The kmem-specific functions do the same thing. Switch and drop.
Link: http://lkml.kernel.org/r/20170530181724.27197-5-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Josef Bacik <josef@toxicpanda.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull kthread fix from Thomas Gleixner:
"A single fix which prevents a use after free when kthread fork fails"
* 'core-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
kthread: Fix use-after-free if kthread fork fails
If a kthread forks (e.g. usermodehelper since commit 1da5c46fa9) but
fails in copy_process() between calling dup_task_struct() and setting
p->set_child_tid, then the value of p->set_child_tid will be inherited
from the parent and get prematurely freed by free_kthread_struct().
kthread()
- worker_thread()
- process_one_work()
| - call_usermodehelper_exec_work()
| - kernel_thread()
| - _do_fork()
| - copy_process()
| - dup_task_struct()
| - arch_dup_task_struct()
| - tsk->set_child_tid = current->set_child_tid // implied
| - ...
| - goto bad_fork_*
| - ...
| - free_task(tsk)
| - free_kthread_struct(tsk)
| - kfree(tsk->set_child_tid)
- ...
- schedule()
- __schedule()
- wq_worker_sleeping()
- kthread_data(task)->flags // UAF
The problem started showing up with commit 1da5c46fa9 since it reused
->set_child_tid for the kthread worker data.
A better long-term solution might be to get rid of the ->set_child_tid
abuse. The comment in set_kthread_struct() also looks slightly wrong.
Debugged-by: Jamie Iles <jamie.iles@oracle.com>
Fixes: 1da5c46fa9 ("kthread: Make struct kthread kmalloc'ed")
Signed-off-by: Vegard Nossum <vegard.nossum@oracle.com>
Acked-by: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Jamie Iles <jamie.iles@oracle.com>
Cc: stable@vger.kernel.org
Link: http://lkml.kernel.org/r/20170509073959.17858-1-vegard.nossum@oracle.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Imagine we have a pid namespace and a task from its parent's pid_ns,
which made setns() to the pid namespace. The task is doing fork(),
while the pid namespace's child reaper is dying. We have the race
between them:
Task from parent pid_ns Child reaper
copy_process() ..
alloc_pid() ..
.. zap_pid_ns_processes()
.. disable_pid_allocation()
.. read_lock(&tasklist_lock)
.. iterate over pids in pid_ns
.. kill tasks linked to pids
.. read_unlock(&tasklist_lock)
write_lock_irq(&tasklist_lock); ..
attach_pid(p, PIDTYPE_PID); ..
.. ..
So, just created task p won't receive SIGKILL signal,
and the pid namespace will be in contradictory state.
Only manual kill will help there, but does the userspace
care about this? I suppose, the most users just inject
a task into a pid namespace and wait a SIGCHLD from it.
The patch fixes the problem. It simply checks for
(pid_ns->nr_hashed & PIDNS_HASH_ADDING) in copy_process().
We do it under the tasklist_lock, and can't skip
PIDNS_HASH_ADDING as noted by Oleg:
"zap_pid_ns_processes() does disable_pid_allocation()
and then takes tasklist_lock to kill the whole namespace.
Given that copy_process() checks PIDNS_HASH_ADDING
under write_lock(tasklist) they can't race;
if copy_process() takes this lock first, the new child will
be killed, otherwise copy_process() can't miss
the change in ->nr_hashed."
If allocation is disabled, we just return -ENOMEM
like it's made for such cases in alloc_pid().
v2: Do not move disable_pid_allocation(), do not
introduce a new variable in copy_process() and simplify
the patch as suggested by Oleg Nesterov.
Account the problem with double irq enabling
found by Eric W. Biederman.
Fixes: c876ad7682 ("pidns: Stop pid allocation when init dies")
Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com>
CC: Andrew Morton <akpm@linux-foundation.org>
CC: Ingo Molnar <mingo@kernel.org>
CC: Peter Zijlstra <peterz@infradead.org>
CC: Oleg Nesterov <oleg@redhat.com>
CC: Mike Rapoport <rppt@linux.vnet.ibm.com>
CC: Michal Hocko <mhocko@suse.com>
CC: Andy Lutomirski <luto@kernel.org>
CC: "Eric W. Biederman" <ebiederm@xmission.com>
CC: Andrei Vagin <avagin@openvz.org>
CC: Cyrill Gorcunov <gorcunov@openvz.org>
CC: Serge Hallyn <serge@hallyn.com>
Cc: stable@vger.kernel.org
Acked-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Pull stackprotector fixlet from Ingo Molnar:
"A single fix/enhancement to increase stackprotector canary randomness
on 64-bit kernels with very little cost"
* 'core-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
stackprotector: Increase the per-task stack canary's random range from 32 bits to 64 bits on 64-bit platforms
Pull RCU updates from Ingo Molnar:
"The main changes are:
- Debloat RCU headers
- Parallelize SRCU callback handling (plus overlapping patches)
- Improve the performance of Tree SRCU on a CPU-hotplug stress test
- Documentation updates
- Miscellaneous fixes"
* 'core-rcu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (74 commits)
rcu: Open-code the rcu_cblist_n_lazy_cbs() function
rcu: Open-code the rcu_cblist_n_cbs() function
rcu: Open-code the rcu_cblist_empty() function
rcu: Separately compile large rcu_segcblist functions
srcu: Debloat the <linux/rcu_segcblist.h> header
srcu: Adjust default auto-expediting holdoff
srcu: Specify auto-expedite holdoff time
srcu: Expedite first synchronize_srcu() when idle
srcu: Expedited grace periods with reduced memory contention
srcu: Make rcutorture writer stalls print SRCU GP state
srcu: Exact tracking of srcu_data structures containing callbacks
srcu: Make SRCU be built by default
srcu: Fix Kconfig botch when SRCU not selected
rcu: Make non-preemptive schedule be Tasks RCU quiescent state
srcu: Expedite srcu_schedule_cbs_snp() callback invocation
srcu: Parallelize callback handling
kvm: Move srcu_struct fields to end of struct kvm
rcu: Fix typo in PER_RCU_NODE_PERIOD header comment
rcu: Use true/false in assignment to bool
rcu: Use bool value directly
...
__vmalloc* allows users to provide gfp flags for the underlying
allocation. This API is quite popular
$ git grep "=[[:space:]]__vmalloc\|return[[:space:]]*__vmalloc" | wc -l
77
The only problem is that many people are not aware that they really want
to give __GFP_HIGHMEM along with other flags because there is really no
reason to consume precious lowmemory on CONFIG_HIGHMEM systems for pages
which are mapped to the kernel vmalloc space. About half of users don't
use this flag, though. This signals that we make the API unnecessarily
too complex.
This patch simply uses __GFP_HIGHMEM implicitly when allocating pages to
be mapped to the vmalloc space. Current users which add __GFP_HIGHMEM
are simplified and drop the flag.
Link: http://lkml.kernel.org/r/20170307141020.29107-1-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Cristopher Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Using virtually mapped stack, kernel stacks are allocated via vmalloc.
In the current implementation, two stacks per cpu can be cached when
tasks are freed and the cached stacks are used again in task
duplications. But the cached stacks may remain unfreed even when cpu
are offline. By adding a cpu hotplug callback to free the cached stacks
when a cpu goes offline, the pages of the cached stacks are not wasted.
Link: http://lkml.kernel.org/r/1487076043-17802-1-git-send-email-hoeun.ryu@gmail.com
Signed-off-by: Hoeun Ryu <hoeun.ryu@gmail.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Mateusz Guzik <mguzik@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The stack canary is an 'unsigned long' and should be fully initialized to
random data rather than only 32 bits of random data.
