/* * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc. * All Rights Reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it would be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include "xfs.h" #include "xfs_fs.h" #include "xfs_format.h" #include "xfs_log_format.h" #include "xfs_trans_resv.h" #include "xfs_bit.h" #include "xfs_mount.h" #include "xfs_trans.h" #include "xfs_trans_priv.h" #include "xfs_buf_item.h" #include "xfs_extfree_item.h" #include "xfs_log.h" #include "xfs_btree.h" #include "xfs_rmap.h" kmem_zone_t *xfs_efi_zone; kmem_zone_t *xfs_efd_zone; static inline struct xfs_efi_log_item *EFI_ITEM(struct xfs_log_item *lip) { return container_of(lip, struct xfs_efi_log_item, efi_item); } void xfs_efi_item_free( struct xfs_efi_log_item *efip) { kmem_free(efip->efi_item.li_lv_shadow); if (efip->efi_format.efi_nextents > XFS_EFI_MAX_FAST_EXTENTS) kmem_free(efip); else kmem_zone_free(xfs_efi_zone, efip); } /* * Freeing the efi requires that we remove it from the AIL if it has already * been placed there. However, the EFI may not yet have been placed in the AIL * when called by xfs_efi_release() from EFD processing due to the ordering of * committed vs unpin operations in bulk insert operations. Hence the reference * count to ensure only the last caller frees the EFI. */ void xfs_efi_release( struct xfs_efi_log_item *efip) { ASSERT(atomic_read(&efip->efi_refcount) > 0); if (atomic_dec_and_test(&efip->efi_refcount)) { xfs_trans_ail_remove(&efip->efi_item, SHUTDOWN_LOG_IO_ERROR); xfs_efi_item_free(efip); } } /* * This returns the number of iovecs needed to log the given efi item. * We only need 1 iovec for an efi item. It just logs the efi_log_format * structure. */ static inline int xfs_efi_item_sizeof( struct xfs_efi_log_item *efip) { return sizeof(struct xfs_efi_log_format) + (efip->efi_format.efi_nextents - 1) * sizeof(xfs_extent_t); } STATIC void xfs_efi_item_size( struct xfs_log_item *lip, int *nvecs, int *nbytes) { *nvecs += 1; *nbytes += xfs_efi_item_sizeof(EFI_ITEM(lip)); } /* * This is called to fill in the vector of log iovecs for the * given efi log item. We use only 1 iovec, and we point that * at the efi_log_format structure embedded in the efi item. * It is at this point that we assert that all of the extent * slots in the efi item have been filled. */ STATIC void xfs_efi_item_format( struct xfs_log_item *lip, struct xfs_log_vec *lv) { struct xfs_efi_log_item *efip = EFI_ITEM(lip); struct xfs_log_iovec *vecp = NULL; ASSERT(atomic_read(&efip->efi_next_extent) == efip->efi_format.efi_nextents); efip->efi_format.efi_type = XFS_LI_EFI; efip->efi_format.efi_size = 1; xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFI_FORMAT, &efip->efi_format, xfs_efi_item_sizeof(efip)); } /* * Pinning has no meaning for an efi item, so just return. */ STATIC void xfs_efi_item_pin( struct xfs_log_item *lip) { } /* * The unpin operation is the last place an EFI is manipulated in the log. It is * either inserted in the AIL or aborted in the event of a log I/O error. In * either case, the EFI transaction has been successfully committed to make it * this far. Therefore, we expect whoever committed the EFI to either construct * and commit the EFD or drop the EFD's reference in the event of error. Simply * drop the log's EFI reference now that the log is done with it. */ STATIC void xfs_efi_item_unpin( struct xfs_log_item *lip, int remove) { struct xfs_efi_log_item *efip = EFI_ITEM(lip); xfs_efi_release(efip); } /* * Efi items have no locking or pushing. However, since