I screwed this up, there is a race between checking if there is a running
transaction and actually starting a transaction in sync where we could race
with a freezer and get ourselves into trouble. To fix this we need to make
a new join type to only do the try lock on the freeze stuff. If it fails
we'll return EPERM and just return from sync. This fixes a hang Liu Bo
reported when running xfstest 68 in a loop. Thanks,
Reported-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
So we have lots of places where we try to preallocate chunks in order to
make sure we have enough space as we make our allocations. This has
historically meant that we're constantly tweaking when we should allocate a
new chunk, and historically we have gotten this horribly wrong so we way
over allocate either metadata or data. To try and keep this from happening
we are going to make it so that the block group item insertion is done out
of band at the end of a transaction. This will allow us to create chunks
even if we are trying to make an allocation for the extent tree. With this
patch my enospc tests run faster (didn't expect this) and more efficiently
use the disk space (this is what I wanted). Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Sage reported the following lockdep backtrace
=====================================
[ BUG: bad unlock balance detected! ]
3.6.0-rc2-ceph-00171-gc7ed62d #1 Not tainted
-------------------------------------
btrfs-cleaner/7607 is trying to release lock (sb_internal) at:
[<ffffffffa00422ae>] btrfs_commit_transaction+0xa6e/0xb20 [btrfs]
but there are no more locks to release!
other info that might help us debug this:
1 lock held by btrfs-cleaner/7607:
#0: (&fs_info->cleaner_mutex){+.+...}, at: [<ffffffffa003b405>] cleaner_kthread+0x95/0x120 [btrfs]
stack backtrace:
Pid: 7607, comm: btrfs-cleaner Not tainted 3.6.0-rc2-ceph-00171-gc7ed62d #1
Call Trace:
[<ffffffffa00422ae>] ? btrfs_commit_transaction+0xa6e/0xb20 [btrfs]
[<ffffffff810afa9e>] print_unlock_inbalance_bug+0xfe/0x110
[<ffffffff810b289e>] lock_release_non_nested+0x1ee/0x310
[<ffffffff81172f9b>] ? kmem_cache_free+0x7b/0x160
[<ffffffffa004106c>] ? put_transaction+0x8c/0x130 [btrfs]
[<ffffffffa00422ae>] ? btrfs_commit_transaction+0xa6e/0xb20 [btrfs]
[<ffffffff810b2a95>] lock_release+0xd5/0x220
[<ffffffff81173071>] ? kmem_cache_free+0x151/0x160
[<ffffffff8117d9ed>] __sb_end_write+0x7d/0x90
[<ffffffffa00422ae>] btrfs_commit_transaction+0xa6e/0xb20 [btrfs]
[<ffffffff81079850>] ? __init_waitqueue_head+0x60/0x60
[<ffffffff81634c6b>] ? _raw_spin_unlock+0x2b/0x40
[<ffffffffa0042758>] __btrfs_end_transaction+0x368/0x3c0 [btrfs]
[<ffffffffa0042808>] btrfs_end_transaction_throttle+0x18/0x20 [btrfs]
[<ffffffffa00318f0>] btrfs_drop_snapshot+0x410/0x600 [btrfs]
[<ffffffff8132babd>] ? do_raw_spin_unlock+0x5d/0xb0
[<ffffffffa00430ef>] btrfs_clean_old_snapshots+0xaf/0x150 [btrfs]
[<ffffffffa003b405>] ? cleaner_kthread+0x95/0x120 [btrfs]
[<ffffffffa003b419>] cleaner_kthread+0xa9/0x120 [btrfs]
[<ffffffffa003b370>] ? btrfs_destroy_delayed_refs.isra.102+0x220/0x220 [btrfs]
[<ffffffff810791ee>] kthread+0xae/0xc0
[<ffffffff810b379d>] ? trace_hardirqs_on+0xd/0x10
[<ffffffff8163e744>] kernel_thread_helper+0x4/0x10
[<ffffffff81635430>] ? retint_restore_args+0x13/0x13
[<ffffffff81079140>] ? flush_kthread_work+0x1a0/0x1a0
[<ffffffff8163e740>] ? gs_change+0x13/0x13
This is because the throttle stuff can commit the transaction, which expects to
be the one stopping the intwrite stuff, but we've already done it in the
__btrfs_end_transaction. Moving the sb_end_intewrite after this logic makes the
lockdep go away. Thanks,
Tested-by: Sage Weil <sage@inktank.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
When we delete a inode, we will remove all the delayed items including delayed
inode update, and then truncate all the relative metadata. If there is lots of
metadata, we will end the current transaction, and start a new transaction to
truncate the left metadata. In this way, we will leave a inode item that its
link counter is > 0, and also may leave some directory index items in fs/file tree
after the current transaction ends. In other words, the metadata in this fs/file tree
is inconsistent. If we create a snapshot for this tree now, we will find a inode with
corrupted metadata in the new snapshot, and we won't continue to drop the left metadata,
because its link counter is not 0.
We fix this problem by updating the inode item before the current transaction ends.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
The snapshot should be the image of the fs tree before it was created,
so the metadata of the snapshot should not exist in the its tree. But now, we
found the directory item and directory name index is in both the snapshot tree
and the fs tree. It introduces some problems and makes the users feel strange:
# mkfs.btrfs /dev/sda1
# mount /dev/sda1 /mnt
# mkdir /mnt/1
# cd /mnt/1
# btrfs subvolume snapshot /mnt snap0
# ls -a /mnt/1/snap0/1
. .. [no other file/dir]
# ll /mnt/1/snap0/
total 0
drwxr-xr-x 1 root root 10 Ju1 24 12:11 1
^^^
There is no file/dir in it, but it's size is 10
# cd /mnt/1/snap0/1/snap0
[Enter a unexisted directory successfully...]
