/* * Copyright © 2013 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. * * Author: Jani Nikula */ #include #include #include #include #include #include #include #include #include #include "i915_drv.h" #include "intel_drv.h" #include "intel_dsi.h" static const struct { u16 panel_id; struct drm_panel * (*init)(struct intel_dsi *intel_dsi, u16 panel_id); } intel_dsi_drivers[] = { { .panel_id = MIPI_DSI_GENERIC_PANEL_ID, .init = vbt_panel_init, }, }; static void wait_for_dsi_fifo_empty(struct intel_dsi *intel_dsi, enum port port) { struct drm_encoder *encoder = &intel_dsi->base.base; struct drm_device *dev = encoder->dev; struct drm_i915_private *dev_priv = dev->dev_private; u32 mask; mask = LP_CTRL_FIFO_EMPTY | HS_CTRL_FIFO_EMPTY | LP_DATA_FIFO_EMPTY | HS_DATA_FIFO_EMPTY; if (wait_for((I915_READ(MIPI_GEN_FIFO_STAT(port)) & mask) == mask, 100)) DRM_ERROR("DPI FIFOs are not empty\n"); } static void write_data(struct drm_i915_private *dev_priv, u32 reg, const u8 *data, u32 len) { u32 i, j; for (i = 0; i < len; i += 4) { u32 val = 0; for (j = 0; j < min_t(u32, len - i, 4); j++) val |= *data++ << 8 * j; I915_WRITE(reg, val); } } static void read_data(struct drm_i915_private *dev_priv, u32 reg, u8 *data, u32 len) { u32 i, j; for (i = 0; i < len; i += 4) { u32 val = I915_READ(reg); for (j = 0; j < min_t(u32, len - i, 4); j++) *data++ = val >> 8 * j; } } static ssize_t intel_dsi_host_transfer(struct mipi_dsi_host *host, const struct mipi_dsi_msg *msg) { struct intel_dsi_host *intel_dsi_host = to_intel_dsi_host(host); struct drm_device *dev = intel_dsi_host->intel_dsi->base.base.dev; struct drm_i915_private *dev_priv = dev->dev_private; enum port port = intel_dsi_host->port; struct mipi_dsi_packet packet; ssize_t ret; const u8 *header, *data; u32 data_reg, data_mask, ctrl_reg, ctrl_mask; ret = mipi_dsi_create_packet(&packet, msg); if (ret < 0) return ret; header = packet.header; data = packet.payload; if (msg->flags & MIPI_DSI_MSG_USE_LPM) { data_reg = MIPI_LP_GEN_DATA(port); data_mask = LP_DATA_FIFO_FULL; ctrl_reg = MIPI_LP_GEN_CTRL(port); ctrl_mask = LP_CTRL_FIFO_FULL; } else { data_reg = MIPI_HS_GEN_DATA(port); data_mask = HS_DATA_FIFO_FULL; ctrl_reg = MIPI_HS_GEN_CTRL(port); ctrl_mask = HS_CTRL_FIFO_FULL; } /* note: this is never true for reads */ if (packet.payload_length) { if (wait_for((I915_READ(MIPI_GEN_FIFO_STAT(port)) & data_mask) == 0, 50)) DRM_ERROR("Timeout waiting for HS/LP DATA FIFO !full\n"); write_data(dev_priv, data_reg, packet.payload, packet.payload_length); } if (msg->rx_len) { I915_WRITE(MIPI_INTR_STAT(port), GEN_READ_DATA_AVAIL); } if (wait_for((I915_READ(MIPI_GEN_FIFO_STAT(port)) & ctrl_mask) == 0, 50)) { DRM_ERROR("Timeout waiting for HS/LP CTRL FIFO !full\n"); } I915_WRITE(ctrl_reg, header[2] << 16 | header[1] << 8 | header[0]); /* ->rx_len is set only for reads */ if (msg->rx_len) { data_mask = GEN_READ_DATA_AVAIL; if (wait_for((I915_READ(MIPI_INTR_STAT(port)) & data_mask) == data_mask, 50)) DRM_ERROR("Timeout waiting for read data.\n"); read_data(dev_priv, data_reg, msg->rx_buf, msg->rx_len); } /* XXX: fix for reads and writes */ return 4 + packet.payload_length; } static int intel_dsi_host_attach(struct mipi_dsi_host *host, struct mipi_dsi_device *dsi) { return 0; } static int intel_dsi_host_detach(struct mipi_dsi_host *host, struct mipi_dsi_device *dsi) { return 0; } static const struct mipi_dsi_host_ops intel_dsi_host_ops = { .attach = intel_dsi_host_attach, .detach = intel_dsi_host_detach, .transfer = intel_dsi_host_transfer, }; static struct intel_dsi_host *intel_dsi_host_init(struct intel_dsi *intel_dsi, enum port port) { struct intel_dsi_host *host; struct mipi_dsi_device *device; host = kzalloc(sizeof(*host), GFP_KERNEL); if (!host) return NULL; host->base.ops = &intel_dsi_host_ops; host->intel_dsi = intel_dsi; host->port = port; /* * We should call mipi_dsi_host_register(&host->base) here, but we don't * have a host->dev, and we don't have OF stuff either. So just use the * dsi framework as a library and hope for the best. Create the dsi * devices by ourselves here too. Need