EFIs are pulled from * the AIL when their corresponding EFDs are committed to disk, their situation * is very similar to being pinned. Return XFS_ITEM_PINNED so that the caller * will eventually flush the log. This should help in getting the EFI out of * the AIL. */ STATIC uint xfs_efi_item_push( struct xfs_log_item *lip, struct list_head *buffer_list) { return XFS_ITEM_PINNED; } /* * The EFI has been either committed or aborted if the transaction has been * cancelled. If the transaction was cancelled, an EFD isn't going to be * constructed and thus we free the EFI here directly. */ STATIC void xfs_efi_item_unlock( struct xfs_log_item *lip) { if (test_bit(XFS_LI_ABORTED, &lip->li_flags)) xfs_efi_release(EFI_ITEM(lip)); } /* * The EFI is logged only once and cannot be moved in the log, so simply return * the lsn at which it's been logged. */ STATIC xfs_lsn_t xfs_efi_item_committed( struct xfs_log_item *lip, xfs_lsn_t lsn) { return lsn; } /* * The EFI dependency tracking op doesn't do squat. It can't because * it doesn't know where the free extent is coming from. The dependency * tracking has to be handled by the "enclosing" metadata object. For * example, for inodes, the inode is locked throughout the extent freeing * so the dependency should be recorded there. */ STATIC void xfs_efi_item_committing( struct xfs_log_item *lip, xfs_lsn_t lsn) { } /* * This is the ops vector shared by all efi log items. */ static const struct xfs_item_ops xfs_efi_item_ops = { .iop_size = xfs_efi_item_size, .iop_format = xfs_efi_item_format, .iop_pin = xfs_efi_item_pin, .iop_unpin = xfs_efi_item_unpin, .iop_unlock = xfs_efi_item_unlock, .iop_committed = xfs_efi_item_committed, .iop_push = xfs_efi_item_push, .iop_committing = xfs_efi_item_committing }; /* * Allocate and initialize an efi item with the given number of extents. */ struct xfs_efi_log_item * xfs_efi_init( struct xfs_mount *mp, uint nextents) { struct xfs_efi_log_item *efip; uint size; ASSERT(nextents > 0); if (nextents > XFS_EFI_MAX_FAST_EXTENTS) { size = (uint)(sizeof(xfs_efi_log_item_t) + ((nextents - 1) * sizeof(xfs_extent_t))); efip = kmem_zalloc(size, KM_SLEEP); } else { efip = kmem_zone_zalloc(xfs_efi_zone, KM_SLEEP); } xfs_log_item_init(mp, &efip->efi_item, XFS_LI_EFI, &xfs_efi_item_ops); efip->efi_format.efi_nextents = nextents; efip->efi_format.efi_id = (uintptr_t)(void *)efip; atomic_set(&efip->efi_next_extent, 0); atomic_set(&efip->efi_refcount, 2); return efip; } /* * Copy an EFI format buffer from the given buf, and into the destination * EFI format structure. * The given buffer can be in 32 bit or 64 bit form (which has different padding), * one of which will be the native format for this kernel. * It will handle the conversion of formats if necessary. */ int xfs_efi_copy_format(xfs_log_iovec_t *buf, xfs_efi_log_format_t *dst_efi_fmt) { xfs_efi_log_format_t *src_efi_fmt = buf->i_addr; uint i; uint len = sizeof(xfs_efi_log_format_t) + (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_t); uint len32 = sizeof(xfs_efi_log_format_32_t) + (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_32_t); uint len64 = sizeof(xfs_efi_log_format_64_t) + (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_64_t); if (buf->i_len == len) { memcpy((char *)dst_efi_fmt, (char*)src_efi_fmt, len); return 0; } else if (buf->i_len == len32) { xfs_efi_log_format_32_t *src_efi_fmt_32 = buf->i_addr; dst_efi_fmt->efi_type = src_efi_fmt_32->efi_type; dst_efi_fmt->efi_size = src_efi_fmt_32->efi_size; dst_efi_fmt->efi_nextents = src_efi_fmt_32->efi_nextents; dst_efi_fmt->efi_id = src_efi_fmt_32->efi_id; for (i = 0; i < dst_efi_fmt->efi_nextents; i++) { dst_efi_fmt->efi_extents[i].ext_start = src_efi_fmt_32->efi_extents[i].ext_start; dst_efi_fmt->efi_extents[i].ext_len = src_efi_fmt_32->efi_extents[i].ext_len; } return 0; } else if (buf->i_len == len64) { xfs_efi_log_format_64_t *src_efi_fmt_64 = buf->i_addr; dst_efi_fmt->efi_type = src_efi_fmt_64->efi_type; dst_efi_fmt->efi_size = src_efi_fmt_64->efi_size; dst_efi_fmt->efi_nextents = src_efi_fmt_64->efi_nextents; dst_efi_fmt->efi_id = src_efi_fmt_64->efi_id; for (i = 0; i < dst_efi_fmt->efi_nextents; i++) { dst_efi_fmt->efi_extents[i].ext_start = src_efi_fmt_64->efi_extents[i].ext_start; dst_efi_fmt->efi_extents[i].ext_len = src_efi_fmt_64->efi_extents[i].ext_len; } return 0; } return -EFSCORRUPTED; } static inline struct xfs_efd_log_item *EFD_ITEM(struct xfs_log_item *lip) { return container_of(lip, struct xfs_efd_log_item, efd_item); } STATIC void xfs_efd_item_free(struct xfs_efd_log_item *efdp) { kmem_free(efdp->efd_item.li_lv_shadow); if (efdp->efd_format.efd_nextents > XFS_EFD_MAX_FAST_EXTENTS) kmem_free(efdp); else kmem_zone_free(xfs_efd_zone, efdp); } /* * This returns the number of iovecs needed to log the given efd item. * We only need 1 iovec for an efd item. It just logs the efd_log_format * structure. */ static inline int xfs_efd_item_sizeof( struct xfs_efd_log_item *efdp) { return sizeof(xfs_efd_log_format_t) + (efdp->efd_format.efd_nextents - 1) * sizeof(xfs_extent_t); } STATIC void xfs_efd_item_size( struct xfs_log_item *lip, int *nvecs, int *nbytes) { *nvecs += 1; *nbytes += xfs_efd_item_sizeof(EFD_ITEM(lip)); } /* * This is called to fill in the vector of log iovecs for the * given efd log item. We use only 1 iovec, and we point that * at the efd_log_format structure embedded in the efd item. * It is at this point that we assert that all of the extent * slots in the efd item have been filled. */ STATIC void xfs_efd_item_format( struct xfs_log_item *lip, struct xfs_log_vec *lv) { struct xfs_efd_log_item *efdp = EFD_ITEM(lip); struct xfs_log_iovec *vecp = NULL; ASSERT(efdp->efd_next_extent == efdp->efd_format.efd_nextents); efdp->efd_format.efd_type = XFS_LI_EFD; efdp->efd_format.efd_size = 1; xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFD_FORMAT, &efdp->efd_format, xfs_efd_item_sizeof(efdp)); } /* * Pinning has no meaning for an efd item, so just return. */ STATIC void xfs_efd_item_pin( struct xfs_log_item *lip) { } /* * Since pinning has no meaning for an efd item, unpinning does * not either. */ STATIC void xfs_efd_item_unpin( struct xfs_log_item *lip, int remove) { } /* * There isn't much you can do to push on an efd item. It is simply stuck * waiting for the log to be flushed to disk. */ STATIC uint xfs_efd_item_push( struct xfs_log_item *lip, struct list_head *buffer_list) { return XFS_ITEM_PINNED; } /* * The EFD is either committed or aborted if the transaction is cancelled. If * the transaction is cancelled, drop our reference to the EFI and free the EFD. */ STATIC void xfs_efd_item_unlock( struct xfs_log_item *lip) { struct xfs_efd_log_item *efdp = EFD_ITEM(lip); if (test_bit(XFS_LI_ABORTED, &lip->li_flags)) { xfs_efi_release(efdp->efd_efip); xfs_efd_item_free(efdp); } } /* * When the efd item is committed to disk, all we need to do is delete our * reference to our partner efi item and then free ourselves. Since we're * freeing ourselves we must return -1 to keep the transaction code from further * referencing