There is nothing in the directory 1 in snap0, but btrfs told the length of
this directory is 10. Beside that, we can enter an unexisted directory, it is
very strange to the users.
# btrfs subvolume snapshot /mnt/1/snap0 /mnt/snap1
# ll /mnt/1/snap0/1/
total 0
[None]
# ll /mnt/snap1/1/
total 0
drwxr-xr-x 1 root root 0 Ju1 24 12:14 snap0
And the source of snap1 did have any directory in Directory 1, but snap1 have
a snap0, it is different between the source and the snapshot.
So I think we should insert directory item and directory name index and update
the parent inode as the last step of snapshot creation, and do not leave the
useless metadata in the file tree.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
If we create several snapshots at the same time, the following BUG_ON() will be
triggered.
kernel BUG at fs/btrfs/extent-tree.c:6047!
Steps to reproduce:
# mkfs.btrfs <partition>
# mount <partition> <mnt>
# cd <mnt>
# for ((i=0;i<2400;i++)); do touch long_name_to_make_tree_more_deep$i; done
# for ((i=0; i<4; i++))
> do
> mkdir $i
> for ((j=0; j<200; j++))
> do
> btrfs sub snap . $i/$j
> done &
> done
The reason is:
Before transaction commit, some operations changed the fs tree and new tree
blocks were allocated because of COW. We used the implicit non-shared back
reference for those newly allocated tree blocks because they were not shared by
two or more trees.
And then we created the first snapshot for the fs tree, according to the back
reference rules, we also used implicit back refs for the child tree blocks of
the root node of the fs tree, now those child nodes/leaves were shared by two
trees.
Then We didn't deal with the delayed references, and continued to change the fs
tree(created the second snapshot and inserted the dir item of the new snapshot
into the fs tree). According to the rules of the back reference, we added full
back refs for those tree blocks whose parents have be shared by two trees.
Now some newly allocated tree blocks had two types of the references.
As we know, the delayed reference system handles these delayed references from
back to front, and the full delayed reference is inserted after the implicit
ones. So when we dealt with the back references of those newly allocated tree
blocks, the full references was dealt with at first. And if the first reference
is a shared back reference and the tree block that the reference points to is
newly allocated, It would be considered as a tree block which is shared by two
or more trees when it is allocated and should be a full back reference not a
implicit one, the flag of its reference also should be set to FULL_BACKREF.
But in fact, it was a non-shared tree block with a implicit reference at
beginning, so it was not compulsory to set the flags to FULL_BACKREF. So BUG_ON
was triggered.
We have several methods to fix this bug:
1. deal with delayed references after the snapshot is created and before we
change the source tree of the snapshot. This is the easiest and safest way.
2. modify the sort method of the delayed reference tree, make the full delayed
references be inserted before the implicit ones. It is also very easy, but
I don't know if it will introduce some problems or not.
3. modify select_delayed_ref() and make it select the implicit delayed reference
at first. This way is not so good because it may wastes CPU time if we have
lots of delayed references.
4. set the flags to FULL_BACKREF, this method is a little complex comparing with
the 1st way.
I chose the 1st way to fix it.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
This patch fixes the following problem:
- If we failed to deal with the delayed dir items, we should abort transaction,
just as its comment said. Fix it.
- If root reference or root back reference insertion failed, we should
abort transaction. Fix it.
- Fix the double free problem of pending->inherit.
- Do not restore the trans->rsv if we doesn't change it.
- make the error path more clearly.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
The freeze rwsem is taken by sb_start_intwrite() and dropped during the
commit_ or end_transaction(). In the async case, that happens in a worker
thread. Tell lockdep the calling thread is releasing ownership of the
rwsem and the async thread is picking it up.
XFS plays the same trick in fs/xfs/xfs_aops.c.
Signed-off-by: Sage Weil <sage@inktank.com>
Pull btrfs fixes from Chris Mason:
"I've split out the big send/receive update from my last pull request
and now have just the fixes in my for-linus branch. The send/recv
branch will wander over to linux-next shortly though.
The largest patches in this pull are Josef's patches to fix DIO
locking problems and his patch to fix a crash during balance. They
are both well tested.
The rest are smaller fixes that we've had queued. The last rc came
out while I was hacking new and exciting ways to recover from a
misplaced rm -rf on my dev box, so these missed rc3."
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (25 commits)
Btrfs: fix that repair code is spuriously executed for transid failures
Btrfs: fix ordered extent leak when failing to start a transaction
Btrfs: fix a dio write regression
Btrfs: fix deadlock with freeze and sync V2
Btrfs: revert checksum error statistic which can cause a BUG()
Btrfs: remove superblock writing after fatal error
Btrfs: allow delayed refs to be merged
Btrfs: fix enospc problems when deleting a subvol
Btrfs: fix wrong mtime and ctime when creating snapshots
Btrfs: fix race in run_clustered_refs
Btrfs: don't run __tree_mod_log_free_eb on leaves
Btrfs: increase the size of the free space cache
Btrfs: barrier before waitqueue_active
Btrfs: fix deadlock in wait_for_more_refs
btrfs: fix second lock in btrfs_delete_delayed_items()
Btrfs: don't allocate a seperate csums array for direct reads
Btrfs: do not strdup non existent strings
Btrfs: do not use missing devices when showing devname
Btrfs: fix that error value is changed by mistake
Btrfs: lock extents as we map them in DIO
...