Signed-off-by: Daniel Micay <danielmicay@gmail.com>
Acked-by: Arjan van de Ven <arjan@linux.intel.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Kees Cook <keescook@chromium.org>
Cc: Arjan van Ven <arjan@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: kernel-hardening@lists.openwall.com
Cc: stable@vger.kernel.org
Link: http://lkml.kernel.org/r/20170504133209.3053-1-danielmicay@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull security subsystem updates from James Morris:
"Highlights:
IMA:
- provide ">" and "<" operators for fowner/uid/euid rules
KEYS:
- add a system blacklist keyring
- add KEYCTL_RESTRICT_KEYRING, exposes keyring link restriction
functionality to userland via keyctl()
LSM:
- harden LSM API with __ro_after_init
- add prlmit security hook, implement for SELinux
- revive security_task_alloc hook
TPM:
- implement contextual TPM command 'spaces'"
* 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris/linux-security: (98 commits)
tpm: Fix reference count to main device
tpm_tis: convert to using locality callbacks
tpm: fix handling of the TPM 2.0 event logs
tpm_crb: remove a cruft constant
keys: select CONFIG_CRYPTO when selecting DH / KDF
apparmor: Make path_max parameter readonly
apparmor: fix parameters so that the permission test is bypassed at boot
apparmor: fix invalid reference to index variable of iterator line 836
apparmor: use SHASH_DESC_ON_STACK
security/apparmor/lsm.c: set debug messages
apparmor: fix boolreturn.cocci warnings
Smack: Use GFP_KERNEL for smk_netlbl_mls().
smack: fix double free in smack_parse_opts_str()
KEYS: add SP800-56A KDF support for DH
KEYS: Keyring asymmetric key restrict method with chaining
KEYS: Restrict asymmetric key linkage using a specific keychain
KEYS: Add a lookup_restriction function for the asymmetric key type
KEYS: Add KEYCTL_RESTRICT_KEYRING
KEYS: Consistent ordering for __key_link_begin and restrict check
KEYS: Add an optional lookup_restriction hook to key_type
...
Pull livepatch updates from Jiri Kosina:
- a per-task consistency model is being added for architectures that
support reliable stack dumping (extending this, currently rather
trivial set, is currently in the works).
This extends the nature of the types of patches that can be applied
by live patching infrastructure. The code stems from the design
proposal made [1] back in November 2014. It's a hybrid of SUSE's
kGraft and RH's kpatch, combining advantages of both: it uses
kGraft's per-task consistency and syscall barrier switching combined
with kpatch's stack trace switching. There are also a number of
fallback options which make it quite flexible.
Most of the heavy lifting done by Josh Poimboeuf with help from
Miroslav Benes and Petr Mladek
[1] https://lkml.kernel.org/r/20141107140458.GA21774@suse.cz
- module load time patch optimization from Zhou Chengming
- a few assorted small fixes
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/livepatching:
livepatch: add missing printk newlines
livepatch: Cancel transition a safe way for immediate patches
livepatch: Reduce the time of finding module symbols
livepatch: make klp_mutex proper part of API
livepatch: allow removal of a disabled patch
livepatch: add /proc/<pid>/patch_state
livepatch: change to a per-task consistency model
livepatch: store function sizes
livepatch: use kstrtobool() in enabled_store()
livepatch: move patching functions into patch.c
livepatch: remove unnecessary object loaded check
livepatch: separate enabled and patched states
livepatch/s390: add TIF_PATCH_PENDING thread flag
livepatch/s390: reorganize TIF thread flag bits
livepatch/powerpc: add TIF_PATCH_PENDING thread flag
livepatch/x86: add TIF_PATCH_PENDING thread flag
livepatch: create temporary klp_update_patch_state() stub
x86/entry: define _TIF_ALLWORK_MASK flags explicitly
stacktrace/x86: add function for detecting reliable stack traces
Pull perf updates from Ingo Molnar:
"The main changes in this cycle were:
Kernel side changes:
- Kprobes and uprobes changes:
- Make their trampolines read-only while they are used
- Make UPROBES_EVENTS default-y which is the distro practice
- Apply misc fixes and robustization to probe point insertion.
- add support for AMD IOMMU events
- extend hw events on Intel Goldmont CPUs
- ... plus misc fixes and updates.
Tooling side changes:
- support s390 jump instructions in perf annotate (Christian
Borntraeger)
- vendor hardware events updates (Andi Kleen)
- add argument support for SDT events in powerpc (Ravi Bangoria)
- beautify the statx syscall arguments in 'perf trace' (Arnaldo
Carvalho de Melo)
- handle inline functions in callchains (Jin Yao)
- enable sorting by srcline as key (Milian Wolff)
- add 'brstackinsn' field in 'perf script' to reuse the x86
instruction decoder used in the Intel PT code to study hot paths to
samples (Andi Kleen)
- add PERF_RECORD_NAMESPACES so that the kernel can record
information required to associate samples to namespaces, helping in
container problem characterization. (Hari Bathini)
- allow sorting by symbol_size in 'perf report' and 'perf top'
(Charles Baylis)
- in perf stat, make system wide (-a) the default option if no target
was specified and one of following conditions is met:
- no workload specified (current behaviour)
- a workload is specified but all requested events are system wide
ones, like uncore ones. (Jiri Olsa)
- ... plus lots of other updates, enhancements, cleanups and fixes"
* 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (235 commits)
perf tools: Fix the code to strip command name
tools arch x86: Sync cpufeatures.h
tools arch: Sync arch/x86/lib/memcpy_64.S with the kernel
tools: Update asm-generic/mman-common.h copy from the kernel
perf tools: Use just forward declarations for struct thread where possible
perf tools: Add the right header to obtain PERF_ALIGN()
perf tools: Remove poll.h and wait.h from util.h
perf tools: Remove string.h, unistd.h and sys/stat.h from util.h
perf tools: Remove stale prototypes from builtin.h
perf tools: Remove string.h from util.h
perf tools: Remove sys/ioctl.h from util.h
perf tools: Remove a few more needless includes from util.h
perf tools: Include sys/param.h where needed
perf callchain: Move callchain specific routines from util.[ch]
perf tools: Add compress.h for the *_decompress_to_file() headers
perf mem: Fix display of data source snoop indication
perf debug: Move dump_stack() and sighandler_dump_stack() to debug.h
perf kvm: Make function only used by 'perf kvm' static
perf tools: Move timestamp routines from util.h to time-utils.h
perf tools: Move units conversion/formatting routines to separate object
...
A group of Linux kernel hackers reported chasing a bug that resulted
from their assumption that SLAB_DESTROY_BY_RCU provided an existence
guarantee, that is, that no block from such a slab would be reallocated
during an RCU read-side critical section. Of course, that is not the
case. Instead, SLAB_DESTROY_BY_RCU only prevents freeing of an entire
slab of blocks.
However, there is a phrase for this, namely "type safety". This commit
therefore renames SLAB_DESTROY_BY_RCU to SLAB_TYPESAFE_BY_RCU in order
to avoid future instances of this sort of confusion.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: <linux-mm@kvack.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
[ paulmck: Add comments mentioning the old name, as requested by Eric
Dumazet, in order to help people familiar with the old name find
the new one. ]
Acked-by: David Rientjes <rientjes@google.com>
A crash happened while I was playing with deadline PI rtmutex.
BUG: unable to handle kernel NULL pointer dereference at 0000000000000018
IP: [<ffffffff810eeb8f>] rt_mutex_get_top_task+0x1f/0x30
PGD 232a75067 PUD 230947067 PMD 0
Oops: 0000 [#1] SMP
CPU: 1 PID: 10994 Comm: a.out Not tainted
Call Trace:
[<ffffffff810b658c>] enqueue_task+0x2c/0x80
[<ffffffff810ba763>] activate_task+0x23/0x30
[<ffffffff810d0ab5>] pull_dl_task+0x1d5/0x260
[<ffffffff810d0be6>] pre_schedule_dl+0x16/0x20
[<ffffffff8164e783>] __schedule+0xd3/0x900
[<ffffffff8164efd9>] schedule+0x29/0x70
[<ffffffff8165035b>] __rt_mutex_slowlock+0x4b/0xc0
[<ffffffff81650501>] rt_mutex_slowlock+0xd1/0x190
[<ffffffff810eeb33>] rt_mutex_timed_lock+0x53/0x60
[<ffffffff810ecbfc>] futex_lock_pi.isra.18+0x28c/0x390
[<ffffffff810ed8b0>] do_futex+0x190/0x5b0
[<ffffffff810edd50>] SyS_futex+0x80/0x180
This is because rt_mutex_enqueue_pi() and rt_mutex_dequeue_pi()
are only protected by pi_lock when operating pi waiters, while
rt_mutex_get_top_task(), will access them with rq lock held but
not holding pi_lock.
