Reclaim may stall if there is too much dirty or congested data on a
node. This was previously based on zone flags and the logic for
clearing the flags is in two places. As congestion/dirty tracking is
now tracked on a per-node basis, we can remove some duplicate logic.
Link: http://lkml.kernel.org/r/1467970510-21195-12-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Direct reclaim iterates over all zones in the zonelist and shrinking
them but this is in conflict with node-based reclaim. In the default
case, only shrink once per node.
Link: http://lkml.kernel.org/r/1467970510-21195-11-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
kswapd goes through some complex steps trying to figure out if it should
stay awake based on the classzone_idx and the requested order. It is
unnecessarily complex and passes in an invalid classzone_idx to
balance_pgdat(). What matters most of all is whether a larger order has
been requsted and whether kswapd successfully reclaimed at the previous
order. This patch irons out the logic to check just that and the end
result is less headache inducing.
Link: http://lkml.kernel.org/r/1467970510-21195-10-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The balance gap was introduced to apply equal pressure to all zones when
reclaiming for a higher zone. With node-based LRU, the need for the
balance gap is removed and the code is dead so remove it.
[vbabka@suse.cz: Also remove KSWAPD_ZONE_BALANCE_GAP_RATIO]
Link: http://lkml.kernel.org/r/1467970510-21195-9-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch "mm: vmscan: Begin reclaiming pages on a per-node basis" started
thinking of reclaim in terms of nodes but kswapd is still zone-centric.
This patch gets rid of many of the node-based versus zone-based
decisions.
o A node is considered balanced when any eligible lower zone is balanced.
This eliminates one class of age-inversion problem because we avoid
reclaiming a newer page just because it's in the wrong zone
o pgdat_balanced disappears because we now only care about one zone being
balanced.
o Some anomalies related to writeback and congestion tracking being based on
zones disappear.
o kswapd no longer has to take care to reclaim zones in the reverse order
that the page allocator uses.
o Most importantly of all, reclaim from node 0 with multiple zones will
have similar aging and reclaiming characteristics as every
other node.
Link: http://lkml.kernel.org/r/1467970510-21195-8-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
kswapd checks all eligible zones to see if they need balancing even if
it was woken for a lower zone. This made sense when we reclaimed on a
per-zone basis because we wanted to shrink zones fairly so avoid
age-inversion problems. Ideally this is completely unnecessary when
reclaiming on a per-node basis. In theory, there may still be anomalies
when all requests are for lower zones and very old pages are preserved
in higher zones but this should be the exceptional case.
Link: http://lkml.kernel.org/r/1467970510-21195-7-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch makes reclaim decisions on a per-node basis. A reclaimer
knows what zone is required by the allocation request and skips pages
from higher zones. In many cases this will be ok because it's a
GFP_HIGHMEM request of some description. On 64-bit, ZONE_DMA32 requests
will cause some problems but 32-bit devices on 64-bit platforms are
increasingly rare. Historically it would have been a major problem on
32-bit with big Highmem:Lowmem ratios but such configurations are also
now rare and even where they exist, they are not encouraged. If it
really becomes a problem, it'll manifest as very low reclaim
efficiencies.
Link: http://lkml.kernel.org/r/1467970510-21195-6-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Zone padding separates write-intensive fields used by page allocation,
compaction and vmstats but the comments are a little misleading and need
clarification.
Link: http://lkml.kernel.org/r/1467970510-21195-5-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This moves the LRU lists from the zone to the node and related data such
as counters, tracing, congestion tracking and writeback tracking.
Unfortunately, due to reclaim and compaction retry logic, it is
necessary to account for the number of LRU pages on both zone and node
logic. Most reclaim logic is based on the node counters but the retry
logic uses the zone counters which do not distinguish inactive and
active sizes. It would be possible to leave the LRU counters on a
per-zone basis but it's a heavier calculation across multiple cache
lines that is much more frequent than the retry checks.
Other than the LRU counters, this is mostly a mechanical patch but note
that it introduces a number of anomalies. For example, the scans are
per-zone but using per-node counters. We also mark a node as congested
when a zone is congested. This causes weird problems that are fixed
later but is easier to review.
In the event that there is excessive overhead on 32-bit systems due to
the nodes being on LRU then there are two potential solutions
1. Long-term isolation of highmem pages when reclaim is lowmem
When pages are skipped, they are immediately added back onto the LRU
list. If lowmem reclaim persisted for long periods of time, the same
highmem pages get continually scanned. The idea would be that lowmem
keeps those pages on a separate list until a reclaim for highmem pages
arrives that splices the highmem pages back onto the LRU. It potentially
could be implemented similar to the UNEVICTABLE list.
That would reduce the skip rate with the potential corner case is that
highmem pages have to be scanned and reclaimed to free lowmem slab pages.
2. Linear scan lowmem pages if the initial LRU shrink fails
This will break LRU ordering but may be preferable and faster during
memory pressure than skipping LRU pages.
Link: http://lkml.kernel.org/r/1467970510-21195-4-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Node-based reclaim requires node-based LRUs and locking. This is a
preparation patch that just moves the lru_lock to the node so later
patches are easier to review. It is a mechanical change but note this
patch makes contention worse because the LRU lock is hotter and direct
reclaim and kswapd can contend on the same lock even when reclaiming
from different zones.
Link: http://lkml.kernel.org/r/1467970510-21195-3-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Reviewed-by: Minchan Kim <minchan@kernel.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patchset: "Move LRU page reclaim from zones to nodes v9"
This series moves LRUs from the zones to the node. While this is a
current rebase, the test results were based on mmotm as of June 23rd.
Conceptually, this series is simple but there are a lot of details.
Some of the broad motivations for this are;
1. The residency of a page partially depends on what zone the page was
allocated from. This is partially combatted by the fair zone allocation
policy but that is a partial solution that introduces overhead in the
page allocator paths.
2. Currently, reclaim on node 0 behaves slightly different to node 1. For
example, direct reclaim scans in zonelist order and reclaims even if
the zone is over the high watermark regardless of the age of pages
in that LRU. Kswapd on the other hand starts reclaim on the highest
unbalanced zone. A difference in distribution of file/anon pages due
to when they were allocated results can result in a difference in
again. While the fair zone allocation policy mitigates some of the
problems here, the page reclaim results on a multi-zone node will
always be different to a single-zone node.
it was scheduled on as a result.
3. kswapd and the page allocator scan zones in the opposite order to
avoid interfering with each other but it's sensitive to timing. This
mitigates the page allocator using pages that were allocated very recently
in the ideal case but it's sensitive to timing. When kswapd is allocating
from lower zones then it's great but during the rebalancing of the highest
zone, the page allocator and kswapd interfere with each other. It's worse
if the highest zone is small and difficult to balance.
4. slab shrinkers are node-based which makes it harder to identify the exact
relationship between slab reclaim and LRU reclaim.
The reason we have zone-based reclaim is that we used to have
large highmem zones in common configurations and it was necessary
to quickly find ZONE_NORMAL pages for reclaim. Today, this is much
less of a concern as machines with lots of memory will (or should) use
64-bit kernels. Combinations of 32-bit hardware and 64-bit hardware are
rare. Machines that do use highmem should have relatively low highmem:lowmem
ratios than we worried about in the past.