When we created a new snapshot, the mtime and ctime of its parent directory
were not updated. Fix it.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
"trans->transid" is cpu endian but we want to store the data as little
endian. "item->ctime.nsec" is only 32 bits, not 64.
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Pull second vfs pile from Al Viro:
"The stuff in there: fsfreeze deadlock fixes by Jan (essentially, the
deadlock reproduced by xfstests 068), symlink and hardlink restriction
patches, plus assorted cleanups and fixes.
Note that another fsfreeze deadlock (emergency thaw one) is *not*
dealt with - the series by Fernando conflicts a lot with Jan's, breaks
userland ABI (FIFREEZE semantics gets changed) and trades the deadlock
for massive vfsmount leak; this is going to be handled next cycle.
There probably will be another pull request, but that stuff won't be
in it."
Fix up trivial conflicts due to unrelated changes next to each other in
drivers/{staging/gdm72xx/usb_boot.c, usb/gadget/storage_common.c}
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (54 commits)
delousing target_core_file a bit
Documentation: Correct s_umount state for freeze_fs/unfreeze_fs
fs: Remove old freezing mechanism
ext2: Implement freezing
btrfs: Convert to new freezing mechanism
nilfs2: Convert to new freezing mechanism
ntfs: Convert to new freezing mechanism
fuse: Convert to new freezing mechanism
gfs2: Convert to new freezing mechanism
ocfs2: Convert to new freezing mechanism
xfs: Convert to new freezing code
ext4: Convert to new freezing mechanism
fs: Protect write paths by sb_start_write - sb_end_write
fs: Skip atime update on frozen filesystem
fs: Add freezing handling to mnt_want_write() / mnt_drop_write()
fs: Improve filesystem freezing handling
switch the protection of percpu_counter list to spinlock
nfsd: Push mnt_want_write() outside of i_mutex
btrfs: Push mnt_want_write() outside of i_mutex
fat: Push mnt_want_write() outside of i_mutex
...
We convert btrfs_file_aio_write() to use new freeze check. We also add proper
freeze protection to btrfs_page_mkwrite(). We also add freeze protection to
the transaction mechanism to avoid starting transactions on frozen filesystem.
At minimum this is necessary to stop iput() of unlinked file to change frozen
filesystem during truncation.
Checks in cleaner_kthread() and transaction_kthread() can be safely removed
since btrfs_freeze() will lock the mutexes and thus block the threads (and they
shouldn't have anything to do anyway).
CC: linux-btrfs@vger.kernel.org
CC: Chris Mason <chris.mason@oracle.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
This is the kernel portion of btrfs send/receive
Conflicts:
fs/btrfs/Makefile
fs/btrfs/backref.h
fs/btrfs/ctree.c
fs/btrfs/ioctl.c
fs/btrfs/ioctl.h
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
This patch introduces uuids for subvolumes. Each
subvolume has it's own uuid. In case it was snapshotted,
it also contains parent_uuid. In case it was received,
it also contains received_uuid.
It also introduces subvolume ctime/otime/stime/rtime. The
first two are comparable to the times found in inodes. otime
is the origin/creation time and ctime is the change time.
stime/rtime are only valid on received subvolumes.
stime is the time of the subvolume when it was
sent. rtime is the time of the subvolume when it was
received.
Additionally to the times, we have a transid for each
time. They are updated at the same place as the times.
btrfs receive uses stransid and rtransid to find out
if a received subvolume changed in the meantime.
If an older kernel mounts a filesystem with the
extented fields, all fields become invalid. The next
mount with a new kernel will detect this and reset the
fields.
Signed-off-by: Alexander Block <ablock84@googlemail.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Reviewed-by: Arne Jansen <sensille@gmx.net>
Reviewed-by: Jan Schmidt <list.btrfs@jan-o-sch.net>
Reviewed-by: Alex Lyakas <alex.bolshoy.btrfs@gmail.com>
There is weird logic I had to put in place to make sure that when we were
adding csums that we'd used the delalloc block rsv instead of the global
block rsv. Part of this meant that we had to free up our transaction
reservation before we ran the delayed refs since csum deletion happens
during the delayed ref work. The problem with this is that when we release
a reservation we will add it to the global reserve if it is not full in
order to keep us going along longer before we have to force a transaction
commit. By releasing our reservation before we run delayed refs we don't
get the opportunity to drain down the global reserve for the work we did, so
we won't refill it as often. This isn't a problem per-se, it just results
in us possibly committing transactions more and more often, and in rare
cases could cause those WARN_ON()'s to pop in use_block_rsv because we ran
out of space in our block rsv.
This also helps us by holding onto space while the delayed refs run so we
don't end up with as many people trying to do things at the same time, which
again will help us not force commits or hit the use_block_rsv warnings.
Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
"root->fs_info" and "fs_info" are the same, but "fs_info" is prefered
because it is shorter and that's what is used in the rest of the
function.
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Waiting on spindles improves performance, but ssds want all the
IO as quickly as we can push it down.
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
When creating a subvolume or snapshot, it is necessary
to initialize the qgroup account with a copy of some
other (tracking) qgroup. This patch adds parameters
to the ioctls to pass the information from which qgroup
to inherit.
Signed-off-by: Arne Jansen <sensille@gmx.net>
Like block reserves, reserve a small piece of space on each
transaction start and for delalloc. These are the hooks that
can actually return EDQUOT to the user.
The amount of space reserved is tracked in the transaction
handle.