to be careful though, because we * don't initialize any of the driver model devices here. */ device = kzalloc(sizeof(*device), GFP_KERNEL); if (!device) { kfree(host); return NULL; } device->host = &host->base; host->device = device; return host; } /* * send a video mode command * * XXX: commands with data in MIPI_DPI_DATA? */ static int dpi_send_cmd(struct intel_dsi *intel_dsi, u32 cmd, bool hs, enum port port) { struct drm_encoder *encoder = &intel_dsi->base.base; struct drm_device *dev = encoder->dev; struct drm_i915_private *dev_priv = dev->dev_private; u32 mask; /* XXX: pipe, hs */ if (hs) cmd &= ~DPI_LP_MODE; else cmd |= DPI_LP_MODE; /* clear bit */ I915_WRITE(MIPI_INTR_STAT(port), SPL_PKT_SENT_INTERRUPT); /* XXX: old code skips write if control unchanged */ if (cmd == I915_READ(MIPI_DPI_CONTROL(port))) DRM_ERROR("Same special packet %02x twice in a row.\n", cmd); I915_WRITE(MIPI_DPI_CONTROL(port), cmd); mask = SPL_PKT_SENT_INTERRUPT; if (wait_for((I915_READ(MIPI_INTR_STAT(port)) & mask) == mask, 100)) DRM_ERROR("Video mode command 0x%08x send failed.\n", cmd); return 0; } static void band_gap_reset(struct drm_i915_private *dev_priv) { mutex_lock(&dev_priv->sb_lock); vlv_flisdsi_write(dev_priv, 0x08, 0x0001); vlv_flisdsi_write(dev_priv, 0x0F, 0x0005); vlv_flisdsi_write(dev_priv, 0x0F, 0x0025); udelay(150); vlv_flisdsi_write(dev_priv, 0x0F, 0x0000); vlv_flisdsi_write(dev_priv, 0x08, 0x0000); mutex_unlock(&dev_priv->sb_lock); } static inline bool is_vid_mode(struct intel_dsi *intel_dsi) { return intel_dsi->operation_mode == INTEL_DSI_VIDEO_MODE; } static inline bool is_cmd_mode(struct intel_dsi *intel_dsi) { return intel_dsi->operation_mode == INTEL_DSI_COMMAND_MODE; } static bool intel_dsi_compute_config(struct intel_encoder *encoder, struct intel_crtc_state *config) { struct intel_dsi *intel_dsi = container_of(encoder, struct intel_dsi, base); struct intel_connector *intel_connector = intel_dsi->attached_connector; struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode; struct drm_display_mode *adjusted_mode = &config->base.adjusted_mode; DRM_DEBUG_KMS("\n"); if (fixed_mode) intel_fixed_panel_mode(fixed_mode, adjusted_mode); /* DSI uses short packets for sync events, so clear mode flags for DSI */ adjusted_mode->flags = 0; return true; } static void bxt_dsi_device_ready(struct intel_encoder *encoder) { struct drm_i915_private *dev_priv = encoder->base.dev->dev_private; struct intel_dsi *intel_dsi = enc_to_intel_dsi(&encoder->base); enum port port; u32 val; DRM_DEBUG_KMS("\n"); /* Exit Low power state in 4 steps*/ for_each_dsi_port(port, intel_dsi->ports) { /* 1. Enable MIPI PHY transparent latch */ val = I915_READ(BXT_MIPI_PORT_CTRL(port)); I915_WRITE(BXT_MIPI_PORT_CTRL(port), val | LP_OUTPUT_HOLD); usleep_range(2000, 2500); /* 2. Enter ULPS */ val = I915_READ(MIPI_DEVICE_READY(port)); val &= ~ULPS_STATE_MASK; val |= (ULPS_STATE_ENTER | DEVICE_READY); I915_WRITE(MIPI_DEVICE_READY(port), val); usleep_range(2, 3); /* 3. Exit ULPS */ val = I915_READ(MIPI_DEVICE_READY(port)); val &= ~ULPS_STATE_MASK; val |= (ULPS_STATE_EXIT | DEVICE_READY); I915_WRITE(MIPI_DEVICE_READY(port), val); usleep_range(1000, 1500); /* Clear ULPS and set device ready */ val = I915_READ(MIPI_DEVICE_READY(port)); val &= ~ULPS_STATE_MASK; val |= DEVICE_READY; I915_WRITE(MIPI_DEVICE_READY(port), val); } } static void vlv_dsi_device_ready(struct intel_encoder *encoder) { struct drm_i915_private *dev_priv = encoder->base.dev->dev_private; struct intel_dsi *intel_dsi = enc_to_intel_dsi(&encoder->base); enum port port; u32 val; DRM_DEBUG_KMS("\n"); mutex_lock(&dev_priv->sb_lock); /* program rcomp for compliance, reduce from 50 ohms to 45 ohms * needed everytime after power gate */ vlv_flisdsi_write(dev_priv, 0x04, 0x0004); mutex_unlock(&dev_priv->sb_lock); /* bandgap reset is needed after everytime we do power gate */ band_gap_reset(dev_priv); for_each_dsi_port(port, intel_dsi->ports) { I915_WRITE(MIPI_DEVICE_READY(port), ULPS_STATE_ENTER); usleep_range(2500, 3000); /* Enable MIPI PHY transparent latch * Common bit for both