this item. */ STATIC xfs_lsn_t xfs_efd_item_committed( struct xfs_log_item *lip, xfs_lsn_t lsn) { struct xfs_efd_log_item *efdp = EFD_ITEM(lip); /* * Drop the EFI reference regardless of whether the EFD has been * aborted. Once the EFD transaction is constructed, it is the sole * responsibility of the EFD to release the EFI (even if the EFI is * aborted due to log I/O error). */ xfs_efi_release(efdp->efd_efip); xfs_efd_item_free(efdp); return (xfs_lsn_t)-1; } /* * The EFD dependency tracking op doesn't do squat. It can't because * it doesn't know where the free extent is coming from. The dependency * tracking has to be handled by the "enclosing" metadata object. For * example, for inodes, the inode is locked throughout the extent freeing * so the dependency should be recorded there. */ STATIC void xfs_efd_item_committing( struct xfs_log_item *lip, xfs_lsn_t lsn) { } /* * This is the ops vector shared by all efd log items. */ static const struct xfs_item_ops xfs_efd_item_ops = { .iop_size = xfs_efd_item_size, .iop_format = xfs_efd_item_format, .iop_pin = xfs_efd_item_pin, .iop_unpin = xfs_efd_item_unpin, .iop_unlock = xfs_efd_item_unlock, .iop_committed = xfs_efd_item_committed, .iop_push = xfs_efd_item_push, .iop_committing = xfs_efd_item_committing }; /* * Allocate and initialize an efd item with the given number of extents. */ struct xfs_efd_log_item * xfs_efd_init( struct xfs_mount *mp, struct xfs_efi_log_item *efip, uint nextents) { struct xfs_efd_log_item *efdp; uint size; ASSERT(nextents > 0); if (nextents > XFS_EFD_MAX_FAST_EXTENTS) { size = (uint)(sizeof(xfs_efd_log_item_t) + ((nextents - 1) * sizeof(xfs_extent_t))); efdp = kmem_zalloc(size, KM_SLEEP); } else { efdp = kmem_zone_zalloc(xfs_efd_zone, KM_SLEEP); } xfs_log_item_init(mp, &efdp->efd_item, XFS_LI_EFD, &xfs_efd_item_ops); efdp->efd_efip = efip; efdp->efd_format.efd_nextents = nextents; efdp->efd_format.efd_efi_id = efip->efi_format.efi_id; return efdp; } /* * Process an extent free intent item that was recovered from * the log. We need to free the extents that it describes. */ int xfs_efi_recover( struct xfs_mount *mp, struct xfs_efi_log_item *efip) { struct xfs_efd_log_item *efdp; struct xfs_trans *tp; int i; int error = 0; xfs_extent_t *extp; xfs_fsblock_t startblock_fsb; struct xfs_owner_info oinfo; ASSERT(!test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)); /* * First check the validity of the extents described by the * EFI. If any are bad, then assume that all are bad and * just toss the EFI. */ for (i = 0; i < efip->efi_format.efi_nextents; i++) { extp = &efip->efi_format.efi_extents[i]; startblock_fsb = XFS_BB_TO_FSB(mp, XFS_FSB_TO_DADDR(mp, extp->ext_start)); if (startblock_fsb == 0 || extp->ext_len == 0 || startblock_fsb >= mp->m_sb.sb_dblocks || extp->ext_len >= mp->m_sb.sb_agblocks) { /* * This will pull the EFI from the AIL and * free the memory associated with it. */ set_bit(XFS_EFI_RECOVERED, &efip->efi_flags); xfs_efi_release(efip); return -EIO; } } error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp); if (error) return error; efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents); xfs_rmap_any_owner_update(&oinfo); for (i = 0; i < efip->efi_format.efi_nextents; i++) { extp = &efip->efi_format.efi_extents[i]; error = xfs_trans_free_extent(tp, efdp, extp->ext_start, extp->ext_len, &oinfo); if (error) goto abort_error; } set_bit(XFS_EFI_RECOVERED, &efip->efi_flags); error = xfs_trans_commit(tp); return error; abort_error: xfs_trans_cancel(tp); return error; }