When beginning to process a page fault, make sure we have enough shadow pages
available to service the fault. If not, free some pages.
Signed-off-by: Avi Kivity <avi@qumranet.com>
Acked-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This fixes a problem where set_pte_common() looked for shadowed pages based on
the page directory gfn (a huge page) instead of the actual gfn being mapped.
Signed-off-by: Avi Kivity <avi@qumranet.com>
Acked-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
When we cache a guest page table into a shadow page table, we need to prevent
further access to that page by the guest, as that would render the cache
incoherent.
Signed-off-by: Avi Kivity <avi@qumranet.com>
Acked-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Define a hashtable for caching shadow page tables. Look up the cache on
context switch (cr3 change) or during page faults.
The key to the cache is a combination of
- the guest page table frame number
- the number of paging levels in the guest
* we can cache real mode, 32-bit mode, pae, and long mode page
tables simultaneously. this is useful for smp bootup.
- the guest page table table
* some kernels use a page as both a page table and a page directory. this
allows multiple shadow pages to exist for that page, one per level
- the "quadrant"
* 32-bit mode page tables span 4MB, whereas a shadow page table spans
2MB. similarly, a 32-bit page directory spans 4GB, while a shadow
page directory spans 1GB. the quadrant allows caching up to 4 shadow page
tables for one guest page in one level.
- a "metaphysical" bit
* for real mode, and for pse pages, there is no guest page table, so set
the bit to avoid write protecting the page.
Signed-off-by: Avi Kivity <avi@qumranet.com>
Acked-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This allows further manipulation on the shadow page table.
Signed-off-by: Avi Kivity <avi@qumranet.com>
Acked-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This lets us not write protect a partial page, and is anyway what a real
processor does.
Signed-off-by: Avi Kivity <avi@qumranet.com>
Acked-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
It is never necessary to fetch a guest entry from an intermediate page table
level (except for large pages), so avoid some confusion by always descending
into the lowest possible level.
Rename init_walker() to walk_addr() as it is no longer restricted to
initialization.
Signed-off-by: Avi Kivity <avi@qumranet.com>
Acked-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Saving the table gfns removes the need to walk the guest and host page tables
in lockstep.
Signed-off-by: Avi Kivity <avi@qumranet.com>
Acked-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Keep in each host page frame's page->private a pointer to the shadow pte which
maps it. If there are multiple shadow ptes mapping the page, set bit 0 of
page->private, and use the rest as a pointer to a linked list of all such
mappings.
Reverse mappings are needed because we when we cache shadow page tables, we
must protect the guest page tables from being modified by the guest, as that
would invalidate the cached ptes.
Signed-off-by: Avi Kivity <avi@qumranet.com>
Acked-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Instead of doing tricky stuff with the arch dependent virtualization
registers, take a peek at the guest's efer.
This simlifies some code, and fixes some confusion in the mmu branch.
Signed-off-by: Avi Kivity <avi@qumranet.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
The pcd, pwt, and pat bits on page table entries affect the cpu cache. Since
the cache is a host resource, the guest should not be able to control it.
Moreover, the meaning of these bits changes depending on whether pat is
enabled or not.
So, force these bits to zero on shadow page table entries at all times.
Signed-off-by: Avi Kivity <avi@qumranet.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
web site: http://kvm.sourceforge.net
mailing list: kvm-devel@lists.sourceforge.net
(http://lists.sourceforge.net/lists/listinfo/kvm-devel)
The following patchset adds a driver for Intel's hardware virtualization
extensions to the x86 architecture. The driver adds a character device
(/dev/kvm) that exposes the virtualization capabilities to userspace. Using
this driver, a process can run a virtual machine (a "guest") in a fully
virtualized PC containing its own virtual hard disks, network adapters, and
display.
Using this driver, one can start multiple virtual machines on a host.
Each virtual machine is a process on the host; a virtual cpu is a thread in
that process. kill(1), nice(1), top(1) work as expected. In effect, the
driver adds a third execution mode to the existing two: we now have kernel
mode, user mode, and guest mode. Guest mode has its own address space mapping
guest physical memory (which is accessible to user mode by mmap()ing
/dev/kvm). Guest mode has no access to any I/O devices; any such access is
intercepted and directed to user mode for emulation.
The driver supports i386 and x86_64 hosts and guests. All combinations are
allowed except x86_64 guest on i386 host. For i386 guests and hosts, both pae
and non-pae paging modes are supported.
SMP hosts and UP guests are supported. At the moment only Intel
hardware is supported, but AMD virtualization support is being worked on.
Performance currently is non-stellar due to the naive implementation of the
mmu virtualization, which throws away most of the shadow page table entries
every context switch. We plan to address this in two ways:
- cache shadow page tables across tlb flushes
- wait until AMD and Intel release processors with nested page tables
Currently a virtual desktop is responsive but consumes a lot of CPU. Under
Windows I tried playing pinball and watching a few flash movies; with a recent
CPU one can hardly feel the virtualization. Linux/X is slower, probably due
to X being in a separate process.
In addition to the driver, you need a slightly modified qemu to provide I/O
device emulation and the BIOS.
Caveats (akpm: might no longer be true):
- The Windows install currently bluescreens due to a problem with the
virtual APIC. We are working on a fix. A temporary workaround is to
use an existing image or install through qemu
- Windows 64-bit does not work. That's also true for qemu, so it's
probably a problem with the device model.
[bero@arklinux.org: build fix]
[simon.kagstrom@bth.se: build fix, other fixes]
[uril@qumranet.com: KVM: Expose interrupt bitmap]
[akpm@osdl.org: i386 build fix]
[mingo@elte.hu: i386 fixes]
[rdreier@cisco.com: add log levels to all printks]
[randy.dunlap@oracle.com: Fix sparse NULL and C99 struct init warnings]
[anthony@codemonkey.ws: KVM: AMD SVM: 32-bit host support]
Signed-off-by: Yaniv Kamay <yaniv@qumranet.com>
Signed-off-by: Avi Kivity <avi@qumranet.com>
Cc: Simon Kagstrom <simon.kagstrom@bth.se>
Cc: Bernhard Rosenkraenzer <bero@arklinux.org>
Signed-off-by: Uri Lublin <uril@qumranet.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Roland Dreier <rolandd@cisco.com>
Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com>
Signed-off-by: Anthony Liguori <anthony@codemonkey.ws>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>