MIPI Port A & MIPI Port C * No similar bit in MIPI Port C reg */ val = I915_READ(MIPI_PORT_CTRL(PORT_A)); I915_WRITE(MIPI_PORT_CTRL(PORT_A), val | LP_OUTPUT_HOLD); usleep_range(1000, 1500); I915_WRITE(MIPI_DEVICE_READY(port), ULPS_STATE_EXIT); usleep_range(2500, 3000); I915_WRITE(MIPI_DEVICE_READY(port), DEVICE_READY); usleep_range(2500, 3000); } } static void intel_dsi_device_ready(struct intel_encoder *encoder) { struct drm_device *dev = encoder->base.dev; if (IS_VALLEYVIEW(dev)) vlv_dsi_device_ready(encoder); else if (IS_BROXTON(dev)) bxt_dsi_device_ready(encoder); } static void intel_dsi_port_enable(struct intel_encoder *encoder) { struct drm_device *dev = encoder->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc); struct intel_dsi *intel_dsi = enc_to_intel_dsi(&encoder->base); enum port port; u32 temp; u32 port_ctrl; if (intel_dsi->dual_link == DSI_DUAL_LINK_FRONT_BACK) { temp = I915_READ(VLV_CHICKEN_3); temp &= ~PIXEL_OVERLAP_CNT_MASK | intel_dsi->pixel_overlap << PIXEL_OVERLAP_CNT_SHIFT; I915_WRITE(VLV_CHICKEN_3, temp); } for_each_dsi_port(port, intel_dsi->ports) { port_ctrl = IS_BROXTON(dev) ? BXT_MIPI_PORT_CTRL(port) : MIPI_PORT_CTRL(port); temp = I915_READ(port_ctrl); temp &= ~LANE_CONFIGURATION_MASK; temp &= ~DUAL_LINK_MODE_MASK; if (intel_dsi->ports == ((1 << PORT_A) | (1 << PORT_C))) { temp |= (intel_dsi->dual_link - 1) << DUAL_LINK_MODE_SHIFT; temp |= intel_crtc->pipe ? LANE_CONFIGURATION_DUAL_LINK_B : LANE_CONFIGURATION_DUAL_LINK_A; } /* assert ip_tg_enable signal */ I915_WRITE(port_ctrl, temp | DPI_ENABLE); POSTING_READ(port_ctrl); } } static void intel_dsi_port_disable(struct intel_encoder *encoder) { struct drm_device *dev = encoder->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_dsi *intel_dsi = enc_to_intel_dsi(&encoder->base); enum port port; u32 temp; for_each_dsi_port(port, intel_dsi->ports) { /* de-assert ip_tg_enable signal */ temp = I915_READ(MIPI_PORT_CTRL(port)); I915_WRITE(MIPI_PORT_CTRL(port), temp & ~DPI_ENABLE); POSTING_READ(MIPI_PORT_CTRL(port)); } } static void intel_dsi_enable(struct intel_encoder *encoder) { struct drm_device *dev = encoder->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_dsi *intel_dsi = enc_to_intel_dsi(&encoder->base); enum port port; DRM_DEBUG_KMS("\n"); if (is_cmd_mode(intel_dsi)) { for_each_dsi_port(port, intel_dsi->ports) I915_WRITE(MIPI_MAX_RETURN_PKT_SIZE(port), 8 * 4); } else { msleep(20); /* XXX */ for_each_dsi_port(port, intel_dsi->ports) dpi_send_cmd(intel_dsi, TURN_ON, false, port); msleep(100); drm_panel_enable(intel_dsi->panel); for_each_dsi_port(port, intel_dsi->ports) wait_for_dsi_fifo_empty(intel_dsi, port); intel_dsi_port_enable(encoder); } intel_panel_enable_backlight(intel_dsi->attached_connector); } static void intel_dsi_pre_enable(struct intel_encoder *encoder) { struct drm_device *dev = encoder->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_dsi *intel_dsi = enc_to_intel_dsi(&encoder->base); struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc); enum pipe pipe = intel_crtc->pipe; enum port port; u32 tmp; DRM_DEBUG_KMS("\n"); /* Panel Enable over CRC PMIC */ if (intel_dsi->gpio_panel) gpiod_set_value_cansleep(intel_dsi->gpio_panel, 1); msleep(intel_dsi->panel_on_delay); if (IS_VALLEYVIEW(dev)) { /* * Disable DPOunit clock gating, can stall pipe * and we need DPLL REFA always enabled */ tmp = I915_READ(DPLL(pipe)); tmp |= DPLL_REF_CLK_ENABLE_VLV; I915_WRITE(DPLL(pipe), tmp); /* update the hw state for DPLL */ intel_crtc->config->dpll_hw_state.dpll = DPLL_INTEGRATED_REF_CLK_VLV | DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS; tmp = I915_READ(DSPCLK_GATE_D); tmp |= DPOUNIT_CLOCK_GATE_DISABLE; I915_WRITE(DSPCLK_GATE_D, tmp); } /* put device in ready state */ intel_dsi_device_ready(encoder); drm_panel_prepare(intel_dsi->panel); for_each_dsi_port(port, intel_dsi->ports) wait_for_dsi_fifo_empty(intel_dsi, port); /* Enable port in pre-enable phase itself because as per hw team * recommendation, port should be enabled befor plane & pipe */ intel_dsi_enable(encoder); } static void