/* * Copyright (C) 2001 Allan Trautman, IBM Corporation * * iSeries specific routines for PCI. * * Based on code from pci.c and iSeries_pci.c 32bit * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "irq.h" #include "pci.h" #include "call_pci.h" #define PCI_RETRY_MAX 3 static int limit_pci_retries = 1; /* Set Retry Error on. */ /* * Table defines * Each Entry size is 4 MB * 1024 Entries = 4GB I/O address space. */ #define IOMM_TABLE_MAX_ENTRIES 1024 #define IOMM_TABLE_ENTRY_SIZE 0x0000000000400000UL #define BASE_IO_MEMORY 0xE000000000000000UL static unsigned long max_io_memory = BASE_IO_MEMORY; static long current_iomm_table_entry; /* * Lookup Tables. */ static struct device_node *iomm_table[IOMM_TABLE_MAX_ENTRIES]; static u8 iobar_table[IOMM_TABLE_MAX_ENTRIES]; static const char pci_io_text[] = "iSeries PCI I/O"; static DEFINE_SPINLOCK(iomm_table_lock); /* * Generate a Direct Select Address for the Hypervisor */ static inline u64 iseries_ds_addr(struct device_node *node) { struct pci_dn *pdn = PCI_DN(node); return ((u64)pdn->busno << 48) + ((u64)pdn->bussubno << 40) + ((u64)0x10 << 32); } /* * iomm_table_allocate_entry * * Adds pci_dev entry in address translation table * * - Allocates the number of entries required in table base on BAR * size. * - Allocates starting at BASE_IO_MEMORY and increases. * - The size is round up to be a multiple of entry size. * - CurrentIndex is incremented to keep track of the last entry. * - Builds the resource entry for allocated BARs. */ static void __init iomm_table_allocate_entry(struct pci_dev *dev, int bar_num) { struct resource *bar_res = &dev->resource[bar_num]; long bar_size = pci_resource_len(dev, bar_num); /* * No space to allocate, quick exit, skip Allocation. */ if (bar_size == 0) return; /* * Set Resource values. */ spin_lock(&iomm_table_lock); bar_res->name = pci_io_text; bar_res->start = BASE_IO_MEMORY + IOMM_TABLE_ENTRY_SIZE * current_iomm_table_entry; bar_res->end = bar_res->start + bar_size - 1; /* * Allocate the number of table entries needed for BAR. */ while (bar_size > 0 ) { iomm_table[current_iomm_table_entry] = dev->sysdata; iobar_table[current_iomm_table_entry] = bar_num; bar_size -= IOMM_TABLE_ENTRY_SIZE; ++current_iomm_table_entry; } max_io_memory = BASE_IO_MEMORY + IOMM_TABLE_ENTRY_SIZE * current_iomm_table_entry; spin_unlock(&iomm_table_lock); } /* * allocate_device_bars * * - Allocates ALL pci_dev BAR's and updates the resources with the * BAR value. BARS with zero length will have the resources * The HvCallPci_getBarParms is used to get the size of the BAR * space. It calls iomm_table_allocate_entry to allocate * each entry. * - Loops through The Bar resources(0 - 5) including the ROM * is resource(6). */ static void __init allocate_device_bars(struct pci_dev *dev) { int bar_num; for (bar_num = 0; bar_num <= PCI_ROM_RESOURCE; ++bar_num) iomm_table_allocate_entry(dev, bar_num); } /* * Log error information to system console. * Filter out the device not there errors. * PCI: EADs Connect Failed 0x18.58.10 Rc: 0x00xx * PCI: Read Vendor Failed 0x18.58.10 Rc: 0x00xx * PCI: Connect Bus Unit Failed 0x18.58.10 Rc: 0x00xx */ static void pci_log_error(char *error, int bus, int subbus, int agent, int hv_res) { if (hv_res == 0x0302) return; printk(KERN_ERR "PCI: %s Failed: 0x%02X.%02X.%02X Rc: 0x%04X", error, bus, subbus, agent, hv_res); } /* * Look down the chain to find the matching Device Device */ static struct device_node *find_device_node(int bus, int devfn) { struct device_node *node; for (node = NULL; (node = of_find_all_nodes(node)); ) { struct pci_dn *pdn = PCI_DN(node); if (pdn && (bus == pdn->busno) && (devfn == pdn->devfn)) return node; } return NULL; } /* * iSeries_pci_final_fixup(void) */ void __init iSeries_pci_final_fixup(void) { struct pci_dev *pdev = NULL; struct device_node *node; int num_dev = 0; /* Fix up at the device node and pci_dev relationship */ mf_display_src(0xC9000100); printk("pcibios_final_fixup\n"); for_each_pci_dev(pdev) { struct pci_dn *pdn; const u32 *agent; node = find_device_node(pdev->bus->number, pdev->devfn); printk("pci dev %p (%x.