.
Future commits can optimise emulation further by reflecting guest
MSR changes to host MSR to provide guest with the ability to
fine-tune the dedicated logical processor power-state.
Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Let guests clear the Intel PT ToPA PMI status (bit 55 of
MSR_CORE_PERF_GLOBAL_OVF_CTRL).
Signed-off-by: Luwei Kang <luwei.kang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Inject a PMI for KVM guest when Intel PT working
in Host-Guest mode and Guest ToPA entry memory buffer
was completely filled.
Signed-off-by: Luwei Kang <luwei.kang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Commit 47c42e6b41 ("KVM: x86: fix handling of role.cr4_pae and rename it
to 'gpte_size'") introduced a regression: 32-bit PAE guests stopped
working. The issue appears to be: when guest switches (enables) PAE we need
to re-initialize MMU context (set context->root_level, do
reset_rsvds_bits_mask(), ...) but init_kvm_tdp_mmu() doesn't do that
because we threw away is_pae(vcpu) flag from mmu role. Restore it to
kvm_mmu_extended_role (as we now don't need it in base role) to fix
the issue.
Fixes: 47c42e6b41 ("KVM: x86: fix handling of role.cr4_pae and rename it to 'gpte_size'")
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
KVM's recent bug fix to update %rip after emulating I/O broke userspace
that relied on the previous behavior of incrementing %rip prior to
exiting to userspace. When running a Windows XP guest on AMD hardware,
Qemu may patch "OUT 0x7E" instructions in reaction to the OUT itself.
Because KVM's old behavior was to increment %rip before exiting to
userspace to handle the I/O, Qemu manually adjusted %rip to account for
the OUT instruction.
Arguably this is a userspace bug as KVM requires userspace to re-enter
the kernel to complete instruction emulation before taking any other
actions. That being said, this is a bit of a grey area and breaking
userspace that has worked for many years is bad.
Pre-increment %rip on OUT to port 0x7e before exiting to userspace to
hack around the issue.
Fixes: 45def77ebf ("KVM: x86: update %rip after emulating IO")
Reported-by: Simon Becherer <simon@becherer.de>
Reported-and-tested-by: Iakov Karpov <srid@rkmail.ru>
Reported-by: Gabriele Balducci <balducci@units.it>
Reported-by: Antti Antinoja <reader@fennosys.fi>
Cc: stable@vger.kernel.org
Cc: Takashi Iwai <tiwai@suse.com>
Cc: Jiri Slaby <jslaby@suse.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The not-so-recent change to move VMX's VM-Exit handing to a dedicated
"function" unintentionally exposed KVM to a speculative attack from the
guest by executing a RET prior to stuffing the RSB. Make RSB stuffing
happen immediately after VM-Exit, before any unpaired returns.
Alternatively, the VM-Exit path could postpone full RSB stuffing until
its current location by stuffing the RSB only as needed, or by avoiding
returns in the VM-Exit path entirely, but both alternatives are beyond
ugly since vmx_vmexit() has multiple indirect callers (by way of
vmx_vmenter()). And putting the RSB stuffing immediately after VM-Exit
makes it much less likely to be re-broken in the future.
Note, the cost of PUSH/POP could be avoided in the normal flow by
pairing the PUSH RAX with the POP RAX in __vmx_vcpu_run() and adding an
a POP to nested_vmx_check_vmentry_hw(), but such a weird/subtle
dependency is likely to cause problems in the long run, and PUSH/POP
will take all of a few cycles, which is peanuts compared to the number
of cycles required to fill the RSB.
Fixes: 453eafbe65 ("KVM: VMX: Move VM-Enter + VM-Exit handling to non-inline sub-routines")
Reported-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Co-developed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Make the anon_inodes facility unconditional so that it can be used by core
VFS code and pidfd code.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
[christian@brauner.io: adapt commit message to mention pidfds]
Signed-off-by: Christian Brauner <christian@brauner.io>
To minimize the latency of timer interrupts as observed by the guest,
KVM adjusts the values it programs into the host timers to account for
the host's overhead of programming and handling the timer event. In
the event that the adjustments are too aggressive, i.e. the timer fires
earlier than the guest expects, KVM busy waits immediately prior to
entering the guest.
Currently, KVM manually converts the delay from nanoseconds to clock
cycles. But, the conversion is done in the guest's time domain, while
the delay occurs in the host's time domain. This is perfectly ok when
the guest and host are using the same TSC ratio, but if the guest is
using a different ratio then the delay may not be accurate and could
wait too little or too long.
When the guest is not using the host's ratio, convert the delay from
guest clock cycles to host nanoseconds and use ndelay() instead of
__delay() to provide more accurate timing. Because converting to
nanoseconds is relatively expensive, e.g. requires division and more
multiplication ops, continue using __delay() directly when guest and
host TSCs are running at the same ratio.
Cc: Liran Alon <liran.alon@oracle.com>
Cc: Wanpeng Li <wanpengli@tencent.com>
Cc: stable@vger.kernel.org
Fixes: 3b8a5df6c4 ("KVM: LAPIC: Tune lapic_timer_advance_ns automatically")
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The introduction of adaptive tuning of lapic timer advancement did not
allow for the scenario where userspace would want to disable adaptive
tuning but still employ timer advancement, e.g. for testing purposes or
to handle a use case where adaptive tuning is unable to settle on a
suitable time. This is epecially pertinent now that KVM places a hard
threshold on the maximum advancment time.
Rework the timer semantics to accept signed values, with a value of '-1'
being interpreted as "use adaptive tuning with KVM's internal default",
and any other value being used as an explicit advancement time, e.g. a
time of '0' effectively disables advancement.
Note, this does not completely restore the original behavior of
lapic_timer_advance_ns. Prior to tracking the advancement per vCPU,
which is necessary to support autotuning, userspace could adjust
lapic_timer_advance_ns for *running* vCPU. With per-vCPU tracking, the
module params are snapshotted at vCPU creation, i.e. applying a new
advancement effectively requires restarting a VM.
Dynamically updating a running vCPU is possible, e.g. a helper could be
added to retrieve the desired delay, choosing between the global module
param and the per-VCPU value depending on whether or not auto-tuning is
(globally) enabled, but introduces a great deal of complexity. The
wrapper itself is not complex, but understanding and documenting the
effects of dynamically toggling auto-tuning and/or adjusting the timer
advancement is nigh impossible since the behavior would be dependent on
KVM's implementation as well as compiler optimizations. In other words,
providing stable behavior would require extremely careful consideration
now and in the future.
Given that the expected use of a manually-tuned timer advancement is to
"tune once, run many", use the vastly simpler approach of recognizing
changes to the module params only when creating a new vCPU.
Cc: Liran Alon <liran.alon@oracle.com>
Cc: Wanpeng Li <wanpengli@tencent.com>
Reviewed-by: Liran Alon <liran.alon@oracle.com>
Cc: stable@vger.kernel.org
Fixes: 3b8a5df6c4 ("KVM: LAPIC: Tune lapic_timer_advance_ns automatically")
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Automatically adjusting the globally-shared timer advancement could
corrupt the timer, e.g. if multiple vCPUs are concurrently adjusting
the advancement value. That could be partially fixed by using a local
variable for the arithmetic, but it would still be susceptible to a
race when setting timer_advance_adjust_done.
And because virtual_tsc_khz and tsc_scaling_ratio are per-vCPU, the
correct calibration for a given vCPU may not apply to all vCPUs.
Furthermore, lapic_timer_advance_ns is marked __read_mostly, which is
effectively violated when finding a stable advancement takes an extended
amount of timer.
Opportunistically change the definition of lapic_timer_advance_ns to
a u32 so that it matches the style of struct kvm_timer. Explicitly
pass the param to kvm_create_lapic() so that it doesn't have to be
exposed to lapic.c, thus reducing the probability of unintentionally
using the global value instead of the per-vCPU value.
Cc: Liran Alon <liran.alon@oracle.com>
Cc: Wanpeng Li <wanpengli@tencent.com>
Reviewed-by: Liran Alon <liran.alon@oracle.com>
Cc: stable@vger.kernel.org
Fixes: 3b8a5df6c4 ("KVM: LAPIC: Tune lapic_timer_advance_ns automatically")
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
To minimize the latency of timer interrupts as observed by the guest,
KVM adjusts the values it programs into the host timers to account for
the host's overhead of programming and handling the timer event. Now
that the timer advancement is automatically tuned during runtime, it's
effectively unbounded by default, e.g. if KVM is running as L1 the
advancement can measure in hundreds of milliseconds.
Disable timer advancement if adaptive tuning yields an advancement of
more than 5000ns, as large advancements can break reasonable assumptions
of the guest, e.g. that a timer configured to fire after 1ms won't
arrive on the next instruction. Although KVM busy waits to mitigate the
case of a timer event arriving too early, complications can arise when
shifting the interrupt too far, e.g. kvm-unit-test's vmx.interrupt test
will fail when its "host" exits on interrupts as KVM may inject the INTR
before the guest executes STI+HLT. Arguably the unit test is "broken"
in the sense that delaying a timer interrupt by 1ms doesn't technically
guarantee the interrupt will arrive after STI+HLT, but it's a reasonable
assumption that KVM should support.
Furthermore, an unbounded advancement also effectively unbounds the time
spent busy waiting, e.g. if the guest programs a timer with a very large
delay.
5000ns is a somewhat arbitrary threshold. When running on bare metal,
which is the intended use case, timer advancement is expected to be in
the general vicinity of 1000ns. 5000ns is high enough that false
positives are unlikely, while not being so high as to negatively affect
the host's performance/stability.
Note, a future patch will enable userspace to disable KVM's adaptive
tuning, which will allow priveleged userspace will to specifying an
advancement value in excess of this arbitrary threshold in order to
satisfy an abnormal use case.
Cc: Liran Alon <liran.alon@oracle.com>
Cc: Wanpeng Li <wanpengli@tencent.com>
Cc: stable@vger.kernel.org
Fixes: 3b8a5df6c4 ("KVM: LAPIC: Tune lapic_timer_advance_ns automatically")
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
It was reported that with some special Multi Processor Group configuration,
e.g:
bcdedit.exe /set groupsize 1
bcdedit.exe /set maxgroup on
bcdedit.exe /set groupaware on
for a 16-vCPU guest WS2012 shows BSOD on boot when PV TLB flush mechanism
is in use.
