/* * acpi-cpufreq.c - ACPI Processor P-States Driver ($Revision: 1.4 $) * * Copyright (C) 2001, 2002 Andy Grover * Copyright (C) 2001, 2002 Paul Diefenbaugh * Copyright (C) 2002 - 2004 Dominik Brodowski * Copyright (C) 2006 Denis Sadykov * * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. * * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_DRIVER, "acpi-cpufreq", msg) MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski"); MODULE_DESCRIPTION("ACPI Processor P-States Driver"); MODULE_LICENSE("GPL"); enum { UNDEFINED_CAPABLE = 0, SYSTEM_INTEL_MSR_CAPABLE, SYSTEM_IO_CAPABLE, }; #define INTEL_MSR_RANGE (0xffff) #define CPUID_6_ECX_APERFMPERF_CAPABILITY (0x1) struct acpi_cpufreq_data { struct acpi_processor_performance *acpi_data; struct cpufreq_frequency_table *freq_table; unsigned int max_freq; unsigned int resume; unsigned int cpu_feature; }; static struct acpi_cpufreq_data *drv_data[NR_CPUS]; static struct acpi_processor_performance *acpi_perf_data[NR_CPUS]; static struct cpufreq_driver acpi_cpufreq_driver; static unsigned int acpi_pstate_strict; static int check_est_cpu(unsigned int cpuid) { struct cpuinfo_x86 *cpu = &cpu_data[cpuid]; if (cpu->x86_vendor != X86_VENDOR_INTEL || !cpu_has(cpu, X86_FEATURE_EST)) return 0; return 1; } static unsigned extract_io(u32 value, struct acpi_cpufreq_data *data) { struct acpi_processor_performance *perf; int i; perf = data->acpi_data; for (i = 0; i < perf->state_count; i++) { if (value == perf->states[i].status) return data->freq_table[i].frequency; } return 0; } static unsigned extract_msr(u32 msr, struct acpi_cpufreq_data *data) { int i; struct acpi_processor_performance *perf; msr &= INTEL_MSR_RANGE; perf = data->acpi_data; for (i = 0; data->freq_table[i].frequency != CPUFREQ_TABLE_END; i++) { if (msr == perf->states[data->freq_table[i].index].status) return data->freq_table[i].frequency; } return data->freq_table[0].frequency; } static unsigned extract_freq(u32 val, struct acpi_cpufreq_data *data) { switch (data->cpu_feature) { case SYSTEM_INTEL_MSR_CAPABLE: return extract_msr(val, data); case SYSTEM_IO_CAPABLE: return extract_io(val, data); default: return 0; } } static void wrport(u16 port, u8 bit_width, u32 value) { if (bit_width <= 8) { outb(value, port); } else if (bit_width <= 16) { outw(value, port); } else if (bit_width <= 32) { outl(value, port); } } static void rdport(u16 port, u8 bit_width, u32 * ret) { *ret = 0; if (bit_width <= 8) { *ret = inb(port); } else if (bit_width <= 16) { *ret = inw(port); } else if (bit_width <= 32) { *ret = inl(port); } } struct msr_addr { u32 reg; }; struct io_addr { u16 port; u8 bit_width; }; typedef union { struct msr_addr msr; struct io_addr io; } drv_addr_union; struct drv_cmd { unsigned int type; cpumask_t mask; drv_addr_union addr; u32 val; }; static void do_drv_read(struct drv_cmd *cmd) { u32 h; switch (cmd->type) { case SYSTEM_INTEL_MSR_CAPABLE: rdmsr(cmd->addr.msr.reg, cmd->val, h); break; case SYSTEM_IO_CAPABLE: rdport(cmd->addr.io.port, cmd->addr.io.bit_width, &cmd->val); break; default: break; } } static void do_drv_write(struct drv_cmd *cmd) { u32 h = 0; switch (cmd->type) { case SYSTEM_INTEL_MSR_CAPABLE: wrmsr(cmd->addr.msr.reg, cmd->val, h); break; case SYSTEM_IO_CAPABLE: wrport(cmd->addr.io.port, cmd->addr.io.bit_width, cmd->val); break; default: break; } } static inline void drv_read(struct drv_cmd *cmd) { cpumask_t saved_mask = current->cpus_allowed; cmd->val = 0; set_cpus_allowed(current, cmd->mask); do_drv_read(cmd); set_cpus_allowed(current, saved_mask); } static void drv_write(struct drv_cmd *cmd) { cpumask_t saved_mask = current->cpus_allowed; unsigned int i; for_each_cpu_mask(i, cmd->mask) { set_cpus_allowed(current, cpumask_of_cpu(i)); do_drv_write(cmd); } set_cpus_allowed(current, saved_mask); return; } static u32 get_cur_val(cpumask_t mask) { struct acpi_processor_performance *perf; struct drv_cmd cmd; if (unlikely(cpus_empty(mask))) return 0; switch (drv_data[first_cpu(mask)]->cpu_feature) { case SYSTEM_INTEL_MSR_CAPABLE: cmd.type = SYSTEM_INTEL_MSR_CAPABLE; cmd.addr.msr.reg = MSR_IA32_PERF_STATUS; break; case SYSTEM_IO_CAPABLE: cmd.type = SYSTEM_IO_CAPABLE; perf = drv_data[first_cpu(mask)]->acpi_data; cmd.addr.io.port = perf->control_register.address; cmd.addr.io.bit_width = perf->control_register.bit_width; break; default: return 0; } cmd.mask = mask; drv_read(&cmd); dprintk("get_cur_val = %u\n", cmd.val); return cmd.val; } /* * Return the measured active (C0) frequency on this CPU since last call * to this function. * Input: cpu number * Return: Average CPU frequency in terms of max frequency (zero on error) * * We use IA32_MPERF and IA32_APERF MSRs to get the measured performance * over a period of time, while CPU is in C0 state. * IA32_MPERF counts at the rate of max advertised frequency * IA32_APERF counts at the rate of actual CPU frequency * Only IA32_APERF/IA32_MPERF ratio is architecturally defined and * no meaning should be associated with absolute values of these MSRs. */ static unsigned int get_measured_perf(unsigned int cpu) { union { struct { u32 lo; u32 hi; } split; u64 whole; } aperf_cur, mperf_cur; cpumask_t saved_mask; unsigned int perf_percent; unsigned int retval; saved_mask = current->cpus_allowed; set_cpus_allowed(current, cpumask_of_cpu(cpu)); if (get_cpu() != cpu) { /* We were not able to run on requested processor */ put_cpu(); return 0; } rdmsr(MSR_IA32_APERF, aperf_cur.split.lo, aperf_cur.split.hi); rdmsr(MSR_IA32_MPERF, mperf_cur.split.lo, mperf_cur.split.hi); wrmsr(MSR_IA32_APERF, 0,0); wrmsr(MSR_IA32_MPERF, 0,0); #ifdef __i386__ /* * We dont want to do 64 bit divide with 32 bit kernel * Get an approximate value. Return failure in case we cannot get * an approximate value. */ if (unlikely(aperf_cur.split.hi || mperf_cur.split.hi)) { int shift_count; u32 h; h = max_t(u32, aperf_cur.split.hi, mperf_cur.split.hi); shift_count = fls(h); aperf_cur.whole >>= shift_count; mperf_cur.whole >>= shift_count; } if (((unsigned long)(-1) / 100) < aperf_cur.split.lo) { int shift_count = 7; aperf_cur.split.lo >>= shift_count; mperf_cur.split.lo >>= shift_count; } if (aperf_cur.split.lo && mperf_cur.split.lo) { perf_percent = (aperf_cur.split.lo * 100) / mperf_cur.split.lo; } else { perf_percent = 0; } #else if (unlikely(((unsigned long)(-1) / 100) < aperf_cur.whole)) { int shift_count = 7; aperf_cur.whole >>= shift_count; mperf_cur.whole >>= shift_count; } if (aperf_cur.whole && mperf_cur.whole) { perf_percent = (aperf_cur.whole * 100) / mperf_cur.whole; } else { perf_percent = 0; } #endif retval = drv_data[cpu]->max_freq * perf_percent / 100; put_cpu(); set_cpus_allowed(current, saved_mask); dprintk("cpu %d: performance percent %d\n", cpu, perf_percent); return retval; } static unsigned int get_cur_freq_on_cpu(unsigned int cpu) { struct acpi_cpufreq_data *data = drv_data[cpu]; unsigned int freq; dprintk("get_cur_freq_on_cpu (%d)\n", cpu); if (unlikely(data == NULL || data->acpi_data == NULL || data->freq_table == NULL)) { return 0; } freq = extract_freq(get_cur_val(cpumask_of_cpu(cpu)), data); dprintk("cur freq = %u\n", freq); return freq; } static unsigned int check_freqs(cpumask_t mask, unsigned int freq, struct acpi_cpufreq_data *data) { unsigned