Signed-off-by: Arne Jansen <sensille@gmx.net>
Hooks into qgroup code to record refs and into transaction commit.
This is the main entry point for qgroup. Basically every change in
extent backrefs got accounted to the appropriate qgroups.
Signed-off-by: Arne Jansen <sensille@gmx.net>
Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net>
This patch only add a consistancy check to validate that the
same root is passed to start_transaction and end_transaction.
Subvolume quota depends on this.
Signed-off-by: Arne Jansen <sensille@gmx.net>
We've got two mechanisms both required for reliable backref resolving (tree
mod log and holding back delayed refs). You cannot make use of one without
the other. So instead of requiring the user of this mechanism to setup both
correctly, we join them into a single interface.
Additionally, we stop inserting non-blockers into fs_info->tree_mod_seq_list
as we did before, which was of no value.
Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net>
If a transaction commit fails we don't abort it so we don't set an error on
the file system. This patch fixes that by actually calling the abort stuff
and then adding a check for a fs error in the transaction start stuff to
make sure it is caught properly. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
I was getting lots of hung tasks and a NULL pointer dereference because we
are not cleaning up the transaction properly when it aborts. First we need
to reset the running_transaction to NULL so we don't get a bad dereference
for any start_transaction callers after this. Also we cannot rely on
waitqueue_active() since it's just a list_empty(), so just call wake_up()
directly since that will do the barrier for us and such. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
The device statistics are written into the device tree with each
transaction commit. Only modified statistics are written.
When a filesystem is mounted, the device statistics for each involved
device are read from the device tree and used to initialize the
counters.
Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de>
When a fresh transaction begins, the tree mod log must be clean. Users of
the tree modification log must ensure they never span across transaction
boundaries.
We reset the sequence to 0 in this safe situation to make absolutely sure
overflow can't happen.
Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net>
49b25e0540 introduced a use-after-free bug
that caused spurious -EIO's to be returned.
Do the check before we free the transaction.
Cc: David Sterba <dsterba@suse.cz>
Cc: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: Dave Jones <davej@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
o For space info, the type of space info is useful for debug.
o For transaction handle, its transid is useful.
Signed-off-by: Liu Bo <liubo2009@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
btrfs currently handles most errors with BUG_ON. This patch is a work-in-
progress but aims to handle most errors other than internal logic
errors and ENOMEM more gracefully.
This iteration prevents most crashes but can run into lockups with
the page lock on occasion when the timing "works out."
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Commit cb1b69f4 (Btrfs: forced readonly when btrfs_drop_snapshot() fails)
made btrfs_drop_snapshot return void because there were no callers checking
the return value. That is the wrong order to handle error propogation since
the caller will have no idea that an error has occured and continue on
as if nothing went wrong.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
This allows us to gracefully continue if we aren't able to insert
directory items, both for normal files/dirs and snapshots.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
This in addition to a script in my btrfs-tracing tree will help track down space
leaks when we're getting space left over in block groups on umount. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
Btrfs tries to batch extent allocation tree changes to improve performance
and reduce metadata trashing. But it doesn't allocate new metadata chunks
while it is doing allocations for the extent allocation tree.
This commit changes the delayed refence code to do chunk allocations if we're
getting low on room. It prevents crashes and improves performance.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Now that we may be holding back delayed refs for a limited period, we
might end up having no runnable delayed refs. Without this commit, we'd
do busy waiting in that thread until another (runnable) ref arives.
Instead, we're detecting this situation and use a waitqueue, such that
we only try to run more refs after
a) another runnable ref was added or
b) delayed refs are no longer held back
Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net>
Sequence numbers are needed to reconstruct the backrefs of a given extent to
a certain point in time. The total set of backrefs consist of the set of
backrefs recorded on disk plus the enqueued delayed refs for it that existed
at that moment.
This patch also adds a list that records all delayed refs which are
currently in the process of being added.
When walking all refs of an extent in btrfs_find_all_roots(), we freeze the
current state of delayed refs, honor anythinh up to this point and prevent
processing newer delayed refs to assert consistency.
Signed-off-by: Arne Jansen <sensille@gmx.net>
Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net>
Add a for_cow parameter to add_delayed_*_ref and pass the appropriate value
from every call site. The for_cow parameter will later on be used to
determine if a ref will change anything with respect to qgroups.
Delayed refs coming from relocation are always counted as for_cow, as they
don't change subvol quota.
Also pass in the fs_info for later use.
btrfs_find_all_roots() will use this as an optimization, as changes that are
for_cow will not change anything with respect to which root points to a
certain leaf. Thus, we don't need to add the current sequence number to
those delayed refs.
Signed-off-by: Arne Jansen <sensille@gmx.net>
Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net>
The btrfs snapshotting code requires that once a root has been
snapshotted, we don't change it during a commit.
But there are two cases to lead to tree corruptions:
1) multi-thread snapshots can commit serveral snapshots in a transaction,
and this may change the src root when processing the following pending
snapshots, which lead to the former snapshots corruptions;
2) the free inode cache was changing the roots when it root the cache,
which lead to corruptions.
This fixes things by making sure we force COW the block after we create a
snapshot during commiting a transaction, then any changes to the roots
will result in COW, and we get all the fs roots and snapshot roots to be
consistent.
Signed-off-by: Liu Bo <liubo2009@cn.fujitsu.com>
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
We can not do flushable reservation for the relocation when we create snapshot,
because it may make the transaction commit task and the flush task wait for
each other and the deadlock happens.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
While we're allocating ram for a new transaction, we drop our spinlock.