Tracing kvm_hv_flush_tlb immediately reveals the issue:
kvm_hv_flush_tlb: processor_mask 0x0 address_space 0x0 flags 0x2
The only flag set in this request is HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES,
however, processor_mask is 0x0 and no HV_FLUSH_ALL_PROCESSORS is specified.
We don't flush anything and apparently it's not what Windows expects.
TLFS doesn't say anything about such requests and newer Windows versions
seem to be unaffected. This all feels like a WS2012 bug, which is, however,
easy to workaround in KVM: let's flush everything when we see an empty
flush request, over-flushing doesn't hurt.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
If guest sets MSR_IA32_TSCDEADLINE to value such that in host
time-domain it's shorter than lapic_timer_advance_ns, we can
reach a case that we call hrtimer_start() with expiration time set at
the past.
Because lapic_timer.timer is init with HRTIMER_MODE_ABS_PINNED, it
is not allowed to run in softirq and therefore will never expire.
To avoid such a scenario, verify that deadline expiration time is set on
host time-domain further than (now + lapic_timer_advance_ns).
A future patch can also consider adding a min_timer_deadline_ns module parameter,
similar to min_timer_period_us to avoid races that amount of ns it takes
to run logic could still call hrtimer_start() with expiration timer set
at the past.
Reviewed-by: Joao Martins <joao.m.martins@oracle.com>
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
All architectures except MIPS were defining it in the same way,
and memory slots are handled entirely by common code so there
is no point in keeping the definition per-architecture.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
EFER.LME and EFER.NX are considered reserved if their respective feature
bits are not advertised to the guest.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
KVM allows userspace to violate consistency checks related to the
guest's CPUID model to some degree. Generally speaking, userspace has
carte blanche when it comes to guest state so long as jamming invalid
state won't negatively affect the host.
Currently this is seems to be a non-issue as most of the interesting
EFER checks are missing, e.g. NX and LME, but those will be added
shortly. Proactively exempt userspace from the CPUID checks so as not
to break userspace.
Note, the efer_reserved_bits check still applies to userspace writes as
that mask reflects the host's capabilities, e.g. KVM shouldn't allow a
guest to run with NX=1 if it has been disabled in the host.
Fixes: d80174745b ("KVM: SVM: Only allow setting of EFER_SVME when CPUID SVM is set")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Most, but not all, helpers that are related to emulating consistency
checks for nested VM-Entry return -EINVAL when a check fails. Convert
the holdouts to have consistency throughout and to make it clear that
the functions are signaling pass/fail as opposed to "resume guest" vs.
"exit to userspace".
Opportunistically fix bad indentation in nested_vmx_check_guest_state().
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Convert all top-level nested VM-Enter consistency check functions to
return 0/-EINVAL instead of failure codes, since now they can only
ever return one failure code.
This also does not give the false impression that failure information is
always consumed and/or relevant, e.g. vmx_set_nested_state() only
cares whether or not the checks were successful.
nested_check_host_control_regs() can also now be inlined into its caller,
nested_vmx_check_host_state, since the two have effectively become the
same function.
Based on a patch by Sean Christopherson.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Rename the top-level consistency check functions to (loosely) align with
the SDM. Historically, KVM has used the terms "prereq" and "postreq" to
differentiate between consistency checks that lead to VM-Fail and those
that lead to VM-Exit. The terms are vague and potentially misleading,
e.g. "postreq" might be interpreted as occurring after VM-Entry.
Note, while the SDM lumps controls and host state into a single section,
"Checks on VMX Controls and Host-State Area", split them into separate
top-level functions as the two categories of checks result in different
VM instruction errors. This split will allow for additional cleanup.
Note #2, "vmentry" is intentionally dropped from the new function names
to avoid confusion with nested_check_vm_entry_controls(), and to keep
the length of the functions names somewhat manageable.
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Per Intel's SDM, volume 3, section Checking and Loading Guest State:
Because the checking and the loading occur concurrently, a failure may
be discovered only after some state has been loaded. For this reason,
the logical processor responds to such failures by loading state from
the host-state area, as it would for a VM exit.
In other words, a failed non-register state consistency check results in
a VM-Exit, not VM-Fail. Moving the non-reg state checks also paves the
way for renaming nested_vmx_check_vmentry_postreqs() to align with the
SDM, i.e. nested_vmx_check_vmentry_guest_state().
Fixes: 26539bd0e4 ("KVM: nVMX: check vmcs12 for valid activity state")
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
According to section "Checking and Loading Guest State" in Intel SDM vol
3C, the following check is performed on vmentry:
If the "load IA32_PAT" VM-entry control is 1, the value of the field
for the IA32_PAT MSR must be one that could be written by WRMSR
without fault at CPL 0. Specifically, each of the 8 bytes in the
field must have one of the values 0 (UC), 1 (WC), 4 (WT), 5 (WP),
6 (WB), or 7 (UC-).
Signed-off-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Reviewed-by: Karl Heubaum <karl.heubaum@oracle.com>
Suggested-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
According to section "Checks on Host Control Registers and MSRs" in Intel
SDM vol 3C, the following check is performed on vmentry:
If the "load IA32_PAT" VM-exit control is 1, the value of the field
for the IA32_PAT MSR must be one that could be written by WRMSR
without fault at CPL 0. Specifically, each of the 8 bytes in the
field must have one of the values 0 (UC), 1 (WC), 4 (WT), 5 (WP),
6 (WB), or 7 (UC-).
Signed-off-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Reviewed-by: Karl Heubaum <karl.heubaum@oracle.com>
Suggested-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This check will soon be done on every nested vmentry and vmexit,
"parallelize" it using bitwise operations.
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This is not needed, PAT writes always take an MSR vmexit.
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The SVI, RVI, virtual-APIC page address and APIC-access page address fields
were left out of dump_vmcs. Add them.
KERN_CONT technically isn't SMP safe, but it's okay to use it here since
the whole of dump_vmcs() is a single huge multi-line piece of output
that isn't SMP-safe.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In __apic_accept_irq() interface trig_mode is int and actually on some code
paths it is set above u8:
kvm_apic_set_irq() extracts it from 'struct kvm_lapic_irq' where trig_mode
is u16. This is done on purpose as e.g. kvm_set_msi_irq() sets it to
(1 << 15) & e->msi.data
kvm_apic_local_deliver sets it to reg & (1 << 15).
Fix the immediate issue by making 'tm' into u16. We may also want to adjust
__apic_accept_irq() interface and use proper sizes for vector, level,
trig_mode but this is not urgent.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Changed passing argument as "0 to NULL" which resolves below sparse warning
arch/x86/kvm/x86.c:3096:61: warning: Using plain integer as NULL pointer
Signed-off-by: Hariprasad Kelam <hariprasad.kelam@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Invoking the 64-bit variation on a 32-bit kenrel will crash the guest,
trigger a WARN, and/or lead to a buffer overrun in the host, e.g.
rsm_load_state_64() writes r8-r15 unconditionally, but enum kvm_reg and
thus x86_emulate_ctxt._regs only define r8-r15 for CONFIG_X86_64.
KVM allows userspace to report long mode support via CPUID, even though
the guest is all but guaranteed to crash if it actually tries to enable
long mode. But, a pure 32-bit guest that is ignorant of long mode will
happily plod along.
SMM complicates things as 64-bit CPUs use a different SMRAM save state
area. KVM handles this correctly for 64-bit kernels, e.g. uses the
legacy save state map if userspace has hid long mode from the guest,
but doesn't fare well when userspace reports long mode support on a
32-bit host kernel (32-bit KVM doesn't support 64-bit guests).
Since the alternative is to crash the guest, e.g. by not loading state
or explicitly requesting shutdown, unconditionally use the legacy SMRAM
save state map for 32-bit KVM. If a guest has managed to get far enough
to handle SMIs when running under a weird/buggy userspace hypervisor,
then don't deliberately crash the guest since there are no downsides
(from KVM's perspective) to allow it to continue running.
Fixes: 660a5d517a ("KVM: x86: save/load state on SMM switch")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Neither AMD nor Intel CPUs have an EFER field in the legacy SMRAM save
state area, i.e. don't save/restore EFER across SMM transitions. KVM
somewhat models this, e.g. doesn't clear EFER on entry to SMM if the
guest doesn't support long mode. But during RSM, KVM unconditionally
clears EFER so that it can get back to pure 32-bit mode in order to
start loading CRs with their actual non-SMM values.
Clear EFER only when it will be written when loading the non-SMM state
so as to preserve bits that can theoretically be set on 32-bit vCPUs,
e.g. KVM always emulates EFER_SCE.
And because CR4.PAE is cleared only to play nice with EFER, wrap that
code in the long mode check as well. Note, this may result in a
compiler warning about cr4 being consumed uninitialized. Re-read CR4
even though it's technically unnecessary, as doing so allows for more
readable code and RSM emulation is not a performance critical path.
Fixes: 660a5d517a ("KVM: x86: save/load state on SMM switch")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
RSM emulation is currently broken on VMX when the interrupted guest has
CR4.VMXE=1. Stop dancing around the issue of HF_SMM_MASK being set when
loading SMSTATE into architectural state, e.g. by toggling it for
problematic flows, and simply clear HF_SMM_MASK prior to loading
architectural state (from SMRAM save state area).
Reported-by: Jon Doron <arilou@gmail.com>
Cc: Jim Mattson <jmattson@google.com>
Cc: Liran Alon <liran.alon@oracle.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Fixes: 5bea5123cb ("KVM: VMX: check nested state and CR4.VMXE against SMM")
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Tested-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Prepare for clearing HF_SMM_MASK prior to loading state from the SMRAM
save state map, i.e. kvm_smm_changed() needs to be called after state
has been loaded and so cannot be done automatically when setting
hflags from RSM.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
RSM emulation is currently broken on VMX when the interrupted guest has
CR4.VMXE=1. Rather than dance around the issue of HF_SMM_MASK being set
when loading SMSTATE into architectural state, ideally RSM emulation
itself would be reworked to clear HF_SMM_MASK prior to loading non-SMM
architectural state.