int cur_freq; unsigned int i; for (i = 0; i < 100; i++) { cur_freq = extract_freq(get_cur_val(mask), data); if (cur_freq == freq) return 1; udelay(10); } return 0; } static int acpi_cpufreq_target(struct cpufreq_policy *policy, unsigned int target_freq, unsigned int relation) { struct acpi_cpufreq_data *data = drv_data[policy->cpu]; struct acpi_processor_performance *perf; struct cpufreq_freqs freqs; cpumask_t online_policy_cpus; struct drv_cmd cmd; unsigned int msr; unsigned int next_state = 0; unsigned int next_perf_state = 0; unsigned int i; int result = 0; dprintk("acpi_cpufreq_target %d (%d)\n", target_freq, policy->cpu); if (unlikely(data == NULL || data->acpi_data == NULL || data->freq_table == NULL)) { return -ENODEV; } perf = data->acpi_data; result = cpufreq_frequency_table_target(policy, data->freq_table, target_freq, relation, &next_state); if (unlikely(result)) return -ENODEV; #ifdef CONFIG_HOTPLUG_CPU /* cpufreq holds the hotplug lock, so we are safe from here on */ cpus_and(online_policy_cpus, cpu_online_map, policy->cpus); #else online_policy_cpus = policy->cpus; #endif next_perf_state = data->freq_table[next_state].index; if (perf->state == next_perf_state) { if (unlikely(data->resume)) { dprintk("Called after resume, resetting to P%d\n", next_perf_state); data->resume = 0; } else { dprintk("Already at target state (P%d)\n", next_perf_state); return 0; } } switch (data->cpu_feature) { case SYSTEM_INTEL_MSR_CAPABLE: cmd.type = SYSTEM_INTEL_MSR_CAPABLE; cmd.addr.msr.reg = MSR_IA32_PERF_CTL; msr = (u32) perf->states[next_perf_state]. control & INTEL_MSR_RANGE; cmd.val = (cmd.val & ~INTEL_MSR_RANGE) | msr; break; case SYSTEM_IO_CAPABLE: cmd.type = SYSTEM_IO_CAPABLE; cmd.addr.io.port = perf->control_register.address; cmd.addr.io.bit_width = perf->control_register.bit_width; cmd.val = (u32) perf->states[next_perf_state].control; break; default: return -ENODEV; } cpus_clear(cmd.mask); if (policy->shared_type != CPUFREQ_SHARED_TYPE_ANY) cmd.mask = online_policy_cpus; else cpu_set(policy->cpu, cmd.mask); freqs.old = data->freq_table[perf->state].frequency; freqs.new = data->freq_table[next_perf_state].frequency; for_each_cpu_mask(i, cmd.mask) { freqs.cpu = i; cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE); } drv_write(&cmd); if (acpi_pstate_strict) { if (!check_freqs(cmd.mask, freqs.new, data)) { dprintk("acpi_cpufreq_target failed (%d)\n", policy->cpu); return -EAGAIN; } } for_each_cpu_mask(i, cmd.mask) { freqs.cpu = i; cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE); } perf->state = next_perf_state; return result; } static int acpi_cpufreq_verify(struct cpufreq_policy *policy) { struct acpi_cpufreq_data *data = drv_data[policy->cpu]; dprintk("acpi_cpufreq_verify\n"); return cpufreq_frequency_table_verify(policy, data->freq_table); } static unsigned long acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu) { struct acpi_processor_performance *perf = data->acpi_data; if (cpu_khz) { /* search the closest match to cpu_khz */ unsigned int i; unsigned long freq; unsigned long freqn = perf->states[0].core_frequency * 1000; for (i = 0; i < (perf->state_count - 1); i++) { freq = freqn; freqn = perf->states[i + 1].core_frequency * 1000; if ((2 * cpu_khz) > (freqn + freq)) { perf->state = i; return freq; } } perf->state = perf->state_count - 1; return freqn; } else { /* assume CPU is at P0... */ perf->state = 0; return perf->states[0].core_frequency * 1000; } } /* * acpi_cpufreq_early_init - initialize ACPI P-States library * * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c) * in order to determine correct