/* * CARMA Board DATA-FPGA Programmer * * Copyright (c) 2009-2011 Ira W. Snyder * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* MPC8349EMDS specific get_immrbase() */ #include static const char drv_name[] = "carma-fpga-program"; /* * Firmware images are always this exact size * * 12849552 bytes for a CARMA Digitizer Board (EP2S90 FPGAs) * 18662880 bytes for a CARMA Correlator Board (EP2S130 FPGAs) */ #define FW_SIZE_EP2S90 12849552 #define FW_SIZE_EP2S130 18662880 struct fpga_dev { struct miscdevice miscdev; /* Reference count */ struct kref ref; /* Device Registers */ struct device *dev; void __iomem *regs; void __iomem *immr; /* Freescale DMA Device */ struct dma_chan *chan; /* Interrupts */ int irq, status; struct completion completion; /* FPGA Bitfile */ struct mutex lock; struct videobuf_dmabuf vb; bool vb_allocated; /* max size and written bytes */ size_t fw_size; size_t bytes; }; /* * FPGA Bitfile Helpers */ /** * fpga_drop_firmware_data() - drop the bitfile image from memory * @priv: the driver's private data structure * * LOCKING: must hold priv->lock */ static void fpga_drop_firmware_data(struct fpga_dev *priv) { videobuf_dma_free(&priv->vb); priv->vb_allocated = false; priv->bytes = 0; } /* * Private Data Reference Count */ static void fpga_dev_remove(struct kref *ref) { struct fpga_dev *priv = container_of(ref, struct fpga_dev, ref); /* free any firmware image that was not programmed */ fpga_drop_firmware_data(priv); mutex_destroy(&priv->lock); kfree(priv); } /* * LED Trigger (could be a seperate module) */ /* * NOTE: this whole thing does have the problem that whenever the led's are * NOTE: first set to use the fpga trigger, they could be in the wrong state */ DEFINE_LED_TRIGGER(ledtrig_fpga); static void ledtrig_fpga_programmed(bool enabled) { if (enabled) led_trigger_event(ledtrig_fpga, LED_FULL); else led_trigger_event(ledtrig_fpga, LED_OFF); } /* * FPGA Register Helpers */ /* Register Definitions */ #define FPGA_CONFIG_CONTROL 0x40 #define FPGA_CONFIG_STATUS 0x44 #define FPGA_CONFIG_FIFO_SIZE 0x48 #define FPGA_CONFIG_FIFO_USED 0x4C #define FPGA_CONFIG_TOTAL_BYTE_COUNT 0x50 #define FPGA_CONFIG_CUR_BYTE_COUNT 0x54 #define FPGA_FIFO_ADDRESS 0x3000 static int fpga_fifo_size(void __iomem *regs) { return ioread32be(regs + FPGA_CONFIG_FIFO_SIZE); } #define CFG_STATUS_ERR_MASK 0xfffe static int fpga_config_error(void __iomem *regs) { return ioread32be(regs + FPGA_CONFIG_STATUS) & CFG_STATUS_ERR_MASK; } static int fpga_fifo_empty(void __iomem *regs) { return ioread32be(regs + FPGA_CONFIG_FIFO_USED) == 0; } static void fpga_fifo_write(void __iomem *regs, u32 val) { iowrite32be(val, regs + FPGA_FIFO_ADDRESS); } static void fpga_set_byte_count(void __iomem *regs, u32 count) { iowrite32be(count, regs + FPGA_CONFIG_TOTAL_BYTE_COUNT); } #define CFG_CTL_ENABLE (1 << 0) #define CFG_CTL_RESET (1 << 1) #define CFG_CTL_DMA (1 << 2) static void fpga_programmer_enable(struct fpga_dev *priv, bool dma) { u32 val; val = (dma) ? (CFG_CTL_ENABLE | CFG_CTL_DMA) : CFG_CTL_ENABLE; iowrite32be(val, priv->regs + FPGA_CONFIG_CONTROL); } static void fpga_programmer_disable(struct fpga_dev *priv) { iowrite32be(0x0, priv->regs + FPGA_CONFIG_CONTROL); } static void fpga_dump_registers(struct fpga_dev *priv) { u32 control, status, size, used, total, curr; /* good status: do nothing */ if (priv->status == 0) return; /* Dump all status registers */ control = ioread32be(priv->regs + FPGA_CONFIG_CONTROL); status = ioread32be(priv->regs + FPGA_CONFIG_STATUS); size = ioread32be(priv->regs + FPGA_CONFIG_FIFO_SIZE); used = ioread32be(priv->regs + FPGA_CONFIG_FIFO_USED); total = ioread32be(priv->regs + FPGA_CONFIG_TOTAL_BYTE_COUNT); curr = ioread32be(priv->regs + FPGA_CONFIG_CUR_BYTE_COUNT); dev_err(priv->dev, "Configuration failed, dumping status registers\n"); dev_err(priv->dev, "Control: 0x%.8x\n", control); dev_err(priv->dev, "Status: 0x%.8x\n", status); dev_err(priv->dev, "FIFO Size: 0x%.8x\n", size); dev_err(priv->dev, "FIFO Used: 0x%.8x\n", used); dev_err(priv->dev, "FIFO Total: 0x%.8x\n", total); dev_err(priv->dev, "FIFO Curr: 0x%.8x\n", curr); } /* * FPGA Power Supply Code */ #define CTL_PWR_CONTROL 0x2006 #define CTL_PWR_STATUS 0x200A #define CTL_PWR_FAIL 0x200B #define PWR_CONTROL_ENABLE 0x01 #define PWR_STATUS_ERROR_MASK 0x10 #define PWR_STATUS_GOOD 0x0f /* * Determine if the FPGA power is good for all supplies */ static bool fpga_power_good(struct fpga_dev *priv) { u8 val; val = ioread8(priv->regs + CTL_PWR_STATUS); if (val & PWR_STATUS_ERROR_MASK) return false; return val == PWR_STATUS_GOOD; } /* * Disable the FPGA power supplies */ static void fpga_disable_power_supplies(struct fpga_dev *priv) { unsigned long start; u8 val; iowrite8(0x0, priv->regs + CTL_PWR_CONTROL); /* * Wait 500ms for the power rails to discharge * * Without this delay, the CTL-CPLD state machine can get into a * state where it is waiting for the power-goods to assert, but they * never do. This only happens when enabling and disabling the * power sequencer very rapidly. * * The loop below will also wait for the power goods to de-assert, * but testing has shown that they are always disabled by the time * the sleep completes. However, omitting the sleep and only waiting * for the power-goods to de-assert was not sufficient to ensure * that the power sequencer would not wedge itself. */ msleep(500); start = jiffies; while (time_before(jiffies, start + HZ)) { val = ioread8(priv->regs + CTL_PWR_STATUS); if (!(val & PWR_STATUS_GOOD)) break; usleep_range(5000, 10000); } val = ioread8(priv->regs + CTL_PWR_STATUS); if (val & PWR_STATUS_GOOD) { dev_err(priv->dev, "power disable failed: " "power goods: status 0x%.2x\n", val); } if (val & PWR_STATUS_ERROR_MASK) { dev_err(priv->dev, "power disable failed: " "alarm bit set: status 0x%.2x\n", val); } } /** * fpga_enable_power_supplies() - enable the DATA-FPGA power supplies * @priv: the driver's private data structure * * Enable the DATA-FPGA power supplies, waiting up to 1 second for * them to enable successfully. * * Returns 0 on success, -ERRNO otherwise */ static int fpga_enable_power_supplies(struct fpga_dev *priv) { unsigned long start = jiffies; if (fpga_power_good(priv)) { dev_dbg(priv->dev, "power was already good\n"); return 0; } iowrite8(PWR_CONTROL_ENABLE, priv->regs + CTL_PWR_CONTROL); while (time_before(jiffies, start + HZ)) { if (fpga_power_good(priv)) return 0; usleep_range(5000, 10000); } return fpga_power_good(priv) ? 0 : -ETIMEDOUT; } /* * Determine if the FPGA power supplies are all enabled */ static bool fpga_power_enabled(struct fpga_dev *priv) { u8 val; val = ioread8(priv->regs + CTL_PWR_CONTROL); if (val & PWR_CONTROL_ENABLE) return true; return false; } /* * Determine if the FPGA's are programmed and running correctly */ static bool fpga_running(struct fpga_dev *priv) { if (!fpga_power_good(priv)) return false; /* Check the config done bit */ return ioread32be(priv->regs + FPGA_CONFIG_STATUS) & (1 << 18); } /* * FPGA Programming Code */ /** * fpga_program_block() - put a block of data into the programmer's FIFO * @priv: the driver's private data structure * @buf: the data to program * @count: the length of data to program (must be a multiple of 4 bytes) * * Returns 0 on success, -ERRNO otherwise */ static int fpga_program_block(struct fpga_dev *priv, void *buf, size_t count) { u32 *data = buf; int size = fpga_fifo_size(priv->regs); int