When we get the lock back, we do check to see if a transaction started
while we slept, but we don't check to make sure it isn't blocked
because a commit has already started.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Failure testing was tripping up over stale PageError bits in
metadata pages. If we have an io error on a block, and later on
end up reusing it, nobody ever clears PageError on those pages.
During commit, we'll find PageError and think we had trouble writing
the block, which will lead to aborts and other problems.
This changes clean_tree_block and the btrfs writepage code to
clear the PageError bit. In both cases we're either completely
done with the page or the page has good stuff and the error bit
is no longer valid.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
fs_info has now ~9kb, more than fits into one page. This will cause
mount failure when memory is too fragmented. Top space consumers are
super block structures super_copy and super_for_commit, ~2.8kb each.
Allocate them dynamically. fs_info will be ~3.5kb. (measured on x86_64)
Add a wrapper for freeing fs_info and all of it's dynamically allocated
members.
Signed-off-by: David Sterba <dsterba@suse.cz>
Currently btrfs_block_rsv_check does 2 things, it will either refill a block
reserve like in the truncate or refill case, or it will check to see if there is
enough space in the global reserve and possibly refill it. However because of
overcommit we could be well overcommitting ourselves just to try and refill the
global reserve, when really we should just be committing the transaction. So
breack this out into btrfs_block_rsv_refill and btrfs_block_rsv_check. Refill
will try to reserve more metadata if it can and btrfs_block_rsv_check will not,
it will only tell you if the factor of the total space is still reserved.
Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
We started setting trans->block_rsv = NULL to allow the delayed refs flushing
stuff to use the right block_rsv and then just made
btrfs_trans_release_metadata() unconditionally use the trans block rsv. The
problem with this is we need to reserve some space in the transaction and then
migrate it to the global block rsv, so we need to be able to free that out
properly. So instead just move btrfs_trans_release_metadata() before the
delayed ref flushing and use trans->block_rsv for the freeing. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
Some users have requested this and I've found I needed a way to disable cache
loading without actually clearing the cache, so introduce the no_space_cache
option. Before we check the super blocks cache generation field and if it was
populated we always turned space caching on. Now we check this and set the
space cache option on, and then parse the mount options so that if we want it
off it get's turned off. Then we check the mount option all the places we do
the caching work instead of checking the super's cache generation. This makes
things more consistent and lets us turn space caching off. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
While looking for a performance regression a user was complaining about, I
noticed that we had a regression with the varmail test of filebench. This was
introduced by
0d10ee2e6d
which keeps us from calling writepages in writepage. This is a correct change,
however it happens to help the varmail test because we write out in larger
chunks. This is largly to do with how we write out dirty pages for each
transaction. If you run filebench with
load varmail
set $dir=/mnt/btrfs-test
run 60
prior to this patch you would get ~1420 ops/second, but with the patch you get
~1200 ops/second. This is a 16% decrease. So since we know the range of dirty
pages we want to write out, don't write out in one page chunks, write out in
ranges. So to do this we call filemap_fdatawrite_range() on the range of bytes.
Then we convert the DIRTY extents to NEED_WAIT extents. When we then call
btrfs_wait_marked_extents() we only have to filemap_fdatawait_range() on that
range and clear the NEED_WAIT extents. This doesn't get us back to our original
speeds, but I've been seeing ~1380 ops/second, which is a <5% regression as
opposed to a >15% regression. That is acceptable given that the original commit
greatly reduces our latency to begin with. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
Checksums are charged in 2 different ways. The first case is when we're writing
to the disk, we account for the new checksums with the delalloc block rsv. In
order for this to work we check if we're allocating a block for the csum root
and if trans->block_rsv == the delalloc block rsv. But when we're deleting the
csums because of cow, this is charged to the global block rsv, and is done when
we run the delayed refs. So we need to make sure that trans->block_rsv == NULL
when running the delayed refs. So set it to NULL and reset it in
should_end_transaction, and set it to NULL in commit_transaction. This got rid
of the ridiculous amount of warnings I was seeing when trying to do a balance.
Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
The only thing that we need to have a trans handle for is in
reserve_metadata_bytes and thats to know how much flushing we can do. So
instead of passing it around, just check current->journal_info for a
trans_handle so we know if we can commit a transaction to try and free up space
or not. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
The alloc warnings everybody has been seeing is because we have been reserving
space for csums, but we weren't actually using that space. So make
get_block_rsv() return the trans->block_rsv if we're modifying the csum root.
Also set the trans->block_rsv to NULL so that if we modify the csum root when
running delayed ref's that comes out of the global reserve like it's supposed
to. With this patch I'm not seeing those alloc warnings anymore. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
If you run xfstest 224 it you will get lots of messages about not being able to
delete inodes and that they will be cleaned up next mount. This is because
btrfs_block_rsv_check was not calling reserve_metadata_bytes with the ability to
flush, so if there was not enough space, it simply failed. But in truncate and
evict case we could easily flush space to try and get enough space to do our
work, so make btrfs_block_rsv_check take a flush argument to pass down to
reserve_metadata_bytes. Now xfstests 224 runs fine without all those
complaints. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
This patch kills off the calculation for the amount of space needed for the
orphan operations during a snapshot. The thing is we only do snapshots on
commit, so any space that is in the block_rsv->freed[] isn't going to be in the
new snapshot anyway, so there isn't any reason to require that space to be
reserved for the snapshot to occur. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
At the beginning of create_pending_snapshot, trans->block_rsv is set
to pending->block_rsv and is used for snapshot things, however, when
it is done, we do not recover it as will.
Signed-off-by: Liu Bo <liubo2009@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Use wait_event() when possible to avoid code duplication.
