/* * linux/arch/arm/mm/init.c * * Copyright (C) 1995-2005 Russell King * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "mm.h" static unsigned long phys_initrd_start __initdata = 0; static unsigned long phys_initrd_size __initdata = 0; static int __init early_initrd(char *p) { unsigned long start, size; char *endp; start = memparse(p, &endp); if (*endp == ',') { size = memparse(endp + 1, NULL); phys_initrd_start = start; phys_initrd_size = size; } return 0; } early_param("initrd", early_initrd); static int __init parse_tag_initrd(const struct tag *tag) { printk(KERN_WARNING "ATAG_INITRD is deprecated; " "please update your bootloader.\n"); phys_initrd_start = __virt_to_phys(tag->u.initrd.start); phys_initrd_size = tag->u.initrd.size; return 0; } __tagtable(ATAG_INITRD, parse_tag_initrd); static int __init parse_tag_initrd2(const struct tag *tag) { phys_initrd_start = tag->u.initrd.start; phys_initrd_size = tag->u.initrd.size; return 0; } __tagtable(ATAG_INITRD2, parse_tag_initrd2); /* * This keeps memory configuration data used by a couple memory * initialization functions, as well as show_mem() for the skipping * of holes in the memory map. It is populated by arm_add_memory(). */ struct meminfo meminfo; void show_mem(void) { int free = 0, total = 0, reserved = 0; int shared = 0, cached = 0, slab = 0, i; struct meminfo * mi = &meminfo; printk("Mem-info:\n"); show_free_areas(); for_each_bank (i, mi) { struct membank *bank = &mi->bank[i]; unsigned int pfn1, pfn2; struct page *page, *end; pfn1 = bank_pfn_start(bank); pfn2 = bank_pfn_end(bank); page = pfn_to_page(pfn1); end = pfn_to_page(pfn2 - 1) + 1; do { total++; if (PageReserved(page)) reserved++; else if (PageSwapCache(page)) cached++; else if (PageSlab(page)) slab++; else if (!page_count(page)) free++; else shared += page_count(page) - 1; page++; } while (page < end); } printk("%d pages of RAM\n", total); printk("%d free pages\n", free); printk("%d reserved pages\n", reserved); printk("%d slab pages\n", slab); printk("%d pages shared\n", shared); printk("%d pages swap cached\n", cached); } static void __init find_limits(struct meminfo *mi, unsigned long *min, unsigned long *max_low, unsigned long *max_high) { int i; *min = -1UL; *max_low = *max_high = 0; for_each_bank (i, mi) { struct membank *bank = &mi->bank[i]; unsigned long start, end; start = bank_pfn_start(bank); end = bank_pfn_end(bank); if (*min > start) *min = start; if (*max_high < end) *max_high = end; if (bank->highmem) continue; if (*max_low < end) *max_low = end; } } static void __init arm_bootmem_init(struct meminfo *mi, unsigned long start_pfn, unsigned long end_pfn) { unsigned int boot_pages; phys_addr_t bitmap; pg_data_t *pgdat; int i; /* * Allocate the bootmem bitmap page. This must be in a region * of memory which has already been mapped. */ boot_pages = bootmem_bootmap_pages(end_pfn - start_pfn); bitmap = memblock_alloc_base(boot_pages << PAGE_SHIFT, L1_CACHE_BYTES, __pfn_to_phys(end_pfn)); /* * Initialise the bootmem allocator, handing the * memory banks over to bootmem. */ node_set_online(0); pgdat = NODE_DATA(0); init_bootmem_node(pgdat, __phys_to_pfn(bitmap), start_pfn, end_pfn); for_each_bank(i, mi) { struct membank *bank = &mi->bank[i]; if (!bank->highmem) free_bootmem(bank_phys_start(bank), bank_phys_size(bank)); } /* * Reserve the memblock reserved regions in bootmem. */ for (i = 0; i < memblock.reserved.cnt; i++) { phys_addr_t start = memblock_start_pfn(&memblock.reserved, i); if (start >= start_pfn && memblock_end_pfn(&memblock.reserved, i) <= end_pfn) reserve_bootmem_node(pgdat, __pfn_to_phys(start), memblock_size_bytes(&memblock.reserved, i), BOOTMEM_DEFAULT); } } static void __init arm_bootmem_free(struct meminfo *mi, unsigned long min, unsigned long max_low, unsigned long max_high) { unsigned long zone_size[MAX_NR_ZONES], zhole_size[MAX_NR_ZONES]; int i; /* * initialise the zones. */ memset(zone_size, 0, sizeof(zone_size)); /* * The memory size has already been determined. If we need * to do anything fancy with the allocation of this memory * to the zones, now is the time to do it. */ zone_size[0] = max_low - min; #ifdef CONFIG_HIGHMEM zone_size[ZONE_HIGHMEM] = max_high - max_low; #endif /* * Calculate the size of the holes. * holes = node_size - sum(bank_sizes) */ memcpy(zhole_size, zone_size, sizeof(zhole_size)); for_each_bank(i, mi) { int idx = 0; #ifdef CONFIG_HIGHMEM if (mi->bank[i].highmem) idx = ZONE_HIGHMEM; #endif zhole_size[idx] -= bank_pfn_size(&mi->bank[i]); } /* * Adjust the sizes according to any special requirements for * this machine type. */ arch_adjust_zones(zone_size, zhole_size); free_area_init_node(0, zone_size, min, zhole_size); } #ifndef CONFIG_SPARSEMEM int pfn_valid(unsigned long pfn) { return memblock_is_memory(pfn << PAGE_SHIFT); } EXPORT_SYMBOL(pfn_valid); static void arm_memory_present(void) { } #else static void arm_memory_present(void) { int i; for (i = 0; i < memblock.memory.cnt; i++) memory_present(0, memblock_start_pfn(&memblock.memory, i), memblock_end_pfn(&memblock.memory, i)); } #endif void __init arm_memblock_init(struct meminfo *mi, struct machine_desc *mdesc) { int i; memblock_init(); for (i = 0; i < mi->nr_banks; i++) memblock_add(mi->bank[i].start, mi->bank[i].size); /* Register the kernel text, kernel data and initrd with memblock. */ #ifdef CONFIG_XIP_KERNEL memblock_reserve(__pa(_data), _end - _data); #else memblock_reserve(__pa(_stext), _end - _stext); #endif #ifdef CONFIG_BLK_DEV_INITRD if (phys_initrd_size) { memblock_reserve(phys_initrd_start, phys_initrd_size); /* Now convert initrd to virtual addresses */ initrd_start = __phys_to_virt(phys_initrd_start); initrd_end = initrd_start + phys_initrd_size; } #endif arm_mm_memblock_reserve(); /* reserve any platform specific memblock areas */ if (mdesc->reserve) mdesc->reserve(); memblock_analyze(); memblock_dump_all(); } void __init bootmem_init(void) { struct meminfo *mi = &meminfo; unsigned long min, max_low, max_high; max_low = max_high = 0; find_limits(mi, &min, &max_low, &max_high); arm_bootmem_init(mi, min, max_low); /* * Sparsemem tries to allocate bootmem in memory_present(), * so must be done after the fixed reservations */ arm_memory_present(); /* * sparse_init() needs the bootmem allocator up and running. */ sparse_init(); /* * Now free the memory - free_area_init_node needs * the sparse mem_map arrays initialized by sparse_init() * for memmap_init_zone(), otherwise all PFNs are invalid. */ arm_bootmem_free(mi, min, max_low, max_high); high_memory = __va((max_low << PAGE_SHIFT) - 1) + 1; /* * This doesn't seem to be used by the Linux memory manager any * more, but is used by ll_rw_block. If we can get rid of it, we * also get rid of some of the stuff above as well. * * Note: max_low_pfn and max_pfn reflect