Ostensibly, the only motivation for having HF_SMM_MASK set throughout
the loading of state from the SMRAM save state area is so that the
memory accesses from GET_SMSTATE() are tagged with role.smm. Load
all of the SMRAM save state area from guest memory at the beginning of
RSM emulation, and load state from the buffer instead of reading guest
memory one-by-one.
This paves the way for clearing HF_SMM_MASK prior to loading state,
and also aligns RSM with the enter_smm() behavior, which fills a
buffer and writes SMRAM save state in a single go.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Issue was discovered when running kvm-unit-tests on KVM running as L1 on
top of Hyper-V.
When vmx_instruction_intercept unit-test attempts to run RDPMC to test
RDPMC-exiting, it is intercepted by L1 KVM which it's EXIT_REASON_RDPMC
handler raise #GP because vCPU exposed by Hyper-V doesn't support PMU.
Instead of unit-test expectation to be reflected with EXIT_REASON_RDPMC.
The reason vmx_instruction_intercept unit-test attempts to run RDPMC
even though Hyper-V doesn't support PMU is because L1 expose to L2
support for RDPMC-exiting. Which is reasonable to assume that is
supported only in case CPU supports PMU to being with.
Above issue can easily be simulated by modifying
vmx_instruction_intercept config in x86/unittests.cfg to run QEMU with
"-cpu host,+vmx,-pmu" and run unit-test.
To handle issue, change KVM to expose RDPMC-exiting only when guest
supports PMU.
Reported-by: Saar Amar <saaramar@microsoft.com>
Reviewed-by: Mihai Carabas <mihai.carabas@oracle.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Before this change, reading a VMware pseduo PMC will succeed even when
PMU is not supported by guest. This can easily be seen by running
kvm-unit-test vmware_backdoors with "-cpu host,-pmu" option.
Reviewed-by: Mihai Carabas <mihai.carabas@oracle.com>
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
guest xcr0 could leak into host when MCE happens in guest mode. Because
do_machine_check() could schedule out at a few places.
For example:
kvm_load_guest_xcr0
...
kvm_x86_ops->run(vcpu) {
vmx_vcpu_run
vmx_complete_atomic_exit
kvm_machine_check
do_machine_check
do_memory_failure
memory_failure
lock_page
In this case, host_xcr0 is 0x2ff, guest vcpu xcr0 is 0xff. After schedule
out, host cpu has guest xcr0 loaded (0xff).
In __switch_to {
switch_fpu_finish
copy_kernel_to_fpregs
XRSTORS
If any bit i in XSTATE_BV[i] == 1 and xcr0[i] == 0, XRSTORS will
generate #GP (In this case, bit 9). Then ex_handler_fprestore kicks in
and tries to reinitialize fpu by restoring init fpu state. Same story as
last #GP, except we get DOUBLE FAULT this time.
Cc: stable@vger.kernel.org
Signed-off-by: WANG Chao <chao.wang@ucloud.cn>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
I noticed that apic test from kvm-unit-tests always hangs on my EPYC 7401P,
the hanging test nmi-after-sti is trying to deliver 30000 NMIs and tracing
shows that we're sometimes able to deliver a few but never all.
When we're trying to inject an NMI we may fail to do so immediately for
various reasons, however, we still need to inject it so enable_nmi_window()
arms nmi_singlestep mode. #DB occurs as expected, but we're not checking
for pending NMIs before entering the guest and unless there's a different
event to process, the NMI will never get delivered.
Make KVM_REQ_EVENT request on the vCPU from db_interception() to make sure
pending NMIs are checked and possibly injected.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Only clear the valid bit when invalidate logical APIC id entry.
The current logic clear the valid bit, but also set the rest of
the bits (including reserved bits) to 1.
Fixes: 98d90582be ('svm: Fix AVIC DFR and LDR handling')
Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This reverts commit bb218fbcfa.
As Oren Twaig pointed out the old discussion:
https://patchwork.kernel.org/patch/8292231/
that the change coud potentially cause an extra IPI to be sent to
the destination vcpu because the AVIC hardware already set the IRR bit
before the incomplete IPI #VMEXIT with id=1 (target vcpu is not running).
Since writting to ICR and ICR2 will also set the IRR. If something triggers
the destination vcpu to get scheduled before the emulation finishes, then
this could result in an additional IPI.
Also, the issue mentioned in the commit bb218fbcfa was misdiagnosed.
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Reported-by: Oren Twaig <oren@scalemp.com>
Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
KVM bases its memory usage limits on the total number of guest pages
across all memslots. However, those limits, and the calculations to
produce them, use 32 bit unsigned integers. This can result in overflow
if a VM has more guest pages that can be represented by a u32. As a
result of this overflow, KVM can use a low limit on the number of MMU
pages it will allocate. This makes KVM unable to map all of guest memory
at once, prompting spurious faults.
Tested: Ran all kvm-unit-tests on an Intel Haswell machine. This patch
introduced no new failures.
Signed-off-by: Ben Gardon <bgardon@google.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The remaining failures of vmx.flat when EPT is disabled are caused by
incorrectly reflecting VMfails to the L1 hypervisor. What happens is
that nested_vmx_restore_host_state corrupts the guest CR3, reloading it
with the host's shadow CR3 instead, because it blindly loads GUEST_CR3
from the vmcs01.
For simplicity let's just always use hardware VMCS checks when EPT is
disabled. This way, nested_vmx_restore_host_state is not reached at
all (or at least shouldn't be reached).
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
As mentioned in the comment, there are some special cases where we can simply
clear the TPR shadow bit from the CPU-based execution controls in the vmcs02.
Handle them so that we can remove some XFAILs from vmx.flat.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Defer loading of FPU state until return to userspace. This gives
the kernel the potential to skip loading FPU state for tasks that
stay in kernel mode, or for tasks that end up with repeated
invocations of kernel_fpu_begin() & kernel_fpu_end().
The fpregs_lock/unlock() section ensures that the registers remain
unchanged. Otherwise a context switch or a bottom half could save the
registers to its FPU context and the processor's FPU registers would
became random if modified at the same time.
KVM swaps the host/guest registers on entry/exit path. This flow has
been kept as is. First it ensures that the registers are loaded and then
saves the current (host) state before it loads the guest's registers. The
swap is done at the very end with disabled interrupts so it should not
change anymore before theg guest is entered. The read/save version seems
to be cheaper compared to memcpy() in a micro benchmark.
Each thread gets TIF_NEED_FPU_LOAD set as part of fork() / fpu__copy().
For kernel threads, this flag gets never cleared which avoids saving /
restoring the FPU state for kernel threads and during in-kernel usage of
the FPU registers.
[
bp: Correct and update commit message and fix checkpatch warnings.
s/register/registers/ where it is used in plural.
minor comment corrections.
remove unused trace_x86_fpu_activate_state() TP.
]
Signed-off-by: Rik van Riel <riel@surriel.com>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Aubrey Li <aubrey.li@intel.com>
Cc: Babu Moger <Babu.Moger@amd.com>
Cc: "Chang S. Bae" <chang.seok.bae@intel.com>
Cc: Dmitry Safonov <dima@arista.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: Joerg Roedel <jroedel@suse.de>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: kvm ML <kvm@vger.kernel.org>
Cc: Nicolai Stange <nstange@suse.de>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Waiman Long <longman@redhat.com>
Cc: x86-ml <x86@kernel.org>
Cc: Yi Wang <wang.yi59@zte.com.cn>
Link: https://lkml.kernel.org/r/20190403164156.19645-24-bigeasy@linutronix.de
Dave Hansen asked for __read_pkru() and __write_pkru() to be
symmetrical.
As part of the series __write_pkru() will read back the value and only
write it if it is different.
In order to make both functions symmetrical, move the function
containing only the opcode asm into a function called like the
instruction itself.
__write_pkru() will just invoke wrpkru() but in a follow-up patch will
also read back the value.
[ bp: Convert asm opcode wrapper names to rd/wrpkru(). ]
Suggested-by: Dave Hansen <dave.hansen@intel.com>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: Joerg Roedel <jroedel@suse.de>
Cc: Juergen Gross <jgross@suse.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: kvm ML <kvm@vger.kernel.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190403164156.19645-13-bigeasy@linutronix.de
After changing the argument of __raw_xsave_addr() from a mask to
number Dave suggested to check if it makes sense to do the same for
get_xsave_addr(). As it turns out it does.
Only get_xsave_addr() needs the mask to check if the requested feature
is part of what is supported/saved and then uses the number again. The
shift operation is cheaper compared to fls64() (find last bit set).
Also, the feature number uses less opcode space compared to the mask. :)
Make the get_xsave_addr() argument a xfeature number instead of a mask
and fix up its callers.
Furthermore, use xfeature_nr and xfeature_mask consistently.
This results in the following changes to the kvm code:
feature -> xfeature_mask
index -> xfeature_nr
Suggested-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: kvm ML <kvm@vger.kernel.org>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Cc: Rik van Riel <riel@surriel.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Siarhei Liakh <Siarhei.Liakh@concurrent-rt.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190403164156.19645-12-bigeasy@linutronix.de
Referring to the "VIRTUALIZING MSR-BASED APIC ACCESSES" chapter of the
SDM, when "virtualize x2APIC mode" is 1 and "APIC-register
virtualization" is 0, a RDMSR of 808H should return the VTPR from the
virtual APIC page.
However, for nested, KVM currently fails to disable the read intercept
for this MSR. This means that a RDMSR exit takes precedence over
"virtualize x2APIC mode", and KVM passes through L1's TPR to L2,
instead of sourcing the value from L2's virtual APIC page.
This patch fixes the issue by disabling the read intercept, in VMCS02,
for the VTPR when "APIC-register virtualization" is 0.
The issue described above and fix prescribed here, were verified with
a related patch in kvm-unit-tests titled "Test VMX's virtualize x2APIC
mode w/ nested".
Signed-off-by: Marc Orr <marcorr@google.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Fixes: c992384bde ("KVM: vmx: speed up MSR bitmap merge")
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The nested_vmx_prepare_msr_bitmap() function doesn't directly guard the
x2APIC MSR intercepts with the "virtualize x2APIC mode" MSR. As a
result, we discovered the potential for a buggy or malicious L1 to get
access to L0's x2APIC MSRs, via an L2, as follows.