Conceptually, moving to node LRUs should be easier to understand. The
page allocator plays fewer tricks to game reclaim and reclaim behaves
similarly on all nodes.
The series has been tested on a 16 core UMA machine and a 2-socket 48
core NUMA machine. The UMA results are presented in most cases as the NUMA
machine behaved similarly.
pagealloc
---------
This is a microbenchmark that shows the benefit of removing the fair zone
allocation policy. It was tested uip to order-4 but only orders 0 and 1 are
shown as the other orders were comparable.
4.7.0-rc4 4.7.0-rc4
mmotm-20160623 nodelru-v9
Min total-odr0-1 490.00 ( 0.00%) 457.00 ( 6.73%)
Min total-odr0-2 347.00 ( 0.00%) 329.00 ( 5.19%)
Min total-odr0-4 288.00 ( 0.00%) 273.00 ( 5.21%)
Min total-odr0-8 251.00 ( 0.00%) 239.00 ( 4.78%)
Min total-odr0-16 234.00 ( 0.00%) 222.00 ( 5.13%)
Min total-odr0-32 223.00 ( 0.00%) 211.00 ( 5.38%)
Min total-odr0-64 217.00 ( 0.00%) 208.00 ( 4.15%)
Min total-odr0-128 214.00 ( 0.00%) 204.00 ( 4.67%)
Min total-odr0-256 250.00 ( 0.00%) 230.00 ( 8.00%)
Min total-odr0-512 271.00 ( 0.00%) 269.00 ( 0.74%)
Min total-odr0-1024 291.00 ( 0.00%) 282.00 ( 3.09%)
Min total-odr0-2048 303.00 ( 0.00%) 296.00 ( 2.31%)
Min total-odr0-4096 311.00 ( 0.00%) 309.00 ( 0.64%)
Min total-odr0-8192 316.00 ( 0.00%) 314.00 ( 0.63%)
Min total-odr0-16384 317.00 ( 0.00%) 315.00 ( 0.63%)
Min total-odr1-1 742.00 ( 0.00%) 712.00 ( 4.04%)
Min total-odr1-2 562.00 ( 0.00%) 530.00 ( 5.69%)
Min total-odr1-4 457.00 ( 0.00%) 433.00 ( 5.25%)
Min total-odr1-8 411.00 ( 0.00%) 381.00 ( 7.30%)
Min total-odr1-16 381.00 ( 0.00%) 356.00 ( 6.56%)
Min total-odr1-32 372.00 ( 0.00%) 346.00 ( 6.99%)
Min total-odr1-64 372.00 ( 0.00%) 343.00 ( 7.80%)
Min total-odr1-128 375.00 ( 0.00%) 351.00 ( 6.40%)
Min total-odr1-256 379.00 ( 0.00%) 351.00 ( 7.39%)
Min total-odr1-512 385.00 ( 0.00%) 355.00 ( 7.79%)
Min total-odr1-1024 386.00 ( 0.00%) 358.00 ( 7.25%)
Min total-odr1-2048 390.00 ( 0.00%) 362.00 ( 7.18%)
Min total-odr1-4096 390.00 ( 0.00%) 362.00 ( 7.18%)
Min total-odr1-8192 388.00 ( 0.00%) 363.00 ( 6.44%)
This shows a steady improvement throughout. The primary benefit is from
reduced system CPU usage which is obvious from the overall times;
4.7.0-rc4 4.7.0-rc4
mmotm-20160623nodelru-v8
User 189.19 191.80
System 2604.45 2533.56
Elapsed 2855.30 2786.39
The vmstats also showed that the fair zone allocation policy was definitely
removed as can be seen here;
4.7.0-rc3 4.7.0-rc3
mmotm-20160623 nodelru-v8
DMA32 allocs 28794729769 0
Normal allocs 48432501431 77227309877
Movable allocs 0 0
tiobench on ext4
----------------
tiobench is a benchmark that artifically benefits if old pages remain resident
while new pages get reclaimed. The fair zone allocation policy mitigates this
problem so pages age fairly. While the benchmark has problems, it is important
that tiobench performance remains constant as it implies that page aging
problems that the fair zone allocation policy fixes are not re-introduced.
4.7.0-rc4 4.7.0-rc4
mmotm-20160623 nodelru-v9
Min PotentialReadSpeed 89.65 ( 0.00%) 90.21 ( 0.62%)
Min SeqRead-MB/sec-1 82.68 ( 0.00%) 82.01 ( -0.81%)
Min SeqRead-MB/sec-2 72.76 ( 0.00%) 72.07 ( -0.95%)
Min SeqRead-MB/sec-4 75.13 ( 0.00%) 74.92 ( -0.28%)
Min SeqRead-MB/sec-8 64.91 ( 0.00%) 65.19 ( 0.43%)
Min SeqRead-MB/sec-16 62.24 ( 0.00%) 62.22 ( -0.03%)
Min RandRead-MB/sec-1 0.88 ( 0.00%) 0.88 ( 0.00%)
Min RandRead-MB/sec-2 0.95 ( 0.00%) 0.92 ( -3.16%)
Min RandRead-MB/sec-4 1.43 ( 0.00%) 1.34 ( -6.29%)
Min RandRead-MB/sec-8 1.61 ( 0.00%) 1.60 ( -0.62%)
Min RandRead-MB/sec-16 1.80 ( 0.00%) 1.90 ( 5.56%)
Min SeqWrite-MB/sec-1 76.41 ( 0.00%) 76.85 ( 0.58%)
Min SeqWrite-MB/sec-2 74.11 ( 0.00%) 73.54 ( -0.77%)
Min SeqWrite-MB/sec-4 80.05 ( 0.00%) 80.13 ( 0.10%)
Min SeqWrite-MB/sec-8 72.88 ( 0.00%) 73.20 ( 0.44%)
Min SeqWrite-MB/sec-16 75.91 ( 0.00%) 76.44 ( 0.70%)
Min RandWrite-MB/sec-1 1.18 ( 0.00%) 1.14 ( -3.39%)
Min RandWrite-MB/sec-2 1.02 ( 0.00%) 1.03 ( 0.98%)
Min RandWrite-MB/sec-4 1.05 ( 0.00%) 0.98 ( -6.67%)
Min RandWrite-MB/sec-8 0.89 ( 0.00%) 0.92 ( 3.37%)
Min RandWrite-MB/sec-16 0.92 ( 0.00%) 0.93 ( 1.09%)
4.7.0-rc4 4.7.0-rc4
mmotm-20160623 approx-v9
User 645.72 525.90
System 403.85 331.75
Elapsed 6795.36 6783.67
This shows that the series has little or not impact on tiobench which is
desirable and a reduction in system CPU usage. It indicates that the fair
zone allocation policy was removed in a manner that didn't reintroduce
one class of page aging bug. There were only minor differences in overall
reclaim activity
4.7.0-rc4 4.7.0-rc4
mmotm-20160623nodelru-v8
Minor Faults 645838 647465
Major Faults 573 640
Swap Ins 0 0
Swap Outs 0 0
DMA allocs 0 0
DMA32 allocs 46041453 44190646
Normal allocs 78053072 79887245
Movable allocs 0 0
Allocation stalls 24 67
Stall zone DMA 0 0
Stall zone DMA32 0 0
Stall zone Normal 0 2
Stall zone HighMem 0 0
Stall zone Movable 0 65
Direct pages scanned 10969 30609
Kswapd pages scanned 93375144 93492094
Kswapd pages reclaimed 93372243 93489370
Direct pages reclaimed 10969 30609
Kswapd efficiency 99% 99%
Kswapd velocity 13741.015 13781.934
Direct efficiency 100% 100%
Direct velocity 1.614 4.512
Percentage direct scans 0% 0%
kswapd activity was roughly comparable. There were differences in direct
reclaim activity but negligible in the context of the overall workload
(velocity of 4 pages per second with the patches applied, 1.6 pages per
second in the baseline kernel).
