/* * linux/drivers/scsi/esas2r/esas2r_init.c * For use with ATTO ExpressSAS R6xx SAS/SATA RAID controllers * * Copyright (c) 2001-2013 ATTO Technology, Inc. * (mailto:linuxdrivers@attotech.com)mpt3sas/mpt3sas_trigger_diag. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * NO WARRANTY * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT, * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is * solely responsible for determining the appropriateness of using and * distributing the Program and assumes all risks associated with its * exercise of rights under this Agreement, including but not limited to * the risks and costs of program errors, damage to or loss of data, * programs or equipment, and unavailability or interruption of operations. * * DISCLAIMER OF LIABILITY * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, * USA. */ #include "esas2r.h" static bool esas2r_initmem_alloc(struct esas2r_adapter *a, struct esas2r_mem_desc *mem_desc, u32 align) { mem_desc->esas2r_param = mem_desc->size + align; mem_desc->virt_addr = NULL; mem_desc->phys_addr = 0; mem_desc->esas2r_data = dma_alloc_coherent(&a->pcid->dev, (size_t)mem_desc-> esas2r_param, (dma_addr_t *)&mem_desc-> phys_addr, GFP_KERNEL); if (mem_desc->esas2r_data == NULL) { esas2r_log(ESAS2R_LOG_CRIT, "failed to allocate %lu bytes of consistent memory!", (long unsigned int)mem_desc->esas2r_param); return false; } mem_desc->virt_addr = PTR_ALIGN(mem_desc->esas2r_data, align); mem_desc->phys_addr = ALIGN(mem_desc->phys_addr, align); memset(mem_desc->virt_addr, 0, mem_desc->size); return true; } static void esas2r_initmem_free(struct esas2r_adapter *a, struct esas2r_mem_desc *mem_desc) { if (mem_desc->virt_addr == NULL) return; /* * Careful! phys_addr and virt_addr may have been adjusted from the * original allocation in order to return the desired alignment. That * means we have to use the original address (in esas2r_data) and size * (esas2r_param) and calculate the original physical address based on * the difference between the requested and actual allocation size. */ if (mem_desc->phys_addr) { int unalign = ((u8 *)mem_desc->virt_addr) - ((u8 *)mem_desc->esas2r_data); dma_free_coherent(&a->pcid->dev, (size_t)mem_desc->esas2r_param, mem_desc->esas2r_data, (dma_addr_t)(mem_desc->phys_addr - unalign)); } else { kfree(mem_desc->esas2r_data); } mem_desc->virt_addr = NULL; } static bool alloc_vda_req(struct esas2r_adapter *a, struct esas2r_request *rq) { struct esas2r_mem_desc *memdesc = kzalloc( sizeof(struct esas2r_mem_desc), GFP_KERNEL); if (memdesc == NULL) { esas2r_hdebug("could not alloc mem for vda request memdesc\n"); return false; } memdesc->size = sizeof(union atto_vda_req) + ESAS2R_DATA_BUF_LEN; if (!esas2r_initmem_alloc(a, memdesc, 256)) { esas2r_hdebug("could not alloc mem for vda request\n"); kfree(memdesc); return false; } a->num_vrqs++; list_add(&memdesc->next_desc, &a->vrq_mds_head); rq->vrq_md = memdesc; rq->vrq = (union atto_vda_req *)memdesc->virt_addr; rq->vrq->scsi.handle = a->num_vrqs; return true; } static void