/* * V4L2 Driver for PXA camera host * * Copyright (C) 2006, Sascha Hauer, Pengutronix * Copyright (C) 2008, Guennadi Liakhovetski * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define PXA_CAM_VERSION_CODE KERNEL_VERSION(0, 0, 5) #define PXA_CAM_DRV_NAME "pxa27x-camera" /* Camera Interface */ #define CICR0 0x0000 #define CICR1 0x0004 #define CICR2 0x0008 #define CICR3 0x000C #define CICR4 0x0010 #define CISR 0x0014 #define CIFR 0x0018 #define CITOR 0x001C #define CIBR0 0x0028 #define CIBR1 0x0030 #define CIBR2 0x0038 #define CICR0_DMAEN (1 << 31) /* DMA request enable */ #define CICR0_PAR_EN (1 << 30) /* Parity enable */ #define CICR0_SL_CAP_EN (1 << 29) /* Capture enable for slave mode */ #define CICR0_ENB (1 << 28) /* Camera interface enable */ #define CICR0_DIS (1 << 27) /* Camera interface disable */ #define CICR0_SIM (0x7 << 24) /* Sensor interface mode mask */ #define CICR0_TOM (1 << 9) /* Time-out mask */ #define CICR0_RDAVM (1 << 8) /* Receive-data-available mask */ #define CICR0_FEM (1 << 7) /* FIFO-empty mask */ #define CICR0_EOLM (1 << 6) /* End-of-line mask */ #define CICR0_PERRM (1 << 5) /* Parity-error mask */ #define CICR0_QDM (1 << 4) /* Quick-disable mask */ #define CICR0_CDM (1 << 3) /* Disable-done mask */ #define CICR0_SOFM (1 << 2) /* Start-of-frame mask */ #define CICR0_EOFM (1 << 1) /* End-of-frame mask */ #define CICR0_FOM (1 << 0) /* FIFO-overrun mask */ #define CICR1_TBIT (1 << 31) /* Transparency bit */ #define CICR1_RGBT_CONV (0x3 << 29) /* RGBT conversion mask */ #define CICR1_PPL (0x7ff << 15) /* Pixels per line mask */ #define CICR1_RGB_CONV (0x7 << 12) /* RGB conversion mask */ #define CICR1_RGB_F (1 << 11) /* RGB format */ #define CICR1_YCBCR_F (1 << 10) /* YCbCr format */ #define CICR1_RGB_BPP (0x7 << 7) /* RGB bis per pixel mask */ #define CICR1_RAW_BPP (0x3 << 5) /* Raw bis per pixel mask */ #define CICR1_COLOR_SP (0x3 << 3) /* Color space mask */ #define CICR1_DW (0x7 << 0) /* Data width mask */ #define CICR2_BLW (0xff << 24) /* Beginning-of-line pixel clock wait count mask */ #define CICR2_ELW (0xff << 16) /* End-of-line pixel clock wait count mask */ #define CICR2_HSW (0x3f << 10) /* Horizontal sync pulse width mask */ #define CICR2_BFPW (0x3f << 3) /* Beginning-of-frame pixel clock wait count mask */ #define CICR2_FSW (0x7 << 0) /* Frame stabilization wait count mask */ #define CICR3_BFW (0xff << 24) /* Beginning-of-frame line clock wait count mask */ #define CICR3_EFW (0xff << 16) /* End-of-frame line clock wait count mask */ #define CICR3_VSW (0x3f << 10) /* Vertical sync pulse width mask */ #define CICR3_BFPW (0x3f << 3) /* Beginning-of-frame pixel clock wait count mask */ #define CICR3_LPF (0x7ff << 0) /* Lines per frame mask */ #define CICR4_MCLK_DLY (0x3 << 24) /* MCLK Data Capture Delay mask */ #define CICR4_PCLK_EN (1 << 23) /* Pixel clock enable */ #define CICR4_PCP (1 << 22) /* Pixel clock polarity */ #define CICR4_HSP (1 << 21) /* Horizontal sync polarity */ #define CICR4_VSP (1 << 20) /* Vertical sync polarity */ #define CICR4_MCLK_EN (1 << 19) /* MCLK enable */ #define CICR4_FR_RATE (0x7 << 8) /* Frame rate mask */ #define CICR4_DIV (0xff << 0) /* Clock divisor mask */ #define CISR_FTO (1 << 15) /* FIFO time-out */ #define CISR_RDAV_2 (1 << 14) /* Channel 2 receive data available */ #define CISR_RDAV_1 (1 << 13) /* Channel 1 receive data available */ #define CISR_RDAV_0 (1 << 12) /* Channel 0 receive data available */ #define CISR_FEMPTY_2 (1 << 11) /* Channel 2 FIFO empty */ #define CISR_FEMPTY_1 (1 << 10) /* Channel 1 FIFO empty */ #define CISR_FEMPTY_0 (1 << 9) /* Channel 0 FIFO empty */ #define CISR_EOL (1 << 8) /* End of line */ #define CISR_PAR_ERR (1 << 7) /* Parity error */ #define CISR_CQD (1 << 6) /* Camera interface quick disable */ #define CISR_CDD (1 << 5) /* Camera interface disable done */ #define CISR_SOF (1 << 4) /* Start of frame */ #define CISR_EOF (1 << 3) /* End of frame */ #define CISR_IFO_2 (1 << 2) /* FIFO overrun for Channel 2 */ #define CISR_IFO_1 (1 << 1) /* FIFO overrun for Channel 1 */ #define CISR_IFO_0 (1 << 0) /* FIFO overrun for Channel 0 */ #define CIFR_FLVL2 (0x7f << 23) /* FIFO 2 level mask */ #define CIFR_FLVL1 (0x7f << 16) /* FIFO 1 level mask */ #define CIFR_FLVL0 (0xff << 8) /* FIFO 0 level mask */ #define CIFR_THL_0 (0x3 << 4) /* Threshold Level for Channel 0 FIFO */ #define CIFR_RESET_F (1 << 3) /* Reset input FIFOs */ #define CIFR_FEN2 (1 << 2) /* FIFO enable for channel 2 */ #define CIFR_FEN1 (1 << 1) /* FIFO enable for channel 1 */ #define CIFR_FEN0 (1 << 0) /* FIFO enable for channel 0 */ #define CICR0_SIM_MP (0 << 24) #define CICR0_SIM_SP (1 << 24) #define CICR0_SIM_MS (2 << 24) #define CICR0_SIM_EP (3 << 24) #define CICR0_SIM_ES (4 << 24) #define CICR1_DW_VAL(x) ((x) & CICR1_DW) /* Data bus width */ #define CICR1_PPL_VAL(x) (((x) << 15) & CICR1_PPL) /* Pixels per line */ #define CICR1_COLOR_SP_VAL(x) (((x) << 3) & CICR1_COLOR_SP) /* color space */ #define CICR1_RGB_BPP_VAL(x) (((x) << 7) & CICR1_RGB_BPP) /* bpp for rgb */ #define CICR1_RGBT_CONV_VAL(x) (((x) << 29) & CICR1_RGBT_CONV) /* rgbt conv */ #define CICR2_BLW_VAL(x) (((x) << 24) & CICR2_BLW) /* Beginning-of-line pixel clock wait count */ #define CICR2_ELW_VAL(x) (((x) << 16) & CICR2_ELW) /* End-of-line pixel clock wait count */ #define CICR2_HSW_VAL(x) (((x) << 10) & CICR2_HSW) /* Horizontal sync pulse width */ #define CICR2_BFPW_VAL(x) (((x) << 3) & CICR2_BFPW) /* Beginning-of-frame pixel clock wait count */ #define CICR2_FSW_VAL(x) (((x) << 0) & CICR2_FSW) /* Frame stabilization wait count */ #define CICR3_BFW_VAL(x) (((x) << 24) & CICR3_BFW) /* Beginning-of-frame line clock wait count */ #define CICR3_EFW_VAL(x) (((x) << 16) & CICR3_EFW) /* End-of-frame line clock wait count */ #define CICR3_VSW_VAL(x) (((x) << 11) & CICR3_VSW) /* Vertical sync pulse width */ #define CICR3_LPF_VAL(x) (((x) << 0) & CICR3_LPF) /* Lines per frame */ #define CICR0_IRQ_MASK (CICR0_TOM | CICR0_RDAVM | CICR0_FEM | CICR0_EOLM | \ CICR0_PERRM | CICR0_QDM | CICR0_CDM | CICR0_SOFM | \ CICR0_EOFM | CICR0_FOM) /* * Structures */ enum pxa_camera_active_dma { DMA_Y = 0x1, DMA_U = 0x2, DMA_V = 0x4, }; /* descriptor needed for the PXA DMA engine */ struct pxa_cam_dma { dma_addr_t sg_dma; struct pxa_dma_desc *sg_cpu; size_t sg_size; int sglen; }; /* buffer for one video frame */ struct pxa_buffer { /* common v4l buffer stuff -- must be first */ struct videobuf_buffer vb; const struct soc_camera_data_format *fmt; /* our descriptor lists for Y, U and V channels */ struct pxa_cam_dma dmas[3]; int inwork; enum pxa_camera_active_dma active_dma; }; struct pxa_camera_dev { struct soc_camera_host soc_host; /* PXA27x is only supposed to handle one camera on its Quick Capture * interface. If anyone ever builds hardware to enable more than * one camera, they will have to modify this driver too */ struct soc_camera_device *icd; struct clk *clk; unsigned int irq; void __iomem *base; int channels; unsigned int dma_chans[3]; struct pxacamera_platform_data *pdata; struct resource *res; unsigned long platform_flags; unsigned long ciclk; unsigned long mclk; u32 mclk_divisor; struct list_head capture; spinlock_t lock; struct pxa_buffer *active; struct pxa_dma_desc *sg_tail[3]; u32 save_cicr[5]; }; struct pxa_cam { unsigned long flags; }; static const char *pxa_cam_driver_description = "PXA_Camera"; static unsigned int vid_limit = 16; /* Video memory limit, in Mb */ /* * Videobuf operations */ static int pxa_videobuf_setup(struct videobuf_queue *vq, unsigned int *count, unsigned int *size) { struct soc_camera_device *icd = vq->priv_data; dev_dbg(icd->dev.parent, "count=%d, size=%d\n", *count, *size); *size = roundup(icd->user_width * icd->user_height * ((icd->current_fmt->depth + 7) >> 3), 8); if (0 == *count) *count = 32; while (*size * *count > vid_limit * 1024 * 1024) (*count)--; return 0; } static void free_buffer(struct videobuf_queue *vq, struct pxa_buffer *buf) { struct soc_camera_device *icd = vq->priv_data; struct soc_camera_host *ici = to_soc_camera_host(icd->dev.parent); struct videobuf_dmabuf *dma = videobuf_to_dma(&buf->vb); int i; BUG_ON(in_interrupt()); dev_dbg(icd->dev.parent, "%s (vb=0x%p) 0x%08lx %d\n", __func__, &buf->vb, buf->vb.baddr, buf->vb.bsize); /* This waits until this buffer is out of danger, i.e., until it is no * longer in STATE_QUEUED or STATE_ACTIVE */ videobuf_waiton(&buf->vb, 0, 0); videobuf_dma_unmap(vq, dma); videobuf_dma_free(dma); for (i = 0; i < ARRAY_SIZE(buf->dmas); i++) { if (buf->dmas[i].sg_cpu) dma_free_coherent(ici->v4l2_dev.dev, buf->dmas[i].sg_size, buf->dmas[i].sg_cpu, buf->dmas[i].sg_dma); buf->dmas[i].sg_cpu = NULL; } buf->vb.state = VIDEOBUF_NEEDS_INIT; } static int calculate_dma_sglen(struct scatterlist *sglist, int sglen, int sg_first_ofs, int size) { int i, offset, dma_len, xfer_len; struct scatterlist *sg; offset = sg_first_ofs; for_each_sg(sglist, sg, sglen, i) { dma_len = sg_dma_len(sg); /* PXA27x Developer's Manual 27.4.4.1: round up to 8 bytes */ xfer_len = roundup(min(dma_len - offset, size), 8); size = max(0, size - xfer_len); offset = 0; if (size == 0) break; } BUG_ON(size != 0); return i + 1; } /** * pxa_init_dma_channel - init dma descriptors * @pcdev: pxa camera device * @buf: pxa buffer to find pxa dma channel * @dma: dma video buffer * @channel: dma channel (0 => 'Y', 1 => 'U', 2 => 'V') * @cibr: camera Receive Buffer Register * @size: bytes to transfer * @sg_first: first element of sg_list * @sg_first_ofs: offset in first element of sg_list * * Prepares the pxa dma descriptors to transfer one camera channel. * Beware sg_first and sg_first_ofs are both input and output parameters. * * Returns 0 or -ENOMEM if no coherent memory is available */ static int pxa_init_dma_channel(struct pxa_camera_dev *pcdev, struct pxa_buffer *buf, struct videobuf_dmabuf *dma, int channel, int cibr, int size, struct scatterlist **sg_first, int *sg_first_ofs) { struct pxa_cam_dma *pxa_dma = &buf->dmas[channel]; struct device *dev = pcdev->soc_host.v4l2_dev.dev; struct scatterlist *sg; int i, offset, sglen; int dma_len = 0, xfer_len = 0; if (pxa_dma->sg_cpu) dma_free_coherent(dev, pxa_dma->sg_size, pxa_dma->sg_cpu, pxa_dma->sg_dma); sglen = calculate_dma_sglen(*sg_first, dma->sglen, *sg_first_ofs, size); pxa_dma->sg_size = (sglen + 1) * sizeof(struct pxa_dma_desc); pxa_dma->sg_cpu = dma_alloc_coherent(dev, pxa_dma->sg_size, &pxa_dma->sg_dma, GFP_KERNEL); if (!pxa_dma->sg_cpu) return -ENOMEM; pxa_dma->sglen = sglen; offset = *sg_first_ofs; dev_dbg(dev, "DMA: sg_first=%p, sglen=%d, ofs=%d, dma.desc=%x\n", *sg_first, sglen, *sg_first_ofs, pxa_dma->sg_dma); for_each_sg(*sg_first, sg, sglen, i) { dma_len = sg_dma_len(sg); /* PXA27x Developer's Manual 27.4.4.1: round up to 8 bytes */ xfer_len = roundup(min(dma_len - offset, size), 8); size = max(0, size - xfer_len); pxa_dma->sg_cpu[i].dsadr = pcdev->res->start + cibr; pxa_dma->sg_cpu[i].dtadr = sg_dma_address(sg) + offset; pxa_dma->sg_cpu[i].dcmd = DCMD_FLOWSRC | DCMD_BURST8 | DCMD_INCTRGADDR | xfer_len; #ifdef DEBUG if (!i) pxa_dma->sg_cpu[i].dcmd |= DCMD_STARTIRQEN; #endif pxa_dma->sg_cpu[i].ddadr = pxa_dma->sg_dma + (i + 1) * sizeof(struct pxa_dma_desc); dev_vdbg(dev, "DMA: desc.