/* * bfin_dma_5xx.c - Blackfin DMA implementation * * Copyright 2004-2008 Analog Devices Inc. * Licensed under the GPL-2 or later. */ #include #include #include #include #include #include #include #include #include #include #include #include #include struct dma_channel dma_ch[MAX_DMA_CHANNELS]; EXPORT_SYMBOL(dma_ch); static int __init blackfin_dma_init(void) { int i; printk(KERN_INFO "Blackfin DMA Controller\n"); for (i = 0; i < MAX_DMA_CHANNELS; i++) { dma_ch[i].chan_status = DMA_CHANNEL_FREE; dma_ch[i].regs = dma_io_base_addr[i]; mutex_init(&(dma_ch[i].dmalock)); } /* Mark MEMDMA Channel 0 as requested since we're using it internally */ request_dma(CH_MEM_STREAM0_DEST, "Blackfin dma_memcpy"); request_dma(CH_MEM_STREAM0_SRC, "Blackfin dma_memcpy"); #if defined(CONFIG_DEB_DMA_URGENT) bfin_write_EBIU_DDRQUE(bfin_read_EBIU_DDRQUE() | DEB1_URGENT | DEB2_URGENT | DEB3_URGENT); #endif return 0; } arch_initcall(blackfin_dma_init); #ifdef CONFIG_PROC_FS static int proc_dma_show(struct seq_file *m, void *v) { int i; for (i = 0; i < MAX_DMA_CHANNELS; ++i) if (dma_ch[i].chan_status != DMA_CHANNEL_FREE) seq_printf(m, "%2d: %s\n", i, dma_ch[i].device_id); return 0; } static int proc_dma_open(struct inode *inode, struct file *file) { return single_open(file, proc_dma_show, NULL); } static const struct file_operations proc_dma_operations = { .open = proc_dma_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; static int __init proc_dma_init(void) { return proc_create("dma", 0, NULL, &proc_dma_operations) != NULL; } late_initcall(proc_dma_init); #endif /** * request_dma - request a DMA channel * * Request the specific DMA channel from the system if it's available. */ int request_dma(unsigned int channel, const char *device_id) { pr_debug("request_dma() : BEGIN \n"); if (device_id == NULL) printk(KERN_WARNING "request_dma(%u): no device_id given\n", channel); #if defined(CONFIG_BF561) && ANOMALY_05000182 if (channel >= CH_IMEM_STREAM0_DEST && channel <= CH_IMEM_STREAM1_DEST) { if (get_cclk() > 500000000) { printk(KERN_WARNING "Request IMDMA failed due to ANOMALY 05000182\n"); return -EFAULT; } } #endif mutex_lock(&(dma_ch[channel].dmalock)); if ((dma_ch[channel].chan_status == DMA_CHANNEL_REQUESTED) || (dma_ch[channel].chan_status == DMA_CHANNEL_ENABLED)) { mutex_unlock(&(dma_ch[channel].dmalock)); pr_debug("DMA CHANNEL IN USE \n"); return -EBUSY; } else { dma_ch[channel].chan_status = DMA_CHANNEL_REQUESTED; pr_debug("DMA CHANNEL IS ALLOCATED \n"); } mutex_unlock(&(dma_ch[channel].dmalock)); #ifdef CONFIG_BF54x if (channel >= CH_UART2_RX && channel <= CH_UART3_TX) { unsigned int per_map; per_map = dma_ch[channel].regs->peripheral_map & 0xFFF; if (strncmp(device_id, "BFIN_UART", 9) == 0) dma_ch[channel].regs->peripheral_map = per_map | ((channel - CH_UART2_RX + 0xC)<<12); else dma_ch[channel].regs->peripheral_map = per_map | ((channel - CH_UART2_RX + 0x6)<<12); } #endif dma_ch[channel].device_id = device_id; dma_ch[channel].irq = 0; /* This is to be enabled by putting a restriction - * you have to request DMA, before doing any operations on * descriptor/channel */ pr_debug("request_dma() : END \n"); return 0; } EXPORT_SYMBOL(request_dma); int set_dma_callback(unsigned int channel, irq_handler_t callback, void *data) { BUG_ON(!