frequency and voltage pairings. We can * do _PDC and _PSD and find out the processor dependency for the * actual init that will happen later... */ static int acpi_cpufreq_early_init(void) { struct acpi_processor_performance *data; cpumask_t covered; unsigned int i, j; dprintk("acpi_cpufreq_early_init\n"); for_each_possible_cpu(i) { data = kzalloc(sizeof(struct acpi_processor_performance), GFP_KERNEL); if (!data) { for_each_cpu_mask(j, covered) { kfree(acpi_perf_data[j]); acpi_perf_data[j] = NULL; } return -ENOMEM; } acpi_perf_data[i] = data; cpu_set(i, covered); } /* Do initialization in ACPI core */ acpi_processor_preregister_performance(acpi_perf_data); return 0; } /* * Some BIOSes do SW_ANY coordination internally, either set it up in hw * or do it in BIOS firmware and won't inform about it to OS. If not * detected, this has a side effect of making CPU run at a different speed * than OS intended it to run at. Detect it and handle it cleanly. */ static int bios_with_sw_any_bug; static int sw_any_bug_found(struct dmi_system_id *d) { bios_with_sw_any_bug = 1; return 0; } static struct dmi_system_id sw_any_bug_dmi_table[] = { { .callback = sw_any_bug_found, .ident = "Supermicro Server X6DLP", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"), DMI_MATCH(DMI_BIOS_VERSION, "080010"), DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"), }, }, { } }; static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy) { unsigned int i; unsigned int valid_states = 0; unsigned int cpu = policy->cpu; struct acpi_cpufreq_data *data; unsigned int result = 0; struct cpuinfo_x86 *c = &cpu_data[policy->cpu]; struct acpi_processor_performance *perf; dprintk("acpi_cpufreq_cpu_init\n"); if (!acpi_perf_data[cpu]) return -ENODEV; data = kzalloc(sizeof(struct acpi_cpufreq_data), GFP_KERNEL); if (!data) return -ENOMEM; data->acpi_data = acpi_perf_data[cpu]; drv_data[cpu] = data; if (cpu_has(c, X86_FEATURE_CONSTANT_TSC)) { acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS; } result = acpi_processor_register_performance(data->acpi_data, cpu); if (result) goto err_free; perf = data->acpi_data; policy->shared_type = perf->shared_type; /* * Will let policy->cpus know about dependency only when software * coordination is required. */ if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL || policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) { policy->cpus = perf->shared_cpu_map; } #ifdef CONFIG_SMP dmi_check_system(sw_any_bug_dmi_table); if (bios_with_sw_any_bug && cpus_weight(policy->cpus) == 1) { policy->shared_type = CPUFREQ_SHARED_TYPE_ALL; policy->cpus = cpu_core_map[cpu]; } #endif /* capability check */ if (perf->state_count <= 1) { dprintk("No P-States\n"); result = -ENODEV; goto err_unreg; } if (perf->control_register.space_id != perf->status_register.space_id) { result = -ENODEV; goto err_unreg; } switch (perf->control_register.space_id) { case ACPI_ADR_SPACE_SYSTEM_IO: dprintk("SYSTEM IO addr space\n"); data->cpu_feature = SYSTEM_IO_CAPABLE; break; case ACPI_ADR_SPACE_FIXED_HARDWARE: dprintk("HARDWARE addr space\n"); if (!check_est_cpu(cpu)) { result = -ENODEV; goto err_unreg; } data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE; break; default: dprintk("Unknown addr space %d\n", (u32) (perf->control_register.space_id)); result = -ENODEV; goto err_unreg; } data->freq_table = kmalloc(sizeof(struct cpufreq_frequency_table) * (perf->state_count + 1), GFP_KERNEL); if (!data->freq_table) { result = -ENOMEM; goto err_unreg; } /* detect transition latency */ policy->cpuinfo.transition_latency = 0; for (i = 0; i < perf->state_count; i++) { if ((perf->states[i].transition_latency * 1000) > policy->cpuinfo.transition_latency) policy->cpuinfo.transition_latency = perf->states[i].transition_latency * 1000; } policy->governor = CPUFREQ_DEFAULT_GOVERNOR; data->max_freq = perf->states[0].core_frequency * 1000; /* table init */ for (i = 0; i < perf->state_count; i++) { if (i > 0 && perf->states[i].core_frequency == perf->states[i - 1].core_frequency) continue; data->freq_table[valid_states].index = i; data->freq_table[valid_states].frequency = perf->states[i].core_frequency * 1000; valid_states++; } data->freq_table[perf->state_count].frequency = CPUFREQ_TABLE_END; result = cpufreq_frequency_table_cpuinfo(policy, data->freq_table); if (result) { goto err_freqfree; } switch (data->cpu_feature) { case ACPI_ADR_SPACE_SYSTEM_IO: /* Current speed is unknown and not detectable by IO port */ policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu); break; case ACPI_ADR_SPACE_FIXED_HARDWARE: acpi_cpufreq_driver.get = get_cur_freq_on_cpu; get_cur_freq_on_cpu(cpu); break; default: break; } /* notify BIOS that we exist */ acpi_processor_notify_smm(THIS_MODULE); /* Check for APERF/MPERF support in hardware */ if (c->x86_vendor == X86_VENDOR_INTEL && c->cpuid_level >= 6) { unsigned int ecx; ecx = cpuid_ecx(6); if (ecx & CPUID_6_ECX_APERFMPERF_CAPABILITY) { acpi_cpufreq_driver.getavg = get_measured_perf; } } dprintk("CPU%u - ACPI performance management activated.\n", cpu); for (i = 0; i < perf->state_count; i++) dprintk(" %cP%d: %d MHz, %d mW, %d uS\n", (i == perf->state ? '*' : ' '), i, (u32) perf->states[i].core_frequency, (u32) perf->states[i].power, (u32) perf->states[i].transition_latency); cpufreq_frequency_table_get_attr(data->freq_table, policy->cpu); /* * the first call to ->target() should result in us actually * writing something to the appropriate registers. */ data->resume = 1; return result; err_freqfree: kfree(data->freq_table); err_unreg: acpi_processor_unregister_performance(perf, cpu); err_free: kfree(data); drv_data[cpu] = NULL; return result; } static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy) { struct acpi_cpufreq_data *data = drv_data[policy->cpu]; dprintk("acpi_cpufreq_cpu_exit\n"); if (data) { cpufreq_frequency_table_put_attr(policy->cpu); drv_data[policy->cpu] = NULL; acpi_processor_unregister_performance(data->acpi_data, policy->cpu); kfree(data); } return 0; } static int acpi_cpufreq_resume(struct cpufreq_policy *policy) { struct acpi_cpufreq_data *data = drv_data[policy->cpu]; dprintk("acpi_cpufreq_resume\n"); data->resume = 1; return 0; } static struct freq_attr *acpi_cpufreq_attr[] = { &cpufreq_freq_attr_scaling_available_freqs, NULL, }; static struct cpufreq_driver acpi_cpufreq_driver = { .verify = acpi_cpufreq_verify, .target = acpi_cpufreq_target, .init = acpi_cpufreq_cpu_init, .exit = acpi_cpufreq_cpu_exit, .resume = acpi_cpufreq_resume, .name = "acpi-cpufreq", .owner = THIS_MODULE, .attr = acpi_cpufreq_attr, }; static int __init acpi_cpufreq_init(void) { dprintk("acpi_cpufreq_init\n"); acpi_cpufreq_early_init(); return cpufreq_register_driver(&acpi_cpufreq_driver); } static void __exit acpi_cpufreq_exit(void) { unsigned int i; dprintk("acpi_cpufreq_exit\n"); cpufreq_unregister_driver(&acpi_cpufreq_driver); for_each_possible_cpu(i) { kfree(acpi_perf_data[i]); acpi_perf_data[i] = NULL; } return; } module_param(acpi_pstate_strict, uint, 0644); MODULE_PARM_DESC(acpi_pstate_strict, "value 0 or non-zero. non-zero -> strict ACPI checks are performed during frequency changes."); late_initcall(acpi_cpufreq_init); module_exit(acpi_cpufreq_exit); MODULE_ALIAS("acpi");