pgbench read-only large configuration on ext4
---------------------------------------------
pgbench is a database benchmark that can be sensitive to page reclaim
decisions. This also checks if removing the fair zone allocation policy
is safe
pgbench Transactions
4.7.0-rc4 4.7.0-rc4
mmotm-20160623 nodelru-v8
Hmean 1 188.26 ( 0.00%) 189.78 ( 0.81%)
Hmean 5 330.66 ( 0.00%) 328.69 ( -0.59%)
Hmean 12 370.32 ( 0.00%) 380.72 ( 2.81%)
Hmean 21 368.89 ( 0.00%) 369.00 ( 0.03%)
Hmean 30 382.14 ( 0.00%) 360.89 ( -5.56%)
Hmean 32 428.87 ( 0.00%) 432.96 ( 0.95%)
Negligible differences again. As with tiobench, overall reclaim activity
was comparable.
bonnie++ on ext4
----------------
No interesting performance difference, negligible differences on reclaim
stats.
paralleldd on ext4
------------------
This workload uses varying numbers of dd instances to read large amounts of
data from disk.
4.7.0-rc3 4.7.0-rc3
mmotm-20160623 nodelru-v9
Amean Elapsd-1 186.04 ( 0.00%) 189.41 ( -1.82%)
Amean Elapsd-3 192.27 ( 0.00%) 191.38 ( 0.46%)
Amean Elapsd-5 185.21 ( 0.00%) 182.75 ( 1.33%)
Amean Elapsd-7 183.71 ( 0.00%) 182.11 ( 0.87%)
Amean Elapsd-12 180.96 ( 0.00%) 181.58 ( -0.35%)
Amean Elapsd-16 181.36 ( 0.00%) 183.72 ( -1.30%)
4.7.0-rc4 4.7.0-rc4
mmotm-20160623 nodelru-v9
User 1548.01 1552.44
System 8609.71 8515.08
Elapsed 3587.10 3594.54
There is little or no change in performance but some drop in system CPU usage.
4.7.0-rc3 4.7.0-rc3
mmotm-20160623 nodelru-v9
Minor Faults 362662 367360
Major Faults 1204 1143
Swap Ins 22 0
Swap Outs 2855 1029
DMA allocs 0 0
DMA32 allocs 31409797 28837521
Normal allocs 46611853 49231282
Movable allocs 0 0
Direct pages scanned 0 0
Kswapd pages scanned 40845270 40869088
Kswapd pages reclaimed 40830976 40855294
Direct pages reclaimed 0 0
Kswapd efficiency 99% 99%
Kswapd velocity 11386.711 11369.769
Direct efficiency 100% 100%
Direct velocity 0.000 0.000
Percentage direct scans 0% 0%
Page writes by reclaim 2855 1029
Page writes file 0 0
Page writes anon 2855 1029
Page reclaim immediate 771 1628
Sector Reads 293312636 293536360
Sector Writes 18213568 18186480
Page rescued immediate 0 0
Slabs scanned 128257 132747
Direct inode steals 181 56
Kswapd inode steals 59 1131
It basically shows that kswapd was active at roughly the same rate in
both kernels. There was also comparable slab scanning activity and direct
reclaim was avoided in both cases. There appears to be a large difference
in numbers of inodes reclaimed but the workload has few active inodes and
is likely a timing artifact.
stutter
-------
stutter simulates a simple workload. One part uses a lot of anonymous
memory, a second measures mmap latency and a third copies a large file.
The primary metric is checking for mmap latency.
stutter
4.7.0-rc4 4.7.0-rc4
mmotm-20160623 nodelru-v8
Min mmap 16.6283 ( 0.00%) 13.4258 ( 19.26%)
1st-qrtle mmap 54.7570 ( 0.00%) 34.9121 ( 36.24%)
2nd-qrtle mmap 57.3163 ( 0.00%) 46.1147 ( 19.54%)
3rd-qrtle mmap 58.9976 ( 0.00%) 47.1882 ( 20.02%)
Max-90% mmap 59.7433 ( 0.00%) 47.4453 ( 20.58%)
Max-93% mmap 60.1298 ( 0.00%) 47.6037 ( 20.83%)
Max-95% mmap 73.4112 ( 0.00%) 82.8719 (-12.89%)
Max-99% mmap 92.8542 ( 0.00%) 88.8870 ( 4.27%)
Max mmap 1440.6569 ( 0.00%) 121.4201 ( 91.57%)
Mean mmap 59.3493 ( 0.00%) 42.2991 ( 28.73%)
Best99%Mean mmap 57.2121 ( 0.00%) 41.8207 ( 26.90%)
Best95%Mean mmap 55.9113 ( 0.00%) 39.9620 ( 28.53%)
Best90%Mean mmap 55.6199 ( 0.00%) 39.3124 ( 29.32%)
Best50%Mean mmap 53.2183 ( 0.00%) 33.1307 ( 37.75%)
Best10%Mean mmap 45.9842 ( 0.00%) 20.4040 ( 55.63%)
Best5%Mean mmap 43.2256 ( 0.00%) 17.9654 ( 58.44%)
Best1%Mean mmap 32.9388 ( 0.00%) 16.6875 ( 49.34%)
This shows a number of improvements with the worst-case outlier greatly
improved.
Some of the vmstats are interesting
4.7.0-rc4 4.7.0-rc4
mmotm-20160623nodelru-v8
Swap Ins 163 502
Swap Outs 0 0
DMA allocs 0 0
DMA32 allocs 618719206 1381662383
Normal allocs 891235743 564138421
Movable allocs 0 0
Allocation stalls 2603 1
Direct pages scanned 216787 2
Kswapd pages scanned 50719775 41778378
Kswapd pages reclaimed 41541765 41777639
Direct pages reclaimed 209159 0
Kswapd efficiency 81% 99%
Kswapd velocity 16859.554 14329.059
Direct efficiency 96% 0%
Direct velocity 72.061 0.001
Percentage direct scans 0% 0%
Page writes by reclaim 6215049 0
Page writes file 6215049 0
Page writes anon 0 0
Page reclaim immediate 70673 90
Sector Reads 81940800 81680456
Sector Writes 100158984 98816036
Page rescued immediate 0 0
Slabs scanned 1366954 22683
While this is not guaranteed in all cases, this particular test showed
a large reduction in direct reclaim activity. It's also worth noting
that no page writes were issued from reclaim context.