In order to tackle it, we introduce new "pi_top_task" pointer
cached in task_struct, and add new rt_mutex_update_top_task()
to update its value, it can be called by rt_mutex_setprio()
which held both owner's pi_lock and rq lock. Thus "pi_top_task"
can be safely accessed by enqueue_task_dl() under rq lock.
Originally-From: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Xunlei Pang <xlpang@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: juri.lelli@arm.com
Cc: bigeasy@linutronix.de
Cc: mathieu.desnoyers@efficios.com
Cc: jdesfossez@efficios.com
Cc: bristot@redhat.com
Link: http://lkml.kernel.org/r/20170323150216.157682758@infradead.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
We switched from "struct task_struct"->security to "struct cred"->security
in Linux 2.6.29. But not all LSM modules were happy with that change.
TOMOYO LSM module is an example which want to use per "struct task_struct"
security blob, for TOMOYO's security context is defined based on "struct
task_struct" rather than "struct cred". AppArmor LSM module is another
example which want to use it, for AppArmor is currently abusing the cred
a little bit to store the change_hat and setexeccon info. Although
security_task_free() hook was revived in Linux 3.4 because Yama LSM module
wanted to release per "struct task_struct" security blob,
security_task_alloc() hook and "struct task_struct"->security field were
not revived. Nowadays, we are getting proposals of lightweight LSM modules
which want to use per "struct task_struct" security blob.
We are already allowing multiple concurrent LSM modules (up to one fully
armored module which uses "struct cred"->security field or exclusive hooks
like security_xfrm_state_pol_flow_match(), plus unlimited number of
lightweight modules which do not use "struct cred"->security nor exclusive
hooks) as long as they are built into the kernel. But this patch does not
implement variable length "struct task_struct"->security field which will
become needed when multiple LSM modules want to use "struct task_struct"->
security field. Although it won't be difficult to implement variable length
"struct task_struct"->security field, let's think about it after we merged
this patch.
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Acked-by: John Johansen <john.johansen@canonical.com>
Acked-by: Serge Hallyn <serge@hallyn.com>
Acked-by: Casey Schaufler <casey@schaufler-ca.com>
Tested-by: Djalal Harouni <tixxdz@gmail.com>
Acked-by: José Bollo <jobol@nonadev.net>
Cc: Paul Moore <paul@paul-moore.com>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: Eric Paris <eparis@parisplace.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: James Morris <james.l.morris@oracle.com>
Cc: José Bollo <jobol@nonadev.net>
Signed-off-by: James Morris <james.l.morris@oracle.com>
With the advert of container technologies like docker, that depend on
namespaces for isolation, there is a need for tracing support for
namespaces. This patch introduces new PERF_RECORD_NAMESPACES event for
recording namespaces related info. By recording info for every
namespace, it is left to userspace to take a call on the definition of a
container and trace containers by updating perf tool accordingly.
Each namespace has a combination of device and inode numbers. Though
every namespace has the same device number currently, that may change in
future to avoid the need for a namespace of namespaces. Considering such
possibility, record both device and inode numbers separately for each
namespace.
Signed-off-by: Hari Bathini <hbathini@linux.vnet.ibm.com>
Acked-by: Jiri Olsa <jolsa@kernel.org>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Alexei Starovoitov <ast@fb.com>
Cc: Ananth N Mavinakayanahalli <ananth@linux.vnet.ibm.com>
Cc: Aravinda Prasad <aravinda@linux.vnet.ibm.com>
Cc: Brendan Gregg <brendan.d.gregg@gmail.com>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Sargun Dhillon <sargun@sargun.me>
Cc: Steven Rostedt <rostedt@goodmis.org>
Link: http://lkml.kernel.org/r/148891929686.25309.2827618988917007768.stgit@hbathini.in.ibm.com
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Change livepatch to use a basic per-task consistency model. This is the
foundation which will eventually enable us to patch those ~10% of
security patches which change function or data semantics. This is the
biggest remaining piece needed to make livepatch more generally useful.
This code stems from the design proposal made by Vojtech [1] in November
2014. It's a hybrid of kGraft and kpatch: it uses kGraft's per-task
consistency and syscall barrier switching combined with kpatch's stack
trace switching. There are also a number of fallback options which make
it quite flexible.
Patches are applied on a per-task basis, when the task is deemed safe to
switch over. When a patch is enabled, livepatch enters into a
transition state where tasks are converging to the patched state.
Usually this transition state can complete in a few seconds. The same
sequence occurs when a patch is disabled, except the tasks converge from
the patched state to the unpatched state.
An interrupt handler inherits the patched state of the task it
interrupts. The same is true for forked tasks: the child inherits the
patched state of the parent.
Livepatch uses several complementary approaches to determine when it's
safe to patch tasks:
1. The first and most effective approach is stack checking of sleeping
tasks. If no affected functions are on the stack of a given task,
the task is patched. In most cases this will patch most or all of
the tasks on the first try. Otherwise it'll keep trying
periodically. This option is only available if the architecture has
reliable stacks (HAVE_RELIABLE_STACKTRACE).
2. The second approach, if needed, is kernel exit switching. A
task is switched when it returns to user space from a system call, a
user space IRQ, or a signal. It's useful in the following cases:
a) Patching I/O-bound user tasks which are sleeping on an affected
function. In this case you have to send SIGSTOP and SIGCONT to
force it to exit the kernel and be patched.
b) Patching CPU-bound user tasks. If the task is highly CPU-bound
then it will get patched the next time it gets interrupted by an
IRQ.
c) In the future it could be useful for applying patches for
architectures which don't yet have HAVE_RELIABLE_STACKTRACE. In
this case you would have to signal most of the tasks on the
system. However this isn't supported yet because there's
currently no way to patch kthreads without
HAVE_RELIABLE_STACKTRACE.
3. For idle "swapper" tasks, since they don't ever exit the kernel, they
instead have a klp_update_patch_state() call in the idle loop which
allows them to be patched before the CPU enters the idle state.
(Note there's not yet such an approach for kthreads.)
All the above approaches may be skipped by setting the 'immediate' flag
in the 'klp_patch' struct, which will disable per-task consistency and
patch all tasks immediately. This can be useful if the patch doesn't
change any function or data semantics. Note that, even with this flag
set, it's possible that some tasks may still be running with an old
version of the function, until that function returns.
There's also an 'immediate' flag in the 'klp_func' struct which allows
you to specify that certain functions in the patch can be applied
without per-task consistency. This might be useful if you want to patch
a common function like schedule(), and the function change doesn't need
consistency but the rest of the patch does.
For architectures which don't have HAVE_RELIABLE_STACKTRACE, the user
must set patch->immediate which causes all tasks to be patched
immediately. This option should be used with care, only when the patch
doesn't change any function or data semantics.
In the future, architectures which don't have HAVE_RELIABLE_STACKTRACE
may be allowed to use per-task consistency if we can come up with
another way to patch kthreads.
The /sys/kernel/livepatch/<patch>/transition file shows whether a patch
is in transition. Only a single patch (the topmost patch on the stack)
can be in transition at a given time. A patch can remain in transition
indefinitely, if any of the tasks are stuck in the initial patch state.