the number of _pages_ in * the system, not the maximum PFN. */ max_low_pfn = max_low - PHYS_PFN_OFFSET; max_pfn = max_high - PHYS_PFN_OFFSET; } static inline int free_area(unsigned long pfn, unsigned long end, char *s) { unsigned int pages = 0, size = (end - pfn) << (PAGE_SHIFT - 10); for (; pfn < end; pfn++) { struct page *page = pfn_to_page(pfn); ClearPageReserved(page); init_page_count(page); __free_page(page); pages++; } if (size && s) printk(KERN_INFO "Freeing %s memory: %dK\n", s, size); return pages; } static inline void free_memmap(unsigned long start_pfn, unsigned long end_pfn) { struct page *start_pg, *end_pg; unsigned long pg, pgend; /* * Convert start_pfn/end_pfn to a struct page pointer. */ start_pg = pfn_to_page(start_pfn - 1) + 1; end_pg = pfn_to_page(end_pfn); /* * Convert to physical addresses, and * round start upwards and end downwards. */ pg = PAGE_ALIGN(__pa(start_pg)); pgend = __pa(end_pg) & PAGE_MASK; /* * If there are free pages between these, * free the section of the memmap array. */ if (pg < pgend) free_bootmem(pg, pgend - pg); } /* * The mem_map array can get very big. Free the unused area of the memory map. */ static void __init free_unused_memmap(struct meminfo *mi) { unsigned long bank_start, prev_bank_end = 0; unsigned int i; /* * This relies on each bank being in address order. * The banks are sorted previously in bootmem_init(). */ for_each_bank(i, mi) { struct membank *bank = &mi->bank[i]; bank_start = bank_pfn_start(bank); /* * If we had a previous bank, and there is a space * between the current bank and the previous, free it. */ if (prev_bank_end && prev_bank_end < bank_start) free_memmap(prev_bank_end, bank_start); /* * Align up here since the VM subsystem insists that the * memmap entries are valid from the bank end aligned to * MAX_ORDER_NR_PAGES. */ prev_bank_end = ALIGN(bank_pfn_end(bank), MAX_ORDER_NR_PAGES); } } /* * mem_init() marks the free areas in the mem_map and tells us how much * memory is free. This is done after various parts of the system have * claimed their memory after the kernel image. */ void __init mem_init(void) { unsigned long reserved_pages, free_pages; int i; #ifdef CONFIG_HAVE_TCM /* These pointers are filled in on TCM detection */ extern u32 dtcm_end; extern u32 itcm_end; #endif max_mapnr = pfn_to_page(max_pfn + PHYS_PFN_OFFSET) - mem_map; /* this will put all unused low memory onto the freelists */ free_unused_memmap(&meminfo); totalram_pages += free_all_bootmem(); #ifdef CONFIG_SA1111 /* now that our DMA memory is actually so designated, we can free it */ totalram_pages += free_area(PHYS_PFN_OFFSET, __phys_to_pfn(__pa(swapper_pg_dir)), NULL); #endif #ifdef CONFIG_HIGHMEM /* set highmem page free */ for_each_bank (i, &meminfo) { unsigned long start = bank_pfn_start(&meminfo.bank[i]); unsigned long end = bank_pfn_end(&meminfo.bank[i]); if (start >= max_low_pfn + PHYS_PFN_OFFSET) totalhigh_pages += free_area(start, end, NULL); } totalram_pages += totalhigh_pages; #endif reserved_pages = free_pages = 0; for_each_bank(i, &meminfo) { struct membank *bank = &meminfo.bank[i]; unsigned int pfn1, pfn2; struct page *page, *end; pfn1 = bank_pfn_start(bank); pfn2 = bank_pfn_end(bank); page = pfn_to_page(pfn1); end = pfn_to_page(pfn2 - 1) + 1; do { if (PageReserved(page)) reserved_pages++; else if (!page_count(page)) free_pages++; page++; } while (page < end); } /* * Since