This series is not without its hazards. There are at least three areas
that I'm concerned with even though I could not reproduce any problems in
that area.
1. Reclaim/compaction is going to be affected because the amount of reclaim is
no longer targetted at a specific zone. Compaction works on a per-zone basis
so there is no guarantee that reclaiming a few THP's worth page pages will
have a positive impact on compaction success rates.
2. The Slab/LRU reclaim ratio is affected because the frequency the shrinkers
are called is now different. This may or may not be a problem but if it
is, it'll be because shrinkers are not called enough and some balancing
is required.
3. The anon/file reclaim ratio may be affected. Pages about to be dirtied are
distributed between zones and the fair zone allocation policy used to do
something very similar for anon. The distribution is now different but not
necessarily in any way that matters but it's still worth bearing in mind.
VM statistic counters for reclaim decisions are zone-based. If the kernel
is to reclaim on a per-node basis then we need to track per-node
statistics but there is no infrastructure for that. The most notable
change is that the old node_page_state is renamed to
sum_zone_node_page_state. The new node_page_state takes a pglist_data and
uses per-node stats but none exist yet. There is some renaming such as
vm_stat to vm_zone_stat and the addition of vm_node_stat and the renaming
of mod_state to mod_zone_state. Otherwise, this is mostly a mechanical
patch with no functional change. There is a lot of similarity between the
node and zone helpers which is unfortunate but there was no obvious way of
reusing the code and maintaining type safety.
Link: http://lkml.kernel.org/r/1467970510-21195-2-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Rik van Riel <riel@surriel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The helper early_page_nid_uninitialised() has been dead since commit
974a786e63 ("mm, page_alloc: remove MIGRATE_RESERVE") so remove the
dead code.
Link: http://lkml.kernel.org/r/1468008031-3848-2-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit c0ff7453bb ("cpuset,mm: fix no node to alloc memory when
changing cpuset's mems") has added TIF_MEMDIE and PF_EXITING check but
it is checking the flag on the current task rather than the given one.
This doesn't make much sense and it is actually wrong. If the current
task which updates the nodemask of a cpuset got killed by the OOM killer
then a part of the cpuset cgroup processes would have incompatible
nodemask which is surprising to say the least.
The comment suggests the intention was to skip oom victim or an exiting
task so we should be checking the given task. But even then it would be
layering violation because it is the memory allocator to interpret the
TIF_MEMDIE meaning. Simply drop both checks. All tasks in the cpuset
should simply follow the same mask.
Link: http://lkml.kernel.org/r/1467029719-17602-3-git-send-email-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Miao Xie <miaox@cn.fujitsu.com>
Cc: Miao Xie <miaoxie@huawei.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
freezing_slow_path() is checking TIF_MEMDIE to skip OOM killed tasks.
It is, however, checking the flag on the current task rather than the
given one. This is really confusing because freezing() can be called
also on !current tasks. It would end up working correctly for its main
purpose because __refrigerator will be always called on the current task
so the oom victim will never get frozen. But it could lead to
surprising results when a task which is freezing a cgroup got oom killed
because only part of the cgroup would get frozen. This is highly
unlikely but worth fixing as the resulting code would be more clear
anyway.
Link: http://lkml.kernel.org/r/1467029719-17602-2-git-send-email-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Miao Xie <miaox@cn.fujitsu.com>
Cc: Miao Xie <miaoxie@huawei.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 23047a96d7 ("mm: workingset: per-cgroup cache thrash
detection") added a page->mem_cgroup lookup to the cache eviction,
refault, and activation paths, as well as locking to the activation
path, and the vm-scalability tests showed a regression of -23%.
While the test in question is an artificial worst-case scenario that
doesn't occur in real workloads - reading two sparse files in parallel
at full CPU speed just to hammer the LRU paths - there is still some
optimizations that can be done in those paths.
Inline the lookup functions to eliminate calls. Also, page->mem_cgroup
doesn't need to be stabilized when counting an activation; we merely
need to hold the RCU lock to prevent the memcg from being freed.
This cuts down on overhead quite a bit:
23047a96d7 063f6715e77a7be5770d6081fe
---------------- --------------------------
%stddev %change %stddev
\ | \
21621405 +- 0% +11.3% 24069657 +- 2% vm-scalability.throughput
[linux@roeck-us.net: drop unnecessary include file]
[hannes@cmpxchg.org: add WARN_ON_ONCE()s]
Link: http://lkml.kernel.org/r/20160707194024.GA26580@cmpxchg.org
Link: http://lkml.kernel.org/r/20160624175101.GA3024@cmpxchg.org
Reported-by: Ye Xiaolong <xiaolong.ye@intel.com>
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We need to assure the comment is consistent with the code.
[akpm@linux-foundation.org: coding-style fixes]
Link: http://lkml.kernel.org/r/1466171914-21027-1-git-send-email-zhongjiang@huawei.com
Signed-off-by: zhong jiang <zhongjiang@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
"mm, oom: fortify task_will_free_mem" has dropped task_lock around
task_will_free_mem in oom_kill_process bacause it assumed that a
potential race when the selected task exits will not be a problem as the
oom_reaper will call exit_oom_victim.
Tetsuo was objecting that nommu doesn't have oom_reaper so the race
would be still possible. The code would be racy and lockup prone
theoretically in other aspects without the oom reaper anyway so I didn't
considered this a big deal. But it seems that further changes I am
planning in this area will benefit from stable task->mm in this path as
well. So let's drop find_lock_task_mm from task_will_free_mem and call
it from under task_lock as we did previously. Just pull the task->mm !=
NULL check inside the function.
Link: http://lkml.kernel.org/r/1467201562-6709-1-git-send-email-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The only case where the oom_reaper is not triggered for the oom victim
is when it shares the memory with a kernel thread (aka use_mm) or with
the global init. After "mm, oom: skip vforked tasks from being
selected" the victim cannot be a vforked task of the global init so we
are left with clone(CLONE_VM) (without CLONE_SIGHAND). use_mm() users
are quite rare as well.
In order to help forward progress for the OOM killer, make sure that
this really rare case will not get in the way - we do this by hiding the
mm from the oom killer by setting MMF_OOM_REAPED flag for it.
oom_scan_process_thread will ignore any TIF_MEMDIE task if it has
MMF_OOM_REAPED flag set to catch these oom victims.
After this patch we should guarantee forward progress for the OOM killer
even when the selected victim is sharing memory with a kernel thread or
global init as long as the victims mm is still alive.
Link: http://lkml.kernel.org/r/1466426628-15074-11-git-send-email-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Oleg Nesterov <oleg@redhat.com>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
oom_reaper relies on the mmap_sem for read to do its job. Many places
which might block readers have been converted to use down_write_killable
and that has reduced chances of the contention a lot. Some paths where
the mmap_sem is held for write can take other locks and they might
either be not prepared to fail due to fatal signal pending or too
impractical to be changed.