A transition can be reversed and effectively canceled by writing the
opposite value to the /sys/kernel/livepatch/<patch>/enabled file while
the transition is in progress. Then all the tasks will attempt to
converge back to the original patch state.
[1] https://lkml.kernel.org/r/20141107140458.GA21774@suse.cz
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Acked-by: Ingo Molnar <mingo@kernel.org> # for the scheduler changes
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
Move rcu_copy_process() into kernel/fork.c, which is the only
user of this inline function.
This simplifies <linux/sched/task.h> to the level that <linux/sched.h>
does not have to be included in it anymore - which change is done
in a subsequent patch.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Introduce a trivial, mostly empty <linux/sched/cputime.h> header
to prepare for the moving of cputime functionality out of sched.h.
Update all code that relies on these facilities.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We are going to split <linux/sched/task_stack.h> out of <linux/sched.h>, which
will have to be picked up from other headers and a couple of .c files.
Create a trivial placeholder <linux/sched/task_stack.h> file that just
maps to <linux/sched.h> to make this patch obviously correct and
bisectable.
Include the new header in the files that are going to need it.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We are going to split <linux/sched/task.h> out of <linux/sched.h>, which
will have to be picked up from other headers and a couple of .c files.
Create a trivial placeholder <linux/sched/task.h> file that just
maps to <linux/sched.h> to make this patch obviously correct and
bisectable.
Include the new header in the files that are going to need it.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We are going to split <linux/sched/stat.h> out of <linux/sched.h>, which
will have to be picked up from other headers and a couple of .c files.
Create a trivial placeholder <linux/sched/stat.h> file that just
maps to <linux/sched.h> to make this patch obviously correct and
bisectable.
Include the new header in the files that are going to need it.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Fix up missing #includes in other places that rely on sched.h doing that for them.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We are going to split <linux/sched/numa_balancing.h> out of <linux/sched.h>, which
will have to be picked up from other headers and a couple of .c files.
Create a trivial placeholder <linux/sched/numa_balancing.h> file that just
maps to <linux/sched.h> to make this patch obviously correct and
bisectable.
Include the new header in the files that are going to need it.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We are going to split <linux/sched/user.h> out of <linux/sched.h>, which
will have to be picked up from other headers and a couple of .c files.
Create a trivial placeholder <linux/sched/user.h> file that just
maps to <linux/sched.h> to make this patch obviously correct and
bisectable.
Include the new header in the files that are going to need it.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We are going to split <linux/sched/coredump.h> out of <linux/sched.h>, which
will have to be picked up from other headers and a couple of .c files.
Create a trivial placeholder <linux/sched/coredump.h> file that just
maps to <linux/sched.h> to make this patch obviously correct and
bisectable.
Include the new header in the files that are going to need it.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We are going to split <linux/sched/mm.h> out of <linux/sched.h>, which
will have to be picked up from other headers and a couple of .c files.
Create a trivial placeholder <linux/sched/mm.h> file that just
maps to <linux/sched.h> to make this patch obviously correct and
bisectable.
The APIs that are going to be moved first are:
mm_alloc()
__mmdrop()
mmdrop()
mmdrop_async_fn()
mmdrop_async()
mmget_not_zero()
mmput()
mmput_async()
get_task_mm()
mm_access()
mm_release()
Include the new header in the files that are going to need it.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We are going to split <linux/sched/autogroup.h> out of <linux/sched.h>, which
will have to be picked up from other headers and a couple of .c files.
Create a trivial placeholder <linux/sched/autogroup.h> file that just
maps to <linux/sched.h> to make this patch obviously correct and
bisectable.
Include the new header in the files that are going to need it.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
threadgroup_change_begin()/end() is a pointless wrapper around
cgroup_threadgroup_change_begin()/end(), minus a might_sleep()
in the !CONFIG_CGROUPS=y case.
Remove the wrappery, move the might_sleep() (the down_read()
already has a might_sleep() check).
This debloats <linux/sched.h> a bit and simplifies this API.
Update all call sites.
No change in functionality.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Apart from adding the helper function itself, the rest of the kernel is
converted mechanically using:
git grep -l 'atomic_inc.*mm_users' | xargs sed -i 's/atomic_inc(&\(.*\)->mm_users);/mmget\(\1\);/'
git grep -l 'atomic_inc.*mm_users' | xargs sed -i 's/atomic_inc(&\(.*\)\.mm_users);/mmget\(\&\1\);/'
This is needed for a later patch that hooks into the helper, but might
be a worthwhile cleanup on its own.
(Michal Hocko provided most of the kerneldoc comment.)
Link: http://lkml.kernel.org/r/20161218123229.22952-2-vegard.nossum@oracle.com
Signed-off-by: Vegard Nossum <vegard.nossum@oracle.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull namespace updates from Eric Biederman:
"There is a lot here. A lot of these changes result in subtle user
visible differences in kernel behavior. I don't expect anything will
care but I will revert/fix things immediately if any regressions show
up.
From Seth Forshee there is a continuation of the work to make the vfs
ready for unpriviled mounts. We had thought the previous changes
prevented the creation of files outside of s_user_ns of a filesystem,
but it turns we missed the O_CREAT path. Ooops.
Pavel Tikhomirov and Oleg Nesterov worked together to fix a long
standing bug in the implemenation of PR_SET_CHILD_SUBREAPER where only
children that are forked after the prctl are considered and not
children forked before the prctl. The only known user of this prctl
systemd forks all children after the prctl. So no userspace
regressions will occur. Holding earlier forked children to the same
rules as later forked children creates a semantic that is sane enough
to allow checkpoing of processes that use this feature.
There is a long delayed change by Nikolay Borisov to limit inotify
instances inside a user namespace.
Michael Kerrisk extends the API for files used to maniuplate
namespaces with two new trivial ioctls to allow discovery of the
hierachy and properties of namespaces.
Konstantin Khlebnikov with the help of Al Viro adds code that when a
network namespace exits purges it's sysctl entries from the dcache. As
in some circumstances this could use a lot of memory.
Vivek Goyal fixed a bug with stacked filesystems where the permissions
on the wrong inode were being checked.
I continue previous work on ptracing across exec. Allowing a file to
be setuid across exec while being ptraced if the tracer has enough
credentials in the user namespace, and if the process has CAP_SETUID
in it's own namespace. Proc files for setuid or otherwise undumpable
executables are now owned by the root in the user namespace of their
mm. Allowing debugging of setuid applications in containers to work
better.
A bug I introduced with permission checking and automount is now
fixed. The big change is to mark the mounts that the kernel initiates
as a result of an automount. This allows the permission checks in sget
to be safely suppressed for this kind of mount. As the permission
check happened when the original filesystem was mounted.
Finally a special case in the mount namespace is removed preventing
unbounded chains in the mount hash table, and making the semantics
simpler which benefits CRIU.
The vfs fix along with related work in ima and evm I believe makes us
ready to finish developing and merge fully unprivileged mounts of the
fuse filesystem. The cleanups of the mount namespace makes discussing
how to fix the worst case complexity of umount. The stacked filesystem
fixes pave the way for adding multiple mappings for the filesystem
uids so that efficient and safer containers can be implemented"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace:
proc/sysctl: Don't grab i_lock under sysctl_lock.
vfs: Use upper filesystem inode in bprm_fill_uid()
proc/sysctl: prune stale dentries during unregistering
mnt: Tuck mounts under others instead of creating shadow/side mounts.
prctl: propagate has_child_subreaper flag to every descendant
introduce the walk_process_tree() helper
nsfs: Add an ioctl() to return owner UID of a userns
fs: Better permission checking for submounts
exit: fix the setns() && PR_SET_CHILD_SUBREAPER interaction
vfs: open() with O_CREAT should not create inodes with unknown ids
nsfs: Add an ioctl() to return the namespace type
proc: Better ownership of files for non-dumpable tasks in user namespaces
exec: Remove LSM_UNSAFE_PTRACE_CAP
exec: Test the ptracer's saved cred to see if the tracee can gain caps
exec: Don't reset euid and egid when the tracee has CAP_SETUID
inotify: Convert to using per-namespace limits
When the mm with uffd-ed vmas fork()-s the respective vmas notify their
uffds with the event which contains a descriptor with new uffd. This
new descriptor can then be used to get events from the child and
populate its mm with data. Note, that there can be different uffd-s
controlling different vmas within one mm, so first we should collect all
those uffds (and ctx-s) in a list and then notify them all one by one
but only once per fork().