our memory may not be contiguous, calculate the * real number of pages we have in this system */ printk(KERN_INFO "Memory:"); num_physpages = 0; for (i = 0; i < meminfo.nr_banks; i++) { num_physpages += bank_pfn_size(&meminfo.bank[i]); printk(" %ldMB", bank_phys_size(&meminfo.bank[i]) >> 20); } printk(" = %luMB total\n", num_physpages >> (20 - PAGE_SHIFT)); printk(KERN_NOTICE "Memory: %luk/%luk available, %luk reserved, %luK highmem\n", nr_free_pages() << (PAGE_SHIFT-10), free_pages << (PAGE_SHIFT-10), reserved_pages << (PAGE_SHIFT-10), totalhigh_pages << (PAGE_SHIFT-10)); #define MLK(b, t) b, t, ((t) - (b)) >> 10 #define MLM(b, t) b, t, ((t) - (b)) >> 20 #define MLK_ROUNDUP(b, t) b, t, DIV_ROUND_UP(((t) - (b)), SZ_1K) printk(KERN_NOTICE "Virtual kernel memory layout:\n" " vector : 0x%08lx - 0x%08lx (%4ld kB)\n" #ifdef CONFIG_HAVE_TCM " DTCM : 0x%08lx - 0x%08lx (%4ld kB)\n" " ITCM : 0x%08lx - 0x%08lx (%4ld kB)\n" #endif " fixmap : 0x%08lx - 0x%08lx (%4ld kB)\n" #ifdef CONFIG_MMU " DMA : 0x%08lx - 0x%08lx (%4ld MB)\n" #endif " vmalloc : 0x%08lx - 0x%08lx (%4ld MB)\n" " lowmem : 0x%08lx - 0x%08lx (%4ld MB)\n" #ifdef CONFIG_HIGHMEM " pkmap : 0x%08lx - 0x%08lx (%4ld MB)\n" #endif " modules : 0x%08lx - 0x%08lx (%4ld MB)\n" " .init : 0x%p" " - 0x%p" " (%4d kB)\n" " .text : 0x%p" " - 0x%p" " (%4d kB)\n" " .data : 0x%p" " - 0x%p" " (%4d kB)\n", MLK(UL(CONFIG_VECTORS_BASE), UL(CONFIG_VECTORS_BASE) + (PAGE_SIZE)), #ifdef CONFIG_HAVE_TCM MLK(DTCM_OFFSET, (unsigned long) dtcm_end), MLK(ITCM_OFFSET, (unsigned long) itcm_end), #endif MLK(FIXADDR_START, FIXADDR_TOP), #ifdef CONFIG_MMU MLM(CONSISTENT_BASE, CONSISTENT_END), #endif MLM(VMALLOC_START, VMALLOC_END), MLM(PAGE_OFFSET, (unsigned long)high_memory), #ifdef CONFIG_HIGHMEM MLM(PKMAP_BASE, (PKMAP_BASE) + (LAST_PKMAP) * (PAGE_SIZE)), #endif MLM(MODULES_VADDR, MODULES_END), MLK_ROUNDUP(__init_begin, __init_end), MLK_ROUNDUP(_text, _etext), MLK_ROUNDUP(_data, _edata)); #undef MLK #undef MLM #undef MLK_ROUNDUP /* * Check boundaries twice: Some fundamental inconsistencies can * be detected at build time already. */ #ifdef CONFIG_MMU BUILD_BUG_ON(VMALLOC_END > CONSISTENT_BASE); BUG_ON(VMALLOC_END > CONSISTENT_BASE); BUILD_BUG_ON(TASK_SIZE > MODULES_VADDR); BUG_ON(TASK_SIZE > MODULES_VADDR); #endif #ifdef CONFIG_HIGHMEM BUILD_BUG_ON(PKMAP_BASE + LAST_PKMAP * PAGE_SIZE > PAGE_OFFSET); BUG_ON(PKMAP_BASE + LAST_PKMAP * PAGE_SIZE > PAGE_OFFSET); #endif if (PAGE_SIZE >= 16384 && num_physpages <= 128) { extern int sysctl_overcommit_memory; /* * On a machine this small we won't get * anywhere without overcommit, so turn * it on by default. */ sysctl_overcommit_memory = OVERCOMMIT_ALWAYS; } } void free_initmem(void) { #ifdef CONFIG_HAVE_TCM extern char __tcm_start, __tcm_end; totalram_pages += free_area(__phys_to_pfn(__pa(&__tcm_start)), __phys_to_pfn(__pa(&__tcm_end)), "TCM link"); #endif if (!machine_is_integrator() && !machine_is_cintegrator()) totalram_pages += free_area(__phys_to_pfn(__pa(__init_begin)), __phys_to_pfn(__pa(__init_end)), "init"); } #ifdef CONFIG_BLK_DEV_INITRD static int keep_initrd; void free_initrd_mem(unsigned long start, unsigned long end) { if (!keep_initrd) totalram_pages += free_area(__phys_to_pfn(__pa(start)), __phys_to_pfn(__pa(end)), "initrd"); } static int __init keepinitrd_setup(char *__unused) { keep_initrd = 1; return 1; } __setup("keepinitrd", keepinitrd_setup); #endif