This patch introduces MMF_OOM_NOT_REAPABLE flag which gets set after the
first attempt to reap a task's mm fails. If the flag is present after
the failure then we set MMF_OOM_REAPED to hide this mm from the oom
killer completely so it can go and chose another victim.
As a result a risk of OOM deadlock when the oom victim would be blocked
indefinetly and so the oom killer cannot make any progress should be
mitigated considerably while we still try really hard to perform all
reclaim attempts and stay predictable in the behavior.
Link: http://lkml.kernel.org/r/1466426628-15074-10-git-send-email-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Oleg Nesterov <oleg@redhat.com>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The 0-day robot has encountered the following:
Out of memory: Kill process 3914 (trinity-c0) score 167 or sacrifice child
Killed process 3914 (trinity-c0) total-vm:55864kB, anon-rss:1512kB, file-rss:1088kB, shmem-rss:25616kB
oom_reaper: reaped process 3914 (trinity-c0), now anon-rss:0kB, file-rss:0kB, shmem-rss:26488kB
oom_reaper: reaped process 3914 (trinity-c0), now anon-rss:0kB, file-rss:0kB, shmem-rss:26900kB
oom_reaper: reaped process 3914 (trinity-c0), now anon-rss:0kB, file-rss:0kB, shmem-rss:26900kB
oom_reaper: reaped process 3914 (trinity-c0), now anon-rss:0kB, file-rss:0kB, shmem-rss:27296kB
oom_reaper: reaped process 3914 (trinity-c0), now anon-rss:0kB, file-rss:0kB, shmem-rss:28148kB
oom_reaper is trying to reap the same task again and again.
This is possible only when the oom killer is bypassed because of
task_will_free_mem because we skip over tasks with MMF_OOM_REAPED
already set during select_bad_process. Teach task_will_free_mem to skip
over MMF_OOM_REAPED tasks as well because they will be unlikely to free
anything more.
Analyzed by Tetsuo Handa.
Link: http://lkml.kernel.org/r/1466426628-15074-9-git-send-email-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Oleg Nesterov <oleg@redhat.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
task_will_free_mem is rather weak. It doesn't really tell whether the
task has chance to drop its mm. 98748bd722 ("oom: consider
multi-threaded tasks in task_will_free_mem") made a first step into making
it more robust for multi-threaded applications so now we know that the
whole process is going down and probably drop the mm.
This patch builds on top for more complex scenarios where mm is shared
between different processes - CLONE_VM without CLONE_SIGHAND, or in kernel
use_mm().
Make sure that all processes sharing the mm are killed or exiting. This
will allow us to replace try_oom_reaper by wake_oom_reaper because
task_will_free_mem implies the task is reapable now. Therefore all paths
which bypass the oom killer are now reapable and so they shouldn't lock up
the oom killer.
Link: http://lkml.kernel.org/r/1466426628-15074-8-git-send-email-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Oleg Nesterov <oleg@redhat.com>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently oom_kill_process skips both the oom reaper and SIG_KILL if a
process sharing the same mm is unkillable via OOM_ADJUST_MIN. After "mm,
oom_adj: make sure processes sharing mm have same view of oom_score_adj"
all such processes are sharing the same value so we shouldn't see such a
task at all (oom_badness would rule them out).
We can still encounter oom disabled vforked task which has to be killed as
well if we want to have other tasks sharing the mm reapable because it can
access the memory before doing exec. Killing such a task should be
acceptable because it is highly unlikely it has done anything useful
because it cannot modify any memory before it calls exec. An alternative
would be to keep the task alive and skip the oom reaper and risk all the
weird corner cases where the OOM killer cannot make forward progress
because the oom victim hung somewhere on the way to exit.
[rientjes@google.com - drop printk when OOM_SCORE_ADJ_MIN killed task
the setting is inherently racy and we cannot do much about it without
introducing locks in hot paths]
Link: http://lkml.kernel.org/r/1466426628-15074-7-git-send-email-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Oleg Nesterov <oleg@redhat.com>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
vforked tasks are not really sitting on any memory. They are sharing the
mm with parent until they exec into a new code. Until then it is just
pinning the address space. OOM killer will kill the vforked task along
with its parent but we still can end up selecting vforked task when the
parent wouldn't be selected. E.g. init doing vfork to launch a task or
vforked being a child of oom unkillable task with an updated oom_score_adj
to be killable.
Add a new helper to check whether a task is in the vfork sharing memory
with its parent and use it in oom_badness to skip over these tasks.
Link: http://lkml.kernel.org/r/1466426628-15074-6-git-send-email-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Oleg Nesterov <oleg@redhat.com>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
oom_score_adj is shared for the thread groups (via struct signal) but this
is not sufficient to cover processes sharing mm (CLONE_VM without
CLONE_SIGHAND) and so we can easily end up in a situation when some
processes update their oom_score_adj and confuse the oom killer. In the
worst case some of those processes might hide from the oom killer
altogether via OOM_SCORE_ADJ_MIN while others are eligible. OOM killer
would then pick up those eligible but won't be allowed to kill others
sharing the same mm so the mm wouldn't release the mm and so the memory.
It would be ideal to have the oom_score_adj per mm_struct because that is
the natural entity OOM killer considers. But this will not work because
some programs are doing
vfork()
set_oom_adj()
exec()
We can achieve the same though. oom_score_adj write handler can set the
oom_score_adj for all processes sharing the same mm if the task is not in
the middle of vfork. As a result all the processes will share the same
oom_score_adj. The current implementation is rather pessimistic and
checks all the existing processes by default if there is more than 1
holder of the mm but we do not have any reliable way to check for external
users yet.
Link: http://lkml.kernel.org/r/1466426628-15074-5-git-send-email-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Oleg Nesterov <oleg@redhat.com>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently we have two proc interfaces to set oom_score_adj. The legacy
/proc/<pid>/oom_adj and /proc/<pid>/oom_score_adj which both have their
specific handlers. Big part of the logic is duplicated so extract the
common code into __set_oom_adj helper. Legacy knob still expects some
details slightly different so make sure those are handled same way - e.g.
the legacy mode ignores oom_score_adj_min and it warns about the usage.
This patch shouldn't introduce any functional changes.
Link: http://lkml.kernel.org/r/1466426628-15074-4-git-send-email-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Oleg Nesterov <oleg@redhat.com>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Oleg has pointed out that can simplify both oom_adj_{read,write} and
oom_score_adj_{read,write} even further and drop the sighand lock. The
main purpose of the lock was to protect p->signal from going away but this
will not happen since ea6d290ca3 ("signals: make task_struct->signal
immutable/refcountable").
The other role of the lock was to synchronize different writers,
especially those with CAP_SYS_RESOURCE. Introduce a mutex for this
purpose. Later patches will need this lock anyway.
Suggested-by: Oleg Nesterov <oleg@redhat.com>
Link: http://lkml.kernel.org/r/1466426628-15074-3-git-send-email-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Oleg Nesterov <oleg@redhat.com>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Series "Handle oom bypass more gracefully", V5
The following 10 patches should put some order to very rare cases of mm
shared between processes and make the paths which bypass the oom killer
oom reapable and therefore much more reliable finally. Even though mm
shared outside of thread group is rare (either vforked tasks for a short
period, use_mm by kernel threads or exotic thread model of
clone(CLONE_VM) without CLONE_SIGHAND) it is better to cover them. Not
only it makes the current oom killer logic quite hard to follow and
reason about it can lead to weird corner cases. E.g. it is possible to
select an oom victim which shares the mm with unkillable process or
bypass the oom killer even when other processes sharing the mm are still
alive and other weird cases.