The context is created at fork() time but the descriptor, file struct
and anon inode object is created at event read time. So some trickery
is added to the userfaultfd_ctx_read() to handle the ctx queues' locking
vs file creation.
Another thing worth noticing is that the task that fork()-s waits for
the uffd event to get processed WITHOUT the mmap sem.
[aarcange@redhat.com: build warning fix]
Link: http://lkml.kernel.org/r/20161216144821.5183-10-aarcange@redhat.com
Link: http://lkml.kernel.org/r/20161216144821.5183-9-aarcange@redhat.com
Signed-off-by: Pavel Emelyanov <xemul@parallels.com>
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Dr. David Alan Gilbert" <dgilbert@redhat.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Michael Rapoport <RAPOPORT@il.ibm.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull locking updates from Ingo Molnar:
"The main changes in this cycle were:
- Implement wraparound-safe refcount_t and kref_t types based on
generic atomic primitives (Peter Zijlstra)
- Improve and fix the ww_mutex code (Nicolai Hähnle)
- Add self-tests to the ww_mutex code (Chris Wilson)
- Optimize percpu-rwsems with the 'rcuwait' mechanism (Davidlohr
Bueso)
- Micro-optimize the current-task logic all around the core kernel
(Davidlohr Bueso)
- Tidy up after recent optimizations: remove stale code and APIs,
clean up the code (Waiman Long)
- ... plus misc fixes, updates and cleanups"
* 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (50 commits)
fork: Fix task_struct alignment
locking/spinlock/debug: Remove spinlock lockup detection code
lockdep: Fix incorrect condition to print bug msgs for MAX_LOCKDEP_CHAIN_HLOCKS
lkdtm: Convert to refcount_t testing
kref: Implement 'struct kref' using refcount_t
refcount_t: Introduce a special purpose refcount type
sched/wake_q: Clarify queue reinit comment
sched/wait, rcuwait: Fix typo in comment
locking/mutex: Fix lockdep_assert_held() fail
locking/rtmutex: Flip unlikely() branch to likely() in __rt_mutex_slowlock()
locking/rwsem: Reinit wake_q after use
locking/rwsem: Remove unnecessary atomic_long_t casts
jump_labels: Move header guard #endif down where it belongs
locking/atomic, kref: Implement kref_put_lock()
locking/ww_mutex: Turn off __must_check for now
locking/atomic, kref: Avoid more abuse
locking/atomic, kref: Use kref_get_unless_zero() more
locking/atomic, kref: Kill kref_sub()
locking/atomic, kref: Add kref_read()
locking/atomic, kref: Add KREF_INIT()
...
Pull scheduler updates from Ingo Molnar:
"The main changes in this (fairly busy) cycle were:
- There was a class of scheduler bugs related to forgetting to update
the rq-clock timestamp which can cause weird and hard to debug
problems, so there's a new debug facility for this: which uncovered
a whole lot of bugs which convinced us that we want to keep the
debug facility.
(Peter Zijlstra, Matt Fleming)
- Various cputime related updates: eliminate cputime and use u64
nanoseconds directly, simplify and improve the arch interfaces,
implement delayed accounting more widely, etc. - (Frederic
Weisbecker)
- Move code around for better structure plus cleanups (Ingo Molnar)
- Move IO schedule accounting deeper into the scheduler plus related
changes to improve the situation (Tejun Heo)
- ... plus a round of sched/rt and sched/deadline fixes, plus other
fixes, updats and cleanups"
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (85 commits)
sched/core: Remove unlikely() annotation from sched_move_task()
sched/autogroup: Rename auto_group.[ch] to autogroup.[ch]
sched/topology: Split out scheduler topology code from core.c into topology.c
sched/core: Remove unnecessary #include headers
sched/rq_clock: Consolidate the ordering of the rq_clock methods
delayacct: Include <uapi/linux/taskstats.h>
sched/core: Clean up comments
sched/rt: Show the 'sched_rr_timeslice' SCHED_RR timeslice tuning knob in milliseconds
sched/clock: Add dummy clear_sched_clock_stable() stub function
sched/cputime: Remove generic asm headers
sched/cputime: Remove unused nsec_to_cputime()
s390, sched/cputime: Remove unused cputime definitions
powerpc, sched/cputime: Remove unused cputime definitions
s390, sched/cputime: Make arch_cpu_idle_time() to return nsecs
ia64, sched/cputime: Remove unused cputime definitions
ia64: Convert vtime to use nsec units directly
ia64, sched/cputime: Move the nsecs based cputime headers to the last arch using it
sched/cputime: Remove jiffies based cputime
sched/cputime, vtime: Return nsecs instead of cputime_t to account
sched/cputime: Complete nsec conversion of tick based accounting
...
Stupid bug that wrecked the alignment of task_struct and causes WARN()s
in the x86 FPU code on some platforms.
Reported-by: Fengguang Wu <fengguang.wu@intel.com>
Tested-by: Fengguang Wu <fengguang.wu@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: e274795ea7 ("locking/mutex: Fix mutex handoff")
Link: http://lkml.kernel.org/r/20170218142645.GH6500@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
If process forks some children when it has is_child_subreaper
flag enabled they will inherit has_child_subreaper flag - first
group, when is_child_subreaper is disabled forked children will
not inherit it - second group. So child-subreaper does not reparent
all his descendants when their parents die. Having these two
differently behaving groups can lead to confusion. Also it is
a problem for CRIU, as when we restore process tree we need to
somehow determine which descendants belong to which group and
much harder - to put them exactly to these group.
To simplify these we can add a propagation of has_child_subreaper
flag on PR_SET_CHILD_SUBREAPER, walking all descendants of child-
subreaper to setup has_child_subreaper flag.
In common cases when process like systemd first sets itself to
be a child-subreaper and only after that forks its services, we will
have zero-length list of descendants to walk. Testing with binary
subtree of 2^15 processes prctl took < 0.007 sec and has shown close
to linear dependency(~0.2 * n * usec) on lower numbers of processes.
Moreover, I doubt someone intentionaly pre-forks the children whitch
should reparent to init before becoming subreaper, because some our
ancestor migh have had is_child_subreaper flag while forking our
sub-tree and our childs will all inherit has_child_subreaper flag,
and we have no way to influence it. And only way to check if we have
no has_child_subreaper flag is to create some childs, kill them and
see where they will reparent to.
Using walk_process_tree helper to walk subtree, thanks to Oleg! Timing
seems to be the same.
Optimize:
a) When descendant already has has_child_subreaper flag all his subtree
has it too already.
* for a) to be true need to move has_child_subreaper inheritance under
the same tasklist_lock with adding task to its ->real_parent->children
as without it process can inherit zero has_child_subreaper, then we
set 1 to it's parent flag, check that parent has no more children, and
only after child with wrong flag is added to the tree.
* Also make these inheritance more clear by using real_parent instead of
current, as on clone(CLONE_PARENT) if current has is_child_subreaper
and real_parent has no is_child_subreaper or has_child_subreaper, child
will have has_child_subreaper flag set without actually having a
subreaper in it's ancestors.
b) When some descendant is child_reaper, it's subtree is in different
pidns from us(original child-subreaper) and processes from other pidns
will never reparent to us.
