/* * Copyright (c) 2015, The Linux Foundation. All rights reserved. * * This software is licensed under the terms of the GNU General Public * License version 2, as published by the Free Software Foundation, and * may be copied, distributed, and modified under those terms. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include #include #include #include "clk-alpha-pll.h" #define PLL_MODE 0x00 # define PLL_OUTCTRL BIT(0) # define PLL_BYPASSNL BIT(1) # define PLL_RESET_N BIT(2) # define PLL_OFFLINE_REQ BIT(7) # define PLL_LOCK_COUNT_SHIFT 8 # define PLL_LOCK_COUNT_MASK 0x3f # define PLL_BIAS_COUNT_SHIFT 14 # define PLL_BIAS_COUNT_MASK 0x3f # define PLL_VOTE_FSM_ENA BIT(20) # define PLL_FSM_ENA BIT(20) # define PLL_VOTE_FSM_RESET BIT(21) # define PLL_OFFLINE_ACK BIT(28) # define PLL_ACTIVE_FLAG BIT(30) # define PLL_LOCK_DET BIT(31) #define PLL_L_VAL 0x04 #define PLL_ALPHA_VAL 0x08 #define PLL_ALPHA_VAL_U 0x0c #define PLL_USER_CTL 0x10 # define PLL_POST_DIV_SHIFT 8 # define PLL_POST_DIV_MASK 0xf # define PLL_ALPHA_EN BIT(24) # define PLL_VCO_SHIFT 20 # define PLL_VCO_MASK 0x3 #define PLL_USER_CTL_U 0x14 #define PLL_CONFIG_CTL 0x18 #define PLL_CONFIG_CTL_U 0x20 #define PLL_TEST_CTL 0x1c #define PLL_TEST_CTL_U 0x20 #define PLL_STATUS 0x24 /* * Even though 40 bits are present, use only 32 for ease of calculation. */ #define ALPHA_REG_BITWIDTH 40 #define ALPHA_BITWIDTH 32 #define ALPHA_16BIT_MASK 0xffff #define to_clk_alpha_pll(_hw) container_of(to_clk_regmap(_hw), \ struct clk_alpha_pll, clkr) #define to_clk_alpha_pll_postdiv(_hw) container_of(to_clk_regmap(_hw), \ struct clk_alpha_pll_postdiv, clkr) static int wait_for_pll(struct clk_alpha_pll *pll, u32 mask, bool inverse, const char *action) { u32 val, off; int count; int ret; const char *name = clk_hw_get_name(&pll->clkr.hw); off = pll->offset; ret = regmap_read(pll->clkr.regmap, off + PLL_MODE, &val); if (ret) return ret; for (count = 100; count > 0; count--) { ret = regmap_read(pll->clkr.regmap, off + PLL_MODE, &val); if (ret) return ret; if (inverse && !(val & mask)) return 0; else if ((val & mask) == mask) return 0; udelay(1); } WARN(1, "%s failed to %s!\n", name, action); return -ETIMEDOUT; } #define wait_for_pll_enable_active(pll) \ wait_for_pll(pll, PLL_ACTIVE_FLAG, 0, "enable") #define wait_for_pll_enable_lock(pll) \ wait_for_pll(pll, PLL_LOCK_DET, 0, "enable") #define wait_for_pll_disable(pll) \ wait_for_pll(pll, PLL_ACTIVE_FLAG, 1, "disable") #define wait_for_pll_offline(pll) \ wait_for_pll(pll, PLL_OFFLINE_ACK, 0, "offline") void clk_alpha_pll_configure(struct clk_alpha_pll *pll, struct regmap *regmap, const struct alpha_pll_config *config) { u32 val, mask; u32 off = pll->offset; regmap_write(regmap, off + PLL_L_VAL, config->l); regmap_write(regmap, off + PLL_ALPHA_VAL, config->alpha); regmap_write(regmap, off + PLL_CONFIG_CTL, config->config_ctl_val); regmap_write(regmap, off + PLL_CONFIG_CTL_U, config->config_ctl_hi_val); val = config->main_output_mask; val |= config->aux_output_mask; val |= config->aux2_output_mask; val |= config->early_output_mask; val |= config->pre_div_val; val |= config->post_div_val; val |= config->vco_val; mask = config->main_output_mask; mask |= config->aux_output_mask; mask |= config->aux2_output_mask; mask |= config->early_output_mask; mask |= config->pre_div_mask; mask |= config->post_div_mask; mask |= config->vco_mask; regmap_update_bits(regmap, off + PLL_USER_CTL, mask, val); } static int clk_alpha_pll_hwfsm_enable(struct clk_hw *hw) { int ret; u32 val, off; struct clk_alpha_pll *pll = to_clk_alpha_pll(hw); off = pll->offset; ret = regmap_read(pll->clkr.regmap, off + PLL_MODE, &val); if (ret) return ret; val |= PLL_FSM_ENA; if (pll->flags & SUPPORTS_OFFLINE_REQ) val &= ~PLL_OFFLINE_REQ; ret = regmap_write(pll->clkr.regmap, off + PLL_MODE, val); if (ret) return ret; /* Make sure enable request goes through before waiting for update */ mb(); return wait_for_pll_enable_active(pll); } static void clk_alpha_pll_hwfsm_disable(struct clk_hw *hw) { int ret; u32 val, off; struct clk_alpha_pll *pll = to_clk_alpha_pll(hw); off = pll->offset; ret = regmap_read(pll->clkr.regmap, off + PLL_MODE, &val); if (ret) return; if (pll->flags & SUPPORTS_OFFLINE_REQ) { ret = regmap_update_bits(pll->clkr.regmap, off + PLL_MODE, PLL_OFFLINE_REQ, PLL_OFFLINE_REQ); if (ret) return; ret = wait_for_pll_offline(pll); if (ret) return; } /* Disable hwfsm */ ret = regmap_update_bits(pll->clkr.regmap, off + PLL_MODE, PLL_FSM_ENA, 0); if (ret) return; wait_for_pll_disable(pll); } static int clk_alpha_pll_enable(struct clk_hw *hw) { int ret; struct clk_alpha_pll *pll = to_clk_alpha_pll(hw); u32 val, mask, off; off = pll->offset; mask = PLL_OUTCTRL | PLL_RESET_N | PLL_BYPASSNL; ret = regmap_read(pll->clkr.regmap, off + PLL_MODE, &val); if (ret) return ret; /* If in FSM mode, just vote for it */ if (val & PLL_VOTE_FSM_ENA) { ret = clk_enable_regmap(hw); if (ret) return ret; return wait_for_pll_enable_active(pll); } /* Skip if already enabled */ if ((val & mask) == mask) return 0; ret = regmap_update_bits(pll->clkr.regmap, off + PLL_MODE, PLL_BYPASSNL, PLL_BYPASSNL); if (ret) return ret; /* * H/W requires a 5us delay between disabling the bypass and * de-asserting the reset. */ mb(); udelay(5); ret = regmap_update_bits(pll->clkr.regmap, off + PLL_MODE, PLL_RESET_N, PLL_RESET_N); if (ret) return ret; ret = wait_for_pll_enable_lock(pll); if (ret) return ret; ret = regmap_update_bits(pll->clkr.regmap, off + PLL_MODE, PLL_OUTCTRL, PLL_OUTCTRL); /* Ensure that the write above goes through before returning. */ mb(); return ret; } static void clk_alpha_pll_disable(struct clk_hw *hw) { int ret; struct clk_alpha_pll *pll = to_clk_alpha_pll(hw); u32 val, mask, off; off = pll->offset; ret = regmap_read(pll->clkr.regmap, off + PLL_MODE, &val); if (ret) return; /* If in FSM mode, just unvote it */ if (val & PLL_VOTE_FSM_ENA) { clk_disable_regmap(hw); return; } mask = PLL_OUTCTRL; regmap_update_bits(pll->clkr.regmap, off + PLL_MODE, mask, 0); /* Delay of 2 output clock ticks required until output is disabled */ mb(); udelay(1); mask = PLL_RESET_N | PLL_BYPASSNL; regmap_update_bits(pll->clkr.regmap, off + PLL_MODE, mask, 0); } static unsigned long alpha_pll_calc_rate(u64 prate, u32 l, u32 a) { return (prate * l) + ((prate * a) >> ALPHA_BITWIDTH); } static unsigned long alpha_pll_round_rate(unsigned long rate, unsigned long prate, u32 *l, u64 *a) { u64 remainder; u64 quotient; quotient = rate; remainder = do_div(quotient, prate); *l = quotient; if (!remainder) { *a = 0; return rate; } /* Upper ALPHA_BITWIDTH bits of Alpha */ quotient = remainder << ALPHA_BITWIDTH; remainder = do_div(quotient, prate); if (remainder) quotient++; *a = quotient; return alpha_pll_calc_rate(prate, *l, *a); } static const struct pll_vco * alpha_pll_find_vco(const struct clk_alpha_pll *pll, unsigned long rate) { const struct pll_vco *v = pll->vco_table; const struct pll_vco *end = v + pll->num_vco; for (; v < end; v++) if (rate >= v->min_freq && rate <= v->max_freq) return v; return NULL; } static unsigned long clk_alpha_pll_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { u32 l, low, high, ctl; u64 a = 0, prate = parent_rate; struct clk_alpha_pll *pll = to_clk_alpha_pll(hw); u32 off = pll->offset; regmap_read(pll->clkr.regmap, off + PLL_L_VAL, &l); regmap_read(pll->clkr.regmap, off + PLL_USER_CTL, &ctl); if (ctl & PLL_ALPHA_EN) { regmap_read(pll->clkr.regmap, off + PLL_ALPHA_VAL, &low); if (pll->flags & SUPPORTS_16BIT_ALPHA) { a = low & ALPHA_16BIT_MASK; } else { regmap_read(pll->clkr.regmap, off + PLL_ALPHA_VAL_U, &high); a = (u64)high << 32 | low; a >>= ALPHA_REG_BITWIDTH - ALPHA_BITWIDTH; } } return alpha_pll_calc_rate(prate, l, a); } static int clk_alpha_pll_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long prate) { struct clk_alpha_pll *pll = to_clk_alpha_pll(hw); const struct pll_vco *vco; u32 l, off = pll->offset; u64 a; rate = alpha_pll_round_rate(rate, prate, &l, &a); vco = alpha_pll_find_vco(pll, rate); if (!vco) { pr_err("alpha pll not in a valid vco range\n"); return -EINVAL; } regmap_write(pll->clkr.regmap, off + PLL_L_VAL, l); if (pll->flags & SUPPORTS_16BIT_ALPHA) { regmap_write(pll->clkr.regmap, off + PLL_ALPHA_VAL, a & ALPHA_16BIT_MASK); } else { a <<= (ALPHA_REG_BITWIDTH - ALPHA_BITWIDTH); regmap_write(pll->clkr.regmap, off + PLL_ALPHA_VAL_U, a >> 32); } regmap_update_bits(pll->clkr.regmap, off + PLL_USER_CTL, PLL_VCO_MASK << PLL_VCO_SHIFT, vco->val << PLL_VCO_SHIFT); regmap_update_bits(pll->clkr.regmap, off + PLL_USER_CTL, PLL_ALPHA_EN, PLL_ALPHA_EN); return 0; } static long clk_alpha_pll_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *prate) { struct clk_alpha_pll *pll = to_clk_alpha_pll(hw); u32 l; u64 a; unsigned long min_freq, max_freq; rate = alpha_pll_round_rate(rate, *prate, &l, &a); if (alpha_pll_find_vco(pll, rate)) return rate; min_freq = pll->vco_table[0].min_freq; max_freq = pll->vco_table[pll->num_vco - 1].max_freq; return clamp(rate, min_freq, max_freq); } const struct clk_ops clk_alpha_pll_ops = { .enable = clk_alpha_pll_enable, .disable = clk_alpha_pll_disable, .recalc_rate = clk_alpha_pll_recalc_rate, .round_rate = clk_alpha_pll_round_rate, .set_rate = clk_alpha_pll_set_rate, }; EXPORT_SYMBOL_GPL(clk_alpha_pll_ops); const struct clk_ops clk_alpha_pll_hwfsm_ops = { .enable = clk_alpha_pll_hwfsm_enable, .disable = clk_alpha_pll_hwfsm_disable, .recalc_rate = clk_alpha_pll_recalc_rate, .round_rate = clk_alpha_pll_round_rate, .set_rate = clk_alpha_pll_set_rate, }; EXPORT_SYMBOL_GPL(clk_alpha_pll_hwfsm_ops); static unsigned long clk_alpha_pll_postdiv_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw); u32 ctl; regmap_read(pll->clkr.regmap, pll->offset + PLL_USER_CTL, &ctl); ctl >>= PLL_POST_DIV_SHIFT; ctl &= PLL_POST_DIV_MASK; return parent_rate >> fls(ctl); } static const struct clk_div_table clk_alpha_div_table[] = { { 0x0, 1 }, { 0x1, 2 }, { 0x3, 4 }, { 0x7, 8 }, { 0xf, 16 }, { } }; static long clk_alpha_pll_postdiv_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *prate) { struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw); return divider_round_rate(hw, rate, prate, clk_alpha_div_table, pll->width, CLK_DIVIDER_POWER_OF_TWO); } static int clk_alpha_pll_postdiv_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw); int div; /* 16 -> 0xf, 8 -> 0x7, 4 -> 0x3, 2 -> 0x1, 1 -> 0x0 */ div = DIV_ROUND_UP_ULL((u64)parent_rate, rate) - 1; return regmap_update_bits(pll->clkr.regmap, pll->offset + PLL_USER_CTL, PLL_POST_DIV_MASK << PLL_POST_DIV_SHIFT, div << PLL_POST_DIV_SHIFT); } const struct clk_ops clk_alpha_pll_postdiv_ops = { .recalc_rate = clk_alpha_pll_postdiv_recalc_rate, .round_rate = clk_alpha_pll_postdiv_round_rate, .set_rate = clk_alpha_pll_postdiv_set_rate, }; EXPORT_SYMBOL_GPL(clk_alpha_pll_postdiv_ops);