Patch 1 drops bogus task_lock and mm check from oom_{score_}adj_write.
This can be considered a bug fix with a low impact as nobody has noticed
for years.
Patch 2 drops sighand lock because it is not needed anymore as pointed
by Oleg.
Patch 3 is a clean up of oom_score_adj handling and a preparatory work
for later patches.
Patch 4 enforces oom_adj_score to be consistent between processes
sharing the mm to behave consistently with the regular thread groups.
This can be considered a user visible behavior change because one thread
group updating oom_score_adj will affect others which share the same mm
via clone(CLONE_VM). I argue that this should be acceptable because we
already have the same behavior for threads in the same thread group and
sharing the mm without signal struct is just a different model of
threading. This is probably the most controversial part of the series,
I would like to find some consensus here. There were some suggestions
to hook some counter/oom_score_adj into the mm_struct but I feel that
this is not necessary right now and we can rely on proc handler +
oom_kill_process to DTRT. I can be convinced otherwise but I strongly
think that whatever we do the userspace has to have a way to see the
current oom priority as consistently as possible.
Patch 5 makes sure that no vforked task is selected if it is sharing the
mm with oom unkillable task.
Patch 6 ensures that all user tasks sharing the mm are killed which in
turn makes sure that all oom victims are oom reapable.
Patch 7 guarantees that task_will_free_mem will always imply reapable
bypass of the oom killer.
Patch 8 is new in this version and it addresses an issue pointed out by
0-day OOM report where an oom victim was reaped several times.
Patch 9 puts an upper bound on how many times oom_reaper tries to reap a
task and hides it from the oom killer to move on when no progress can be
made. This will give an upper bound to how long an oom_reapable task
can block the oom killer from selecting another victim if the oom_reaper
is not able to reap the victim.
Patch 10 tries to plug the (hopefully) last hole when we can still lock
up when the oom victim is shared with oom unkillable tasks (kthreads and
global init). We just try to be best effort in that case and rather
fallback to kill something else than risk a lockup.
This patch (of 10):
Both oom_adj_write and oom_score_adj_write are using task_lock, check for
task->mm and fail if it is NULL. This is not needed because the
oom_score_adj is per signal struct so we do not need mm at all. The code
has been introduced by 3d5992d2ac ("oom: add per-mm oom disable count")
but we do not do per-mm oom disable since c9f01245b6 ("oom: remove
oom_disable_count").
The task->mm check is even not correct because the current thread might
have exited but the thread group might be still alive - e.g. thread group
leader would lead that echo $VAL > /proc/pid/oom_score_adj would always
fail with EINVAL while /proc/pid/task/$other_tid/oom_score_adj would
succeed. This is unexpected at best.
Remove the lock along with the check to fix the unexpected behavior and
also because there is not real need for the lock in the first place.
Link: http://lkml.kernel.org/r/1466426628-15074-2-git-send-email-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Oleg Nesterov <oleg@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This time we have bit of largish changes:
New drivers:
- Xilinx zynqmp dma engine driver.
- Marvell xor2 driver.
Updates:
- dmatest sg support.
- updates and enhancements to Xilinx drivers, adding of cyclic mode.
- clock handling fixes across drivers.
- removal of OOM messages on kzalloc across subsystem.
- interleaved transfers support in omap driver.
- runtime pm support in qcom bam dma.
- tasklet kill freeup across drivers.
- irq cleanup on remove across drivers.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJXmZj8AAoJEHwUBw8lI4NHANYP/0e7LkiopiBdxKyYNwViyrfL
XGsB3Fcd8MvYnojzlRUNUi5dt86YfXM5JixMWg8e2WeDSK9AXBEpRBHlEJXA7FNn
/BXy8FZxW4YkXOBSOL+GbDgC48CRiQrmoHSsYE1e9qosJTTpDJlTMd0I3EmdAK53
wjNKBYGv5ORNMXdYXJe/6uUqbN0QT7Qr7a9+Q1qgwhF1wd8pKjVXvDD6Qj2NeM8L
OCySngBECDWTCEYpuNXHbtp/s8QpWteGwCTyQYTkuNsFYM2H3nQCXi9ObMOGR9IN
44FpLgeLeIgW03F/1DmVvMWDYgCgow+b1usqHRWC7x33K/ArqzZzAsPyKePqOBU5
B9zzAla+/QKi73mKauqgHl/Siokr9FZdFpvTVWf2ssm/k3b3GJMO9tPPJ2ocyvZ6
lwlHrTMOV9n2tzeBkkadgLPWO6yDlcYlDVjj1P36DzC88GhjEfFOlq3tqcEJWxmR
adDFX2yRXdtpA6XSiI9l7jxUHxBWZwOTPJ6h1gznk/wVVd0TjyzZteX2gPc8lkcL
Aedhyx0zgGl5bE4+eBsNKLiOrUj468j7Cb87Hhe4YygDw/2T2Ff5RDGxQ9iRrkCb
YRPP21453VS01GuF2T1vzziJ/tGl8IwIon1EOSsTXuImH1sm7Or3W+Cyrke9AZgo
0M8kfHJ2EfcRnwHE8N2H
=tYp0
-----END PGP SIGNATURE-----
Merge tag 'dmaengine-4.8-rc1' of git://git.infradead.org/users/vkoul/slave-dma
Pull dmaengine updates from Vinod Koul:
"This time we have bit of largish changes: two new drivers, bunch of
updates and cleanups to existing set. Nothing super exciting though.
New drivers:
- Xilinx zynqmp dma engine driver
- Marvell xor2 driver
Updates:
- dmatest sg support
- updates and enhancements to Xilinx drivers, adding of cyclic mode
- clock handling fixes across drivers
- removal of OOM messages on kzalloc across subsystem
- interleaved transfers support in omap driver
- runtime pm support in qcom bam dma
- tasklet kill freeup across drivers
- irq cleanup on remove across drivers"
* tag 'dmaengine-4.8-rc1' of git://git.infradead.org/users/vkoul/slave-dma: (94 commits)
dmaengine: k3dma: add missing clk_disable_unprepare() on error in k3_dma_probe()
dmaengine: zynqmp_dma: add missing MODULE_LICENSE
dmaengine: qcom_hidma: use for_each_matching_node() macro
dmaengine: zynqmp_dma: Fix static checker warning
dmaengine: omap-dma: Support for interleaved transfer
dmaengine: ioat: statify symbol
dmaengine: pxa_dma: implement device_synchronize
dmaengine: imx-sdma: remove assignment never used
dmaengine: imx-sdma: remove dummy assignment
dmaengine: cppi: remove unused and bogus check
dmaengine: qcom_hidma_lli: kill the tasklets upon exit
dmaengine: pxa_dma: remove owner assignment
dmaengine: fsl_raid: remove owner assignment
dmaengine: coh901318: remove owner assignment
dmaengine: qcom_hidma: kill the tasklets upon exit
dmaengine: txx9dmac: explicitly freeup irq
dmaengine: sirf-dma: kill the tasklets upon exit
dmaengine: s3c24xx: kill the tasklets upon exit
dmaengine: s3c24xx: explicitly freeup irq
dmaengine: pl330: explicitly freeup irq
...