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Hit this nice little deadlock. What happens is this
__btrfs_end_transaction with throttle set, --use_count so it equals 0
btrfs_commit_transaction
<somebody else actually manages to start the commit>
btrfs_end_transaction --use_count so now its -1 <== BAD
we just return and wait on the transaction
This is bad because we just return after our use_count is -1 and don't let go
of our num_writer count on the transaction, so the guy committing the
transaction just sits there forever. Fix this by inc'ing our use_count if we're
going to call commit_transaction so that if we call btrfs_end_transaction it's
valid. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
We have to do weird things when handling enospc in the transaction joining code.
Because we've already joined the transaction we cannot commit the transaction
within the reservation code since it will deadlock, so we have to return EAGAIN
and then make sure we don't retry too many times. Instead of doing this, just
do the reservation the normal way before we join the transaction, that way we
can do whatever we want to try and reclaim space, and then if it fails we know
for sure we are out of space and we can return ENOSPC. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
Snapshot creation has two phases. One is the initial snapshot setup,
and the second is done during commit, while nobody is allowed to modify
the root we are snapshotting.
The delayed metadata insertion code can break that rule, it does a
delayed inode update on the inode of the parent of the snapshot,
and delayed directory item insertion.
This makes sure to run the pending delayed operations before we
record the snapshot root, which avoids corruptions.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
The recent commit to get rid of our trans_mutex introduced
some races with block group relocation. The problem is that relocation
needs to do some record keeping about each root, and it was relying
on the transaction mutex to coordinate things in subtle ways.
This fix adds a mutex just for the relocation code and makes sure
it doesn't have a big impact on normal operations. The race is
really fixed in btrfs_record_root_in_trans, which is where we
step back and wait for the relocation code to finish accounting
setup.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
We can lockup if we try to allow new writers join the transaction and we have
flushoncommit set or have a pending snapshot. This is because we set
no_trans_join and then loop around and try to wait for ordered extents again.
The problem is the ordered endio stuff needs to join the transaction, which it
can't do because no_trans_join is set. So instead wait until after this loop to
set no_trans_join and then make sure to wait for num_writers == 1 in case
anybody got started in between us exiting the loop and setting no_trans_join.
This could easily be reproduced by mounting -o flushoncommit and running xfstest
13. It cannot be reproduced with this patch. Thanks,
Reported-by: Jim Schutt <jaschut@sandia.gov>
Signed-off-by: Josef Bacik <josef@redhat.com>
Normally current->jouranl_info is cleared by commit_transaction. For an
async snap or subvol creation, though, it runs in a work queue. Clear
it in btrfs_commit_transaction_async() to avoid leaking a non-NULL
journal_info when we return to userspace. When the actual commit runs in
the other thread it won't care that it's current->journal_info is already
NULL.
Signed-off-by: Sage Weil <sage@newdream.net>
Tested-by: Jim Schutt <jaschut@sandia.gov>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
In btrfs_wait_for_commit if we came upon a transaction that had committed we
just exited, but that's bad since we are holding the trans_lock. So break
instead so that the lock is dropped. Thanks,
Reported-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <josef@redhat.com>
Originally this was going to be used as a way to give hints to the allocator,
but frankly we can get much better hints elsewhere and it's not even used at all
for anything usefull. In addition to be completely useless, when we initialize
an inode we try and find a freeish block group to set as the inodes block group,
and with a completely full 40gb fs this takes _forever_, so I imagine with say
1tb fs this is just unbearable. So just axe the thing altoghether, we don't
need it and it saves us 8 bytes in the inode and saves us 500 microseconds per
inode lookup in my testcase. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
We use trans_mutex for lots of things, here's a basic list
1) To serialize trans_handles joining the currently running transaction
2) To make sure that no new trans handles are started while we are committing
3) To protect the dead_roots list and the transaction lists
Really the serializing trans_handles joining is not too hard, and can really get
bogged down in acquiring a reference to the transaction. So replace the
trans_mutex with a trans_lock spinlock and use it to do the following
1) Protect fs_info->running_transaction. All trans handles have to do is check
this, and then take a reference of the transaction and keep on going.
2) Protect the fs_info->trans_list. This doesn't get used too much, basically
it just holds the current transactions, which will usually just be the currently
committing transaction and the currently running transaction at most.
3) Protect the dead roots list. This is only ever processed by splicing the
list so this is relatively simple.
4) Protect the fs_info->reloc_ctl stuff. This is very lightweight and was using
the trans_mutex before, so this is a pretty straightforward change.
5) Protect fs_info->no_trans_join. Because we don't hold the trans_lock over
the entirety of the commit we need to have a way to block new people from
creating a new transaction while we're doing our work. So we set no_trans_join
and in join_transaction we test to see if that is set, and if it is we do a
wait_on_commit.
6) Make the transaction use count atomic so we don't need to take locks to
modify it when we're dropping references.
7) Add a commit_lock to the transaction to make sure multiple people trying to
commit the same transaction don't race and commit at the same time.
8) Make open_ioctl_trans an atomic so we don't have to take any locks for ioctl
trans.