So we can skip their(a,b) subtree from walk.
v2: switch to walk_process_tree() general helper, move
has_child_subreaper inheritance
v3: remove csr_descendant leftover, change current to real_parent
in has_child_subreaper inheritance
v4: small commit message fix
Fixes: ebec18a6d3 ("prctl: add PR_{SET,GET}_CHILD_SUBREAPER to allow simple process supervision")
Signed-off-by: Pavel Tikhomirov <ptikhomirov@virtuozzo.com>
Reviewed-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Add the new helper to walk the process tree, the next patch adds a user.
Note that it visits the group leaders only, proc_visitor can do
for_each_thread itself or we can trivially extend walk_process_tree() to
do this.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Pavel Tikhomirov <ptikhomirov@virtuozzo.com>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Use the new nsec based cputime accessors as part of the whole cputime
conversion from cputime_t to nsecs.
Also convert posix-cpu-timers to use nsec based internal counters to
simplify it.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Stanislaw Gruszka <sgruszka@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Wanpeng Li <wanpeng.li@hotmail.com>
Link: http://lkml.kernel.org/r/1485832191-26889-19-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When CONFIG_POSIX_TIMERS is disabled, it is preferable to remove related
structures from struct task_struct and struct signal_struct as they
won't contain anything useful and shouldn't be relied upon by mistake.
Code still referencing those structures is also disabled here.
Signed-off-by: Nicolas Pitre <nico@linaro.org>
Signed-off-by: John Stultz <john.stultz@linaro.org>
While reviewing the ww_mutex patches, I noticed that it was still
possible to (incorrectly) succeed for (incorrect) code like:
mutex_lock(&a);
mutex_lock(&a);
This was possible if the second mutex_lock() would block (as expected)
but then receive a spurious wakeup. At that point it would find itself
at the front of the queue, request a handoff and instantly claim
ownership and continue, since owner would point to itself.
Avoid this scenario and simplify the code by introducing a third low
bit to signal handoff pickup. So once we request handoff, unlock
clears the handoff bit and sets the pickup bit along with the new
owner.
This also removes the need for the .handoff argument to
__mutex_trylock(), since that becomes superfluous with PICKUP.
In order to guarantee enough low bits, ensure task_struct alignment is
at least L1_CACHE_BYTES (which seems a good ideal regardless).
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: 9d659ae14b ("locking/mutex: Add lock handoff to avoid starvation")
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This was entirely automated, using the script by Al:
PATT='^[[:blank:]]*#[[:blank:]]*include[[:blank:]]*<asm/uaccess.h>'
sed -i -e "s!$PATT!#include <linux/uaccess.h>!" \
$(git grep -l "$PATT"|grep -v ^include/linux/uaccess.h)
to do the replacement at the end of the merge window.
Requested-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull namespace updates from Eric Biederman:
"After a lot of discussion and work we have finally reachanged a basic
understanding of what is necessary to make unprivileged mounts safe in
the presence of EVM and IMA xattrs which the last commit in this
series reflects. While technically it is a revert the comments it adds
are important for people not getting confused in the future. Clearing
up that confusion allows us to seriously work on unprivileged mounts
of fuse in the next development cycle.
The rest of the fixes in this set are in the intersection of user
namespaces, ptrace, and exec. I started with the first fix which
started a feedback cycle of finding additional issues during review
and fixing them. Culiminating in a fix for a bug that has been present
since at least Linux v1.0.
Potentially these fixes were candidates for being merged during the rc
cycle, and are certainly backport candidates but enough little things
turned up during review and testing that I decided they should be
handled as part of the normal development process just to be certain
there were not any great surprises when it came time to backport some
of these fixes"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace:
Revert "evm: Translate user/group ids relative to s_user_ns when computing HMAC"
exec: Ensure mm->user_ns contains the execed files
ptrace: Don't allow accessing an undumpable mm
ptrace: Capture the ptracer's creds not PT_PTRACE_CAP
mm: Add a user_ns owner to mm_struct and fix ptrace permission checks
- New cpufreq driver for Broadcom STB SoCs and a Device Tree binding
for it (Markus Mayer).
- Support for ARM Integrator/AP and Integrator/CP in the generic
DT cpufreq driver and elimination of the old Integrator cpufreq
driver (Linus Walleij).
- Support for the zx296718, r8a7743 and r8a7745, Socionext UniPhier,
and PXA SoCs in the the generic DT cpufreq driver (Baoyou Xie,
Geert Uytterhoeven, Masahiro Yamada, Robert Jarzmik).
- cpufreq core fix to eliminate races that may lead to using
inactive policy objects and related cleanups (Rafael Wysocki).
- cpufreq schedutil governor update to make it use SCHED_FIFO
kernel threads (instead of regular workqueues) for doing delayed
work (to reduce the response latency in some cases) and related
cleanups (Viresh Kumar).
- New cpufreq sysfs attribute for resetting statistics (Markus
Mayer).
- cpufreq governors fixes and cleanups (Chen Yu, Stratos Karafotis,
Viresh Kumar).
- Support for using generic cpufreq governors in the intel_pstate
driver (Rafael Wysocki).
- Support for per-logical-CPU P-state limits and the EPP/EPB
(Energy Performance Preference/Energy Performance Bias) knobs
in the intel_pstate driver (Srinivas Pandruvada).
- New CPU ID for Knights Mill in intel_pstate (Piotr Luc).
- intel_pstate driver modification to use the P-state selection
algorithm based on CPU load on platforms with the system profile
in the ACPI tables set to "mobile" (Srinivas Pandruvada).
- intel_pstate driver cleanups (Arnd Bergmann, Rafael Wysocki,
Srinivas Pandruvada).
- cpufreq powernv driver updates including fast switching support
(for the schedutil governor), fixes and cleanus (Akshay Adiga,
Andrew Donnellan, Denis Kirjanov).
- acpi-cpufreq driver rework to switch it over to the new CPU
offline/online state machine (Sebastian Andrzej Siewior).
- Assorted cleanups in cpufreq drivers (Wei Yongjun, Prashanth
Prakash).
- Idle injection rework (to make it use the regular idle path
instead of a home-grown custom one) and related powerclamp
thermal driver updates (Peter Zijlstra, Jacob Pan, Petr Mladek,
Sebastian Andrzej Siewior).
- New CPU IDs for Atom Z34xx and Knights Mill in intel_idle (Andy
Shevchenko, Piotr Luc).
- intel_idle driver cleanups and switch over to using the new CPU
offline/online state machine (Anna-Maria Gleixner, Sebastian
Andrzej Siewior).
- cpuidle DT driver update to support suspend-to-idle properly
(Sudeep Holla).
- cpuidle core cleanups and misc updates (Daniel Lezcano, Pan Bian,
Rafael Wysocki).
- Preliminary support for power domains including CPUs in the
generic power domains (genpd) framework and related DT bindings
(Lina Iyer).
- Assorted fixes and cleanups in the generic power domains (genpd)
framework (Colin Ian King, Dan Carpenter, Geert Uytterhoeven).
- Preliminary support for devices with multiple voltage regulators
and related fixes and cleanups in the Operating Performance Points
(OPP) library (Viresh Kumar, Masahiro Yamada, Stephen Boyd).
- System sleep state selection interface rework to make it easier
to support suspend-to-idle as the default system suspend method
(Rafael Wysocki).
- PM core fixes and cleanups, mostly related to the interactions
between the system suspend and runtime PM frameworks (Ulf Hansson,
Sahitya Tummala, Tony Lindgren).
- Latency tolerance PM QoS framework imorovements (Andrew
Lutomirski).
- New Knights Mill CPU ID for the Intel RAPL power capping driver
(Piotr Luc).
- Intel RAPL power capping driver fixes, cleanups and switch over
to using the new CPU offline/online state machine (Jacob Pan,
Thomas Gleixner, Sebastian Andrzej Siewior).
- Fixes and cleanups in the exynos-ppmu, exynos-nocp, rk3399_dmc,
rockchip-dfi devfreq drivers and the devfreq core (Axel Lin,
Chanwoo Choi, Javier Martinez Canillas, MyungJoo Ham, Viresh
Kumar).