intel_dsi_enable_nop(struct intel_encoder *encoder) { DRM_DEBUG_KMS("\n"); /* for DSI port enable has to be done before pipe * and plane enable, so port enable is done in * pre_enable phase itself unlike other encoders */ } static void intel_dsi_pre_disable(struct intel_encoder *encoder) { struct intel_dsi *intel_dsi = enc_to_intel_dsi(&encoder->base); enum port port; DRM_DEBUG_KMS("\n"); intel_panel_disable_backlight(intel_dsi->attached_connector); if (is_vid_mode(intel_dsi)) { /* Send Shutdown command to the panel in LP mode */ for_each_dsi_port(port, intel_dsi->ports) dpi_send_cmd(intel_dsi, SHUTDOWN, false, port); msleep(10); } } static void intel_dsi_disable(struct intel_encoder *encoder) { struct drm_device *dev = encoder->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_dsi *intel_dsi = enc_to_intel_dsi(&encoder->base); enum port port; u32 temp; DRM_DEBUG_KMS("\n"); if (is_vid_mode(intel_dsi)) { for_each_dsi_port(port, intel_dsi->ports) wait_for_dsi_fifo_empty(intel_dsi, port); intel_dsi_port_disable(encoder); msleep(2); } for_each_dsi_port(port, intel_dsi->ports) { /* Panel commands can be sent when clock is in LP11 */ I915_WRITE(MIPI_DEVICE_READY(port), 0x0); temp = I915_READ(MIPI_CTRL(port)); temp &= ~ESCAPE_CLOCK_DIVIDER_MASK; I915_WRITE(MIPI_CTRL(port), temp | intel_dsi->escape_clk_div << ESCAPE_CLOCK_DIVIDER_SHIFT); I915_WRITE(MIPI_EOT_DISABLE(port), CLOCKSTOP); temp = I915_READ(MIPI_DSI_FUNC_PRG(port)); temp &= ~VID_MODE_FORMAT_MASK; I915_WRITE(MIPI_DSI_FUNC_PRG(port), temp); I915_WRITE(MIPI_DEVICE_READY(port), 0x1); } /* if disable packets are sent before sending shutdown packet then in * some next enable sequence send turn on packet error is observed */ drm_panel_disable(intel_dsi->panel); for_each_dsi_port(port, intel_dsi->ports) wait_for_dsi_fifo_empty(intel_dsi, port); } static void intel_dsi_clear_device_ready(struct intel_encoder *encoder) { struct drm_i915_private *dev_priv = encoder->base.dev->dev_private; struct intel_dsi *intel_dsi = enc_to_intel_dsi(&encoder->base); enum port port; u32 val; DRM_DEBUG_KMS("\n"); for_each_dsi_port(port, intel_dsi->ports) { I915_WRITE(MIPI_DEVICE_READY(port), DEVICE_READY | ULPS_STATE_ENTER); usleep_range(2000, 2500); I915_WRITE(MIPI_DEVICE_READY(port), DEVICE_READY | ULPS_STATE_EXIT); usleep_range(2000, 2500); I915_WRITE(MIPI_DEVICE_READY(port), DEVICE_READY | ULPS_STATE_ENTER); usleep_range(2000, 2500); /* Wait till Clock lanes are in LP-00 state for MIPI Port A * only. MIPI Port C has no similar bit for checking */ if (wait_for(((I915_READ(MIPI_PORT_CTRL(PORT_A)) & AFE_LATCHOUT) == 0x00000), 30)) DRM_ERROR("DSI LP not going Low\n"); /* Disable MIPI PHY transparent latch * Common bit for both MIPI Port A & MIPI Port C */ val = I915_READ(MIPI_PORT_CTRL(PORT_A)); I915_WRITE(MIPI_PORT_CTRL(PORT_A), val & ~LP_OUTPUT_HOLD); usleep_range(1000, 1500); I915_WRITE(MIPI_DEVICE_READY(port), 0x00); usleep_range(2000, 2500); } intel_disable_dsi_pll(encoder); } static void intel_dsi_post_disable(struct intel_encoder *encoder) { struct drm_i915_private *dev_priv = encoder->base.dev->dev_private; struct intel_dsi *intel_dsi = enc_to_intel_dsi(&encoder->base); u32 val; DRM_DEBUG_KMS("\n"); intel_dsi_disable(encoder); intel_dsi_clear_device_ready(encoder); val = I915_READ(DSPCLK_GATE_D); val &= ~DPOUNIT_CLOCK_GATE_DISABLE; I915_WRITE(DSPCLK_GATE_D, val); drm_panel_unprepare(intel_dsi->panel); msleep(intel_dsi->panel_off_delay); msleep(intel_dsi->panel_pwr_cycle_delay); /* Panel Disable over CRC PMIC */ if (intel_dsi->gpio_panel) gpiod_set_value_cansleep(intel_dsi->gpio_panel, 0); } static bool intel_dsi_get_hw_state(struct intel_encoder *encoder, enum pipe *pipe) { struct drm_i915_private *dev_priv = encoder->base.dev->dev_private; struct intel_dsi *intel_dsi = enc_to_intel_dsi(&encoder->base); struct drm_device *dev = encoder->base.dev; enum intel_display_power_domain power_domain; u32 dpi_enabled, func; enum port port; DRM_DEBUG_KMS("\n"); power_domain = intel_display_port_power_domain(encoder); if (!intel_display_power_is_enabled(dev_priv, power_domain)) return