I have tested this with xfstests, but obviously it is a pretty hairy change so
lots of testing is greatly appreciated. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
We currently track trans handles in current->journal_info, but we don't actually
use it. This patch fixes it. This will cover the case where we have multiple
people starting transactions down the call chain. This keeps us from having to
allocate a new handle and all of that, we just increase the use count of the
current handle, save the old block_rsv, and return. I tested this with xfstests
and it worked out fine. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
I keep forgetting that btrfs_join_transaction() just ignores the num_items
argument, which leads me to sending pointless patches and looking stupid :). So
just kill the num_items argument from btrfs_join_transaction and
btrfs_start_ioctl_transaction, since neither of them use it. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
This adds an initial implementation for scrub. It works quite
straightforward. The usermode issues an ioctl for each device in the
fs. For each device, it enumerates the allocated device chunks. For
each chunk, the contained extents are enumerated and the data checksums
fetched. The extents are read sequentially and the checksums verified.
If an error occurs (checksum or EIO), a good copy is searched for. If
one is found, the bad copy will be rewritten.
All enumerations happen from the commit roots. During a transaction
commit, the scrubs get paused and afterwards continue from the new
roots.
This commit is based on the series originally posted to linux-btrfs
with some improvements that resulted from comments from David Sterba,
Ilya Dryomov and Jan Schmidt.
Signed-off-by: Arne Jansen <sensille@gmx.net>
Remove code which has been #if0-ed out for a very long time and does not
seem to be related to current codebase anymore.
Signed-off-by: David Sterba <dsterba@suse.cz>
all callers pass GFP_NOFS, but the GFP mask argument is not used in the
function; GFP_ATOMIC is passed to radix tree initialization and it's the
only correct one, since we're using the preload/insert mechanism of
radix tree.
Let's drop the gfp mask from btrfs function, this will not change
behaviour.
Signed-off-by: David Sterba <dsterba@suse.cz>
This is similar to block group caching.
We dedicate a special inode in fs tree to save free ino cache.
At the very first time we create/delete a file after mount, the free ino
cache will be loaded from disk into memory. When the fs tree is commited,
the cache will be written back to disk.
To keep compatibility, we check the root generation against the generation
of the special inode when loading the cache, so the loading will fail
if the btrfs filesystem was mounted in an older kernel before.
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
There's a potential problem in 32bit system when we exhaust 32bit inode
numbers and start to allocate big inode numbers, because btrfs uses
inode->i_ino in many places.
So here we always use BTRFS_I(inode)->location.objectid, which is an
u64 variable.
There are 2 exceptions that BTRFS_I(inode)->location.objectid !=
inode->i_ino: the btree inode (0 vs 1) and empty subvol dirs (256 vs 2),
and inode->i_ino will be used in those cases.
Another reason to make this change is I'm going to use a special inode
to save free ino cache, and the inode number must be > (u64)-256.
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Currently btrfs stores the highest objectid of the fs tree, and it always
returns (highest+1) inode number when we create a file, so inode numbers
won't be reclaimed when we delete files, so we'll run out of inode numbers
as we keep create/delete files in 32bits machines.
This fixes it, and it works similarly to how we cache free space in block
cgroups.
We start a kernel thread to read the file tree. By scanning inode items,
we know which chunks of inode numbers are free, and we cache them in
an rb-tree.
Because we are searching the commit root, we have to carefully handle the
cross-transaction case.
The rb-tree is a hybrid extent+bitmap tree, so if we have too many small
chunks of inode numbers, we'll use bitmaps. Initially we allow 16K ram
of extents, and a bitmap will be used if we exceed this threshold. The
extents threshold is adjusted in runtime.
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
I've been working on making our O_DIRECT latency not suck and I noticed we were
taking the trans_mutex in btrfs_end_transaction. So to do this we convert
num_writers and use_count to atomic_t's and just decrement them in
btrfs_end_transaction. Instead of deleting the transaction from the trans list
in put_transaction we do that in btrfs_commit_transaction() since that's the
only time it actually needs to be removed from the list. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
I saw a lockup where we kept getting into this start transaction->commit
transaction loop because of enospce. The fact is if we fail to make our
reservation, we've tried _everything_ several times, so we only need to try and
commit the transaction once, and if that doesn't work then we really are out of
space and need to just exit. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
root_item->flags and root_item->byte_limit are not initialized when
a subvolume is created. This bug is not revealed until we added
readonly snapshot support - now you mount a btrfs filesystem and you
may find the subvolumes in it are readonly.
To work around this problem, we steal a bit from root_item->inode_item->flags,
and use it to indicate if those fields have been properly initialized.
When we read a tree root from disk, we check if the bit is set, and if
not we'll set the flag and initialize the two fields of the root item.
Reported-by: Andreas Philipp <philipp.andreas@gmail.com>
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Tested-by: Andreas Philipp <philipp.andreas@gmail.com>
cc: stable@kernel.org
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Free btrfs_trans_handle when join_transaction() fails
in start_transaction()
Signed-off-by: Yoshinori Sano <yoshinori.sano@gmail.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
This patch changes some BUG_ON() to the error return.