esas2r_unmap_regions(struct esas2r_adapter *a) { if (a->regs) iounmap((void __iomem *)a->regs); a->regs = NULL; pci_release_region(a->pcid, 2); if (a->data_window) iounmap((void __iomem *)a->data_window); a->data_window = NULL; pci_release_region(a->pcid, 0); } static int esas2r_map_regions(struct esas2r_adapter *a) { int error; a->regs = NULL; a->data_window = NULL; error = pci_request_region(a->pcid, 2, a->name); if (error != 0) { esas2r_log(ESAS2R_LOG_CRIT, "pci_request_region(2) failed, error %d", error); return error; } a->regs = (void __force *)ioremap(pci_resource_start(a->pcid, 2), pci_resource_len(a->pcid, 2)); if (a->regs == NULL) { esas2r_log(ESAS2R_LOG_CRIT, "ioremap failed for regs mem region\n"); pci_release_region(a->pcid, 2); return -EFAULT; } error = pci_request_region(a->pcid, 0, a->name); if (error != 0) { esas2r_log(ESAS2R_LOG_CRIT, "pci_request_region(2) failed, error %d", error); esas2r_unmap_regions(a); return error; } a->data_window = (void __force *)ioremap(pci_resource_start(a->pcid, 0), pci_resource_len(a->pcid, 0)); if (a->data_window == NULL) { esas2r_log(ESAS2R_LOG_CRIT, "ioremap failed for data_window mem region\n"); esas2r_unmap_regions(a); return -EFAULT; } return 0; } static void esas2r_setup_interrupts(struct esas2r_adapter *a, int intr_mode) { int i; /* Set up interrupt mode based on the requested value */ switch (intr_mode) { case INTR_MODE_LEGACY: use_legacy_interrupts: a->intr_mode = INTR_MODE_LEGACY; break; case INTR_MODE_MSI: i = pci_enable_msi(a->pcid); if (i != 0) { esas2r_log(ESAS2R_LOG_WARN, "failed to enable MSI for adapter %d, " "falling back to legacy interrupts " "(err=%d)", a->index, i); goto use_legacy_interrupts; } a->intr_mode = INTR_MODE_MSI; set_bit(AF2_MSI_ENABLED, &a->flags2); break; default: esas2r_log(ESAS2R_LOG_WARN, "unknown interrupt_mode %d requested, " "falling back to legacy interrupt", interrupt_mode); goto use_legacy_interrupts; } } static void esas2r_claim_interrupts(struct esas2r_adapter *a) { unsigned long flags = IRQF_DISABLED; if (a->intr_mode == INTR_MODE_LEGACY) flags |= IRQF_SHARED; esas2r_log(ESAS2R_LOG_INFO, "esas2r_claim_interrupts irq=%d (%p, %s, %x)", a->pcid->irq, a, a->name, flags); if (request_irq(a->pcid->irq, (a->intr_mode == INTR_MODE_LEGACY) ? esas2r_interrupt : esas2r_msi_interrupt, flags, a->name, a)) { esas2r_log(ESAS2R_LOG_CRIT, "unable to request IRQ %02X", a->pcid->irq); return; } set_bit(AF2_IRQ_CLAIMED, &a->flags2); esas2r_log(ESAS2R_LOG_INFO, "claimed IRQ %d flags: 0x%lx", a->pcid->irq, flags); } int esas2r_init_adapter(struct Scsi_Host *host, struct pci_dev *pcid, int index) { struct esas2r_adapter *a; u64 bus_addr = 0; int i; void *next_uncached; struct esas2r_request *first_request, *last_request; if (index >= MAX_ADAPTERS) { esas2r_log(ESAS2R_LOG_CRIT, "tried to init invalid adapter index %u!", index); return 0; } if (esas2r_adapters[index]) { esas2r_log(ESAS2R_LOG_CRIT, "tried to init existing adapter index %u!", index); return 0; } a = (struct esas2r_adapter *)host->hostdata; memset(a, 0, sizeof(struct