%x), node %p\n", pdev, pdev->bus->number, pdev->devfn, node); if (!node) { printk("PCI: Device Tree not found for 0x%016lX\n", (unsigned long)pdev); continue; } pdn = PCI_DN(node); agent = of_get_property(node, "linux,agent-id", NULL); if (pdn && agent) { u8 irq = iSeries_allocate_IRQ(pdn->busno, 0, pdn->bussubno); int err; err = HvCallXm_connectBusUnit(pdn->busno, pdn->bussubno, *agent, irq); if (err) pci_log_error("Connect Bus Unit", pdn->busno, pdn->bussubno, *agent, err); else { err = HvCallPci_configStore8(pdn->busno, pdn->bussubno, *agent, PCI_INTERRUPT_LINE, irq); if (err) pci_log_error("PciCfgStore Irq Failed!", pdn->busno, pdn->bussubno, *agent, err); else pdev->irq = irq; } } num_dev++; pdev->sysdata = node; PCI_DN(node)->pcidev = pdev; allocate_device_bars(pdev); iSeries_Device_Information(pdev, num_dev, pdn->busno, pdn->bussubno); iommu_devnode_init_iSeries(pdev, node); } iSeries_activate_IRQs(); mf_display_src(0xC9000200); } /* * Config space read and write functions. * For now at least, we look for the device node for the bus and devfn * that we are asked to access. It may be possible to translate the devfn * to a subbus and deviceid more directly. */ static u64 hv_cfg_read_func[4] = { HvCallPciConfigLoad8, HvCallPciConfigLoad16, HvCallPciConfigLoad32, HvCallPciConfigLoad32 }; static u64 hv_cfg_write_func[4] = { HvCallPciConfigStore8, HvCallPciConfigStore16, HvCallPciConfigStore32, HvCallPciConfigStore32 }; /* * Read PCI config space */ static int iSeries_pci_read_config(struct pci_bus *bus, unsigned int devfn, int offset, int size, u32 *val) { struct device_node *node = find_device_node(bus->number, devfn); u64 fn; struct HvCallPci_LoadReturn ret; if (node == NULL) return PCIBIOS_DEVICE_NOT_FOUND; if (offset > 255) { *val = ~0; return PCIBIOS_BAD_REGISTER_NUMBER; } fn = hv_cfg_read_func[(size - 1) & 3]; HvCall3Ret16(fn, &ret, iseries_ds_addr(node), offset, 0); if (ret.rc != 0) { *val = ~0; return PCIBIOS_DEVICE_NOT_FOUND; /* or something */ } *val = ret.value; return 0; } /* * Write PCI config space */ static int iSeries_pci_write_config(struct pci_bus *bus, unsigned int devfn, int offset, int size, u32 val) { struct device_node *node = find_device_node(bus->number, devfn); u64 fn; u64 ret; if (node == NULL) return PCIBIOS_DEVICE_NOT_FOUND; if (offset > 255) return PCIBIOS_BAD_REGISTER_NUMBER; fn = hv_cfg_write_func[(size - 1) & 3]; ret = HvCall4(fn, iseries_ds_addr(node), offset, val, 0); if (ret != 0) return PCIBIOS_DEVICE_NOT_FOUND; return 0; } static struct pci_ops iSeries_pci_ops = { .read = iSeries_pci_read_config, .write = iSeries_pci_write_config }; /* * Check Return Code * -> On Failure, print and log information. * Increment Retry Count, if exceeds max, panic partition. * * PCI: Device 23.90 ReadL I/O Error( 0): 0x1234 * PCI: Device 23.90 ReadL Retry( 1) * PCI: Device 23.90 ReadL Retry Successful(1) */ static int check_return_code(char *type, struct device_node *dn, int *retry, u64 ret) { if (ret != 0) { struct pci_dn *pdn = PCI_DN(dn); (*retry)++; printk("PCI: %s: Device 0x%04X:%02X I/O Error(%2d): 0x%04X\n", type, pdn->busno, pdn->devfn, *retry, (int)ret); /* * Bump the retry and check for retry count exceeded. * If, Exceeded, panic the system. */ if (((*retry) > PCI_RETRY_MAX) && (limit_pci_retries > 0)) { mf_display_src(0xB6000103); panic_timeout = 0; panic("PCI: Hardware I/O Error, SRC B6000103, " "Automatic Reboot Disabled.