i, len; unsigned long timeout; /* enforce correct data length for the FIFO */ BUG_ON(count % 4 != 0); while (count > 0) { /* Get the size of the block to write (maximum is FIFO_SIZE) */ len = min_t(size_t, count, size); timeout = jiffies + HZ / 4; /* Write the block */ for (i = 0; i < len / 4; i++) fpga_fifo_write(priv->regs, data[i]); /* Update the amounts left */ count -= len; data += len / 4; /* Wait for the fifo to empty */ while (true) { if (fpga_fifo_empty(priv->regs)) { break; } else { dev_dbg(priv->dev, "Fifo not empty\n"); cpu_relax(); } if (fpga_config_error(priv->regs)) { dev_err(priv->dev, "Error detected\n"); return -EIO; } if (time_after(jiffies, timeout)) { dev_err(priv->dev, "Fifo drain timeout\n"); return -ETIMEDOUT; } usleep_range(5000, 10000); } } return 0; } /** * fpga_program_cpu() - program the DATA-FPGA's using the CPU * @priv: the driver's private data structure * * This is useful when the DMA programming method fails. It is possible to * wedge the Freescale DMA controller such that the DMA programming method * always fails. This method has always succeeded. * * Returns 0 on success, -ERRNO otherwise */ static noinline int fpga_program_cpu(struct fpga_dev *priv) { int ret; /* Disable the programmer */ fpga_programmer_disable(priv); /* Set the total byte count */ fpga_set_byte_count(priv->regs, priv->bytes); dev_dbg(priv->dev, "total byte count %u bytes\n", priv->bytes); /* Enable the controller for programming */ fpga_programmer_enable(priv, false); dev_dbg(priv->dev, "enabled the controller\n"); /* Write each chunk of the FPGA bitfile to FPGA programmer */ ret = fpga_program_block(priv, priv->vb.vaddr, priv->bytes); if (ret) goto out_disable_controller; /* Wait for the interrupt handler to signal that programming finished */ ret = wait_for_completion_timeout(&priv->completion, 2 * HZ); if (!ret) { dev_err(priv->dev, "Timed out waiting for completion\n"); ret = -ETIMEDOUT; goto out_disable_controller; } /* Retrieve the status from the interrupt handler */ ret = priv->status; out_disable_controller: fpga_programmer_disable(priv); return ret; } #define FIFO_DMA_ADDRESS 0xf0003000 #define FIFO_MAX_LEN 4096 /** * fpga_program_dma() - program the DATA-FPGA's using the DMA engine * @priv: the driver's private data structure * * Program the DATA-FPGA's using the Freescale DMA engine. This requires that * the engine is programmed such that the hardware DMA request lines can * control the entire DMA transaction. The system controller FPGA then * completely offloads the programming from the CPU. * * Returns 0 on success, -ERRNO otherwise */ static noinline int fpga_program_dma(struct fpga_dev *priv) { struct videobuf_dmabuf *vb = &priv->vb; struct dma_chan *chan = priv->chan; struct dma_async_tx_descriptor *tx; size_t num_pages, len, avail = 0; struct dma_slave_config config; struct scatterlist *sg; struct sg_table table; dma_cookie_t cookie; int ret, i; /* Disable the programmer */ fpga_programmer_disable(priv); /* Allocate a scatterlist for the DMA destination */ num_pages = DIV_ROUND_UP(priv->bytes, FIFO_MAX_LEN); ret = sg_alloc_table(&table, num_pages, GFP_KERNEL); if (ret) { dev_err(priv->dev, "Unable to allocate dst scatterlist\n"); ret = -ENOMEM; goto out_return; } /* * This is an ugly hack * * We fill in a scatterlist as if it were mapped for DMA. This is * necessary because there exists no better structure for this * inside the kernel code. * * As an added bonus, we can use the DMAEngine API for all of this, * rather than inventing another extremely similar API. */ avail = priv->bytes; for_each_sg(table.sgl, sg, num_pages, i) { len = min_t(size_t, avail, FIFO_MAX_LEN); sg_dma_address(sg) = FIFO_DMA_ADDRESS; sg_dma_len(sg) = len; avail -= len; } /* Map the buffer for DMA */ ret = videobuf_dma_map(priv->dev, &priv->vb); if (ret) { dev_err(priv->dev, "Unable to map buffer for DMA\n"); goto out_free_table; } /* * Configure the DMA channel to transfer FIFO_SIZE / 2 bytes per * transaction, and then put it under external control */ memset(&config, 0, sizeof(config)); config.direction = DMA_MEM_TO_DEV; config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; config.dst_maxburst = fpga_fifo_size(priv->regs) / 2 / 4; ret = chan->device->device_control(chan, DMA_SLAVE_CONFIG, (unsigned long)&config); if (ret) { dev_err(priv->dev, "DMA slave configuration failed\n"); goto out_dma_unmap; } ret = chan->device->device_control(chan, FSLDMA_EXTERNAL_START, 1); if (ret) { dev_err(priv->dev, "DMA external control setup failed\n"); goto out_dma_unmap; } /* setup and submit the DMA transaction */ tx = chan->device->device_prep_dma_sg(chan, table.sgl, num_pages, vb->sglist, vb->sglen, 0); if (!tx) { dev_err(priv->dev, "Unable to prep DMA transaction\n"); ret = -ENOMEM; goto out_dma_unmap; } cookie = tx->tx_submit(tx); if (dma_submit_error(cookie)) { dev_err(priv->dev, "Unable to submit DMA transaction\n"); ret = -ENOMEM; goto out_dma_unmap; } dma_async_issue_pending(chan); /* Set the total byte count */ fpga_set_byte_count(priv->regs, priv->bytes); dev_dbg(priv->dev, "total byte count %u bytes\n", priv->bytes); /* Enable the controller for DMA programming */ fpga_programmer_enable(priv, true); dev_dbg(priv->dev, "enabled the controller\n"); /* Wait for the interrupt handler to signal that programming finished */ ret = wait_for_completion_timeout(&priv->completion, 2 * HZ); if (!ret) { dev_err(priv->dev, "Timed out waiting for completion\n"); ret = -ETIMEDOUT; goto out_disable_controller; } /* Retrieve the status from the interrupt handler */ ret = priv->status; out_disable_controller: fpga_programmer_disable(priv); out_dma_unmap: videobuf_dma_unmap(priv->dev, vb); out_free_table: sg_free_table(&table); out_return: return ret; } /* * Interrupt Handling */ static irqreturn_t fpga_irq(int irq, void *dev_id) { struct fpga_dev *priv = dev_id; /* Save the status */ priv->status = fpga_config_error(priv->regs) ? -EIO : 0; dev_dbg(priv->dev, "INTERRUPT status %d\n", priv->status); fpga_dump_registers(priv); /* Disabling the programmer clears the interrupt */ fpga_programmer_disable(priv); /* Notify any waiters */ complete(&priv->completion); return IRQ_HANDLED; } /* * SYSFS Helpers */ /** * fpga_do_stop() - deconfigure (reset) the DATA-FPGA's * @priv: the driver's private data structure * * LOCKING: must hold priv->lock */ static int fpga_do_stop(struct fpga_dev *priv) { u32 val; /* Set the led to unprogrammed */ ledtrig_fpga_programmed(false); /* Pulse the config line to reset the FPGA's */ val = CFG_CTL_ENABLE | CFG_CTL_RESET; iowrite32be(val, priv->regs + FPGA_CONFIG_CONTROL); iowrite32be(0x0, priv->regs + FPGA_CONFIG_CONTROL); return 0; } static noinline int fpga_do_program(struct fpga_dev *priv) { int ret; if (priv->bytes != priv->fw_size) { dev_err(priv->dev, "Incorrect bitfile size: got %zu bytes, " "should be %zu bytes\n", priv->bytes, priv->fw_size); return -EINVAL; } if (!fpga_power_enabled(priv)) { dev_err(priv->dev, "Power not enabled\n"); return -EINVAL; } if (!fpga_power_good(priv)) { dev_err(priv->dev, "Power not good\n"); return -EINVAL; } /* Set the LED to unprogrammed */ ledtrig_fpga_programmed(false); /* Try to program the FPGA's using DMA */ ret = fpga_program_dma(priv); /* If DMA failed or doesn't exist, try with CPU */ if (ret) { dev_warn(priv->dev, "Falling back to CPU programming\n"); ret = fpga_program_cpu(priv); } if (ret) { dev_err(priv->dev, "Unable to program FPGA's\n"); return ret; } /* Drop the firmware bitfile from memory */ fpga_drop_firmware_data(priv); dev_dbg(priv->dev, "FPGA programming successful\n"); ledtrig_fpga_programmed(true); return 0; } /* * File Operations */ static int fpga_open(struct inode *inode, struct file *filp) { /* * The miscdevice layer puts our struct miscdevice into the * filp->private_data field. We use this to find our private * data and then overwrite it with our own private structure. */ struct fpga_dev *priv = container_of(filp->private_data, struct fpga_dev, miscdev); unsigned int nr_pages; int ret; /* We only allow one process at a time */ ret = mutex_lock_interruptible(&priv->lock); if (ret) return ret; filp->private_data = priv; kref_get(&priv->ref); /* Truncation: drop any existing data */ if (filp->f_flags & O_TRUNC) priv->bytes = 0; /* Check if we have already allocated a buffer */ if (priv->vb_allocated) return 0; /* Allocate a buffer to hold enough data for the bitfile */ nr_pages = DIV_ROUND_UP(priv->fw_size, PAGE_SIZE); ret = videobuf_dma_init_kernel(&priv->vb, DMA_TO_DEVICE, nr_pages); if (ret) { dev_err(priv->dev, "unable to allocate data buffer\n"); mutex_unlock(&priv->lock); kref_put(&priv->ref, fpga_dev_remove); return ret; } priv->vb_allocated = true; return 0; } static int fpga_release(struct inode *inode, struct file *filp) { struct fpga_dev *priv = filp->private_data; mutex_unlock(&priv->lock); kref_put(&priv->ref, fpga_dev_remove); return 0; } static ssize_t fpga_write(struct file *filp, const char __user *buf, size_t count, loff_t *f_pos) { struct fpga_dev *priv = filp->private_data; /* FPGA bitfiles have an exact size: disallow anything else */ if (priv->bytes >= priv->fw_size) return -ENOSPC; count = min_t(size_t, priv->fw_size - priv->bytes, count); if (copy_from_user(priv->vb.vaddr + priv->bytes, buf, count)) return -EFAULT; priv->bytes += count; return count; } static ssize_t fpga_read(struct file *filp, char __user *buf, size_t count, loff_t *f_pos) { struct fpga_dev *priv = filp->private_data; count = min_t(size_t, priv->bytes - *f_pos, count); if (copy_to_user(buf, priv->vb.vaddr + *f_pos, count)) return -EFAULT; *f_pos += count; return count; } static loff_t fpga_llseek(struct file *filp, loff_t offset, int origin) { struct fpga_dev *priv = filp->private_data; loff_t newpos; /* only read-only opens are allowed to seek */ if ((filp->f_flags & O_ACCMODE) != O_RDONLY) return -EINVAL; switch (origin) { case SEEK_SET: /* seek relative to the beginning of the file */ newpos = offset; break; case SEEK_CUR: /* seek relative to current position in the file */ newpos = filp->f_pos + offset; break; case SEEK_END: /* seek relative to the end of the file */ newpos = priv->fw_size - offset; break; default: return -EINVAL; } /* check for sanity */ if (newpos > priv->fw_size) return -EINVAL; filp->f_pos = newpos; return newpos; } static const struct file_operations fpga_fops = { .open = fpga_open, .release = fpga_release, .write = fpga_write, .read = fpga_read, .llseek = fpga_llseek, }; /* * Device Attributes */ static ssize_t pfail_show(struct device *dev, struct device_attribute *attr, char *buf) { struct fpga_dev *priv = dev_get_drvdata(dev); u8 val; val = ioread8(priv->regs + CTL_PWR_FAIL); return snprintf(buf, PAGE_SIZE, "0x%.2x\n", val); } static ssize_t pgood_show(struct device *dev, struct device_attribute *attr, char *buf) { struct fpga_dev *priv = dev_get_drvdata(dev); return snprintf(buf, PAGE_SIZE, "%d\n", fpga_power_good(priv)); } static ssize_t penable_show(struct device *dev, struct device_attribute *attr, char *buf) { struct fpga_dev *priv = dev_get_drvdata(dev); return