1. L1 executes WRMSR(IA32_SPEC_CTRL, 1). This causes the spec_ctrl
variable, in nested_vmx_prepare_msr_bitmap() to become true.
2. L1 disables "virtualize x2APIC mode" in VMCS12.
3. L1 enables "APIC-register virtualization" in VMCS12.
Now, KVM will set VMCS02's x2APIC MSR intercepts from VMCS12, and then
set "virtualize x2APIC mode" to 0 in VMCS02. Oops.
This patch closes the leak by explicitly guarding VMCS02's x2APIC MSR
intercepts with VMCS12's "virtualize x2APIC mode" control.
The scenario outlined above and fix prescribed here, were verified with
a related patch in kvm-unit-tests titled "Add leak scenario to
virt_x2apic_mode_test".
Note, it looks like this issue may have been introduced inadvertently
during a merge---see 15303ba5d1.
Signed-off-by: Marc Orr <marcorr@google.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This ensures that the address and length provided to DBG_DECRYPT and
DBG_ENCRYPT do not cause an overflow.
At the same time, pass the actual number of pages pinned in memory to
sev_unpin_memory() as a cleanup.
Reported-by: Cfir Cohen <cfir@google.com>
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
get_num_contig_pages() could potentially overflow int so make its type
consistent with its usage.
Reported-by: Cfir Cohen <cfir@google.com>
Cc: stable@vger.kernel.org
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Most (all?) x86 platforms provide a port IO based reset mechanism, e.g.
OUT 92h or CF9h. Userspace may emulate said mechanism, i.e. reset a
vCPU in response to KVM_EXIT_IO, without explicitly announcing to KVM
that it is doing a reset, e.g. Qemu jams vCPU state and resumes running.
To avoid corruping %rip after such a reset, commit 0967b7bf1c ("KVM:
Skip pio instruction when it is emulated, not executed") changed the
behavior of PIO handlers, i.e. today's "fast" PIO handling to skip the
instruction prior to exiting to userspace. Full emulation doesn't need
such tricks becase re-emulating the instruction will naturally handle
%rip being changed to point at the reset vector.
Updating %rip prior to executing to userspace has several drawbacks:
- Userspace sees the wrong %rip on the exit, e.g. if PIO emulation
fails it will likely yell about the wrong address.
- Single step exits to userspace for are effectively dropped as
KVM_EXIT_DEBUG is overwritten with KVM_EXIT_IO.
- Behavior of PIO emulation is different depending on whether it
goes down the fast path or the slow path.
Rather than skip the PIO instruction before exiting to userspace,
snapshot the linear %rip and cancel PIO completion if the current
value does not match the snapshot. For a 64-bit vCPU, i.e. the most
common scenario, the snapshot and comparison has negligible overhead
as VMCS.GUEST_RIP will be cached regardless, i.e. there is no extra
VMREAD in this case.
All other alternatives to snapshotting the linear %rip that don't
rely on an explicit reset announcenment suffer from one corner case
or another. For example, canceling PIO completion on any write to
%rip fails if userspace does a save/restore of %rip, and attempting to
avoid that issue by canceling PIO only if %rip changed then fails if PIO
collides with the reset %rip. Attempting to zero in on the exact reset
vector won't work for APs, which means adding more hooks such as the
vCPU's MP_STATE, and so on and so forth.
Checking for a linear %rip match technically suffers from corner cases,
e.g. userspace could theoretically rewrite the underlying code page and
expect a different instruction to execute, or the guest hardcodes a PIO
reset at 0xfffffff0, but those are far, far outside of what can be
considered normal operation.
Fixes: 432baf60ee ("KVM: VMX: use kvm_fast_pio_in for handling IN I/O")
Cc: <stable@vger.kernel.org>
Reported-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When userspace initializes guest vCPUs it may want to zero all supported
MSRs including Hyper-V related ones including HV_X64_MSR_STIMERn_CONFIG/
HV_X64_MSR_STIMERn_COUNT. With commit f3b138c5d8 ("kvm/x86: Update SynIC
timers on guest entry only") we began doing stimer_mark_pending()
unconditionally on every config change.
The issue I'm observing manifests itself as following:
- Qemu writes 0 to STIMERn_{CONFIG,COUNT} MSRs and marks all stimers as
pending in stimer_pending_bitmap, arms KVM_REQ_HV_STIMER;
- kvm_hv_has_stimer_pending() starts returning true;
- kvm_vcpu_has_events() starts returning true;
- kvm_arch_vcpu_runnable() starts returning true;
- when kvm_arch_vcpu_ioctl_run() gets into
(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED) case:
- kvm_vcpu_block() gets in 'kvm_vcpu_check_block(vcpu) < 0' and returns
immediately, avoiding normal wait path;
- -EAGAIN is returned from kvm_arch_vcpu_ioctl_run() immediately forcing
userspace to retry.
So instead of normal wait path we get a busy loop on all secondary vCPUs
before they get INIT signal. This seems to be undesirable, especially given
that this happens even when Hyper-V extensions are not used.
Generally, it seems to be pointless to mark an stimer as pending in
stimer_pending_bitmap and arm KVM_REQ_HV_STIMER as the only thing
kvm_hv_process_stimers() will do is clear the corresponding bit. We may
just not mark disabled timers as pending instead.
Fixes: f3b138c5d8 ("kvm/x86: Update SynIC timers on guest entry only")
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Since MSR_IA32_ARCH_CAPABILITIES is emualted unconditionally even if
host doesn't suppot it. We should move it to array emulated_msrs from
arry msrs_to_save, to report to userspace that guest support this msr.
Signed-off-by: Xiaoyao Li <xiaoyao.li@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The CPUID flag ARCH_CAPABILITIES is unconditioinally exposed to host
userspace for all x86 hosts, i.e. KVM advertises ARCH_CAPABILITIES
regardless of hardware support under the pretense that KVM fully
emulates MSR_IA32_ARCH_CAPABILITIES. Unfortunately, only VMX hosts
handle accesses to MSR_IA32_ARCH_CAPABILITIES (despite KVM_GET_MSRS
also reporting MSR_IA32_ARCH_CAPABILITIES for all hosts).
Move the MSR_IA32_ARCH_CAPABILITIES handling to common x86 code so
that it's emulated on AMD hosts.
Fixes: 1eaafe91a0 ("kvm: x86: IA32_ARCH_CAPABILITIES is always supported")
Cc: stable@vger.kernel.org
Reported-by: Xiaoyao Li <xiaoyao.li@linux.intel.com>
Cc: Jim Mattson <jmattson@google.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Replace kvm_flush_remote_tlbs with kvm_flush_remote_tlbs_with_address
in slot_handle_level_range. When range based flushes are not enabled
kvm_flush_remote_tlbs_with_address falls back to kvm_flush_remote_tlbs.
This changes the behavior of many functions that indirectly use
slot_handle_level_range, iff the range based flushes are enabled. The
only potential problem I see with this is that kvm->tlbs_dirty will be
cleared less often, however the only caller of slot_handle_level_range that
checks tlbs_dirty is kvm_mmu_notifier_invalidate_range_start which
checks it and does a kvm_flush_remote_tlbs after calling
kvm_unmap_hva_range anyway.
Tested: Ran all kvm-unit-tests on a Intel Haswell machine with and
without this patch. The patch introduced no new failures.
Signed-off-by: Ben Gardon <bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
* nr_mmu_pages would be non-zero only if kvm->arch.n_requested_mmu_pages is
non-zero.
* nr_mmu_pages is always non-zero, since kvm_mmu_calculate_mmu_pages()
never return zero.
Based on these two reasons, we can merge the two *if* clause and use the
return value from kvm_mmu_calculate_mmu_pages() directly. This simplify
the code and also eliminate the possibility for reader to believe
nr_mmu_pages would be zero.
Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
According to section "Checks on VMX Controls" in Intel SDM vol 3C, the
following check is performed on vmentry of L2 guests:
On processors that support Intel 64 architecture, the IA32_SYSENTER_ESP
field and the IA32_SYSENTER_EIP field must each contain a canonical
address.
Signed-off-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Reviewed-by: Mihai Carabas <mihai.carabas@oracle.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Errata#1096:
On a nested data page fault when CR.SMAP=1 and the guest data read
generates a SMAP violation, GuestInstrBytes field of the VMCB on a
VMEXIT will incorrectly return 0h instead the correct guest
instruction bytes .
Recommend Workaround:
To determine what instruction the guest was executing the hypervisor
will have to decode the instruction at the instruction pointer.
The recommended workaround can not be implemented for the SEV
guest because guest memory is encrypted with the guest specific key,
and instruction decoder will not be able to decode the instruction
bytes. If we hit this errata in the SEV guest then log the message
and request a guest shutdown.
Reported-by: Venkatesh Srinivas <venkateshs@google.com>
Cc: Jim Mattson <jmattson@google.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The cr4_pae flag is a bit of a misnomer, its purpose is really to track
whether the guest PTE that is being shadowed is a 4-byte entry or an
8-byte entry. Prior to supporting nested EPT, the size of the gpte was
reflected purely by CR4.PAE. KVM fudged things a bit for direct sptes,
but it was mostly harmless since the size of the gpte never mattered.
Now that a spte may be tracking an indirect EPT entry, relying on
CR4.PAE is wrong and ill-named.
For direct shadow pages, force the gpte_size to '1' as they are always
8-byte entries; EPT entries can only be 8-bytes and KVM always uses
8-byte entries for NPT and its identity map (when running with EPT but
not unrestricted guest).
Likewise, nested EPT entries are always 8-bytes. Nested EPT presents a
unique scenario as the size of the entries are not dictated by CR4.PAE,
but neither is the shadow page a direct map. To handle this scenario,
set cr0_wp=1 and smap_andnot_wp=1, an otherwise impossible combination,
to denote a nested EPT shadow page. Use the information to avoid
incorrectly zapping an unsync'd indirect page in __kvm_sync_page().
Providing a consistent and accurate gpte_size fixes a bug reported by
Vitaly where fast_cr3_switch() always fails when switching from L2 to
L1 as kvm_mmu_get_page() would force role.cr4_pae=0 for direct pages,
whereas kvm_calc_mmu_role_common() would set it according to CR4.PAE.