(dma_ch[channel].chan_status != DMA_CHANNEL_FREE && channel < MAX_DMA_CHANNELS)); if (callback != NULL) { int ret; unsigned int irq = channel2irq(channel); ret = request_irq(irq, callback, IRQF_DISABLED, dma_ch[channel].device_id, data); if (ret) return ret; dma_ch[channel].irq = irq; dma_ch[channel].data = data; } return 0; } EXPORT_SYMBOL(set_dma_callback); /** * clear_dma_buffer - clear DMA fifos for specified channel * * Set the Buffer Clear bit in the Configuration register of specific DMA * channel. This will stop the descriptor based DMA operation. */ static void clear_dma_buffer(unsigned int channel) { dma_ch[channel].regs->cfg |= RESTART; SSYNC(); dma_ch[channel].regs->cfg &= ~RESTART; } void free_dma(unsigned int channel) { pr_debug("freedma() : BEGIN \n"); BUG_ON(!(dma_ch[channel].chan_status != DMA_CHANNEL_FREE && channel < MAX_DMA_CHANNELS)); /* Halt the DMA */ disable_dma(channel); clear_dma_buffer(channel); if (dma_ch[channel].irq) free_irq(dma_ch[channel].irq, dma_ch[channel].data); /* Clear the DMA Variable in the Channel */ mutex_lock(&(dma_ch[channel].dmalock)); dma_ch[channel].chan_status = DMA_CHANNEL_FREE; mutex_unlock(&(dma_ch[channel].dmalock)); pr_debug("freedma() : END \n"); } EXPORT_SYMBOL(free_dma); #ifdef CONFIG_PM # ifndef MAX_DMA_SUSPEND_CHANNELS # define MAX_DMA_SUSPEND_CHANNELS MAX_DMA_CHANNELS # endif int blackfin_dma_suspend(void) { int i; for (i = 0; i < MAX_DMA_SUSPEND_CHANNELS; ++i) { if (dma_ch[i].chan_status == DMA_CHANNEL_ENABLED) { printk(KERN_ERR "DMA Channel %d failed to suspend\n", i); return -EBUSY; } dma_ch[i].saved_peripheral_map = dma_ch[i].regs->peripheral_map; } return 0; } void blackfin_dma_resume(void) { int i; for (i = 0; i < MAX_DMA_SUSPEND_CHANNELS; ++i) dma_ch[i].regs->peripheral_map = dma_ch[i].saved_peripheral_map; } #endif /** * blackfin_dma_early_init - minimal DMA init * * Setup a few DMA registers so we can safely do DMA transfers early on in * the kernel booting process. Really this just means using dma_memcpy(). */ void __init blackfin_dma_early_init(void) { bfin_write_MDMA_S0_CONFIG(0); } /** * __dma_memcpy - program the MDMA registers * * Actually program MDMA0 and wait for the transfer to finish. Disable IRQs * while programming registers so that everything is fully configured. Wait * for DMA to finish with IRQs enabled. If interrupted, the initial DMA_DONE * check will make sure we don't clobber any existing transfer. */ static void __dma_memcpy(u32 daddr, s16 dmod, u32 saddr, s16 smod, size_t cnt, u32 conf) { static DEFINE_SPINLOCK(mdma_lock); unsigned long flags; spin_lock_irqsave(&mdma_lock, flags); if (bfin_read_MDMA_S0_CONFIG()) while (!(bfin_read_MDMA_D0_IRQ_STATUS() & DMA_DONE)) continue; if (conf & DMA2D) { /* For larger bit sizes, we've already divided down cnt so it * is no longer a multiple of 64k. So we have to break down * the limit here so it is a multiple of the incoming size. * There is no limitation here in terms of total size other * than the hardware though as the bits lost in the shift are * made up by MODIFY (== we can hit the whole address space). * X: (2^(16 - 0)) * 1 == (2^(16 - 1)) * 2 == (2^(16 - 2)) * 4 */ u32 shift = abs(dmod) >> 1; size_t ycnt = cnt >> (16 - shift); cnt = 1 << (16 - shift); bfin_write_MDMA_D0_Y_COUNT(ycnt); bfin_write_MDMA_S0_Y_COUNT(ycnt); bfin_write_MDMA_D0_Y_MODIFY(dmod); bfin_write_MDMA_S0_Y_MODIFY(smod); } bfin_write_MDMA_D0_START_ADDR(daddr); bfin_write_MDMA_D0_X_COUNT(cnt); bfin_write_MDMA_D0_X_MODIFY(dmod); bfin_write_MDMA_D0_IRQ_STATUS(DMA_DONE | DMA_ERR); bfin_write_MDMA_S0_START_ADDR(saddr); bfin_write_MDMA_S0_X_COUNT(cnt); bfin_write_MDMA_S0_X_MODIFY(smod); bfin_write_MDMA_S0_IRQ_STATUS(DMA_DONE | DMA_ERR); bfin_write_MDMA_S0_CONFIG(DMAEN | conf); bfin_write_MDMA_D0_CONFIG(WNR | DI_EN | DMAEN | conf); spin_unlock_irqrestore(&mdma_lock, flags); SSYNC(); while (!