%08x->@phys=0x%08x, len=%d\n", pxa_dma->sg_dma + i * sizeof(struct pxa_dma_desc), sg_dma_address(sg) + offset, xfer_len); offset = 0; if (size == 0) break; } pxa_dma->sg_cpu[sglen].ddadr = DDADR_STOP; pxa_dma->sg_cpu[sglen].dcmd = DCMD_FLOWSRC | DCMD_BURST8 | DCMD_ENDIRQEN; /* * Handle 1 special case : * - in 3 planes (YUV422P format), we might finish with xfer_len equal * to dma_len (end on PAGE boundary). In this case, the sg element * for next plane should be the next after the last used to store the * last scatter gather RAM page */ if (xfer_len >= dma_len) { *sg_first_ofs = xfer_len - dma_len; *sg_first = sg_next(sg); } else { *sg_first_ofs = xfer_len; *sg_first = sg; } return 0; } static void pxa_videobuf_set_actdma(struct pxa_camera_dev *pcdev, struct pxa_buffer *buf) { buf->active_dma = DMA_Y; if (pcdev->channels == 3) buf->active_dma |= DMA_U | DMA_V; } /* * Please check the DMA prepared buffer structure in : * Documentation/video4linux/pxa_camera.txt * Please check also in pxa_camera_check_link_miss() to understand why DMA chain * modification while DMA chain is running will work anyway. */ static int pxa_videobuf_prepare(struct videobuf_queue *vq, struct videobuf_buffer *vb, enum v4l2_field field) { struct soc_camera_device *icd = vq->priv_data; struct soc_camera_host *ici = to_soc_camera_host(icd->dev.parent); struct pxa_camera_dev *pcdev = ici->priv; struct device *dev = pcdev->soc_host.v4l2_dev.dev; struct pxa_buffer *buf = container_of(vb, struct pxa_buffer, vb); int ret; int size_y, size_u = 0, size_v = 0; dev_dbg(dev, "%s (vb=0x%p) 0x%08lx %d\n", __func__, vb, vb->baddr, vb->bsize); /* Added list head initialization on alloc */ WARN_ON(!list_empty(&vb->queue)); #ifdef DEBUG /* This can be useful if you want to see if we actually fill * the buffer with something */ memset((void *)vb->baddr, 0xaa, vb->bsize); #endif BUG_ON(NULL == icd->current_fmt); /* I think, in buf_prepare you only have to protect global data, * the actual buffer is yours */ buf->inwork = 1; if (buf->fmt != icd->current_fmt || vb->width != icd->user_width || vb->height != icd->user_height || vb->field != field) { buf->fmt = icd->current_fmt; vb->width = icd->user_width; vb->height = icd->user_height; vb->field = field; vb->state = VIDEOBUF_NEEDS_INIT; } vb->size = vb->width * vb->height * ((buf->fmt->depth + 7) >> 3); if (0 != vb->baddr && vb->bsize < vb->size) { ret = -EINVAL; goto out; } if (vb->state == VIDEOBUF_NEEDS_INIT) { int size = vb->size; int next_ofs = 0; struct videobuf_dmabuf *dma = videobuf_to_dma(vb); struct scatterlist *sg; ret = videobuf_iolock(vq, vb, NULL); if (ret) goto fail; if (pcdev->channels == 3) { size_y = size / 2; size_u = size_v = size / 4; } else { size_y = size; } sg = dma->sglist; /* init DMA for Y channel */ ret = pxa_init_dma_channel(pcdev, buf, dma, 0, CIBR0, size_y, &sg, &next_ofs); if (ret) { dev_err(dev, "DMA initialization for Y/RGB failed\n"); goto fail; } /* init DMA for U channel */ if (size_u) ret = pxa_init_dma_channel(pcdev, buf, dma, 1, CIBR1, size_u, &sg, &next_ofs); if (ret) { dev_err(dev, "DMA initialization for U failed\n"); goto fail_u; } /* init DMA for V channel */ if (size_v) ret = pxa_init_dma_channel(pcdev, buf, dma, 2, CIBR2, size_v, &sg, &next_ofs); if (ret) { dev_err(dev, "DMA initialization for V failed\n"); goto fail_v; } vb->state = VIDEOBUF_PREPARED; } buf->inwork = 0; pxa_videobuf_set_actdma(pcdev, buf); return 0; fail_v: dma_free_coherent(dev, buf->dmas[1].sg_size, buf->dmas[1].sg_cpu, buf->dmas[1].sg_dma); fail_u: dma_free_coherent(dev, buf->dmas[0].sg_size, buf->dmas[0].sg_cpu, buf->dmas[0].sg_dma); fail: free_buffer(vq, buf); out: buf->inwork = 0; return ret; } /** * pxa_dma_start_channels - start DMA channel for active buffer * @pcdev: pxa camera device * * Initialize DMA channels to the beginning of the active video buffer, and * start these channels. */ static void pxa_dma_start_channels(struct pxa_camera_dev *pcdev) { int i; struct pxa_buffer *active; active = pcdev->active; for (i = 0; i < pcdev->channels; i++) { dev_dbg(pcdev->soc_host.v4l2_dev.dev, "%s (channel=%d) ddadr=%08x\n", __func__, i, active->dmas[i].sg_dma); DDADR(pcdev->dma_chans[i]) = active->dmas[i].sg_dma; DCSR(pcdev->dma_chans[i]) = DCSR_RUN; } } static void pxa_dma_stop_channels(struct pxa_camera_dev *pcdev) { int i; for (i = 0; i < pcdev->channels; i++) { dev_dbg(pcdev->soc_host.v4l2_dev.dev, "%s (channel=%d)\n", __func__, i); DCSR(pcdev->dma_chans[i]) = 0; } } static void pxa_dma_add_tail_buf(struct pxa_camera_dev *pcdev, struct pxa_buffer *buf) { int i; struct pxa_dma_desc *buf_last_desc; for (i = 0; i < pcdev->channels; i++) { buf_last_desc = buf->dmas[i].sg_cpu + buf->dmas[i].sglen; buf_last_desc->ddadr = DDADR_STOP; if (pcdev->sg_tail[i]) /* Link the new buffer to the old tail */ pcdev->sg_tail[i]->ddadr = buf->dmas[i].sg_dma; /* Update the channel tail */ pcdev->sg_tail[i] = buf_last_desc; } } /** * pxa_camera_start_capture - start video capturing * @pcdev: camera device * * Launch capturing. DMA channels should not be active yet. They should get * activated at the end of frame interrupt, to capture only whole frames, and * never begin the capture of a partial frame. */ static void pxa_camera_start_capture(struct pxa_camera_dev *pcdev) { unsigned long cicr0, cifr; dev_dbg(pcdev->soc_host.v4l2_dev.dev, "%s\n", __func__); /* Reset the FIFOs */ cifr = __raw_readl(pcdev->base + CIFR) | CIFR_RESET_F; __raw_writel(cifr, pcdev->base + CIFR); /* Enable End-Of-Frame Interrupt */ cicr0 = __raw_readl(pcdev->base + CICR0) | CICR0_ENB; cicr0 &= ~CICR0_EOFM; __raw_writel(cicr0, pcdev->base + CICR0); } static void pxa_camera_stop_capture(struct pxa_camera_dev *pcdev) { unsigned long cicr0; pxa_dma_stop_channels(pcdev); cicr0 = __raw_readl(pcdev->base + CICR0) & ~CICR0_ENB; __raw_writel(cicr0, pcdev->base + CICR0); pcdev->active = NULL; dev_dbg(pcdev->soc_host.v4l2_dev.dev, "%s\n", __func__); } /* Called under spinlock_irqsave(&pcdev->lock, ...) */ static void pxa_videobuf_queue(struct videobuf_queue *vq, struct videobuf_buffer *vb) { struct soc_camera_device *icd = vq->priv_data; struct soc_camera_host *ici = to_soc_camera_host(icd->dev.parent); struct pxa_camera_dev *pcdev = ici->priv; struct pxa_buffer *buf = container_of(vb, struct pxa_buffer, vb); dev_dbg(icd->dev.parent, "%s (vb=0x%p) 0x%08lx %d active=%p\n", __func__, vb, vb->baddr, vb->bsize, pcdev->active); list_add_tail(&vb->queue, &pcdev->capture); vb->state = VIDEOBUF_ACTIVE; pxa_dma_add_tail_buf(pcdev, buf); if (!pcdev->active) pxa_camera_start_capture(pcdev); } static void pxa_videobuf_release(struct videobuf_queue *vq, struct videobuf_buffer *vb) { struct pxa_buffer *buf = container_of(vb, struct pxa_buffer, vb); #ifdef DEBUG struct soc_camera_device *icd = vq->priv_data; struct device *dev = icd->dev.parent; dev_dbg(dev, "%s (vb=0x%p) 0x%08lx %d\n", __func__, vb, vb->baddr, vb->bsize); switch (vb->state) { case VIDEOBUF_ACTIVE: dev_dbg(dev, "%s (active)\n", __func__); break; case VIDEOBUF_QUEUED: dev_dbg(dev, "%s (queued)\n", __func__); break; case VIDEOBUF_PREPARED: dev_dbg(dev, "%s (prepared)\n", __func__); break; default: dev_dbg(dev, "%s (unknown)\n", __func__); break; } #endif free_buffer(vq, buf); } static void pxa_camera_wakeup(struct pxa_camera_dev *pcdev, struct videobuf_buffer *vb, struct pxa_buffer *buf) { int i; /* _init is used to debug races, see comment in pxa_camera_reqbufs() */ list_del_init(&vb->queue); vb->state = VIDEOBUF_DONE; do_gettimeofday(&vb->ts); vb->field_count++; wake_up(&vb->done); dev_dbg(pcdev->soc_host.v4l2_dev.dev, "%s dequeud buffer (vb=0x%p)\n", __func__, vb); if (list_empty(&pcdev->capture)) { pxa_camera_stop_capture(pcdev); for (i = 0; i < pcdev->channels; i++) pcdev->sg_tail[i] = NULL; return; } pcdev->active = list_entry(pcdev->capture.next, struct pxa_buffer, vb.queue); } /** * pxa_camera_check_link_miss - check missed DMA linking * @pcdev: camera device * * The DMA chaining is done with DMA running. This means a tiny temporal window * remains, where a buffer is queued on the chain, while the chain is already * stopped. This means the tailed buffer would never be transfered by DMA. * This function restarts the capture for this corner case, where : * - DADR() == DADDR_STOP * - a videobuffer is queued on the pcdev->capture list * * Please check the "DMA hot chaining timeslice issue" in * Documentation/video4linux/pxa_camera.txt * * Context: should only be called within the dma irq handler */ static void pxa_camera_check_link_miss(struct pxa_camera_dev *pcdev) { int i, is_dma_stopped = 1; for (i = 0; i < pcdev->channels; i++) if (DDADR(pcdev->dma_chans[i]) != DDADR_STOP) is_dma_stopped = 0; dev_dbg(pcdev->soc_host.v4l2_dev.dev, "%s : top queued buffer=%p, dma_stopped=%d\n", __func__, pcdev->active, is_dma_stopped); if (pcdev->active && is_dma_stopped) pxa_camera_start_capture(pcdev); } static void pxa_camera_dma_irq(int channel, struct pxa_camera_dev *pcdev, enum pxa_camera_active_dma act_dma) { struct device *dev = pcdev->soc_host.v4l2_dev.dev; struct pxa_buffer *buf; unsigned long flags; u32 status, camera_status, overrun; struct videobuf_buffer *vb; spin_lock_irqsave(&pcdev->lock, flags); status = DCSR(channel); DCSR(channel) = status; camera_status = __raw_readl(pcdev->base + CISR); overrun = CISR_IFO_0; if (pcdev->channels == 3) overrun |= CISR_IFO_1 | CISR_IFO_2; if (status & DCSR_BUSERR) { dev_err(dev, "DMA Bus Error IRQ!\n"); goto out; } if (!(status & (DCSR_ENDINTR | DCSR_STARTINTR))) { dev_err(dev, "Unknown DMA IRQ source, status: 0x%08x\n", status); goto out; } /* * pcdev->active should not be NULL in DMA irq handler. * * But there is one corner case : if capture was stopped due to an * overrun of channel 1, and at that same channel 2 was completed. * * When handling the overrun in DMA irq for channel 1, we'll stop the * capture and restart it (and thus set pcdev->active to NULL). But the * DMA irq handler will already be pending for channel 2. So on entering * the DMA irq handler for channel 2 there will be no active buffer, yet * that is normal. */ if (!pcdev->active) goto out; vb = &pcdev->active->vb; buf = container_of(vb, struct pxa_buffer, vb); WARN_ON(buf->inwork || list_empty(&vb->queue)); dev_dbg(dev, "%s channel=%d %s%s(vb=0x%p) dma.desc=%x\n", __func__, channel, status & DCSR_STARTINTR ? "SOF " : "", status & DCSR_ENDINTR ? "EOF " : "", vb, DDADR(channel)); if (status & DCSR_ENDINTR) { /* * It's normal if the last frame creates an overrun, as there * are no more DMA descriptors to fetch from QCI fifos */ if (camera_status & overrun && !list_is_last(pcdev->capture.next, &pcdev->capture)) { dev_dbg(dev, "FIFO overrun! CISR: %x\n", camera_status); pxa_camera_stop_capture(pcdev); pxa_camera_start_capture(pcdev); goto out; } buf->active_dma &= ~act_dma; if (!buf->active_dma) { pxa_camera_wakeup(pcdev, vb, buf); pxa_camera_check_link_miss(pcdev); } } out: spin_unlock_irqrestore(&pcdev->lock, flags); } static void pxa_camera_dma_irq_y(int channel, void *data) { struct pxa_camera_dev *pcdev = data; pxa_camera_dma_irq(channel, pcdev, DMA_Y); } static void pxa_camera_dma_irq_u(int channel, void *data) { struct pxa_camera_dev *pcdev = data; pxa_camera_dma_irq(channel, pcdev, DMA_U); } static void pxa_camera_dma_irq_v(int channel, void *data) { struct pxa_camera_dev *pcdev = data; pxa_camera_dma_irq(channel, pcdev, DMA_V); } static struct videobuf_queue_ops pxa_videobuf_ops = { .buf_setup = pxa_videobuf_setup, .buf_prepare = pxa_videobuf_prepare, .buf_queue = pxa_videobuf_queue, .buf_release = pxa_videobuf_release, }; static void pxa_camera_init_videobuf(struct videobuf_queue *q, struct soc_camera_device *icd) { struct soc_camera_host *ici = to_soc_camera_host(icd->dev.parent); struct pxa_camera_dev *pcdev = ici->priv; /* We must pass NULL as dev pointer, then all pci_* dma operations * transform to normal dma_* ones. */ videobuf_queue_sg_init(q, &pxa_videobuf_ops, NULL, &pcdev->lock, V4L2_BUF_TYPE_VIDEO_CAPTURE, V4L2_FIELD_NONE, sizeof(struct pxa_buffer), icd); } static u32 mclk_get_divisor(struct platform_device *pdev, struct pxa_camera_dev *pcdev) { unsigned long mclk = pcdev->mclk; struct device *dev = &pdev->dev; u32 div; unsigned long lcdclk; lcdclk = clk_get_rate(pcdev->clk); pcdev->ciclk = lcdclk; /* mclk <= ciclk / 4 (27.4.2) */ if (mclk > lcdclk / 4) { mclk = lcdclk / 4; dev_warn(dev, "Limiting master clock to %lu\n", mclk); } /* We verify mclk != 0, so if anyone breaks it, here comes their Oops */ div = (lcdclk + 2 * mclk - 1) / (2 * mclk) - 1; /* If we're not supplying MCLK, leave it at 0 */ if (pcdev->platform_flags & PXA_CAMERA_MCLK_EN) pcdev->mclk = lcdclk / (2 * (div + 1)); dev_dbg(dev, "LCD clock %luHz, target freq %luHz, divisor %u\n", lcdclk, mclk, div); return div; } static void recalculate_fifo_timeout(struct pxa_camera_dev *pcdev, unsigned long pclk) { /* We want a timeout > 1 