Fixes: 7dcd575520 ("x86/kvm/mmu: check if tdp/shadow MMU reconfiguration is needed")
Reported-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Tested-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Explicitly zero out quadrant and invalid instead of inheriting them from
the root_mmu. Functionally, this patch is a nop as we (should) never
set quadrant for a direct mapped (EPT) root_mmu and nested EPT is only
allowed if EPT is used for L1, and the root_mmu will never be invalid at
this point.
Explicitly setting flags sets the stage for repurposing the legacy
paging bits in role, e.g. nxe, cr0_wp, and sm{a,e}p_andnot_wp, at which
point 'smm' would be the only flag to be inherited from root_mmu.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
for 32-bit guests
s390: interrupt cleanup, introduction of the Guest Information Block,
preparation for processor subfunctions in cpu models
PPC: bug fixes and improvements, especially related to machine checks
and protection keys
x86: many, many cleanups, including removing a bunch of MMU code for
unnecessary optimizations; plus AVIC fixes.
Generic: memcg accounting
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJci+7XAAoJEL/70l94x66DUMkIAKvEefhceySHYiTpfefjLjIC
16RewgHa+9CO4Oo5iXiWd90fKxtXLXmxDQOS4VGzN0rxvLGRw/fyXIxL1MDOkaAO
l8SLSNuewY4XBUgISL3PMz123r18DAGOuy9mEcYU/IMesYD2F+wy5lJ17HIGq6X2
RpoF1p3qO1jfkPTKOob6Ixd4H5beJNPKpdth7LY3PJaVhDxgouj32fxnLnATVSnN
gENQ10fnt8BCjshRYW6Z2/9bF15JCkUFR1xdBW2/xh1oj+kvPqqqk2bEN1eVQzUy
2hT/XkwtpthqjSbX8NNavWRSFnOnbMLTRKQyIXmFVsM5VoSrwtiGsCFzBgcT++I=
=XIzU
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
"ARM:
- some cleanups
- direct physical timer assignment
- cache sanitization for 32-bit guests
s390:
- interrupt cleanup
- introduction of the Guest Information Block
- preparation for processor subfunctions in cpu models
PPC:
- bug fixes and improvements, especially related to machine checks
and protection keys
x86:
- many, many cleanups, including removing a bunch of MMU code for
unnecessary optimizations
- AVIC fixes
Generic:
- memcg accounting"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (147 commits)
kvm: vmx: fix formatting of a comment
KVM: doc: Document the life cycle of a VM and its resources
MAINTAINERS: Add KVM selftests to existing KVM entry
Revert "KVM/MMU: Flush tlb directly in the kvm_zap_gfn_range()"
KVM: PPC: Book3S: Add count cache flush parameters to kvmppc_get_cpu_char()
KVM: PPC: Fix compilation when KVM is not enabled
KVM: Minor cleanups for kvm_main.c
KVM: s390: add debug logging for cpu model subfunctions
KVM: s390: implement subfunction processor calls
arm64: KVM: Fix architecturally invalid reset value for FPEXC32_EL2
KVM: arm/arm64: Remove unused timer variable
KVM: PPC: Book3S: Improve KVM reference counting
KVM: PPC: Book3S HV: Fix build failure without IOMMU support
Revert "KVM: Eliminate extra function calls in kvm_get_dirty_log_protect()"
x86: kvmguest: use TSC clocksource if invariant TSC is exposed
KVM: Never start grow vCPU halt_poll_ns from value below halt_poll_ns_grow_start
KVM: Expose the initial start value in grow_halt_poll_ns() as a module parameter
KVM: grow_halt_poll_ns() should never shrink vCPU halt_poll_ns
KVM: x86/mmu: Consolidate kvm_mmu_zap_all() and kvm_mmu_zap_mmio_sptes()
KVM: x86/mmu: WARN if zapping a MMIO spte results in zapping children
...
This reverts commit 71883a62fc.
The above commit contains an optimization to kvm_zap_gfn_range which
uses gfn-limited TLB flushes, if enabled. If using these limited flushes,
kvm_zap_gfn_range passes lock_flush_tlb=false to slot_handle_level_range
which creates a race when the function unlocks to call cond_resched.
See an example of this race below:
CPU 0 CPU 1 CPU 3
// zap_direct_gfn_range
mmu_lock()
// *ptep == pte_1
*ptep = 0
if (lock_flush_tlb)
flush_tlbs()
mmu_unlock()
// In invalidate range
// MMU notifier
mmu_lock()
if (pte != 0)
*ptep = 0
flush = true
if (flush)
flush_remote_tlbs()
mmu_unlock()
return
// Host MM reallocates
// page previously
// backing guest memory.
// Guest accesses
// invalid page
// through pte_1
// in its TLB!!
Tested: Ran all kvm-unit-tests on a Intel Haswell machine with and
without this patch. The patch introduced no new failures.
Signed-off-by: Ben Gardon <bgardon@google.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move L!TF to a separate directory so the MDS stuff can be added at the
side. Otherwise the all hardware vulnerabilites have their own top level
entry. Should have done that right away.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Jon Masters <jcm@redhat.com>
CPUs which are affected by L1TF and MDS mitigate MDS with the L1D Flush on
VMENTER when updated microcode is installed.
If a CPU is not affected by L1TF or if the L1D Flush is not in use, then
MDS mitigation needs to be invoked explicitly.
For these cases, follow the host mitigation state and invoke the MDS
mitigation before VMENTER.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Jon Masters <jcm@redhat.com>
Tested-by: Jon Masters <jcm@redhat.com>
X86_FEATURE_MD_CLEAR is a new CPUID bit which is set when microcode
provides the mechanism to invoke a flush of various exploitable CPU buffers
by invoking the VERW instruction.
Hand it through to guests so they can adjust their mitigations.
This also requires corresponding qemu changes, which are available
separately.
[ tglx: Massaged changelog ]
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Reviewed-by: Jon Masters <jcm@redhat.com>
Tested-by: Jon Masters <jcm@redhat.com>
Previously, commit 7dcd575520 ("x86/kvm/mmu: check if tdp/shadow
MMU reconfiguration is needed") offered some optimization to avoid
the unnecessary reconfiguration. Yet one scenario is broken - when
cpuid changes VM's maximum physical address width, reconfiguration
is needed to reset the reserved bits. Also, the TDP may need to
reset its shadow_root_level when this value is changed.
To fix this, a new field, maxphyaddr, is introduced in the extended
role structure to keep track of the configured guest physical address
width.
Signed-off-by: Yu Zhang <yu.c.zhang@linux.intel.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Previously, 'commit 372fddf709 ("x86/mm: Introduce the 'no5lvl' kernel
parameter")' cleared X86_FEATURE_LA57 in boot_cpu_data, if Linux chooses
to not run in 5-level paging mode. Yet boot_cpu_data is queried by
do_cpuid_ent() as the host capability later when creating vcpus, and Qemu
will not be able to detect this feature and create VMs with LA57 feature.
As discussed earlier, VMs can still benefit from extended linear address
width, e.g. to enhance features like ASLR. So we would like to fix this,
by return the true hardware capability when Qemu queries.
Signed-off-by: Yu Zhang <yu.c.zhang@linux.intel.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Commit 14c07ad89f ("x86/kvm/mmu: introduce guest_mmu") brought one subtle
change: previously, when switching back from L2 to L1, we were resetting
MMU hooks (like mmu->get_cr3()) in kvm_init_mmu() called from
nested_vmx_load_cr3() and now we do that in nested_ept_uninit_mmu_context()
when we re-target vcpu->arch.mmu pointer.
The change itself looks logical: if nested_ept_init_mmu_context() changes
something than nested_ept_uninit_mmu_context() restores it back. There is,
however, one thing: the following call chain:
nested_vmx_load_cr3()
kvm_mmu_new_cr3()
__kvm_mmu_new_cr3()
fast_cr3_switch()
cached_root_available()
now happens with MMU hooks pointing to the new MMU (root MMU in our case)
while previously it was happening with the old one. cached_root_available()
tries to stash current root but it is incorrect to read current CR3 with
mmu->get_cr3(), we need to use old_mmu->get_cr3() which in case we're
switching from L2 to L1 is guest_mmu. (BTW, in shadow page tables case this
is a non-issue because we don't switch MMU).
While we could've tried to guess that we're switching between MMUs and call
the right ->get_cr3() from cached_root_available() this seems to be overly
complicated. Instead, just stash the corresponding CR3 when setting
root_hpa and make cached_root_available() use the stashed value.
Fixes: 14c07ad89f ("x86/kvm/mmu: introduce guest_mmu")
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
...via a new helper, __kvm_mmu_zap_all(). An alternative to passing a
'bool mmio_only' would be to pass a callback function to filter the
shadow page, i.e. to make __kvm_mmu_zap_all() generic and reusable, but
zapping all shadow pages is a last resort, i.e. making the helper less
extensible is a feature of sorts. And the explicit MMIO parameter makes
it easy to preserve the WARN_ON_ONCE() if a restart is triggered when
zapping MMIO sptes.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Paolo expressed a concern that kvm_mmu_zap_mmio_sptes() could have a
quadratic runtime[1], i.e. restarting the spte walk while zapping only
MMIO sptes could result in re-walking large portions of the list over
and over due to the non-MMIO sptes encountered before the restart not
being removed.
At the time, the concern was legitimate as the walk was restarted when
any spte was zapped. But that is no longer the case as the walk is now
restarted iff one or more children have been zapped, which is necessary
because zapping children makes the active_mmu_pages list unstable.
Furthermore, it should be impossible for an MMIO spte to have children,
i.e. zapping an MMIO spte should never result in zapping children. In
other words, kvm_mmu_zap_mmio_sptes() should never restart its walk, and
so should always execute in linear time. WARN if this assertion fails.
Although it should never be needed, leave the restart logic in place.
In normal operation, the cost is at worst an extra CMP+Jcc, and if for
some reason the list does become unstable, not restarting would likely
crash KVM, or worse, the kernel.
[1] https://patchwork.kernel.org/patch/10756589/#22452085
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The return value of kvm_mmu_prepare_zap_page() has evolved to become
overloaded to convey two separate pieces of information. 1) was at
least one page zapped and 2) has the list of MMU pages become unstable.