snprintf(buf, PAGE_SIZE, "%d\n", fpga_power_enabled(priv)); } static ssize_t penable_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct fpga_dev *priv = dev_get_drvdata(dev); unsigned long val; int ret; if (strict_strtoul(buf, 0, &val)) return -EINVAL; if (val) { ret = fpga_enable_power_supplies(priv); if (ret) return ret; } else { fpga_do_stop(priv); fpga_disable_power_supplies(priv); } return count; } static ssize_t program_show(struct device *dev, struct device_attribute *attr, char *buf) { struct fpga_dev *priv = dev_get_drvdata(dev); return snprintf(buf, PAGE_SIZE, "%d\n", fpga_running(priv)); } static ssize_t program_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct fpga_dev *priv = dev_get_drvdata(dev); unsigned long val; int ret; if (strict_strtoul(buf, 0, &val)) return -EINVAL; /* We can't have an image writer and be programming simultaneously */ if (mutex_lock_interruptible(&priv->lock)) return -ERESTARTSYS; /* Program or Reset the FPGA's */ ret = val ? fpga_do_program(priv) : fpga_do_stop(priv); if (ret) goto out_unlock; /* Success */ ret = count; out_unlock: mutex_unlock(&priv->lock); return ret; } static DEVICE_ATTR(power_fail, S_IRUGO, pfail_show, NULL); static DEVICE_ATTR(power_good, S_IRUGO, pgood_show, NULL); static DEVICE_ATTR(power_enable, S_IRUGO | S_IWUSR, penable_show, penable_store); static DEVICE_ATTR(program, S_IRUGO | S_IWUSR, program_show, program_store); static struct attribute *fpga_attributes[] = { &dev_attr_power_fail.attr, &dev_attr_power_good.attr, &dev_attr_power_enable.attr, &dev_attr_program.attr, NULL, }; static const struct attribute_group fpga_attr_group = { .attrs = fpga_attributes, }; /* * OpenFirmware Device Subsystem */ #define SYS_REG_VERSION 0x00 #define SYS_REG_GEOGRAPHIC 0x10 static bool dma_filter(struct dma_chan *chan, void *data) { /* * DMA Channel #0 is the only acceptable device * * This probably won't survive an unload/load cycle of the Freescale * DMAEngine driver, but that won't be a problem */ return chan->chan_id == 0 && chan->device->dev_id == 0; } static int fpga_of_remove(struct platform_device *op) { struct fpga_dev *priv = platform_get_drvdata(op); struct device *this_device = priv->miscdev.this_device; sysfs_remove_group(&this_device->kobj, &fpga_attr_group); misc_deregister(&priv->miscdev); free_irq(priv->irq, priv); irq_dispose_mapping(priv->irq); /* make sure the power supplies are off */ fpga_disable_power_supplies(priv); /* unmap registers */ iounmap(priv->immr); iounmap(priv->regs); dma_release_channel(priv->chan); /* drop our reference to the private data structure */ kref_put(&priv->ref, fpga_dev_remove); return 0; } /* CTL-CPLD Version Register */ #define CTL_CPLD_VERSION 0x2000 static int fpga_of_probe(struct platform_device *op) { struct device_node *of_node = op->dev.of_node; struct device *this_device; struct fpga_dev *priv; dma_cap_mask_t mask; u32 ver; int ret; /* Allocate private data */ priv = kzalloc(sizeof(*priv), GFP_KERNEL); if (!priv) { dev_err(&op->dev, "Unable to allocate private data\n"); ret = -ENOMEM; goto out_return; } /* Setup the miscdevice */ priv->miscdev.minor = MISC_DYNAMIC_MINOR; priv->miscdev.name = drv_name; priv->miscdev.fops = &fpga_fops; kref_init(&priv->ref); platform_set_drvdata(op, priv); priv->dev = &op->dev; mutex_init(&priv->lock); init_completion(&priv->completion); videobuf_dma_init(&priv->vb); dev_set_drvdata(priv->dev, priv); dma_cap_zero(mask); dma_cap_set(DMA_MEMCPY, mask); dma_cap_set(DMA_SLAVE, mask); dma_cap_set(DMA_SG, mask); /* Get control of DMA channel #0 */ priv->chan = dma_request_channel(mask, dma_filter, NULL); if (!priv->chan) { dev_err(&op->dev, "Unable to acquire DMA channel #0\n"); ret = -ENODEV; goto