\n"); } return -1; /* Retry Try */ } return 0; } /* * Translate the I/O Address into a device node, bar, and bar offset. * Note: Make sure the passed variable end up on the stack to avoid * the exposure of being device global. */ static inline struct device_node *xlate_iomm_address( const volatile void __iomem *addr, u64 *dsaptr, u64 *bar_offset, const char *func) { unsigned long orig_addr; unsigned long base_addr; unsigned long ind; struct device_node *dn; orig_addr = (unsigned long __force)addr; if ((orig_addr < BASE_IO_MEMORY) || (orig_addr >= max_io_memory)) { static unsigned long last_jiffies; static int num_printed; if ((jiffies - last_jiffies) > 60 * HZ) { last_jiffies = jiffies; num_printed = 0; } if (num_printed++ < 10) printk(KERN_ERR "iSeries_%s: invalid access at IO address %p\n", func, addr); return NULL; } base_addr = orig_addr - BASE_IO_MEMORY; ind = base_addr / IOMM_TABLE_ENTRY_SIZE; dn = iomm_table[ind]; if (dn != NULL) { int barnum = iobar_table[ind]; *dsaptr = iseries_ds_addr(dn) | (barnum << 24); *bar_offset = base_addr % IOMM_TABLE_ENTRY_SIZE; } else panic("PCI: Invalid PCI IO address detected!\n"); return dn; } /* * Read MM I/O Instructions for the iSeries * On MM I/O error, all ones are returned and iSeries_pci_IoError is cal * else, data is returned in Big Endian format. */ static u8 iseries_readb(const volatile void __iomem *addr) { u64 bar_offset; u64 dsa; int retry = 0; struct HvCallPci_LoadReturn ret; struct device_node *dn = xlate_iomm_address(addr, &dsa, &bar_offset, "read_byte"); if (dn == NULL) return 0xff; do { HvCall3Ret16(HvCallPciBarLoad8, &ret, dsa, bar_offset, 0); } while (check_return_code("RDB", dn, &retry, ret.rc) != 0); return ret.value; } static u16 iseries_readw_be(const volatile void __iomem *addr) { u64 bar_offset; u64 dsa; int retry = 0; struct HvCallPci_LoadReturn ret; struct device_node *dn = xlate_iomm_address(addr, &dsa, &bar_offset, "read_word"); if (dn == NULL) return 0xffff; do { HvCall3Ret16(HvCallPciBarLoad16, &ret, dsa, bar_offset, 0); } while (check_return_code("RDW", dn, &retry, ret.rc) != 0); return ret.value; } static u32 iseries_readl_be(const volatile void __iomem *addr) { u64 bar_offset; u64 dsa; int retry = 0; struct HvCallPci_LoadReturn ret; struct device_node *dn = xlate_iomm_address(addr, &dsa, &bar_offset, "read_long"); if (dn == NULL) return 0xffffffff; do { HvCall3Ret16(HvCallPciBarLoad32, &ret, dsa, bar_offset, 0); } while (check_return_code("RDL", dn, &retry, ret.rc) != 0); return ret.value; } /* * Write MM I/O Instructions for the iSeries * */ static void iseries_writeb(u8 data, volatile void __iomem *addr) { u64 bar_offset; u64 dsa; int retry = 0; u64 rc; struct device_node *dn = xlate_iomm_address(addr, &dsa, &bar_offset, "write_byte"); if (dn == NULL) return; do { rc = HvCall4(HvCallPciBarStore8, dsa, bar_offset, data, 0); } while (check_return_code("WWB", dn, &retry, rc) != 0); } static void iseries_writew_be(u16 data, volatile void __iomem *addr) { u64 bar_offset; u64 dsa; int retry = 0; u64 rc; struct device_node *dn = xlate_iomm_address(addr, &dsa, &bar_offset, "write_word"); if (dn == NULL) return; do { rc = HvCall4(HvCallPciBarStore16, dsa, bar_offset, data, 0); } while (check_return_code("WWW", dn, &retry, rc) != 0); } static void iseries_writel_be(u32 data, volatile void __iomem *addr) { u64 bar_offset; u64 dsa; int retry = 0; u64 rc; struct device_node *dn = xlate_iomm_address(addr, &dsa, &bar_offset, "write_long"); if (dn == NULL) return; do { rc = HvCall4(HvCallPciBarStore32, dsa, bar_offset, data, 0); } while (check_return_code("WWL", dn, &retry, rc) != 0); } static u16 iseries_readw(const volatile void __iomem *addr) { return le16_to_cpu(iseries_readw_be(addr)); } static u32 iseries_readl(const volatile void __iomem *addr) { return le32_to_cpu(iseries_readl_be(addr)); } static void iseries_writew(u16 data, volatile void __iomem *addr) { iseries_writew_be(cpu_to_le16(data), addr); } static void iseries_writel(u32 data, volatile void __iomem *addr) { iseries_writel(cpu_to_le32(data), addr); } static void