Add missing of_node_put() in the Qualcomm driver and update MAINTAINERS to make
sure all hwspinlock related files have a maintainer listed.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJXmQZdAAoJEAsfOT8Nma3FY2sP/R/sCOX33Zhu3HsvJikSwNKl
rypmM9lkR8wNMKmbdz59ocH/GsRaha1eWA+5u2w3TEaFRBVRj7wbWgrofpURlZpl
2zt7yQP6lZoXKucKA8i2u6ghFoy7GkNnCeR8ZZaxX0LkX/Nd6A2hKGbtnTGfg05Q
cY7z3XCbaa5RUfr0M4RU7kKtSqgQ/914ORzyDWEUeilZJxiYpnE5vHW+h/UfiEYC
SmUUcexNbXhPVEmwFoK67Ap/97BXqNuINewb959iQ6/a+WbOVGQUL+Rzsc0KBHnW
6T3T/Abv/OKrm8Vf9IaVx6esN1xSGOaOShgCBWXdgjIGGb9O2Zz8ViksuvIUlDtH
crH1QDq06ZCWYZbO6n1hNSpTpSiHp8zU4kufQERF5ZI2dfQyDfgn+8MVXTm6OTy8
zF46GXcLA6glVxtwjnM75WdZVtQ+Vi7jrKw9+6TeIo6ckM5TXUDAHEIccmZ+F6xi
dzhpBb9s+5YaPhLd/OxvJ+D0oYvkFOS91bO1j7gVn5P6yTQBtLtIPc9+gW20gBbQ
xFlgSY2HYTHFmOa7qbWx0L5ft5n9fCQgsUHS/D240FQRLCMxzwEJaZATNDcttqS8
U54f3eKjEjeF9alG2Ad6VZzDnVd4WErr/KUYS6DsJSMZNaSlvPztCQIvzGdnSFNG
vjn4Z7umA0SXJuFoyuaC
=Qhb2
-----END PGP SIGNATURE-----
Merge tag 'hwlock-v4.8' of git://github.com/andersson/remoteproc
Pull hwspinlock updates from Bjorn Andersson:
"Add missing of_node_put() in the Qualcomm driver and update
MAINTAINERS to make sure all hwspinlock related files have a
maintainer listed"
* tag 'hwlock-v4.8' of git://github.com/andersson/remoteproc:
MAINTAINERS: Update hwspinlock paths
hwspinlock: qcom_hwspinlock: add missing of_node_put after calling of_parse_phandle
Introduce remoteproc driver for controlling the modem/DSP Hexagon CPU
found in a multitude of Qualcomm platform. Also cleans up a race
condition/potential leak during registration of remoteprocs and includes
devicetree bindings in the MAINTAINERS entry.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJXmQY5AAoJEAsfOT8Nma3FzGMP/jq1S/DLm2vRIw547Ev04LQ0
4suaKkovLMhGp2xsGsz50gxpV1YBo4MTI3DYXBP/kr4U3aCHIw+1mXwiJ1pWsv30
4MWVheD5hLeyK0JMFiEPwmI22zlX81YA0WPOimu82WUAyqQ86Zcix1KPVfHbq5SP
80aiX64BZu0PXUFAhhBUaW4qy/2nj4gcvN6Ied8LCwDTmCIBSE2LsjxaxKvxLIgA
OMWpMGfz6jIleC4kqFDs2qL4rhQh/5cRm+QOntlehOsJfrp7QN1yaJ0WahsQWRjk
AQjweQn7zgbzj5VPcpqCx9K4NhOa1Y/vZM/i3EPlYUKwV3cJnk5BgsyB1zyXd2s5
+Ul42y8pPTeBgwKisT6BhWLQE13uYViuM4N+rqCX1sH4c5wTzScCDz5tC300Plj9
omXiJmLRnAJ6soQGEnoYl6S7+e873hqOuHFvqCfkxFWVOlJ5blODOFAHXC/8Gwch
cKG2P0Hpp8KZNljgBhIvU7AHRWOfeojZvezx5epb902rZKLXrvgKOOkbAwklr9wu
lAKdbS/lunPIA5Lbom4db7zOAPa8QWNHpHGsCc4MDMY6hcoGA5FZALIdEdqimnro
rrG52apH2EKyWPpsLtJ0vglpmFUz1euabQCGkR1roYvDjXxN8SpC08mcX92r4XOM
cFxetFZDcF4f98PG96AY
=XlWX
-----END PGP SIGNATURE-----
Merge tag 'rproc-v4.8' of git://github.com/andersson/remoteproc
Pull remoteproc updates from Bjorn Andersson:
"Introduce remoteproc driver for controlling the modem/DSP Hexagon CPU
found in a multitude of Qualcomm platform.
Also cleans up a race condition/potential leak during registration of
remoteprocs and includes devicetree bindings in the MAINTAINERS entry"
* tag 'rproc-v4.8' of git://github.com/andersson/remoteproc:
remoteproc: qcom: hexagon: Clean up mpss validation
remoteproc: qcom: remove redundant dev_err call in q6v5_init_mem()
remoteproc: qcom: Driver for the self-authenticating Hexagon v5
dt-binding: remoteproc: Introduce Hexagon loader binding
remoteproc: Fix potential race condition in rproc_add
MAINTAINERS: Add file patterns for remoteproc device tree bindings
This prevents a double-fetch from user space that can lead to to an
undersized allocation and heap overflow.
Fixes: 54dbc15172 ("vfs: hoist the btrfs deduplication ioctl to the vfs")
Signed-off-by: Scott Bauer <sbauer@plzdonthack.me>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull HID updates from Jiri Kosina:
- new hid-alps driver for ALPS Touchpad-Stick device, from Masaki Ota
- much improved and generalized HID led handling, and merge of
specialized hid-thingm driver into this generic hid-led one, from
Heiner Kallweit
- i2c-hid power management improvements from Fu Zhonghui and Guohua
Zhong
- uhid initialization race fix from Roderick Colenbrander
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/hid: (21 commits)
HID: add usb device id for Apple Magic Keyboard
HID: hid-led: fix Delcom support on big endian systems
HID: hid-led: add support for Greynut Luxafor
HID: hid-led: add support for Delcom Visual Signal Indicator G2
HID: hid-led: remove report id from struct hidled_config
HID: alps: a few cleanups
HID: remove ThingM blink(1) driver
HID: hid-led: add support for ThingM blink(1)
HID: hid-led: add support for reading from LED devices
HID: hid-led: add support for devices with multiple independent LEDs
HID: i2c-hid: set power sleep before shutdown
HID: alps: match alps devices in core
HID: thingm: simplify debug output code
HID: alps: pass correct sizes to hid_hw_raw_request()
HID: alps: struct u1_dev *priv is internal to the driver
HID: add Alps I2C HID Touchpad-Stick support
HID: led: fix config
usb: misc: remove outdated USB LED driver
HID: migrate USB LED driver from usb misc to hid
HID: i2c_hid: enable i2c-hid devices to suspend/resume asynchronously
...