out_free_priv; } /* Remap the registers for use */ priv->regs = of_iomap(of_node, 0); if (!priv->regs) { dev_err(&op->dev, "Unable to ioremap registers\n"); ret = -ENOMEM; goto out_dma_release_channel; } /* Remap the IMMR for use */ priv->immr = ioremap(get_immrbase(), 0x100000); if (!priv->immr) { dev_err(&op->dev, "Unable to ioremap IMMR\n"); ret = -ENOMEM; goto out_unmap_regs; } /* * Check that external DMA is configured * * U-Boot does this for us, but we should check it and bail out if * there is a problem. Failing to have this register setup correctly * will cause the DMA controller to transfer a single cacheline * worth of data, then wedge itself. */ if ((ioread32be(priv->immr + 0x114) & 0xE00) != 0xE00) { dev_err(&op->dev, "External DMA control not configured\n"); ret = -ENODEV; goto out_unmap_immr; } /* * Check the CTL-CPLD version * * This driver uses the CTL-CPLD DATA-FPGA power sequencer, and we * don't want to run on any version of the CTL-CPLD that does not use * a compatible register layout. * * v2: changed register layout, added power sequencer * v3: added glitch filter on the i2c overcurrent/overtemp outputs */ ver = ioread8(priv->regs + CTL_CPLD_VERSION); if (ver != 0x02 && ver != 0x03) { dev_err(&op->dev, "CTL-CPLD is not version 0x02 or 0x03!\n"); ret = -ENODEV; goto out_unmap_immr; } /* Set the exact size that the firmware image should be */ ver = ioread32be(priv->regs + SYS_REG_VERSION); priv->fw_size = (ver & (1 << 18)) ? FW_SIZE_EP2S130 : FW_SIZE_EP2S90; /* Find the correct IRQ number */ priv->irq = irq_of_parse_and_map(of_node, 0); if (priv->irq == NO_IRQ) { dev_err(&op->dev, "Unable to find IRQ line\n"); ret = -ENODEV; goto out_unmap_immr; } /* Request the IRQ */ ret = request_irq(priv->irq, fpga_irq, IRQF_SHARED, drv_name, priv); if (ret) { dev_err(&op->dev, "Unable to request IRQ %d\n", priv->irq); ret = -ENODEV; goto out_irq_dispose_mapping; } /* Reset and stop the FPGA's, just in case */ fpga_do_stop(priv); /* Register the miscdevice */ ret = misc_register(&priv->miscdev); if (ret) { dev_err(&op->dev, "Unable to register miscdevice\n"); goto out_free_irq; } /* Create the sysfs files */ this_device = priv->miscdev.this_device; dev_set_drvdata(this_device, priv); ret = sysfs_create_group(&this_device->kobj, &fpga_attr_group); if (ret) { dev_err(&op->dev, "Unable to create sysfs files\n"); goto out_misc_deregister; } dev_info(priv->dev, "CARMA FPGA Programmer: %s rev%s with %s FPGAs\n", (ver & (1 << 17)) ? "Correlator" : "Digitizer", (ver & (1 << 16)) ? "B" : "A", (ver & (1 << 18)) ? "EP2S130" : "EP2S90"); return 0; out_misc_deregister: misc_deregister(&priv->miscdev); out_free_irq: free_irq(priv->irq, priv); out_irq_dispose_mapping: irq_dispose_mapping(priv->irq); out_unmap_immr: iounmap(priv->immr); out_unmap_regs: iounmap(priv->regs); out_dma_release_channel: dma_release_channel(priv->chan); out_free_priv: kref_put(&priv->ref, fpga_dev_remove); out_return: return ret; } static struct of_device_id fpga_of_match[] = { { .compatible = "carma,fpga-programmer", }, {}, }; static struct platform_driver fpga_of_driver = { .probe = fpga_of_probe, .remove = fpga_of_remove, .driver = { .name = drv_name, .of_match_table = fpga_of_match, .owner = THIS_MODULE, }, }; /* * Module Init / Exit */ static int __init fpga_init(void) { led_trigger_register_simple("fpga", &ledtrig_fpga); return platform_driver_register(&fpga_of_driver); } static void __exit fpga_exit(void) { platform_driver_unregister(&fpga_of_driver); led_trigger_unregister_simple(ledtrig_fpga); } MODULE_AUTHOR("Ira W. Snyder "); MODULE_DESCRIPTION("CARMA Board DATA-FPGA Programmer"); MODULE_LICENSE("GPL"); module_init(fpga_init); module_exit(fpga_exit);