- Fix for false-positive KASAN warnings during resume from ACPI S3
(suspend-to-RAM) on x86 (Josh Poimboeuf).
- Memory map verification during resume from hibernation on x86 to
ensure a consistent address space layout (Chen Yu).
- Wakeup sources debugging enhancement (Xing Wei).
- rockchip-io AVS driver cleanup (Shawn Lin).
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2
iQIcBAABCAAGBQJYTx4+AAoJEILEb/54YlRx9f8P/2SlNHUENW5qh6FtCw00oC2u
UqJerQJ2L38UgbgxbE/0VYblma9rFABDWC1eO2xN2XdcdW5UPBKPVvNcOgNe1Clh
gjy3RxZXVpmjfzt2kGfsTLEuGnHqwvx51hTUkeA2LwvkOal45xb8ZESmy8opCtiv
iG4LwmPHoxdX5Za5nA9ItFKzxyO1EoyNSnBYAVwALDHxmNOfxEcRevfurASt/0M9
brCCZJA0/sZxeL0lBdy8fNQPIBTUfCoTJG/MtmzGrObJ9wMFvEDfXrVEyZiWs/zA
AAZ4kQL77enrIKgrLN8e0G6LzTLHoVcvn38Xjf24dKUqhd7ACBhYcnW+jK3+7EAd
gjZ8efObQsiuyK/EDLUNw35tt96CHOqfrQCj2tIwRVvk9EekLqAGXdIndTCr2kYW
RpefmP5kMljnm/nQFOVLwMEUQMuVkvUE7EgxADy7DoDmepBFC4ICRDWPye70R2kC
0O1Tn2PAQq4Fd1tyI9TYYz0YQQkRoaRb5rfYUSzbRbeCdsphUopp4Vhsiyn6IcnF
XnLbg6pRAat82MoS9n4pfO/VCo8vkErKA8tut9G7TDakkrJoEE7l31PdKW0hP3f6
sBo6xXy6WTeivU/o/i8TbM6K4mA37pBaj78ooIkWLgg5fzRaS2+0xSPVy2H9x1m5
LymHcobCK9rSZ1l208Fe
=vhxI
-----END PGP SIGNATURE-----
Merge tag 'pm-4.10-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull power management updates from Rafael Wysocki:
"Again, cpufreq gets more changes than the other parts this time (one
new driver, one old driver less, a bunch of enhancements of the
existing code, new CPU IDs, fixes, cleanups)
There also are some changes in cpuidle (idle injection rework, a
couple of new CPU IDs, online/offline rework in intel_idle, fixes and
cleanups), in the generic power domains framework (mostly related to
supporting power domains containing CPUs), and in the Operating
Performance Points (OPP) library (mostly related to supporting devices
with multiple voltage regulators)
In addition to that, the system sleep state selection interface is
modified to make it easier for distributions with unchanged user space
to support suspend-to-idle as the default system suspend method, some
issues are fixed in the PM core, the latency tolerance PM QoS
framework is improved a bit, the Intel RAPL power capping driver is
cleaned up and there are some fixes and cleanups in the devfreq
subsystem
Specifics:
- New cpufreq driver for Broadcom STB SoCs and a Device Tree binding
for it (Markus Mayer)
- Support for ARM Integrator/AP and Integrator/CP in the generic DT
cpufreq driver and elimination of the old Integrator cpufreq driver
(Linus Walleij)
- Support for the zx296718, r8a7743 and r8a7745, Socionext UniPhier,
and PXA SoCs in the the generic DT cpufreq driver (Baoyou Xie,
Geert Uytterhoeven, Masahiro Yamada, Robert Jarzmik)
- cpufreq core fix to eliminate races that may lead to using inactive
policy objects and related cleanups (Rafael Wysocki)
- cpufreq schedutil governor update to make it use SCHED_FIFO kernel
threads (instead of regular workqueues) for doing delayed work (to
reduce the response latency in some cases) and related cleanups
(Viresh Kumar)
- New cpufreq sysfs attribute for resetting statistics (Markus Mayer)
- cpufreq governors fixes and cleanups (Chen Yu, Stratos Karafotis,
Viresh Kumar)
- Support for using generic cpufreq governors in the intel_pstate
driver (Rafael Wysocki)
- Support for per-logical-CPU P-state limits and the EPP/EPB (Energy
Performance Preference/Energy Performance Bias) knobs in the
intel_pstate driver (Srinivas Pandruvada)
- New CPU ID for Knights Mill in intel_pstate (Piotr Luc)
- intel_pstate driver modification to use the P-state selection
algorithm based on CPU load on platforms with the system profile in
the ACPI tables set to "mobile" (Srinivas Pandruvada)
- intel_pstate driver cleanups (Arnd Bergmann, Rafael Wysocki,
Srinivas Pandruvada)
- cpufreq powernv driver updates including fast switching support
(for the schedutil governor), fixes and cleanus (Akshay Adiga,
Andrew Donnellan, Denis Kirjanov)
- acpi-cpufreq driver rework to switch it over to the new CPU
offline/online state machine (Sebastian Andrzej Siewior)
- Assorted cleanups in cpufreq drivers (Wei Yongjun, Prashanth
Prakash)
- Idle injection rework (to make it use the regular idle path instead
of a home-grown custom one) and related powerclamp thermal driver
updates (Peter Zijlstra, Jacob Pan, Petr Mladek, Sebastian Andrzej
Siewior)
- New CPU IDs for Atom Z34xx and Knights Mill in intel_idle (Andy
Shevchenko, Piotr Luc)
- intel_idle driver cleanups and switch over to using the new CPU
offline/online state machine (Anna-Maria Gleixner, Sebastian
Andrzej Siewior)
- cpuidle DT driver update to support suspend-to-idle properly
(Sudeep Holla)
- cpuidle core cleanups and misc updates (Daniel Lezcano, Pan Bian,
Rafael Wysocki)
- Preliminary support for power domains including CPUs in the generic
power domains (genpd) framework and related DT bindings (Lina Iyer)
- Assorted fixes and cleanups in the generic power domains (genpd)
framework (Colin Ian King, Dan Carpenter, Geert Uytterhoeven)
- Preliminary support for devices with multiple voltage regulators
and related fixes and cleanups in the Operating Performance Points
(OPP) library (Viresh Kumar, Masahiro Yamada, Stephen Boyd)
- System sleep state selection interface rework to make it easier to
support suspend-to-idle as the default system suspend method
(Rafael Wysocki)
- PM core fixes and cleanups, mostly related to the interactions
between the system suspend and runtime PM frameworks (Ulf Hansson,
Sahitya Tummala, Tony Lindgren)
- Latency tolerance PM QoS framework imorovements (Andrew Lutomirski)
- New Knights Mill CPU ID for the Intel RAPL power capping driver
(Piotr Luc)
- Intel RAPL power capping driver fixes, cleanups and switch over to
using the new CPU offline/online state machine (Jacob Pan, Thomas
Gleixner, Sebastian Andrzej Siewior)
- Fixes and cleanups in the exynos-ppmu, exynos-nocp, rk3399_dmc,
rockchip-dfi devfreq drivers and the devfreq core (Axel Lin,
Chanwoo Choi, Javier Martinez Canillas, MyungJoo Ham, Viresh Kumar)
- Fix for false-positive KASAN warnings during resume from ACPI S3
(suspend-to-RAM) on x86 (Josh Poimboeuf)
- Memory map verification during resume from hibernation on x86 to
ensure a consistent address space layout (Chen Yu)
- Wakeup sources debugging enhancement (Xing Wei)
- rockchip-io AVS driver cleanup (Shawn Lin)"
* tag 'pm-4.10-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (127 commits)
devfreq: rk3399_dmc: Don't use OPP structures outside of RCU locks
devfreq: rk3399_dmc: Remove dangling rcu_read_unlock()
devfreq: exynos: Don't use OPP structures outside of RCU locks
Documentation: intel_pstate: Document HWP energy/performance hints
cpufreq: intel_pstate: Support for energy performance hints with HWP
cpufreq: intel_pstate: Add locking around HWP requests
PM / sleep: Print active wakeup sources when blocking on wakeup_count reads
PM / core: Fix bug in the error handling of async suspend
PM / wakeirq: Fix dedicated wakeirq for drivers not using autosuspend
PM / Domains: Fix compatible for domain idle state
PM / OPP: Don't WARN on multiple calls to dev_pm_opp_set_regulators()
PM / OPP: Allow platform specific custom set_opp() callbacks
PM / OPP: Separate out _generic_set_opp()
PM / OPP: Add infrastructure to manage multiple regulators
PM / OPP: Pass struct dev_pm_opp_supply to _set_opp_voltage()
PM / OPP: Manage supply's voltage/current in a separate structure
PM / OPP: Don't use OPP structure outside of rcu protected section
PM / OPP: Reword binding supporting multiple regulators per device
PM / OPP: Fix incorrect cpu-supply property in binding
cpuidle: Add a kerneldoc comment to cpuidle_use_deepest_state()
..