In it's original incarnation (as kvm_mmu_zap_page()), there was no
return value at all. Commit 0738541396 ("KVM: MMU: awareness of new
kvm_mmu_zap_page behaviour") added a return value in preparation for
commit 4731d4c7a0 ("KVM: MMU: out of sync shadow core"). Although
the return value was of type 'int', it was actually used as a boolean
to indicate whether or not active_mmu_pages may have become unstable due
to zapping children. Walking a list with list_for_each_entry_safe()
only protects against deleting/moving the current entry, i.e. zapping a
child page would break iteration due to modifying any number of entries.
Later, commit 60c8aec6e2 ("KVM: MMU: use page array in unsync walk")
modified mmu_zap_unsync_children() to return an approximation of the
number of children zapped. This was not intentional, it was simply a
side effect of how the code was written.
The unintented side affect was then morphed into an actual feature by
commit 77662e0028 ("KVM: MMU: fix kvm_mmu_zap_page() and its calling
path"), which modified kvm_mmu_change_mmu_pages() to use the number of
zapped pages when determining the number of MMU pages in use by the VM.
Finally, commit 54a4f0239f ("KVM: MMU: make kvm_mmu_zap_page() return
the number of pages it actually freed") added the initial page to the
return value to make its behavior more consistent with what most users
would expect. Incorporating the initial parent page in the return value
of kvm_mmu_zap_page() breaks the original usage of restarting a list
walk on a non-zero return value to handle a potentially unstable list,
i.e. walks will unnecessarily restart when any page is zapped.
Fix this by restoring the original behavior of kvm_mmu_zap_page(), i.e.
return a boolean to indicate that the list may be unstable and move the
number of zapped children to a dedicated parameter. Since the majority
of callers to kvm_mmu_prepare_zap_page() don't care about either return
value, preserve the current definition of kvm_mmu_prepare_zap_page() by
making it a wrapper of a new helper, __kvm_mmu_prepare_zap_page(). This
avoids having to update every call site and also provides cleaner code
for functions that only care about the number of pages zapped.
Fixes: 54a4f0239f ("KVM: MMU: make kvm_mmu_zap_page() return
the number of pages it actually freed")
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Remove x86 KVM's fast invalidate mechanism, i.e. revert all patches
from the original series[1], now that all users of the fast invalidate
mechanism are gone.
This reverts commit 5304b8d37c.
[1] https://lkml.kernel.org/r/1369960590-14138-1-git-send-email-xiaoguangrong@linux.vnet.ibm.com
Cc: Xiao Guangrong <guangrong.xiao@gmail.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Call cond_resched_lock() when zapping all sptes to reschedule if needed
or to release and reacquire mmu_lock in case of contention. There is no
need to flush or zap when temporarily dropping mmu_lock as zapping all
sptes is done only when the owning userspace VMM has exited or when the
VM is being destroyed, i.e. there is no interplay with memslots or MMIO
generations to worry about.
Be paranoid and restart the walk if mmu_lock is dropped to avoid any
potential issues with consuming a stale iterator. The overhead in doing
so is negligible as at worst there will be a few root shadow pages at
the head of the list, i.e. the iterator is essentially the head of the
list already.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
...to guarantee forward progress. When zapped, root pages are marked
invalid and moved to the head of the active pages list until they are
explicitly freed. Theoretically, having unzappable root pages at the
head of the list could prevent kvm_mmu_zap_all() from making forward
progress were a future patch to add a loop restart after processing a
page, e.g. to drop mmu_lock on contention.
Although kvm_mmu_prepare_zap_page() can theoretically take action on
invalid pages, e.g. to zap unsync children, functionally it's not
necessary (root pages will be re-zapped when freed) and practically
speaking the odds of e.g. @unsync or @unsync_children becoming %true
while zapping all pages is basically nil.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Revert to a slow kvm_mmu_zap_all() for kvm_arch_flush_shadow_all().
Flushing all shadow entries is only done during VM teardown, i.e.
kvm_arch_flush_shadow_all() is only called when the associated MM struct
is being released or when the VM instance is being freed.
Although the performance of teardown itself isn't critical, KVM should
still voluntarily schedule to play nice with the rest of the kernel;
but that can be done without the fast invalidate mechanism in a future
patch.
This reverts commit 6ca18b6950.
Cc: Xiao Guangrong <guangrong.xiao@gmail.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
...as part of removing x86 KVM's fast invalidate mechanism, i.e. this
is one part of a revert all patches from the series that introduced the
mechanism[1].
This reverts commit 2248b02321.
[1] https://lkml.kernel.org/r/1369960590-14138-1-git-send-email-xiaoguangrong@linux.vnet.ibm.com
Cc: Xiao Guangrong <guangrong.xiao@gmail.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
...as part of removing x86 KVM's fast invalidate mechanism, i.e. this
is one part of a revert all patches from the series that introduced the
mechanism[1].
This reverts commit 35006126f0.
[1] https://lkml.kernel.org/r/1369960590-14138-1-git-send-email-xiaoguangrong@linux.vnet.ibm.com
Cc: Xiao Guangrong <guangrong.xiao@gmail.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Unwinding optimizations related to obsolete pages is a step towards
removing x86 KVM's fast invalidate mechanism, i.e. this is one part of
a revert all patches from the series that introduced the mechanism[1].
This reverts commit e7d11c7a89.
[1] https://lkml.kernel.org/r/1369960590-14138-1-git-send-email-xiaoguangrong@linux.vnet.ibm.com
Cc: Xiao Guangrong <guangrong.xiao@gmail.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Unwinding optimizations related to obsolete pages is a step towards
removing x86 KVM's fast invalidate mechanism, i.e. this is one part of
a revert all patches from the series that introduced the mechanism[1].
This reverts commit f34d251d66.
[1] https://lkml.kernel.org/r/1369960590-14138-1-git-send-email-xiaoguangrong@linux.vnet.ibm.com
Cc: Xiao Guangrong <guangrong.xiao@gmail.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Unwinding optimizations related to obsolete pages is a step towards
removing x86 KVM's fast invalidate mechanism, i.e. this is one part of
a revert all patches from the series that introduced the mechanism[1].
This reverts commit 365c886860.
[1] https://lkml.kernel.org/r/1369960590-14138-1-git-send-email-xiaoguangrong@linux.vnet.ibm.com
Cc: Xiao Guangrong <guangrong.xiao@gmail.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Unwinding usage of is_obsolete() is a step towards removing x86's fast
invalidate mechanism, i.e. this is one part of a revert all patches from
the series that introduced the mechanism[1].
This is a partial revert of commit 05988d728d ("KVM: MMU: reduce
KVM_REQ_MMU_RELOAD when root page is zapped").
[1] https://lkml.kernel.org/r/1369960590-14138-1-git-send-email-xiaoguangrong@linux.vnet.ibm.com
Cc: Xiao Guangrong <guangrong.xiao@gmail.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Call cond_resched_lock() when zapping MMIO to reschedule if needed or to
release and reacquire mmu_lock in case of contention. There is no need
to flush or zap when temporarily dropping mmu_lock as zapping MMIO sptes
is done when holding the memslots lock and with the "update in-progress"
bit set in the memslots generation, which disables MMIO spte caching.
The walk does need to be restarted if mmu_lock is dropped as the active
pages list may be modified.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Revert back to a dedicated (and slower) mechanism for handling the
scenario where all MMIO shadow PTEs need to be zapped due to overflowing
the MMIO generation number. The MMIO generation scenario is almost
literally a one-in-a-million occurrence, i.e. is not a performance
sensitive scenario.
Restoring kvm_mmu_zap_mmio_sptes() leaves VM teardown as the only user
of kvm_mmu_invalidate_zap_all_pages() and paves the way for removing
the fast invalidate mechanism altogether.
This reverts commit a8eca9dcc6.
Cc: Xiao Guangrong <guangrong.xiao@gmail.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Modify kvm_mmu_invalidate_zap_pages_in_memslot(), a.k.a. the x86 MMU's
handler for kvm_arch_flush_shadow_memslot(), to zap only the pages/PTEs
that actually belong to the memslot being removed. This improves
performance, especially why the deleted memslot has only a few shadow
entries, or even no entries. E.g. a microbenchmark to access regular
memory while concurrently reading PCI ROM to trigger memslot deletion
showed a 5% improvement in throughput.
Cc: Xiao Guangrong <guangrong.xiao@gmail.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
...and into a separate helper, kvm_mmu_remote_flush_or_zap(), that does
not require a vcpu so that the code can be (re)used by
kvm_mmu_invalidate_zap_pages_in_memslot().
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
...so that kvm_mmu_invalidate_zap_pages_in_memslot() can utilize the
helpers in future patches.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
...now that KVM won't explode by moving it out of bit 0. Using bit 63
eliminates the need to jump over bit 0, e.g. when calculating a new
memslots generation or when propagating the memslots generation to an
MMIO spte.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The code to propagate the memslots generation number into MMIO sptes is
a bit convoluted. The "what" is relatively straightfoward, e.g. the
comment explaining which bits go where is quite readable, but the "how"
requires a lot of staring to understand what is happening. For example,
'MMIO_GEN_LOW_SHIFT' is actually used to calculate the high bits of the
spte, while 'MMIO_SPTE_GEN_LOW_SHIFT' is used to calculate the low bits.
Refactor the code to:
- use #defines whose values align with the bits defined in the comment
- use consistent code for both the high and low mask
- explicitly highlight the handling of bit 0 (update in-progress flag)
- explicitly call out that the defines are for MMIO sptes (to avoid
confusion with the per-vCPU MMIO cache, which uses the full memslots
generation)
In addition to making the code a little less magical, this paves the way
for moving the update in-progress flag to bit 63 without having to
simultaneously rewrite all of the MMIO spte code.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
KVM currently uses an 'unsigned int' for the MMIO generation number
despite it being derived from the 64-bit memslots generation and
being propagated to (potentially) 64-bit sptes. There is no hidden
agenda behind using an 'unsigned int', it's done simply because the
MMIO generation will never set bits above bit 19.
Passing a u64 will allow the "update in-progress" flag to be relocated
from bit 0 to bit 63 and removes the need to cast the generation back
to a u64 when propagating it to a spte.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
KVM uses bit 0 of the memslots generation as an "update in-progress"
flag, which is used by x86 to prevent caching MMIO access while the
memslots are changing. Although the intended behavior is flag-like,
e.g. MMIO sptes intentionally drop the in-progress bit so as to avoid
caching data from in-flux memslots, the implementation oftentimes treats
the bit as part of the generation number itself, e.g. incrementing the
generation increments twice, once to set the flag and once to clear it.