pixel time, not ">=" */ u32 ciclk_per_pixel = pcdev->ciclk / pclk + 1; __raw_writel(ciclk_per_pixel, pcdev->base + CITOR); } static void pxa_camera_activate(struct pxa_camera_dev *pcdev) { struct pxacamera_platform_data *pdata = pcdev->pdata; struct device *dev = pcdev->soc_host.v4l2_dev.dev; u32 cicr4 = 0; dev_dbg(dev, "Registered platform device at %p data %p\n", pcdev, pdata); if (pdata && pdata->init) { dev_dbg(dev, "%s: Init gpios\n", __func__); pdata->init(dev); } /* disable all interrupts */ __raw_writel(0x3ff, pcdev->base + CICR0); if (pcdev->platform_flags & PXA_CAMERA_PCLK_EN) cicr4 |= CICR4_PCLK_EN; if (pcdev->platform_flags & PXA_CAMERA_MCLK_EN) cicr4 |= CICR4_MCLK_EN; if (pcdev->platform_flags & PXA_CAMERA_PCP) cicr4 |= CICR4_PCP; if (pcdev->platform_flags & PXA_CAMERA_HSP) cicr4 |= CICR4_HSP; if (pcdev->platform_flags & PXA_CAMERA_VSP) cicr4 |= CICR4_VSP; __raw_writel(pcdev->mclk_divisor | cicr4, pcdev->base + CICR4); if (pcdev->platform_flags & PXA_CAMERA_MCLK_EN) /* Initialise the timeout under the assumption pclk = mclk */ recalculate_fifo_timeout(pcdev, pcdev->mclk); else /* "Safe default" - 13MHz */ recalculate_fifo_timeout(pcdev, 13000000); clk_enable(pcdev->clk); } static void pxa_camera_deactivate(struct pxa_camera_dev *pcdev) { clk_disable(pcdev->clk); } static irqreturn_t pxa_camera_irq(int irq, void *data) { struct pxa_camera_dev *pcdev = data; unsigned long status, cicr0; struct pxa_buffer *buf; struct videobuf_buffer *vb; status = __raw_readl(pcdev->base + CISR); dev_dbg(pcdev->soc_host.v4l2_dev.dev, "Camera interrupt status 0x%lx\n", status); if (!status) return IRQ_NONE; __raw_writel(status, pcdev->base + CISR); if (status & CISR_EOF) { pcdev->active = list_first_entry(&pcdev->capture, struct pxa_buffer, vb.queue); vb = &pcdev->active->vb; buf = container_of(vb, struct pxa_buffer, vb); pxa_videobuf_set_actdma(pcdev, buf); pxa_dma_start_channels(pcdev); cicr0 = __raw_readl(pcdev->base + CICR0) | CICR0_EOFM; __raw_writel(cicr0, pcdev->base + CICR0); } return IRQ_HANDLED; } /* * The following two functions absolutely depend on the fact, that * there can be only one camera on PXA quick capture interface * Called with .video_lock held */ static int pxa_camera_add_device(struct soc_camera_device *icd) { struct soc_camera_host *ici = to_soc_camera_host(icd->dev.parent); struct pxa_camera_dev *pcdev = ici->priv; if (pcdev->icd) return -EBUSY; pxa_camera_activate(pcdev); pcdev->icd = icd; dev_info(icd->dev.parent, "PXA Camera driver attached to camera %d\n", icd->devnum); return 0; } /* Called with .video_lock held */ static void pxa_camera_remove_device(struct soc_camera_device *icd) { struct soc_camera_host *ici = to_soc_camera_host(icd->dev.parent); struct pxa_camera_dev *pcdev = ici->priv; BUG_ON(icd != pcdev->icd); dev_info(icd->dev.parent, "PXA Camera driver detached from camera %d\n", icd->devnum); /* disable capture, disable interrupts */ __raw_writel(0x3ff, pcdev->base + CICR0); /* Stop DMA engine */ DCSR(pcdev->dma_chans[0]) = 0; DCSR(pcdev->dma_chans[1]) = 0; DCSR(pcdev->dma_chans[2]) = 0; pxa_camera_deactivate(pcdev); pcdev->icd = NULL; } static int test_platform_param(struct pxa_camera_dev *pcdev, unsigned char buswidth, unsigned long *flags) { /* * Platform specified synchronization and pixel clock polarities are * only a recommendation and are only used during probing. The PXA270 * quick capture interface supports both. */ *flags = (pcdev->platform_flags & PXA_CAMERA_MASTER ? SOCAM_MASTER : SOCAM_SLAVE) | SOCAM_HSYNC_ACTIVE_HIGH | SOCAM_HSYNC_ACTIVE_LOW | SOCAM_VSYNC_ACTIVE_HIGH | SOCAM_VSYNC_ACTIVE_LOW | SOCAM_DATA_ACTIVE_HIGH | SOCAM_PCLK_SAMPLE_RISING | SOCAM_PCLK_SAMPLE_FALLING; /* If requested data width is supported by the platform, use it */ switch (buswidth) { case 10: if (!(pcdev->platform_flags & PXA_CAMERA_DATAWIDTH_10)) return -EINVAL; *flags |= SOCAM_DATAWIDTH_10; break; case 9: if (!(pcdev->platform_flags & PXA_CAMERA_DATAWIDTH_9)) return -EINVAL; *flags |= SOCAM_DATAWIDTH_9; break; case 8: if (!(pcdev->platform_flags & PXA_CAMERA_DATAWIDTH_8)) return -EINVAL; *flags |= SOCAM_DATAWIDTH_8; break; default: return -EINVAL; } return 0; } static void pxa_camera_setup_cicr(struct soc_camera_device *icd, unsigned long flags, __u32 pixfmt) { struct soc_camera_host *ici = to_soc_camera_host(icd->dev.parent); struct pxa_camera_dev *pcdev = ici->priv; struct v4l2_subdev *sd = soc_camera_to_subdev(icd); unsigned long dw, bpp; u32 cicr0, cicr1, cicr2, cicr3, cicr4 = 0, y_skip_top; int ret = v4l2_subdev_call(sd, sensor, g_skip_top_lines, &y_skip_top); if (ret < 0) y_skip_top = 0; /* Datawidth is now guaranteed to be equal to one of the three values. * We fix bit-per-pixel equal to data-width... */ switch (flags & SOCAM_DATAWIDTH_MASK) { case SOCAM_DATAWIDTH_10: dw = 4; bpp = 0x40; break; case SOCAM_DATAWIDTH_9: dw = 3; bpp = 0x20; break; default: /* Actually it can only be 8 now, * default is just to silence compiler warnings */ case SOCAM_DATAWIDTH_8: dw = 2; bpp = 0; } if (pcdev->platform_flags & PXA_CAMERA_PCLK_EN) cicr4 |= CICR4_PCLK_EN; if (pcdev->platform_flags & PXA_CAMERA_MCLK_EN) cicr4 |= CICR4_MCLK_EN; if (flags & SOCAM_PCLK_SAMPLE_FALLING) cicr4 |= CICR4_PCP; if (flags & SOCAM_HSYNC_ACTIVE_LOW) cicr4 |= CICR4_HSP; if (flags & SOCAM_VSYNC_ACTIVE_LOW) cicr4 |= CICR4_VSP; cicr0 = __raw_readl(pcdev->base + CICR0); if (cicr0 & CICR0_ENB) __raw_writel(cicr0 & ~CICR0_ENB, pcdev->base + CICR0); cicr1 = CICR1_PPL_VAL(icd->user_width - 1) | bpp | dw; switch (pixfmt) { case V4L2_PIX_FMT_YUV422P: pcdev->channels = 3; cicr1 |= CICR1_YCBCR_F; /* * Normally, pxa bus wants as input UYVY format. We allow all * reorderings of the YUV422 format, as no processing is done, * and the YUV stream is just passed through without any * transformation. Note that UYVY is the only format that * should be used if pxa framebuffer Overlay2 is used. */ case V4L2_PIX_FMT_UYVY: case V4L2_PIX_FMT_VYUY: case V4L2_PIX_FMT_YUYV: case V4L2_PIX_FMT_YVYU: cicr1 |= CICR1_COLOR_SP_VAL(2); break; case