Merge updates from Andrew Morton:
- various misc bits
- most of MM (quite a lot of MM material is awaiting the merge of
linux-next dependencies)
- kasan
- printk updates
- procfs updates
- MAINTAINERS
- /lib updates
- checkpatch updates
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (123 commits)
init: reduce rootwait polling interval time to 5ms
binfmt_elf: use vmalloc() for allocation of vma_filesz
checkpatch: don't emit unified-diff error for rename-only patches
checkpatch: don't check c99 types like uint8_t under tools
checkpatch: avoid multiple line dereferences
checkpatch: don't check .pl files, improve absolute path commit log test
scripts/checkpatch.pl: fix spelling
checkpatch: don't try to get maintained status when --no-tree is given
lib/ida: document locking requirements a bit better
lib/rbtree.c: fix typo in comment of ____rb_erase_color
lib/Kconfig.debug: make CONFIG_STRICT_DEVMEM depend on CONFIG_DEVMEM
MAINTAINERS: add drm and drm/i915 irc channels
MAINTAINERS: add "C:" for URI for chat where developers hang out
MAINTAINERS: add drm and drm/i915 bug filing info
MAINTAINERS: add "B:" for URI where to file bugs
get_maintainer: look for arbitrary letter prefixes in sections
printk: add Kconfig option to set default console loglevel
printk/sound: handle more message headers
printk/btrfs: handle more message headers
printk/kdb: handle more message headers
...
Pull timer updates from Thomas Gleixner:
"The time/timekeeping/timer folks deliver with this update:
- Fix a reintroduced signed/unsigned issue and cleanup the whole
signed/unsigned mess in the timekeeping core so this wont happen
accidentaly again.
- Add a new trace clock based on boot time
- Prevent injection of random sleep times when PM tracing abuses the
RTC for storage
- Make posix timers configurable for real tiny systems
- Add tracepoints for the alarm timer subsystem so timer based
suspend wakeups can be instrumented
- The usual pile of fixes and updates to core and drivers"
* 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (23 commits)
timekeeping: Use mul_u64_u32_shr() instead of open coding it
timekeeping: Get rid of pointless typecasts
timekeeping: Make the conversion call chain consistently unsigned
timekeeping_Force_unsigned_clocksource_to_nanoseconds_conversion
alarmtimer: Add tracepoints for alarm timers
trace: Update documentation for mono, mono_raw and boot clock
trace: Add an option for boot clock as trace clock
timekeeping: Add a fast and NMI safe boot clock
timekeeping/clocksource_cyc2ns: Document intended range limitation
timekeeping: Ignore the bogus sleep time if pm_trace is enabled
selftests/timers: Fix spelling mistake "Asyncrhonous" -> "Asynchronous"
clocksource/drivers/bcm2835_timer: Unmap region obtained by of_iomap
clocksource/drivers/arm_arch_timer: Map frame with of_io_request_and_map()
arm64: dts: rockchip: Arch counter doesn't tick in system suspend
clocksource/drivers/arm_arch_timer: Don't assume clock runs in suspend
posix-timers: Make them configurable
posix_cpu_timers: Move the add_device_randomness() call to a proper place
timer: Move sys_alarm from timer.c to itimer.c
ptp_clock: Allow for it to be optional
Kconfig: Regenerate *.c_shipped files after previous changes
...
vfree() is going to use sleeping lock. Thread stack freed in atomic
context, therefore we must use vfree_atomic() here.
Link: http://lkml.kernel.org/r/1479474236-4139-6-git-send-email-hch@lst.de
Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Jisheng Zhang <jszhang@marvell.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: John Dias <joaodias@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
commit 23196f2e5f "kthread: Pin the stack via try_get_task_stack() /
put_task_stack() in to_live_kthread() function" is a workaround for the
fragile design of struct kthread being allocated on the task stack.
struct kthread in its current form should be removed, but this needs
cleanups outside of kthread.c.
As a first step move struct kthread away from the task stack by making it
kmalloc'ed. This allows to access kthread.exited without the magic of
trying to pin task stack and the try logic in to_live_kthread().
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Chunming Zhou <David1.Zhou@amd.com>
Cc: Roman Pen <roman.penyaev@profitbricks.com>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Tejun Heo <tj@kernel.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Alex Deucher <alexander.deucher@amd.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/r/20161129175057.GA5330@redhat.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Idle injection drivers such as Intel powerclamp and ACPI PAD drivers use
realtime tasks to take control of CPU then inject idle. There are two
issues with this approach:
1. Low efficiency: injected idle task is treated as busy so sched ticks
do not stop during injected idle period, the result of these
unwanted wakeups can be ~20% loss in power savings.
2. Idle accounting: injected idle time is presented to user as busy.
This patch addresses the issues by introducing a new PF_IDLE flag which
allows any given task to be treated as idle task while the flag is set.
Therefore, idle injection tasks can run through the normal flow of NOHZ
idle enter/exit to get the correct accounting as well as tick stop when
possible.
The implication is that idle task is then no longer limited to PID == 0.
Acked-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
During exec dumpable is cleared if the file that is being executed is
not readable by the user executing the file. A bug in
ptrace_may_access allows reading the file if the executable happens to
enter into a subordinate user namespace (aka clone(CLONE_NEWUSER),
unshare(CLONE_NEWUSER), or setns(fd, CLONE_NEWUSER).
This problem is fixed with only necessary userspace breakage by adding
a user namespace owner to mm_struct, captured at the time of exec, so
it is clear in which user namespace CAP_SYS_PTRACE must be present in
to be able to safely give read permission to the executable.
The function ptrace_may_access is modified to verify that the ptracer
has CAP_SYS_ADMIN in task->mm->user_ns instead of task->cred->user_ns.
This ensures that if the task changes it's cred into a subordinate
user namespace it does not become ptraceable.
The function ptrace_attach is modified to only set PT_PTRACE_CAP when
CAP_SYS_PTRACE is held over task->mm->user_ns. The intent of
PT_PTRACE_CAP is to be a flag to note that whatever permission changes
the task might go through the tracer has sufficient permissions for
it not to be an issue. task->cred->user_ns is always the same
as or descendent of mm->user_ns. Which guarantees that having
CAP_SYS_PTRACE over mm->user_ns is the worst case for the tasks
credentials.
To prevent regressions mm->dumpable and mm->user_ns are not considered
when a task has no mm. As simply failing ptrace_may_attach causes
regressions in privileged applications attempting to read things
such as /proc/<pid>/stat
Cc: stable@vger.kernel.org
Acked-by: Kees Cook <keescook@chromium.org>
Tested-by: Cyrill Gorcunov <gorcunov@openvz.org>
Fixes: 8409cca705 ("userns: allow ptrace from non-init user namespaces")
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>