(but, most callers still use BUG_ON())
Signed-off-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Tracepoints can provide insight into why btrfs hits bugs and be greatly
helpful for debugging, e.g
dd-7822 [000] 2121.641088: btrfs_inode_request: root = 5(FS_TREE), gen = 4, ino = 256, blocks = 8, disk_i_size = 0, last_trans = 8, logged_trans = 0
dd-7822 [000] 2121.641100: btrfs_inode_new: root = 5(FS_TREE), gen = 8, ino = 257, blocks = 0, disk_i_size = 0, last_trans = 0, logged_trans = 0
btrfs-transacti-7804 [001] 2146.935420: btrfs_cow_block: root = 2(EXTENT_TREE), refs = 2, orig_buf = 29368320 (orig_level = 0), cow_buf = 29388800 (cow_level = 0)
btrfs-transacti-7804 [001] 2146.935473: btrfs_cow_block: root = 1(ROOT_TREE), refs = 2, orig_buf = 29364224 (orig_level = 0), cow_buf = 29392896 (cow_level = 0)
btrfs-transacti-7804 [001] 2146.972221: btrfs_transaction_commit: root = 1(ROOT_TREE), gen = 8
flush-btrfs-2-7821 [001] 2155.824210: btrfs_chunk_alloc: root = 3(CHUNK_TREE), offset = 1103101952, size = 1073741824, num_stripes = 1, sub_stripes = 0, type = DATA
flush-btrfs-2-7821 [001] 2155.824241: btrfs_cow_block: root = 2(EXTENT_TREE), refs = 2, orig_buf = 29388800 (orig_level = 0), cow_buf = 29396992 (cow_level = 0)
flush-btrfs-2-7821 [001] 2155.824255: btrfs_cow_block: root = 4(DEV_TREE), refs = 2, orig_buf = 29372416 (orig_level = 0), cow_buf = 29401088 (cow_level = 0)
flush-btrfs-2-7821 [000] 2155.824329: btrfs_cow_block: root = 3(CHUNK_TREE), refs = 2, orig_buf = 20971520 (orig_level = 0), cow_buf = 20975616 (cow_level = 0)
btrfs-endio-wri-7800 [001] 2155.898019: btrfs_cow_block: root = 5(FS_TREE), refs = 2, orig_buf = 29384704 (orig_level = 0), cow_buf = 29405184 (cow_level = 0)
btrfs-endio-wri-7800 [001] 2155.898043: btrfs_cow_block: root = 7(CSUM_TREE), refs = 2, orig_buf = 29376512 (orig_level = 0), cow_buf = 29409280 (cow_level = 0)
Here is what I have added:
1) ordere_extent:
btrfs_ordered_extent_add
btrfs_ordered_extent_remove
btrfs_ordered_extent_start
btrfs_ordered_extent_put
These provide critical information to understand how ordered_extents are
updated.
2) extent_map:
btrfs_get_extent
extent_map is used in both read and write cases, and it is useful for tracking
how btrfs specific IO is running.
3) writepage:
__extent_writepage
btrfs_writepage_end_io_hook
Pages are cirtical resourses and produce a lot of corner cases during writeback,
so it is valuable to know how page is written to disk.
4) inode:
btrfs_inode_new
btrfs_inode_request
btrfs_inode_evict
These can show where and when a inode is created, when a inode is evicted.
5) sync:
btrfs_sync_file
btrfs_sync_fs
These show sync arguments.
6) transaction:
btrfs_transaction_commit
In transaction based filesystem, it will be useful to know the generation and
who does commit.
7) back reference and cow:
btrfs_delayed_tree_ref
btrfs_delayed_data_ref
btrfs_delayed_ref_head
btrfs_cow_block
Btrfs natively supports back references, these tracepoints are helpful on
understanding btrfs's COW mechanism.
8) chunk:
btrfs_chunk_alloc
btrfs_chunk_free
Chunk is a link between physical offset and logical offset, and stands for space
infomation in btrfs, and these are helpful on tracing space things.
9) reserved_extent:
btrfs_reserved_extent_alloc
btrfs_reserved_extent_free
These can show how btrfs uses its space.
Signed-off-by: Liu Bo <liubo2009@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
The error check of btrfs_join_transaction()/btrfs_join_transaction_nolock()
is added, and the mistake of the error check in several places is
corrected.
For more stable Btrfs, I think that we should reduce BUG_ON().
But, I think that long time is necessary for this.
So, I propose this patch as a short-term solution.
With this patch:
- To more stable Btrfs, the part that should be corrected is clarified.
- The panic isn't done by the NULL pointer reference etc. (even if
BUG_ON() is increased temporarily)
- The error code is returned in the place where the error can be easily
returned.
As a long-term plan:
- BUG_ON() is reduced by using the forced-readonly framework, etc.
Signed-off-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
This patch comes from "Forced readonly mounts on errors" ideas.
As we know, this is the first step in being more fault tolerant of disk
corruptions instead of just using BUG() statements.
The major content:
- add a framework for generating errors that should result in filesystems
going readonly.
- keep FS state in disk super block.
- make sure that all of resource will be freed and released at umount time.
- make sure that fter FS is forced readonly on error, there will be no more
disk change before FS is corrected. For this, we should stop write operation.
After this patch is applied, the conversion from BUG() to such a framework can
happen incrementally.
Signed-off-by: Liu Bo <liubo2009@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Usage:
Set BTRFS_SUBVOL_RDONLY of btrfs_ioctl_vol_arg_v2->flags, and call
ioctl(BTRFS_I0CTL_SNAP_CREATE_V2).
Implementation:
- Set readonly bit of btrfs_root_item->flags.
- Add readonly checks in btrfs_permission (inode_permission),
btrfs_setattr, btrfs_set/remove_xattr and some ioctls.
Changelog for v3:
- Eliminate btrfs_root->readonly, but check btrfs_root->root_item.flags.
- Rename BTRFS_ROOT_SNAP_RDONLY to BTRFS_ROOT_SUBVOL_RDONLY.
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
There are lots of places where we do dentry->d_parent->d_inode without holding
the dentry->d_lock. This could cause problems with rename. So instead we need
to use dget_parent() and hold the reference to the parent as long as we are
going to use it's inode and then dput it at the end.
Signed-off-by: Josef Bacik <josef@redhat.com>
Cc: raven@themaw.net
Signed-off-by: Chris Mason <chris.mason@oracle.com>