V4L2_PIX_FMT_RGB555: cicr1 |= CICR1_RGB_BPP_VAL(1) | CICR1_RGBT_CONV_VAL(2) | CICR1_TBIT | CICR1_COLOR_SP_VAL(1); break; case V4L2_PIX_FMT_RGB565: cicr1 |= CICR1_COLOR_SP_VAL(1) | CICR1_RGB_BPP_VAL(2); break; } cicr2 = 0; cicr3 = CICR3_LPF_VAL(icd->user_height - 1) | CICR3_BFW_VAL(min((u32)255, y_skip_top)); cicr4 |= pcdev->mclk_divisor; __raw_writel(cicr1, pcdev->base + CICR1); __raw_writel(cicr2, pcdev->base + CICR2); __raw_writel(cicr3, pcdev->base + CICR3); __raw_writel(cicr4, pcdev->base + CICR4); /* CIF interrupts are not used, only DMA */ cicr0 = (cicr0 & CICR0_ENB) | (pcdev->platform_flags & PXA_CAMERA_MASTER ? CICR0_SIM_MP : (CICR0_SL_CAP_EN | CICR0_SIM_SP)); cicr0 |= CICR0_DMAEN | CICR0_IRQ_MASK; __raw_writel(cicr0, pcdev->base + CICR0); } static int pxa_camera_set_bus_param(struct soc_camera_device *icd, __u32 pixfmt) { struct soc_camera_host *ici = to_soc_camera_host(icd->dev.parent); struct pxa_camera_dev *pcdev = ici->priv; unsigned long bus_flags, camera_flags, common_flags; int ret = test_platform_param(pcdev, icd->buswidth, &bus_flags); struct pxa_cam *cam = icd->host_priv; if (ret < 0) return ret; camera_flags = icd->ops->query_bus_param(icd); common_flags = soc_camera_bus_param_compatible(camera_flags, bus_flags); if (!common_flags) return -EINVAL; pcdev->channels = 1; /* Make choises, based on platform preferences */ if ((common_flags & SOCAM_HSYNC_ACTIVE_HIGH) && (common_flags & SOCAM_HSYNC_ACTIVE_LOW)) { if (pcdev->platform_flags & PXA_CAMERA_HSP) common_flags &= ~SOCAM_HSYNC_ACTIVE_HIGH; else common_flags &= ~SOCAM_HSYNC_ACTIVE_LOW; } if ((common_flags & SOCAM_VSYNC_ACTIVE_HIGH) && (common_flags & SOCAM_VSYNC_ACTIVE_LOW)) { if (pcdev->platform_flags & PXA_CAMERA_VSP) common_flags &= ~SOCAM_VSYNC_ACTIVE_HIGH; else common_flags &= ~SOCAM_VSYNC_ACTIVE_LOW; } if ((common_flags & SOCAM_PCLK_SAMPLE_RISING) && (common_flags & SOCAM_PCLK_SAMPLE_FALLING)) { if (pcdev->platform_flags & PXA_CAMERA_PCP) common_flags &= ~SOCAM_PCLK_SAMPLE_RISING; else common_flags &= ~SOCAM_PCLK_SAMPLE_FALLING; } cam->flags = common_flags; ret = icd->ops->set_bus_param(icd, common_flags); if (ret < 0) return ret; pxa_camera_setup_cicr(icd, common_flags, pixfmt); return 0; } static int pxa_camera_try_bus_param(struct soc_camera_device *icd, unsigned char buswidth) { struct soc_camera_host *ici = to_soc_camera_host(icd->dev.parent); struct pxa_camera_dev *pcdev = ici->priv; unsigned long bus_flags, camera_flags; int ret = test_platform_param(pcdev, buswidth, &bus_flags); if (ret < 0) return ret; camera_flags = icd->ops->query_bus_param(icd); return soc_camera_bus_param_compatible(camera_flags, bus_flags) ? 0 : -EINVAL; } static const struct soc_camera_data_format pxa_camera_formats[] = { { .name = "Planar YUV422 16 bit", .depth = 16, .fourcc = V4L2_PIX_FMT_YUV422P, .colorspace = V4L2_COLORSPACE_JPEG, }, }; static bool buswidth_supported(struct soc_camera_device *icd, int depth) { struct soc_camera_host *ici = to_soc_camera_host(icd->dev.parent); struct pxa_camera_dev *pcdev = ici->priv; switch (depth) { case 8: return !!(pcdev->platform_flags & PXA_CAMERA_DATAWIDTH_8); case 9: return !!(pcdev->platform_flags & PXA_CAMERA_DATAWIDTH_9); case 10: return !!(pcdev->platform_flags & PXA_CAMERA_DATAWIDTH_10); } return false; } static int required_buswidth(const struct soc_camera_data_format *fmt) { switch (fmt->fourcc) { case V4L2_PIX_FMT_UYVY: case V4L2_PIX_FMT_VYUY: case V4L2_PIX_FMT_YUYV: case V4L2_PIX_FMT_YVYU: case V4L2_PIX_FMT_RGB565: case V4L2_PIX_FMT_RGB555: return 8; default: return fmt->depth; } } static int pxa_camera_get_formats(struct soc_camera_device *icd, int idx, struct soc_camera_format_xlate *xlate) { struct device *dev = icd->dev.parent; int formats = 0, buswidth, ret; struct pxa_cam *cam; buswidth = required_buswidth(icd->formats + idx); if (!buswidth_supported(icd, buswidth)) return 0; ret = pxa_camera_try_bus_param(icd, buswidth); if (ret < 0) return 0; if (!icd->host_priv) { cam = kzalloc(sizeof(*cam), GFP_KERNEL); if (!cam) return -ENOMEM; icd->host_priv = cam; } else { cam = icd->host_priv; } switch (icd->formats[idx].fourcc) { case V4L2_PIX_FMT_UYVY: formats++; if (xlate) { xlate->host_fmt = &pxa_camera_formats[0]; xlate->cam_fmt = icd->formats + idx; xlate->buswidth = buswidth; xlate++; dev_dbg(dev, "Providing format %s using %s\n", pxa_camera_formats[0].name, icd->formats[idx].name); } case V4L2_PIX_FMT_VYUY: case V4L2_PIX_FMT_YUYV: case V4L2_PIX_FMT_YVYU: case V4L2_PIX_FMT_RGB565: case V4L2_PIX_FMT_RGB555: formats++; if (xlate) { xlate->host_fmt = icd->formats + idx; xlate->cam_fmt = icd->formats + idx; xlate->buswidth = buswidth; xlate++; dev_dbg(dev, "Providing format %s packed\n", icd->formats[idx].name); } break; default: /* Generic pass-through */ formats++; if (xlate) { xlate->host_fmt = icd->formats + idx; xlate->cam_fmt = icd->formats + idx; xlate->buswidth = icd->formats[idx].depth; xlate++; dev_dbg(dev, "Providing format %s in pass-through mode\n", icd->formats[idx].name); } } return formats; } static void pxa_camera_put_formats(struct soc_camera_device *icd) { kfree(icd->host_priv); icd->host_priv = NULL; } static int pxa_camera_check_frame(struct v4l2_pix_format *pix) { /* limit to pxa hardware capabilities */ return pix->height < 32 || pix->height > 2048 || pix->width < 48 || pix->width > 2048 || (pix->width & 0x01); } static int pxa_camera_set_crop(struct soc_camera_device *icd, struct v4l2_crop *a) { struct v4l2_rect *rect = &a->c; struct soc_camera_host *ici = to_soc_camera_host(icd->dev.parent); struct pxa_camera_dev *pcdev = ici->priv; struct device *dev = icd->dev.parent; struct v4l2_subdev *sd = soc_camera_to_subdev(icd); struct soc_camera_sense sense = { .master_clock = pcdev->mclk, .pixel_clock_max = pcdev->ciclk / 4, }; struct v4l2_format f; struct v4l2_pix_format *pix = &f.fmt.pix, pix_tmp; struct pxa_cam *cam = icd->host_priv; int ret; /* If PCLK is used to latch data from the sensor, check sense */ if (pcdev->platform_flags & PXA_CAMERA_PCLK_EN) icd->sense = &sense; ret = v4l2_subdev_call(sd, video, s_crop, a); icd->sense = NULL; if (ret < 0) { dev_warn(dev, "Failed to crop to %ux%u@%u:%u\n", rect->width, rect->height, rect->left, rect->top); return ret; } f.type = V4L2_BUF_TYPE_VIDEO_CAPTURE; ret = v4l2_subdev_call(sd, video, g_fmt, &f); if (ret < 0) return ret; pix_tmp = *pix; if (pxa_camera_check_frame(pix)) { /* * Camera cropping produced a frame beyond our capabilities. * FIXME: just extract a subframe, that we can process. */ v4l_bound_align_image(&pix->width, 48, 2048, 1, &pix->height, 32, 2048, 0, icd->current_fmt->fourcc == V4L2_PIX_FMT_YUV422P ? 