Prior to commit 4bd518f159 ("KVM: use separate generations for
each address space"), incorporating the "update in-progress" bit into
the generation number largely made sense, e.g. "real" generations are
even, "bogus" generations are odd, most code doesn't need to be aware of
the bit, etc...
Now that unique memslots generation numbers are assigned to each address
space, stealthing the in-progress status into the generation number
results in a wide variety of subtle code, e.g. kvm_create_vm() jumps
over bit 0 when initializing the memslots generation without any hint as
to why.
Explicitly define the flag and convert as much code as possible (which
isn't much) to actually treat it like a flag. This paves the way for
eventually using a different bit for "update in-progress" so that it can
be a flag in truth instead of a awkward extension to the generation
number.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When installing new memslots, KVM sets bit 0 of the generation number to
indicate that an update is in-progress. Until the update is complete,
there are no guarantees as to whether a vCPU will see the old or the new
memslots. Explicity prevent caching MMIO accesses so as to avoid using
an access cached from the old memslots after the new memslots have been
installed.
Note that it is unclear whether or not disabling caching during the
update window is strictly necessary as there is no definitive
documentation as to what ordering guarantees KVM provides with respect
to updating memslots. That being said, the MMIO spte code does not
allow reusing sptes created while an update is in-progress, and the
associated documentation explicitly states:
We do not want to use an MMIO sptes created with an odd generation
number, ... If KVM is unlucky and creates an MMIO spte while the
low bit is 1, the next access to the spte will always be a cache miss.
At the very least, disabling the per-vCPU MMIO cache during updates will
make its behavior consistent with the MMIO spte behavior and
documentation.
Fixes: 56f17dd3fb ("kvm: x86: fix stale mmio cache bug")
Cc: <stable@vger.kernel.org>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The check to detect a wrap of the MMIO generation explicitly looks for a
generation number of zero. Now that unique memslots generation numbers
are assigned to each address space, only address space 0 will get a
generation number of exactly zero when wrapping. E.g. when address
space 1 goes from 0x7fffe to 0x80002, the MMIO generation number will
wrap to 0x2. Adjust the MMIO generation to strip the address space
modifier prior to checking for a wrap.
Fixes: 4bd518f159 ("KVM: use separate generations for each address space")
Cc: <stable@vger.kernel.org>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
kvm_arch_memslots_updated() is at this point in time an x86-specific
hook for handling MMIO generation wraparound. x86 stashes 19 bits of
the memslots generation number in its MMIO sptes in order to avoid
full page fault walks for repeat faults on emulated MMIO addresses.
Because only 19 bits are used, wrapping the MMIO generation number is
possible, if unlikely. kvm_arch_memslots_updated() alerts x86 that
the generation has changed so that it can invalidate all MMIO sptes in
case the effective MMIO generation has wrapped so as to avoid using a
stale spte, e.g. a (very) old spte that was created with generation==0.
Given that the purpose of kvm_arch_memslots_updated() is to prevent
consuming stale entries, it needs to be called before the new generation
is propagated to memslots. Invalidating the MMIO sptes after updating
memslots means that there is a window where a vCPU could dereference
the new memslots generation, e.g. 0, and incorrectly reuse an old MMIO
spte that was created with (pre-wrap) generation==0.
Fixes: e59dbe09f8 ("KVM: Introduce kvm_arch_memslots_updated()")
Cc: <stable@vger.kernel.org>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
There are many KVM kernel memory allocations which are tied to the life of
the VM process and should be charged to the VM process's cgroup. If the
allocations aren't tied to the process, the OOM killer will not know
that killing the process will free the associated kernel memory.
Add __GFP_ACCOUNT flags to many of the allocations which are not yet being
charged to the VM process's cgroup.
Tested:
Ran all kvm-unit-tests on a 64 bit Haswell machine, the patch
introduced no new failures.
Ran a kernel memory accounting test which creates a VM to touch
memory and then checks that the kernel memory allocated for the
process is within certain bounds.
With this patch we account for much more of the vmalloc and slab memory
allocated for the VM.
Signed-off-by: Ben Gardon <bgardon@google.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
There are many KVM kernel memory allocations which are tied to the life of
the VM process and should be charged to the VM process's cgroup. If the
allocations aren't tied to the process, the OOM killer will not know
that killing the process will free the associated kernel memory.
Add __GFP_ACCOUNT flags to many of the allocations which are not yet being
charged to the VM process's cgroup.
Tested:
Ran all kvm-unit-tests on a 64 bit Haswell machine, the patch
introduced no new failures.
Ran a kernel memory accounting test which creates a VM to touch
memory and then checks that the kernel memory allocated for the
process is within certain bounds.
With this patch we account for much more of the vmalloc and slab memory
allocated for the VM.
Signed-off-by: Ben Gardon <bgardon@google.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
There are many KVM kernel memory allocations which are tied to the life of
the VM process and should be charged to the VM process's cgroup. If the
allocations aren't tied to the process, the OOM killer will not know
that killing the process will free the associated kernel memory.
Add __GFP_ACCOUNT flags to many of the allocations which are not yet being
charged to the VM process's cgroup.
Tested:
Ran all kvm-unit-tests on a 64 bit Haswell machine, the patch
introduced no new failures.
Ran a kernel memory accounting test which creates a VM to touch
memory and then checks that the kernel memory allocated for the
process is within certain bounds.
With this patch we account for much more of the vmalloc and slab memory
allocated for the VM.
There remain a few allocations which should be charged to the VM's
cgroup but are not. In x86, they include:
vcpu->arch.pio_data
There allocations are unaccounted in this patch because they are mapped
to userspace, and accounting them to a cgroup causes problems. This
should be addressed in a future patch.
Signed-off-by: Ben Gardon <bgardon@google.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The preemption timer can be started even if there is a vmentry
failure during or after loading guest state. That is pointless,
move the call after all conditions have been checked.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Previously, 'commit f99e3daf94 ("KVM: x86: Add Intel PT
virtualization work mode")' work mode' offered framework
to support Intel PT virtualization. However, the patch has
some typos in vmx_vmentry_ctrl() and vmx_vmexit_ctrl(), e.g.
used wrong flags and wrong variable, which will cause the
VM entry failure later.
Fixes: 'commit f99e3daf94 ("KVM: x86: Add Intel PT virtualization work mode")'
Signed-off-by: Yu Zhang <yu.c.zhang@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Ensure that the VCPU free path goes through vmx_leave_nested and
thus nested_vmx_vmexit, so that the cancellation of the timer does
not have to be in free_nested. In addition, because some paths through
nested_vmx_vmexit do not go through sync_vmcs12, the cancellation of
the timer is moved there.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Some Posted-Interrupts from passthrough devices may be lost or
overwritten when the vCPU is in runnable state.
The SN (Suppress Notification) of PID (Posted Interrupt Descriptor) will
be set when the vCPU is preempted (vCPU in KVM_MP_STATE_RUNNABLE state
but not running on physical CPU). If a posted interrupt coming at this
time, the irq remmaping facility will set the bit of PIR (Posted
Interrupt Requests) without ON (Outstanding Notification).
So this interrupt can't be sync to APIC virtualization register and
will not be handled by Guest because ON is zero.
Signed-off-by: Luwei Kang <luwei.kang@intel.com>
[Eliminate the pi_clear_sn fast path. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
MOVDIR64B moves 64-bytes as direct-store with 64-bytes write atomicity.
Direct store is implemented by using write combining (WC) for writing
data directly into memory without caching the data.
Availability of the MOVDIR64B instruction is indicated by the presence
of the CPUID feature flag MOVDIR64B (CPUID.0x07.0x0:ECX[bit 28]).
This patch exposes the movdir64b feature to the guest.
The release document ref below link:
https://software.intel.com/sites/default/files/managed/c5/15/\
architecture-instruction-set-extensions-programming-reference.pdf
Signed-off-by: Liu Jingqi <jingqi.liu@intel.com>
Cc: Xu Tao <tao3.xu@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
MOVDIRI moves doubleword or quadword from register to memory through
direct store which is implemented by using write combining (WC) for
writing data directly into memory without caching the data.
Availability of the MOVDIRI instruction is indicated by the presence of
the CPUID feature flag MOVDIRI(CPUID.0x07.0x0:ECX[bit 27]).
This patch exposes the movdiri feature to the guest.
The release document ref below link:
https://software.intel.com/sites/default/files/managed/c5/15/\
architecture-instruction-set-extensions-programming-reference.pdf
Signed-off-by: Liu Jingqi <jingqi.liu@intel.com>
Cc: Xu Tao <tao3.xu@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
AMD's SME/SEV is no longer the only case which reduces supported
physical address bits, since Intel introduced Multi-key Total Memory
Encryption (MKTME), which repurposes high bits of physical address as
keyID, thus effectively shrinks supported physical address bits. To
cover both cases (and potential similar future features), kernel MM
introduced generic dynamaic physical address mask instead of hard-coded
__PHYSICAL_MASK in 'commit 94d49eb30e ("x86/mm: Decouple dynamic
__PHYSICAL_MASK from AMD SME")'. KVM should use that too.
Change PT64_BASE_ADDR_MASK to use kernel dynamic physical address mask
when it is enabled, instead of sme_clr. PT64_DIR_BASE_ADDR_MASK is also
deleted since it is not used at all.
Signed-off-by: Kai Huang <kai.huang@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
VMX is only accessible in protected mode, remove a confusing check
that causes the conditional to lack a final "else" branch.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Regarding segments with a limit==0xffffffff, the SDM officially states:
When the effective limit is FFFFFFFFH (4 GBytes), these accesses may
or may not cause the indicated exceptions. Behavior is
implementation-specific and may vary from one execution to another.
In practice, all CPUs that support VMX ignore limit checks for "flat
segments", i.e. an expand-up data or code segment with base=0 and
limit=0xffffffff. This is subtly different than wrapping the effective
address calculation based on the address size, as the flat segment
behavior also applies to accesses that would wrap the 4g boundary, e.g.
a 4-byte access starting at 0xffffffff will access linear addresses
0xffffffff, 0x0, 0x1 and 0x2.