false; /* XXX: this only works for one DSI output */ for_each_dsi_port(port, intel_dsi->ports) { func = I915_READ(MIPI_DSI_FUNC_PRG(port)); dpi_enabled = I915_READ(MIPI_PORT_CTRL(port)) & DPI_ENABLE; /* Due to some hardware limitations on BYT, MIPI Port C DPI * Enable bit does not get set. To check whether DSI Port C * was enabled in BIOS, check the Pipe B enable bit */ if (IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) && (port == PORT_C)) dpi_enabled = I915_READ(PIPECONF(PIPE_B)) & PIPECONF_ENABLE; if (dpi_enabled || (func & CMD_MODE_DATA_WIDTH_MASK)) { if (I915_READ(MIPI_DEVICE_READY(port)) & DEVICE_READY) { *pipe = port == PORT_A ? PIPE_A : PIPE_B; return true; } } } return false; } static void intel_dsi_get_config(struct intel_encoder *encoder, struct intel_crtc_state *pipe_config) { u32 pclk; DRM_DEBUG_KMS("\n"); /* * DPLL_MD is not used in case of DSI, reading will get some default value * set dpll_md = 0 */ pipe_config->dpll_hw_state.dpll_md = 0; pclk = vlv_get_dsi_pclk(encoder, pipe_config->pipe_bpp); if (!pclk) return; pipe_config->base.adjusted_mode.crtc_clock = pclk; pipe_config->port_clock = pclk; } static enum drm_mode_status intel_dsi_mode_valid(struct drm_connector *connector, struct drm_display_mode *mode) { struct intel_connector *intel_connector = to_intel_connector(connector); struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode; int max_dotclk = to_i915(connector->dev)->max_dotclk_freq; DRM_DEBUG_KMS("\n"); if (mode->flags & DRM_MODE_FLAG_DBLSCAN) { DRM_DEBUG_KMS("MODE_NO_DBLESCAN\n"); return MODE_NO_DBLESCAN; } if (fixed_mode) { if (mode->hdisplay > fixed_mode->hdisplay) return MODE_PANEL; if (mode->vdisplay > fixed_mode->vdisplay) return MODE_PANEL; if (fixed_mode->clock > max_dotclk) return MODE_CLOCK_HIGH; } return MODE_OK; } /* return txclkesc cycles in terms of divider and duration in us */ static u16 txclkesc(u32 divider, unsigned int us) { switch (divider) { case ESCAPE_CLOCK_DIVIDER_1: default: return 20 * us; case ESCAPE_CLOCK_DIVIDER_2: return 10 * us; case ESCAPE_CLOCK_DIVIDER_4: return 5 * us; } } /* return pixels in terms of txbyteclkhs */ static u16 txbyteclkhs(u16 pixels, int bpp, int lane_count, u16 burst_mode_ratio) { return DIV_ROUND_UP(DIV_ROUND_UP(pixels * bpp * burst_mode_ratio, 8 * 100), lane_count); } static void set_dsi_timings(struct drm_encoder *encoder, const struct drm_display_mode *adjusted_mode) { struct drm_device *dev = encoder->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc); struct intel_dsi *intel_dsi = enc_to_intel_dsi(encoder); enum port port; unsigned int bpp = intel_crtc->config->pipe_bpp; unsigned int lane_count = intel_dsi->lane_count; u16 hactive, hfp, hsync, hbp, vfp, vsync, vbp; hactive = adjusted_mode->crtc_hdisplay; hfp = adjusted_mode->crtc_hsync_start - adjusted_mode->crtc_hdisplay; hsync = adjusted_mode->crtc_hsync_end - adjusted_mode->crtc_hsync_start; hbp = adjusted_mode->crtc_htotal - adjusted_mode->crtc_hsync_end; if (intel_dsi->dual_link) { hactive /= 2; if (intel_dsi->dual_link == DSI_DUAL_LINK_FRONT_BACK) hactive += intel_dsi->pixel_overlap; hfp /= 2; hsync /= 2; hbp /= 2; } vfp = adjusted_mode->crtc_vsync_start - adjusted_mode->crtc_vdisplay; vsync = adjusted_mode->crtc_vsync_end - adjusted_mode->crtc_vsync_start; vbp = adjusted_mode->crtc_vtotal - adjusted_mode->crtc_vsync_end; /* horizontal values are in terms of high speed byte clock */ hactive = txbyteclkhs(hactive, bpp, lane_count, intel_dsi->burst_mode_ratio); hfp = txbyteclkhs(hfp, bpp, lane_count, intel_dsi->burst_mode_ratio); hsync = txbyteclkhs(hsync, bpp, lane_count, intel_dsi->burst_mode_ratio); hbp = txbyteclkhs(hbp, bpp, lane_count, intel_dsi->burst_mode_ratio); for_each_dsi_port(port, intel_dsi->ports) { if (IS_BROXTON(dev)) { /* * Program hdisplay and vdisplay on MIPI transcoder. * This is different from calculated hactive and * vactive, as they are calculated per channel basis, * whereas these values should be based on resolution. */ I915_WRITE(BXT_MIPI_TRANS_HACTIVE(port), adjusted_mode->crtc_hdisplay); I915_WRITE(BXT_MIPI_TRANS_VACTIVE(port), adjusted_mode->crtc_vdisplay); I915_WRITE(BXT_MIPI_TRANS_VTOTAL(port), adjusted_mode->crtc_vtotal); } I915_WRITE(MIPI_HACTIVE_AREA_COUNT(port), hactive); I915_WRITE(MIPI_HFP_COUNT(port), hfp); /* meaningful for video mode non-burst sync pulse mode only, * can be zero for non-burst sync events and burst modes */ I915_WRITE(MIPI_HSYNC_PADDING_COUNT(port), hsync); I915_WRITE(MIPI_HBP_COUNT(port), hbp); /* vertical values are in terms of lines */ I915_WRITE(MIPI_VFP_COUNT(port), vfp); I915_WRITE(MIPI_VSYNC_PADDING_COUNT(port), vsync); I915_WRITE(MIPI_VBP_COUNT(port), vbp); } } static void intel_dsi_prepare(struct intel_encoder *intel_encoder) { struct drm_encoder *encoder = &intel_encoder->base; struct drm_device *dev = encoder->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc); struct intel_dsi *intel_dsi = enc_to_intel_dsi(encoder); const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode; enum port port; unsigned int bpp = intel_crtc->config->pipe_bpp; u32 val, tmp; u16 mode_hdisplay; DRM_DEBUG_KMS("pipe %c\n", pipe_name(intel_crtc->pipe)); mode_hdisplay = adjusted_mode->crtc_hdisplay; if (intel_dsi->dual_link) { mode_hdisplay /= 2; if (intel_dsi->dual_link == DSI_DUAL_LINK_FRONT_BACK) mode_hdisplay += intel_dsi->pixel_overlap; } for_each_dsi_port(port, intel_dsi->ports) { if (IS_VALLEYVIEW(dev)) { /* * escape clock divider, 20MHz, shared for A and C. * device ready must be off when doing this! txclkesc? */ tmp = I915_READ(MIPI_CTRL(PORT_A)); tmp &= ~ESCAPE_CLOCK_DIVIDER_MASK; I915_WRITE(MIPI_CTRL(PORT_A), tmp | ESCAPE_CLOCK_DIVIDER_1); /* read request priority is per pipe */ tmp = I915_READ(MIPI_CTRL(port)); tmp &= ~READ_REQUEST_PRIORITY_MASK; I915_WRITE(MIPI_CTRL(port), tmp | READ_REQUEST_PRIORITY_HIGH); } else if (IS_BROXTON(dev)) { /* * FIXME: * BXT can connect any PIPE to any MIPI port. * Select the pipe based on the MIPI port read from * VBT for now. Pick PIPE A for MIPI port A and C * for port C. */ tmp = I915_READ(MIPI_CTRL(port)); tmp &= ~BXT_PIPE_SELECT_MASK; if (port == PORT_A) tmp |= BXT_PIPE_SELECT_A; else if (port == PORT_C) tmp |= BXT_PIPE_SELECT_C; I915_WRITE(MIPI_CTRL(port), tmp); } /* XXX: why here, why like this? handling in irq handler?! */ I915_WRITE(MIPI_INTR_STAT(port), 0xffffffff); I915_WRITE(MIPI_INTR_EN(port), 0xffffffff); I915_WRITE(MIPI_DPHY_PARAM(port), intel_dsi->dphy_reg); I915_WRITE(MIPI_DPI_RESOLUTION(port), adjusted_mode->crtc_vdisplay << VERTICAL_ADDRESS_SHIFT | mode_hdisplay << HORIZONTAL_ADDRESS_SHIFT); } set_dsi_timings(encoder, adjusted_mode); val = intel_dsi->lane_count << DATA_LANES_PRG_REG_SHIFT; if (is_cmd_mode(intel_dsi)) { val |= intel_dsi->channel << CMD_MODE_CHANNEL_NUMBER_SHIFT; val |= CMD_MODE_DATA_WIDTH_8_BIT; /* XXX */ } else { val |= intel_dsi->channel << VID_MODE_CHANNEL_NUMBER_SHIFT; /* XXX: cross-check bpp vs. pixel format? */ val |= intel_dsi->pixel_format; } tmp = 0; if (intel_dsi->eotp_pkt == 0) tmp |= EOT_DISABLE; if (intel_dsi->clock_stop) tmp |= CLOCKSTOP; for_each_dsi_port(port, intel_dsi->ports) { I915_WRITE(MIPI_DSI_FUNC_PRG(port), val); /* timeouts for recovery. one frame IIUC. if counter expires, * EOT and stop state. */ /* * In burst mode, value greater than one DPI line Time in byte * clock (txbyteclkhs) To timeout this timer 1+ of the above * said value is recommended. * * In non-burst mode, Value greater than one DPI frame time in * byte clock(txbyteclkhs) To timeout this timer 1+ of the above * said value is recommended. * * In DBI only mode, value greater than one DBI frame time in * byte clock(txbyteclkhs) To timeout this timer 1+ of the above * said value is recommended. */ if (is_vid_mode(intel_dsi) && intel_dsi->video_mode_format == VIDEO_MODE_BURST) { I915_WRITE(MIPI_HS_TX_TIMEOUT(port), txbyteclkhs(adjusted_mode->crtc_htotal, bpp, intel_dsi->lane_count, intel_dsi->burst_mode_ratio) + 1); } else { I915_WRITE(MIPI_HS_TX_TIMEOUT(port), txbyteclkhs(adjusted_mode->crtc_vtotal * adjusted_mode->crtc_htotal, bpp, intel_dsi->lane_count, intel_dsi->burst_mode_ratio) + 