(bfin_read_MDMA_D0_IRQ_STATUS() & DMA_DONE)) if (bfin_read_MDMA_S0_CONFIG()) continue; else return; bfin_write_MDMA_D0_IRQ_STATUS(DMA_DONE | DMA_ERR); bfin_write_MDMA_S0_CONFIG(0); bfin_write_MDMA_D0_CONFIG(0); } /** * _dma_memcpy - translate C memcpy settings into MDMA settings * * Handle all the high level steps before we touch the MDMA registers. So * handle caching, tweaking of sizes, and formatting of addresses. */ static void *_dma_memcpy(void *pdst, const void *psrc, size_t size) { u32 conf, shift; s16 mod; unsigned long dst = (unsigned long)pdst; unsigned long src = (unsigned long)psrc; if (size == 0) return NULL; if (bfin_addr_dcachable(src)) blackfin_dcache_flush_range(src, src + size); if (bfin_addr_dcachable(dst)) blackfin_dcache_invalidate_range(dst, dst + size); if (dst % 4 == 0 && src % 4 == 0 && size % 4 == 0) { conf = WDSIZE_32; shift = 2; } else if (dst % 2 == 0 && src % 2 == 0 && size % 2 == 0) { conf = WDSIZE_16; shift = 1; } else { conf = WDSIZE_8; shift = 0; } /* If the two memory regions have a chance of overlapping, make * sure the memcpy still works as expected. Do this by having the * copy run backwards instead. */ mod = 1 << shift; if (src < dst) { mod *= -1; dst += size + mod; src += size + mod; } size >>= shift; if (size > 0x10000) conf |= DMA2D; __dma_memcpy(dst, mod, src, mod, size, conf); return pdst; } /** * dma_memcpy - DMA memcpy under mutex lock * * Do not check arguments before starting the DMA memcpy. Break the transfer * up into two pieces. The first transfer is in multiples of 64k and the * second transfer is the piece smaller than 64k. */ void *dma_memcpy(void *dst, const void *src, size_t size) { size_t bulk, rest; bulk = size & ~0xffff; rest = size - bulk; if (bulk) _dma_memcpy(dst, src, bulk); _dma_memcpy(dst + bulk, src + bulk, rest); return dst; } EXPORT_SYMBOL(dma_memcpy); /** * safe_dma_memcpy - DMA memcpy w/argument checking * * Verify arguments are safe before heading to dma_memcpy(). */ void *safe_dma_memcpy(void *dst, const void *src, size_t size) { if (!access_ok(VERIFY_WRITE, dst, size)) return NULL; if (!access_ok(VERIFY_READ, src, size)) return NULL; return dma_memcpy(dst, src, size); } EXPORT_SYMBOL(safe_dma_memcpy); static void _dma_out(unsigned long addr, unsigned long buf, unsigned short len, u16 size, u16 dma_size) { blackfin_dcache_flush_range(buf, buf + len * size); __dma_memcpy(addr, 0, buf, size, len, dma_size); } static void _dma_in(unsigned long addr, unsigned long buf, unsigned short len, u16 size, u16 dma_size) { blackfin_dcache_invalidate_range(buf, buf + len * size); __dma_memcpy(buf, size, addr, 0, len, dma_size); } #define MAKE_DMA_IO(io, bwl, isize, dmasize, cnst) \ void dma_##io##s##bwl(unsigned long addr, cnst void *buf, unsigned short len) \ { \ _dma_##io(addr, (unsigned long)buf, len, isize, WDSIZE_##dmasize); \ } \ EXPORT_SYMBOL(dma_##io##s##bwl) MAKE_DMA_IO(out, b, 1, 8, const); MAKE_DMA_IO(in, b, 1, 8, ); MAKE_DMA_IO(out, w, 2, 16, const); MAKE_DMA_IO(in, w, 2, 16, ); MAKE_DMA_IO(out, l, 4, 32, const); MAKE_DMA_IO(in, l, 4, 32, );