4 : 0); ret = v4l2_subdev_call(sd, video, s_fmt, &f); if (ret < 0) return ret; if (pxa_camera_check_frame(pix)) { dev_warn(icd->dev.parent, "Inconsistent state. Use S_FMT to repair\n"); return -EINVAL; } } if (sense.flags & SOCAM_SENSE_PCLK_CHANGED) { if (sense.pixel_clock > sense.pixel_clock_max) { dev_err(dev, "pixel clock %lu set by the camera too high!", sense.pixel_clock); return -EIO; } recalculate_fifo_timeout(pcdev, sense.pixel_clock); } icd->user_width = pix->width; icd->user_height = pix->height; pxa_camera_setup_cicr(icd, cam->flags, icd->current_fmt->fourcc); return ret; } static int pxa_camera_set_fmt(struct soc_camera_device *icd, struct v4l2_format *f) { struct soc_camera_host *ici = to_soc_camera_host(icd->dev.parent); struct pxa_camera_dev *pcdev = ici->priv; struct device *dev = icd->dev.parent; struct v4l2_subdev *sd = soc_camera_to_subdev(icd); const struct soc_camera_data_format *cam_fmt = NULL; const struct soc_camera_format_xlate *xlate = NULL; struct soc_camera_sense sense = { .master_clock = pcdev->mclk, .pixel_clock_max = pcdev->ciclk / 4, }; struct v4l2_pix_format *pix = &f->fmt.pix; struct v4l2_format cam_f = *f; int ret; xlate = soc_camera_xlate_by_fourcc(icd, pix->pixelformat); if (!xlate) { dev_warn(dev, "Format %x not found\n", pix->pixelformat); return -EINVAL; } cam_fmt = xlate->cam_fmt; /* If PCLK is used to latch data from the sensor, check sense */ if (pcdev->platform_flags & PXA_CAMERA_PCLK_EN) icd->sense = &sense; cam_f.fmt.pix.pixelformat = cam_fmt->fourcc; ret = v4l2_subdev_call(sd, video, s_fmt, &cam_f); cam_f.fmt.pix.pixelformat = pix->pixelformat; *pix = cam_f.fmt.pix; icd->sense = NULL; if (ret < 0) { dev_warn(dev, "Failed to configure for format %x\n", pix->pixelformat); } else if (pxa_camera_check_frame(pix)) { dev_warn(dev, "Camera driver produced an unsupported frame %dx%d\n", pix->width, pix->height); ret = -EINVAL; } else if (sense.flags & SOCAM_SENSE_PCLK_CHANGED) { if (sense.pixel_clock > sense.pixel_clock_max) { dev_err(dev, "pixel clock %lu set by the camera too high!", sense.pixel_clock); return -EIO; } recalculate_fifo_timeout(pcdev, sense.pixel_clock); } if (!ret) { icd->buswidth = xlate->buswidth; icd->current_fmt = xlate->host_fmt; } return ret; } static int pxa_camera_try_fmt(struct soc_camera_device *icd, struct v4l2_format *f) { struct soc_camera_host *ici = to_soc_camera_host(icd->dev.parent); struct v4l2_subdev *sd = soc_camera_to_subdev(icd); const struct soc_camera_format_xlate *xlate; struct v4l2_pix_format *pix = &f->fmt.pix; __u32 pixfmt = pix->pixelformat; enum v4l2_field field; int ret; xlate = soc_camera_xlate_by_fourcc(icd, pixfmt); if (!xlate) { dev_warn(ici->v4l2_dev.dev, "Format %x not found\n", pixfmt); return -EINVAL; } /* * Limit to pxa hardware capabilities. YUV422P planar format requires * images size to be a multiple of 16 bytes. If not, zeros will be * inserted between Y and U planes, and U and V planes, which violates * the YUV422P standard. */ v4l_bound_align_image(&pix->width, 48, 2048, 1, &pix->height, 32, 2048, 0, pixfmt == V4L2_PIX_FMT_YUV422P ? 4 : 0); pix->bytesperline = pix->width * DIV_ROUND_UP(xlate->host_fmt->depth, 8); pix->sizeimage = pix->height * pix->bytesperline; /* camera has to see its format, but the user the original one */ pix->pixelformat = xlate->cam_fmt->fourcc; /* limit to sensor capabilities */ ret = v4l2_subdev_call(sd, video, try_fmt, f); pix->pixelformat = pixfmt; field = pix->field; if (field == V4L2_FIELD_ANY) { pix->field = V4L2_FIELD_NONE; } else if (field != V4L2_FIELD_NONE) { dev_err(icd->dev.parent, "Field type %d unsupported.\n", field); return -EINVAL; } return ret; } static int pxa_camera_reqbufs(struct soc_camera_file *icf, struct v4l2_requestbuffers *p) { int i; /* This is for locking debugging only. I removed spinlocks and now I * check whether .prepare is ever called on a linked buffer, or whether * a dma IRQ can occur for an in-work or unlinked buffer. Until now * it hadn't triggered */ for (i = 0; i < p->count; i++) { struct pxa_buffer *buf = container_of(icf->vb_vidq.bufs[i], struct pxa_buffer, vb); buf->inwork = 0; INIT_LIST_HEAD(&buf->vb.queue); } return 0; } static unsigned int pxa_camera_poll(struct file *file, poll_table *pt) { struct soc_camera_file *icf = file->private_data; struct pxa_buffer *buf; buf = list_entry(icf->vb_vidq.stream.next, struct pxa_buffer, vb.stream); poll_wait(file, &buf->vb.done, pt); if (buf->vb.state == VIDEOBUF_DONE || buf->vb.state == VIDEOBUF_ERROR) return POLLIN|POLLRDNORM; return 0; } static int pxa_camera_querycap(struct soc_camera_host *ici, struct v4l2_capability *cap) { /* cap->name is set by the firendly caller:-> */ strlcpy(cap->card, pxa_cam_driver_description, sizeof(cap->card)); cap->version = PXA_CAM_VERSION_CODE; cap->capabilities = V4L2_CAP_VIDEO_CAPTURE | V4L2_CAP_STREAMING; return 0; } static int pxa_camera_suspend(struct soc_camera_device *icd, pm_message_t state) { struct soc_camera_host *ici = to_soc_camera_host(icd->dev.parent); struct pxa_camera_dev *pcdev = ici->priv; int i = 0, ret = 0; pcdev->save_cicr[i++] = __raw_readl(pcdev->base + CICR0); pcdev->save_cicr[i++] = __raw_readl(pcdev->base + CICR1); pcdev->save_cicr[i++] = __raw_readl(pcdev->base + CICR2); pcdev->save_cicr[i++] = __raw_readl(pcdev->base + CICR3); pcdev->save_cicr[i++] = __raw_readl(pcdev->base + CICR4); if ((pcdev->icd) && (pcdev->icd->ops->suspend)) ret = pcdev->icd->ops->suspend(pcdev->icd, state); return ret; } static int pxa_camera_resume(struct soc_camera_device *icd) { struct soc_camera_host *ici = to_soc_camera_host(icd->dev.parent); struct pxa_camera_dev *pcdev = ici->priv; int i = 0, ret = 0; DRCMR(68) = pcdev->dma_chans[0] | DRCMR_MAPVLD; DRCMR(69) = pcdev->dma_chans[1] | DRCMR_MAPVLD; DRCMR(70) = pcdev->dma_chans[2] | DRCMR_MAPVLD; __raw_writel(pcdev->save_cicr[i++] & ~CICR0_ENB, pcdev->base + CICR0); __raw_writel(pcdev->save_cicr[i++], pcdev->base + CICR1); __raw_writel(pcdev->save_cicr[i++], pcdev->base + CICR2); __raw_writel(pcdev->save_cicr[i++], pcdev->base + CICR3); __raw_writel(pcdev->save_cicr[i++], pcdev->base + CICR4); if ((pcdev->icd) && (pcdev->icd->ops->resume)) ret = pcdev->icd->ops->resume(pcdev->icd); /* Restart frame capture if active buffer exists */ if (!ret && pcdev->active) pxa_camera_start_capture(pcdev); return ret; } static struct soc_camera_host_ops pxa_soc_camera_host_ops = { .owner = THIS_MODULE, .add = pxa_camera_add_device, .remove = pxa_camera_remove_device, .suspend = pxa_camera_suspend, .resume = pxa_camera_resume, .set_crop = pxa_camera_set_crop, .get_formats = pxa_camera_get_formats, .put_formats = pxa_camera_put_formats, .set_fmt = pxa_camera_set_fmt, .try_fmt = pxa_camera_try_fmt, .init_videobuf = pxa_camera_init_videobuf, .reqbufs = pxa_camera_reqbufs, .poll = pxa_camera_poll, .querycap = pxa_camera_querycap, .set_bus_param = pxa_camera_set_bus_param, }; static int __devinit pxa_camera_probe(struct platform_device *pdev) { struct pxa_camera_dev *pcdev; struct resource *res; void __iomem *base; int irq; int err = 0; res = platform_get_resource(pdev, IORESOURCE_MEM, 0); irq = platform_get_irq(pdev, 0); if (!res || irq < 0) { err = -ENODEV; goto exit; } pcdev = kzalloc(sizeof(*pcdev), GFP_KERNEL); if (!pcdev) { dev_err(&pdev->dev, "Could not allocate pcdev\n"); err = -ENOMEM; goto exit; } pcdev->clk = clk_get(&pdev->dev, NULL); if (IS_ERR(pcdev->clk)) { err = PTR_ERR(pcdev->clk); goto exit_kfree; } pcdev->res = res; pcdev->pdata = pdev->dev.platform_data; pcdev->platform_flags = pcdev->pdata->flags; if (!(pcdev->platform_flags & (PXA_CAMERA_DATAWIDTH_8 | PXA_CAMERA_DATAWIDTH_9 | PXA_CAMERA_DATAWIDTH_10))) { /* Platform hasn't set available data widths. This is bad. * Warn and use a default. */ dev_warn(&pdev->dev, "WARNING! Platform hasn't set available " "data widths, using default 10 bit\n"); pcdev->platform_flags |= PXA_CAMERA_DATAWIDTH_10; } pcdev->mclk = pcdev->pdata->mclk_10khz * 10000; if (!pcdev->mclk) { dev_warn(&pdev->dev, "mclk == 0! Please, fix your platform data. " "Using default 20MHz\n"); pcdev->mclk = 20000000; } pcdev->mclk_divisor = mclk_get_divisor(pdev, pcdev); INIT_LIST_HEAD(&pcdev->capture); spin_lock_init(&pcdev->lock); /* * Request the regions. */ if (!request_mem_region(res->start, resource_size(res), PXA_CAM_DRV_NAME)) { err = -EBUSY; goto exit_clk; } base = ioremap(res->start, resource_size(res)); if (!base) { err = -ENOMEM; goto exit_release; } pcdev->irq = irq; pcdev->base = base; /* request dma */ err = pxa_request_dma("CI_Y", DMA_PRIO_HIGH, pxa_camera_dma_irq_y, pcdev); if (err < 0) { dev_err(&pdev->dev, "Can't request DMA for Y\n"); goto exit_iounmap; } pcdev->dma_chans[0] = err; dev_dbg(&pdev->dev, "got DMA channel %d\n", pcdev->dma_chans[0]); err = pxa_request_dma("CI_U", DMA_PRIO_HIGH, pxa_camera_dma_irq_u, pcdev); if (err < 0) { dev_err(&pdev->dev, "Can't request DMA for U\n"); goto exit_free_dma_y; } pcdev->dma_chans[1] = err; dev_dbg(&pdev->dev, "got DMA channel (U) %d\n", pcdev->dma_chans[1]); err = pxa_request_dma("CI_V", DMA_PRIO_HIGH, pxa_camera_dma_irq_v, pcdev); if (err < 0) { dev_err(&pdev->dev, "Can't request DMA for V\n"); goto exit_free_dma_u; } pcdev->dma_chans[2] = err; dev_dbg(&pdev->dev, "got DMA channel (V) %d\n", pcdev->dma_chans[2]); DRCMR(68) = pcdev->dma_chans[0] | DRCMR_MAPVLD; DRCMR(69) = pcdev->dma_chans[1] | DRCMR_MAPVLD; DRCMR(70) = pcdev->dma_chans[2] | DRCMR_MAPVLD; /* request irq */ err = request_irq(pcdev->irq, pxa_camera_irq, 0, PXA_CAM_DRV_NAME, pcdev); if (err) { dev_err(&pdev->dev, "Camera interrupt register failed \n"); goto exit_free_dma; } pcdev->soc_host.drv_name = PXA_CAM_DRV_NAME; pcdev->soc_host.ops = &pxa_soc_camera_host_ops; pcdev->soc_host.priv = pcdev; pcdev->soc_host.v4l2_dev.dev = &pdev->dev; pcdev->soc_host.nr = pdev->id; err = soc_camera_host_register(&pcdev->soc_host); if (err) goto exit_free_irq; return 0; exit_free_irq: free_irq(pcdev->irq, pcdev); exit_free_dma: pxa_free_dma(pcdev->dma_chans[2]); exit_free_dma_u: pxa_free_dma(pcdev->dma_chans[1]); exit_free_dma_y: pxa_free_dma(pcdev->dma_chans[0]); exit_iounmap: iounmap(base); exit_release: release_mem_region(res->start, resource_size(res)); exit_clk: clk_put(pcdev->clk); exit_kfree: kfree(pcdev); exit: return err; } static int __devexit pxa_camera_remove(struct platform_device *pdev) { struct soc_camera_host *soc_host = to_soc_camera_host(&pdev->dev); struct pxa_camera_dev *pcdev = container_of(soc_host, struct pxa_camera_dev, soc_host); struct resource *res; clk_put(pcdev->clk); pxa_free_dma(pcdev->dma_chans[0]); pxa_free_dma(pcdev->dma_chans[1]); pxa_free_dma(pcdev->dma_chans[2]); free_irq(pcdev->irq, pcdev); soc_camera_host_unregister(soc_host); iounmap(pcdev->base); res = pcdev->res; release_mem_region(res->start, resource_size(res)); kfree(pcdev); dev_info(&pdev->dev, "PXA Camera driver unloaded\n"); return 0; } static struct platform_driver pxa_camera_driver = { .driver = { .name = PXA_CAM_DRV_NAME, }, .probe = pxa_camera_probe, .remove = __devexit_p(pxa_camera_remove), }; static int __init pxa_camera_init(void) { return platform_driver_register(&pxa_camera_driver); } static void __exit pxa_camera_exit(void) { platform_driver_unregister(&pxa_camera_driver); } module_init(pxa_camera_init); module_exit(pxa_camera_exit); MODULE_DESCRIPTION("PXA27x SoC Camera Host driver"); MODULE_AUTHOR("Guennadi Liakhovetski "); MODULE_LICENSE("GPL"); MODULE_ALIAS("platform:" PXA_CAM_DRV_NAME);