iseries_readsb(const volatile void __iomem *addr, void *buf, unsigned long count) { u8 *dst = buf; while(count-- > 0) *(dst++) = iseries_readb(addr); } static void iseries_readsw(const volatile void __iomem *addr, void *buf, unsigned long count) { u16 *dst = buf; while(count-- > 0) *(dst++) = iseries_readw_be(addr); } static void iseries_readsl(const volatile void __iomem *addr, void *buf, unsigned long count) { u32 *dst = buf; while(count-- > 0) *(dst++) = iseries_readl_be(addr); } static void iseries_writesb(volatile void __iomem *addr, const void *buf, unsigned long count) { const u8 *src = buf; while(count-- > 0) iseries_writeb(*(src++), addr); } static void iseries_writesw(volatile void __iomem *addr, const void *buf, unsigned long count) { const u16 *src = buf; while(count-- > 0) iseries_writew_be(*(src++), addr); } static void iseries_writesl(volatile void __iomem *addr, const void *buf, unsigned long count) { const u32 *src = buf; while(count-- > 0) iseries_writel_be(*(src++), addr); } static void iseries_memset_io(volatile void __iomem *addr, int c, unsigned long n) { volatile char __iomem *d = addr; while (n-- > 0) iseries_writeb(c, d++); } static void iseries_memcpy_fromio(void *dest, const volatile void __iomem *src, unsigned long n) { char *d = dest; const volatile char __iomem *s = src; while (n-- > 0) *d++ = iseries_readb(s++); } static void iseries_memcpy_toio(volatile void __iomem *dest, const void *src, unsigned long n) { const char *s = src; volatile char __iomem *d = dest; while (n-- > 0) iseries_writeb(*s++, d++); } /* We only set MMIO ops. The default PIO ops will be default * to the MMIO ops + pci_io_base which is 0 on iSeries as * expected so both should work. * * Note that we don't implement the readq/writeq versions as * I don't know of an HV call for doing so. Thus, the default * operation will be used instead, which will fault a the value * return by iSeries for MMIO addresses always hits a non mapped * area. This is as good as the BUG() we used to have there. */ static struct ppc_pci_io __initdata iseries_pci_io = { .readb = iseries_readb, .readw = iseries_readw, .readl = iseries_readl, .readw_be = iseries_readw_be, .readl_be = iseries_readl_be, .writeb = iseries_writeb, .writew = iseries_writew, .writel = iseries_writel, .writew_be = iseries_writew_be, .writel_be = iseries_writel_be, .readsb = iseries_readsb, .readsw = iseries_readsw, .readsl = iseries_readsl, .writesb = iseries_writesb, .writesw = iseries_writesw, .writesl = iseries_writesl, .memset_io = iseries_memset_io, .memcpy_fromio = iseries_memcpy_fromio, .memcpy_toio = iseries_memcpy_toio, }; /* * iSeries_pcibios_init * * Description: * This function checks for all possible system PCI host bridges that connect * PCI buses. The system hypervisor is queried as to the guest partition * ownership status. A pci_controller is built for any bus which is partially * owned or fully owned by this guest partition. */ void __init iSeries_pcibios_init(void) { struct pci_controller *phb; struct device_node *root = of_find_node_by_path("/"); struct device_node *node = NULL; /* Install IO hooks */ ppc_pci_io = iseries_pci_io; /* iSeries has no IO space in the common sense, it needs to set * the IO base to 0 */ pci_io_base = 0; if (root == NULL) { printk(KERN_CRIT "iSeries_pcibios_init: can't find root " "of device tree\n"); return; } while ((node = of_get_next_child(root, node)) != NULL) { HvBusNumber bus; const u32 *busp; if ((node->type == NULL) || (strcmp(node->type, "pci") != 0)) continue; busp = of_get_property(node, "bus-range", NULL); if (busp == NULL) continue; bus = *busp; printk("bus %d appears to exist\n", bus); phb = pcibios_alloc_controller(node); if (phb == NULL) continue; phb->pci_mem_offset = bus; phb->first_busno = bus; phb->last_busno = bus; phb->ops = &iSeries_pci_ops; } of_node_put(root); pci_devs_phb_init(); }