Fixes: f9eb4af67c ("KVM: nVMX: VMX instructions: add checks for #GP/#SS exceptions")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The address size of an instruction affects the effective address, not
the virtual/linear address. The final address may still be truncated,
e.g. to 32-bits outside of long mode, but that happens irrespective of
the address size, e.g. a 32-bit address size can yield a 64-bit virtual
address when using FS/GS with a non-zero base.
Fixes: 064aea7747 ("KVM: nVMX: Decoding memory operands of VMX instructions")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The VMCS.EXIT_QUALIFCATION field reports the displacements of memory
operands for various instructions, including VMX instructions, as a
naturally sized unsigned value, but masks the value by the addr size,
e.g. given a ModRM encoded as -0x28(%ebp), the -0x28 displacement is
reported as 0xffffffd8 for a 32-bit address size. Despite some weird
wording regarding sign extension, the SDM explicitly states that bits
beyond the instructions address size are undefined:
In all cases, bits of this field beyond the instruction’s address
size are undefined.
Failure to sign extend the displacement results in KVM incorrectly
treating a negative displacement as a large positive displacement when
the address size of the VMX instruction is smaller than KVM's native
size, e.g. a 32-bit address size on a 64-bit KVM.
The very original decoding, added by commit 064aea7747 ("KVM: nVMX:
Decoding memory operands of VMX instructions"), sort of modeled sign
extension by truncating the final virtual/linear address for a 32-bit
address size. I.e. it messed up the effective address but made it work
by adjusting the final address.
When segmentation checks were added, the truncation logic was kept
as-is and no sign extension logic was introduced. In other words, it
kept calculating the wrong effective address while mostly generating
the correct virtual/linear address. As the effective address is what's
used in the segment limit checks, this results in KVM incorreclty
injecting #GP/#SS faults due to non-existent segment violations when
a nested VMM uses negative displacements with an address size smaller
than KVM's native address size.
Using the -0x28(%ebp) example, an EBP value of 0x1000 will result in
KVM using 0x100000fd8 as the effective address when checking for a
segment limit violation. This causes a 100% failure rate when running
a 32-bit KVM build as L1 on top of a 64-bit KVM L0.
Fixes: f9eb4af67c ("KVM: nVMX: VMX instructions: add checks for #GP/#SS exceptions")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The function svm_refresh_apicv_exec_ctrl() always returning prematurely
as kvm_vcpu_apicv_active() always return false when calling from
the function arch/x86/kvm/x86.c:kvm_vcpu_deactivate_apicv().
This is because the apicv_active is set to false just before calling
refresh_apicv_exec_ctrl().
Also, we need to mark VMCB_AVIC bit as dirty instead of VMCB_INTR.
So, fix svm_refresh_apicv_exec_ctrl() to properly deactivate AVIC.
Fixes: 67034bb9dd ('KVM: SVM: Add irqchip_split() checks before enabling AVIC')
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Currently apicv_active can be true even if in-kernel LAPIC
emulation is disabled. Avoid this by properly initializing
it in kvm_arch_vcpu_init, and then do not do anything to
deactivate APICv when it is actually not used
(Currently APICv is only deactivated by SynIC code that in turn
is only reachable when in-kernel LAPIC is in use. However, it is
cleaner if kvm_vcpu_deactivate_apicv avoids relying on this.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Current SVM AVIC driver makes two incorrect assumptions:
1. APIC LDR register cannot be zero
2. APIC DFR for all vCPUs must be the same
LDR=0 means the local APIC does not support logical destination mode.
Therefore, the driver should mark any previously assigned logical APIC ID
table entry as invalid, and return success. Also, DFR is specific to
a particular local APIC, and can be different among all vCPUs
(as observed on Windows 10).
These incorrect assumptions cause Windows 10 and FreeBSD VMs to fail
to boot with AVIC enabled. So, instead of flush the whole logical APIC ID
table, handle DFR and LDR for each vCPU independently.
Fixes: 18f40c53e1 ('svm: Add VMEXIT handlers for AVIC')
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Reported-by: Julian Stecklina <jsteckli@amazon.de>
Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move the clearing of the common registers (not 64-bit-only) to the start
of the flow that clears registers holding guest state. This is
purely a cosmetic change so that the label doesn't point at a blank line
and a #define.
No functional change intended.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
...now that the sub-routine follows standard calling conventions.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
...to make it callable from C code.
Note that because KVM chooses to be ultra paranoid about guest register
values, all callee-save registers are still cleared after VM-Exit even
though the host's values are now reloaded from the stack.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
...to prepare for making the assembly sub-routine callable from C code.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
...to prepare for making the sub-routine callable from C code.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
...to prepare for making the sub-routine callable from C code. That
means returning the result in RAX. Since RAX will be used to return the
result, use it as the scratch register as well to make the code readable
and to document that the scratch register is more or less arbitrary.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
...now that the name is no longer usurped by a defunct helper function.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
...now that the code is no longer tagged with STACK_FRAME_NON_STANDARD.
Arguably, providing __vmx_vcpu_run() to break up vmx_vcpu_run() is
valuable on its own, but the previous split was purposely made as small
as possible to limit the effects STACK_FRAME_NON_STANDARD. In other
words, the current split is now completely arbitrary and likely not the
most logical.
This also allows renaming ____vmx_vcpu_run() to __vmx_vcpu_run() in a
future patch.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
As evidenced by the myriad patches leading up to this moment, using
an inline asm blob for vCPU-run is nothing short of horrific. It's also
been called "unholy", "an abomination" and likely a whole host of other
names that would violate the Code of Conduct if recorded here and now.
The code is relocated nearly verbatim, e.g. quotes, newlines, tabs and
__stringify need to be dropped, but other than those cosmetic changes
the only functional changees are to add the "call" and replace the final
"jmp" with a "ret".
Note that STACK_FRAME_NON_STANDARD is also dropped from __vmx_vcpu_run().
Suggested-by: Andi Kleen <ak@linux.intel.com>
Suggested-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
...in preparation for moving to a proper assembly sub-routnine.
vCPU-run isn't a leaf function since it calls vmx_update_host_rsp()
and vmx_vmenter(). And since we need to save/restore RBP anyways,
unconditionally creating the frame costs a single MOV, i.e. don't
bother keying off CONFIG_FRAME_POINTER or using FRAME_BEGIN, etc...
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
...to prepare for moving the inline asm to a proper asm sub-routine.
Eliminating the immediates allows a nearly verbatim move, e.g. quotes,
newlines, tabs and __stringify need to be dropped, but other than those
cosmetic changes the only function change will be to replace the final
"jmp" with a "ret".
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Commit ca83b4a7f2 ("x86/KVM/VMX: Add find_msr() helper function")
introduces the helper function find_msr(), which returns -ENOENT when
not find the msr in vmx->msr_autoload.guest/host. Correct checking contion
of no more available entry in vmx->msr_autoload.
Fixes: ca83b4a7f2 ("x86/KVM/VMX: Add find_msr() helper function")
Cc: stable@vger.kernel.org
Signed-off-by: Xiaoyao Li <xiaoyao.li@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Some Posted-Interrupts from passthrough devices may be lost or
overwritten when the vCPU is in runnable state.
The SN (Suppress Notification) of PID (Posted Interrupt Descriptor) will
be set when the vCPU is preempted (vCPU in KVM_MP_STATE_RUNNABLE state but
not running on physical CPU). If a posted interrupt comes at this time,
the irq remapping facility will set the bit of PIR (Posted Interrupt
Requests) but not ON (Outstanding Notification). Then, the interrupt
will not be seen by KVM, which always expects PID.ON=1 if PID.PIR=1
as documented in the Intel processor SDM but not in the VT-d specification.
To fix this, restore the invariant after PID.SN is cleared.
Signed-off-by: Luwei Kang <luwei.kang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
A recently added preemption timer consistency check was unintentionally
dropped when the consistency checks were being reorganized to match the
SDM's ordering.
Fixes: 461b4ba4c7 ("KVM: nVMX: Move the checks for VM-Execution Control Fields to a separate helper function")
Cc: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
SDM says MSR_IA32_VMX_PROCBASED_CTLS2 is only available "If
(CPUID.01H:ECX.[5] && IA32_VMX_PROCBASED_CTLS[63])". It was found that
some old cpus (namely "Intel(R) Core(TM)2 CPU 6600 @ 2.40GHz (family: 0x6,
model: 0xf, stepping: 0x6") don't have it. Add the missing check.
Reported-by: Zdenek Kaspar <zkaspar82@gmail.com>
Tested-by: Zdenek Kaspar <zkaspar82@gmail.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
...now that all other references to struct vcpu_vmx have been removed.
Note that 'vmx' still needs to be passed into the asm blob in _ASM_ARG1
as it is consumed by vmx_update_host_rsp(). And similar to that code,
use _ASM_ARG2 in the assembly code to prepare for moving to proper asm,
while explicitly referencing the exact registers in the clobber list for
clarity in the short term and to avoid additional precompiler games.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
A failed VM-Enter (obviously) didn't succeed, meaning the CPU never
executed an instrunction in guest mode and so can't have changed the
general purpose registers.
In addition to saving some instructions in the VM-Fail case, this also
provides a separate path entirely and thus an opportunity to propagate
the fail condition to vmx->fail via register without introducing undue
pain. Using a register, as opposed to directly referencing vmx->fail,
eliminates the need to pass the offset of 'fail', which will simplify
moving the code to proper assembly in future patches.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Switching the ordering allows for an out-of-line path for VM-Fail
that elides saving guest state but still shares the register clearing
with the VM-Exit path.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
...and remove struct vcpu_vmx's temporary __launched variable.
Eliminating __launched is a bonus, the real motivation is to get to the
point where the only reference to struct vcpu_vmx in the asm code is
to vcpu.arch.regs, which will simplify moving the blob to a proper asm
file. Note that also means this approach is deliberately different than
what is used in nested_vmx_check_vmentry_hw().
Use BL as it is a callee-save register in both 32-bit and 64-bit ABIs,
i.e. it can't be modified by vmx_update_host_rsp(), to avoid having to
temporarily save/restore the launched flag.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>