1); } I915_WRITE(MIPI_LP_RX_TIMEOUT(port), intel_dsi->lp_rx_timeout); I915_WRITE(MIPI_TURN_AROUND_TIMEOUT(port), intel_dsi->turn_arnd_val); I915_WRITE(MIPI_DEVICE_RESET_TIMER(port), intel_dsi->rst_timer_val); /* dphy stuff */ /* in terms of low power clock */ I915_WRITE(MIPI_INIT_COUNT(port), txclkesc(intel_dsi->escape_clk_div, 100)); if (IS_BROXTON(dev) && (!intel_dsi->dual_link)) { /* * BXT spec says write MIPI_INIT_COUNT for * both the ports, even if only one is * getting used. So write the other port * if not in dual link mode. */ I915_WRITE(MIPI_INIT_COUNT(port == PORT_A ? PORT_C : PORT_A), intel_dsi->init_count); } /* recovery disables */ I915_WRITE(MIPI_EOT_DISABLE(port), tmp); /* in terms of low power clock */ I915_WRITE(MIPI_INIT_COUNT(port), intel_dsi->init_count); /* in terms of txbyteclkhs. actual high to low switch + * MIPI_STOP_STATE_STALL * MIPI_LP_BYTECLK. * * XXX: write MIPI_STOP_STATE_STALL? */ I915_WRITE(MIPI_HIGH_LOW_SWITCH_COUNT(port), intel_dsi->hs_to_lp_count); /* XXX: low power clock equivalence in terms of byte clock. * the number of byte clocks occupied in one low power clock. * based on txbyteclkhs and txclkesc. * txclkesc time / txbyteclk time * (105 + MIPI_STOP_STATE_STALL * ) / 105.??? */ I915_WRITE(MIPI_LP_BYTECLK(port), intel_dsi->lp_byte_clk); /* the bw essential for transmitting 16 long packets containing * 252 bytes meant for dcs write memory command is programmed in * this register in terms of byte clocks. based on dsi transfer * rate and the number of lanes configured the time taken to * transmit 16 long packets in a dsi stream varies. */ I915_WRITE(MIPI_DBI_BW_CTRL(port), intel_dsi->bw_timer); I915_WRITE(MIPI_CLK_LANE_SWITCH_TIME_CNT(port), intel_dsi->clk_lp_to_hs_count << LP_HS_SSW_CNT_SHIFT | intel_dsi->clk_hs_to_lp_count << HS_LP_PWR_SW_CNT_SHIFT); if (is_vid_mode(intel_dsi)) /* Some panels might have resolution which is not a * multiple of 64 like 1366 x 768. Enable RANDOM * resolution support for such panels by default */ I915_WRITE(MIPI_VIDEO_MODE_FORMAT(port), intel_dsi->video_frmt_cfg_bits | intel_dsi->video_mode_format | IP_TG_CONFIG | RANDOM_DPI_DISPLAY_RESOLUTION); } } static void intel_dsi_pre_pll_enable(struct intel_encoder *encoder) { DRM_DEBUG_KMS("\n"); intel_dsi_prepare(encoder); intel_enable_dsi_pll(encoder); } static enum drm_connector_status intel_dsi_detect(struct drm_connector *connector, bool force) { return connector_status_connected; } static int intel_dsi_get_modes(struct drm_connector *connector) { struct intel_connector *intel_connector = to_intel_connector(connector); struct drm_display_mode *mode; DRM_DEBUG_KMS("\n"); if (!intel_connector->panel.fixed_mode) { DRM_DEBUG_KMS("no fixed mode\n"); return 0; } mode = drm_mode_duplicate(connector->dev, intel_connector->panel.fixed_mode); if (!mode) { DRM_DEBUG_KMS("drm_mode_duplicate failed\n"); return 0; } drm_mode_probed_add(connector, mode); return 1; } static void intel_dsi_connector_destroy(struct drm_connector *connector) { struct intel_connector *intel_connector = to_intel_connector(connector); DRM_DEBUG_KMS("\n"); intel_panel_fini(&intel_connector->panel); drm_connector_cleanup(connector); kfree(connector); } static void intel_dsi_encoder_destroy(struct drm_encoder *encoder) { struct intel_dsi *intel_dsi = enc_to_intel_dsi(encoder); if (intel_dsi->panel) { drm_panel_detach(intel_dsi->panel); /* XXX: Logically this call belongs in the panel driver. */ drm_panel_remove(intel_dsi->panel); } /* dispose of the gpios */ if (intel_dsi->gpio_panel) gpiod_put(intel_dsi->gpio_panel); intel_encoder_destroy(encoder); } static const struct drm_encoder_funcs intel_dsi_funcs = { .destroy = intel_dsi_encoder_destroy, }; static const struct drm_connector_helper_funcs intel_dsi_connector_helper_funcs = { .get_modes = intel_dsi_get_modes, .mode_valid = intel_dsi_mode_valid, .best_encoder = intel_best_encoder, }; static const struct drm_connector_funcs intel_dsi_connector_funcs = { .dpms = drm_atomic_helper_connector_dpms, .detect = intel_dsi_detect, .destroy = intel_dsi_connector_destroy, .fill_modes = drm_helper_probe_single_connector_modes, .atomic_get_property = intel_connector_atomic_get_property, .atomic_destroy_state = drm_atomic_helper_connector_destroy_state, .atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state, }; void intel_dsi_init(struct drm_device *dev) { struct intel_dsi *intel_dsi; struct intel_encoder *intel_encoder; struct drm_encoder *encoder; struct intel_connector *intel_connector; struct drm_connector *connector; struct drm_display_mode *scan, *fixed_mode = NULL; struct drm_i915_private *dev_priv = dev->dev_private; enum port port; unsigned int i; DRM_DEBUG_KMS("\n"); /* There is no detection method for MIPI so rely on VBT */ if (!dev_priv->vbt.has_mipi) return; if (IS_VALLEYVIEW(dev)) { dev_priv->mipi_mmio_base = VLV_MIPI_BASE; } else { DRM_ERROR("Unsupported Mipi device to reg base"); return; } intel_dsi = kzalloc(sizeof(*intel_dsi), GFP_KERNEL); if (!intel_dsi) return; intel_connector = intel_connector_alloc(); if (!intel_connector) { kfree(intel_dsi); return; } intel_encoder = &intel_dsi->base; encoder = &intel_encoder->base; intel_dsi->attached_connector = intel_connector; connector = &intel_connector->base; drm_encoder_init(dev, encoder, &intel_dsi_funcs, DRM_MODE_ENCODER_DSI); /* XXX: very likely not all of these are needed */ intel_encoder->compute_config = intel_dsi_compute_config; intel_encoder->pre_pll_enable = intel_dsi_pre_pll_enable; intel_encoder->pre_enable = intel_dsi_pre_enable; intel_encoder->enable = intel_dsi_enable_nop; intel_encoder->disable = intel_dsi_pre_disable; intel_encoder->post_disable = intel_dsi_post_disable; intel_encoder->get_hw_state = intel_dsi_get_hw_state; intel_encoder->get_config = intel_dsi_get_config; intel_connector->get_hw_state = intel_connector_get_hw_state; intel_connector->unregister = intel_connector_unregister; /* Pipe A maps to MIPI DSI port A, pipe B maps to MIPI DSI port C */ if (dev_priv->vbt.dsi.port == DVO_PORT_MIPIA) { intel_encoder->crtc_mask = (1 << PIPE_A); intel_dsi->ports = (1 << PORT_A); } else if (dev_priv->vbt.dsi.port == DVO_PORT_MIPIC) { intel_encoder->crtc_mask = (1 << PIPE_B); intel_dsi->ports = (1 << PORT_C); } if (dev_priv->vbt.dsi.config->dual_link) intel_dsi->ports = ((1 << PORT_A) | (1 << PORT_C)); /* Create a DSI host (and a device) for each port. */ for_each_dsi_port(port, intel_dsi->ports) { struct intel_dsi_host *host; host = intel_dsi_host_init(intel_dsi, port); if (!host) goto err; intel_dsi->dsi_hosts[port] = host; } for (i = 0; i < ARRAY_SIZE(intel_dsi_drivers); i++) { intel_dsi->panel = intel_dsi_drivers[i].init(intel_dsi, intel_dsi_drivers[i].panel_id); if (intel_dsi->panel) break; } if (!intel_dsi->panel) { DRM_DEBUG_KMS("no device found\n"); goto err; } /* * In case of BYT with CRC PMIC, we need to use GPIO for * Panel control. */ if (dev_priv->vbt.dsi.config->pwm_blc == PPS_BLC_PMIC) { intel_dsi->gpio_panel = gpiod_get(dev->dev, "panel", GPIOD_OUT_HIGH); if (IS_ERR(intel_dsi->gpio_panel)) { DRM_ERROR("Failed to own gpio for panel control\n"); intel_dsi->gpio_panel = NULL; } } intel_encoder->type = INTEL_OUTPUT_DSI; intel_encoder->cloneable = 0; drm_connector_init(dev, connector, &intel_dsi_connector_funcs, DRM_MODE_CONNECTOR_DSI); drm_connector_helper_add(connector, &intel_dsi_connector_helper_funcs); connector->display_info.subpixel_order = SubPixelHorizontalRGB; /*XXX*/ connector->interlace_allowed = false; connector->doublescan_allowed = false; intel_connector_attach_encoder(intel_connector, intel_encoder); drm_connector_register(connector); drm_panel_attach(intel_dsi->panel, connector); mutex_lock(&dev->mode_config.mutex); drm_panel_get_modes(intel_dsi->panel); list_for_each_entry(scan, &connector->probed_modes, head) { if ((scan->type & DRM_MODE_TYPE_PREFERRED)) { fixed_mode = drm_mode_duplicate(dev, scan); break; } } mutex_unlock(&dev->mode_config.mutex); if (!fixed_mode) { DRM_DEBUG_KMS("no fixed mode\n"); goto err; } intel_panel_init(&intel_connector->panel, fixed_mode, NULL); intel_panel_setup_backlight(connector, INVALID_PIPE); return; err: drm_encoder_cleanup(&intel_encoder->base); kfree(intel_dsi); kfree(intel_connector); }