Pull quota update from Jan Kara:
"time64 support for quota"
* 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jack/linux-fs:
quota: use time64_t internally
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2
iQEcBAABCAAGBQJXmhmRAAoJEPL5WVaVDYGjOIcH/ixqzAvUqiquF+5EWVvaBtgU
xZvJ+ryaqifQKfK1GeC7394O7lb8zDA/Z3VvERPwmsHpwqpsoFE+V/cmH8gKc4/A
yLuhEG24GFFwSpAidHNBKR3SaIYvnfDIpq05JId95Yq4AGNzaMapYhMY9kjGzvyY
/SMN7v50nl62aMo9mikequjxRHqUPamr1cP2aRjUZ7RqD4uruDwIup75hS+uS/gb
DWnAeqnVj0A+5EhKVkFpf5H8KP1L/ob4oghrnxL4lLyr+tuh67LVFXV3Fv4xL5Z+
Bnbqqh8Y70GfpSBYrfDMZlZ1cgauXZe+sDd+Q09uEfCA8ctFE6wkXCKzVGrRTuY=
=DN2X
-----END PGP SIGNATURE-----
Merge tag 'random_for_linus_stable' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/random
Pull random driver fix from Ted Ts'o:
"Fix a boot failure on systems with non-contiguous NUMA id's"
* tag 'random_for_linus_stable' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/random:
random: use for_each_online_node() to iterate over NUMA nodes
Pull vfs updates from Al Viro:
"Assorted cleanups and fixes.
Probably the most interesting part long-term is ->d_init() - that will
have a bunch of followups in (at least) ceph and lustre, but we'll
need to sort the barrier-related rules before it can get used for
really non-trivial stuff.
Another fun thing is the merge of ->d_iput() callers (dentry_iput()
and dentry_unlink_inode()) and a bunch of ->d_compare() ones (all
except the one in __d_lookup_lru())"
* 'work.misc' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (26 commits)
fs/dcache.c: avoid soft-lockup in dput()
vfs: new d_init method
vfs: Update lookup_dcache() comment
bdev: get rid of ->bd_inodes
Remove last traces of ->sync_page
new helper: d_same_name()
dentry_cmp(): use lockless_dereference() instead of smp_read_barrier_depends()
vfs: clean up documentation
vfs: document ->d_real()
vfs: merge .d_select_inode() into .d_real()
unify dentry_iput() and dentry_unlink_inode()
binfmt_misc: ->s_root is not going anywhere
drop redundant ->owner initializations
ufs: get rid of redundant checks
orangefs: constify inode_operations
missed comment updates from ->direct_IO() prototype change
file_inode(f)->i_mapping is f->f_mapping
trim fsnotify hooks a bit
9p: new helper - v9fs_parent_fid()
debugfs: ->d_parent is never NULL or negative
...
LTP madvise05 was generating mm splat
| [ARCLinux]# /sd/ltp/testcases/bin/madvise05
| BUG: Bad page map in process madvise05 pte:80e08211 pmd:9f7d4000
| page:9fdcfc90 count:1 mapcount:-1 mapping: (null) index:0x0 flags: 0x404(referenced|reserved)
| page dumped because: bad pte
| addr:200b8000 vm_flags:00000070 anon_vma: (null) mapping: (null) index:1005c
| file: (null) fault: (null) mmap: (null) readpage: (null)
| CPU: 2 PID: 6707 Comm: madvise05
And for newer kernels, the system was rendered unusable afterwards.
The problem was mprotect->pte_modify() clearing PTE_SPECIAL (which is
set to identify the special zero page wired to the pte).
When pte was finally unmapped, special casing for zero page was not
done, and instead it was treated as a "normal" page, tripping on the
map counts etc.
This fixes ARC STAR 9001053308
Cc: <stable@vger.kernel.org>
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
This changes the vfs dentry hashing to mix in the parent pointer at the
_beginning_ of the hash, rather than at the end.
That actually improves both the hash and the code generation, because we
can move more of the computation to the "static" part of the dcache
setup, and do less at lookup runtime.
It turns out that a lot of other hash users also really wanted to mix in
a base pointer as a 'salt' for the hash, and so the slightly extended
interface ends up working well for other cases too.
Users that want a string hash that is purely about the string pass in a
'salt' pointer of NULL.
* merge branch 'salted-string-hash':
fs/dcache.c: Save one 32-bit multiply in dcache lookup
vfs: make the string hashes salt the hash
A LAYOUTCOMMIT then subsequent GETATTR may both return the same attributes,
and in that case NFS_INO_INVALID_ATTR is never set on the second pass
through nfs_update_inode(). The existing check to skip the clearing of
NFS_INO_INVALID_ATTR if a LAYOUTCOMMIT is outstanding does not help in this
case (see commit 10b7e9ad4488: "pNFS: Don't mark the inode as revalidated
if a LAYOUTCOMMIT is outstanding"). We know that if a LAYOUTCOMMIT is
outstanding then attributes will need upating, so always set
NFS_INO_INVALID_ATTR.
Signed-off-by: Benjamin Coddington <bcodding@redhat.com>
Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
On the tear-down path, the dead CPU callback for the timers was
misplaced within the 'cpuhp_state' enumeration. There is a hidden
dependency between the timers and block multiqueue. The timers
callback must happen before the block multiqueue callback otherwise a
RCU stall occurs.
Move the timers callback to the proper place in the state machine.
Reported-and-tested-by: Jon Hunter <jonathanh@nvidia.com>
Reported-by: kbuild test robot <lkp@intel.com>
Fixes: 24f73b9971 ("timers/core: Convert to hotplug state machine")
Signed-off-by: Richard Cochran <rcochran@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Cc: John Stultz <john.stultz@linaro.org>
Cc: rt@linutronix.de
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1469610498-25914-1-git-send-email-rcochran@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The md device might not have personality (for example, ddf raid array). The
issue is introduced by 8430e7e0af9a15(md: disconnect device from personality
before trying to remove it)
Reported-by: kernel test robot <xiaolong.ye@intel.com>
Signed-off-by: Shaohua Li <shli@fb.com>
We accidentally take the "port->lock" twice in a row. This old code
was supposed to be deleted.
Fixes: e58e241c17 ('sparc: serial: Clean up the locking for -rt')
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Smatch complains that these tests are off by one, which is true but not
life threatening.
arch/sparc/kernel/irq_32.c:169 irq_link()
error: buffer overflow 'irq_map' 384 <= 384
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
During following a symbolic link we received err_buf from SMB2_open().
While the validity of SMB2 error response is checked previously
in smb2_check_message() a symbolic link payload is not checked at all.
Fix it by adding such checks.
Cc: Dan Carpenter <dan.carpenter@oracle.com>
CC: Stable <stable@vger.kernel.org>
Signed-off-by: Pavel Shilovsky <pshilovsky@samba.org>
Signed-off-by: Steve French <smfrench@gmail.com>