esas2r_adapter)); a->pcid = pcid; a->host = host; if (sizeof(dma_addr_t) > 4) { const uint64_t required_mask = dma_get_required_mask (&pcid->dev); if (required_mask > DMA_BIT_MASK(32) && !pci_set_dma_mask(pcid, DMA_BIT_MASK(64)) && !pci_set_consistent_dma_mask(pcid, DMA_BIT_MASK(64))) { esas2r_log_dev(ESAS2R_LOG_INFO, &(a->pcid->dev), "64-bit PCI addressing enabled\n"); } else if (!pci_set_dma_mask(pcid, DMA_BIT_MASK(32)) && !pci_set_consistent_dma_mask(pcid, DMA_BIT_MASK(32))) { esas2r_log_dev(ESAS2R_LOG_INFO, &(a->pcid->dev), "32-bit PCI addressing enabled\n"); } else { esas2r_log(ESAS2R_LOG_CRIT, "failed to set DMA mask"); esas2r_kill_adapter(index); return 0; } } else { if (!pci_set_dma_mask(pcid, DMA_BIT_MASK(32)) && !pci_set_consistent_dma_mask(pcid, DMA_BIT_MASK(32))) { esas2r_log_dev(ESAS2R_LOG_INFO, &(a->pcid->dev), "32-bit PCI addressing enabled\n"); } else { esas2r_log(ESAS2R_LOG_CRIT, "failed to set DMA mask"); esas2r_kill_adapter(index); return 0; } } esas2r_adapters[index] = a; sprintf(a->name, ESAS2R_DRVR_NAME "_%02d", index); esas2r_debug("new adapter %p, name %s", a, a->name); spin_lock_init(&a->request_lock); spin_lock_init(&a->fw_event_lock); sema_init(&a->fm_api_semaphore, 1); sema_init(&a->fs_api_semaphore, 1); sema_init(&a->nvram_semaphore, 1); esas2r_fw_event_off(a); snprintf(a->fw_event_q_name, ESAS2R_KOBJ_NAME_LEN, "esas2r/%d", a->index); a->fw_event_q = create_singlethread_workqueue(a->fw_event_q_name); init_waitqueue_head(&a->buffered_ioctl_waiter); init_waitqueue_head(&a->nvram_waiter); init_waitqueue_head(&a->fm_api_waiter); init_waitqueue_head(&a->fs_api_waiter); init_waitqueue_head(&a->vda_waiter); INIT_LIST_HEAD(&a->general_req.req_list); INIT_LIST_HEAD(&a->active_list); INIT_LIST_HEAD(&a->defer_list); INIT_LIST_HEAD(&a->free_sg_list_head); INIT_LIST_HEAD(&a->avail_request); INIT_LIST_HEAD(&a->vrq_mds_head); INIT_LIST_HEAD(&a->fw_event_list); first_request = (struct esas2r_request *)((u8 *)(a + 1)); for (last_request = first_request, i = 1; i < num_requests; last_request++, i++) { INIT_LIST_HEAD(&last_request->req_list); list_add_tail(&last_request->comp_list, &a->avail_request); if (!alloc_vda_req(a, last_request)) { esas2r_log(ESAS2R_LOG_CRIT, "failed to allocate a VDA request!"); esas2r_kill_adapter(index); return 0; } } esas2r_debug("requests: %p to %p (%d, %d)", first_request, last_request, sizeof(*first_request), num_requests); if (esas2r_map_regions(a) != 0) { esas2r_log(ESAS2R_LOG_CRIT, "could not map PCI regions!"); esas2r_kill_adapter(index); return 0; } a->index = index; /* interrupts will be disabled until we are done with init */ atomic_inc(&a->dis_ints_cnt); atomic_inc(&a->disable_cnt); set_bit(AF_CHPRST_PENDING, &a->flags); set_bit(AF_DISC_PENDING, &a->flags); set_bit(AF_FIRST_INIT, &a->flags); set_bit(AF_LEGACY_SGE_MODE, &a->flags); a->init_msg = ESAS2R_INIT_MSG_START; a->max_vdareq_size = 128; a->build_sgl = esas2r_build_sg_list_sge; esas2r_setup_interrupts(a, interrupt_mode); a->uncached_size = esas2r_get_uncached_size(a); a->uncached = dma_alloc_coherent(&pcid->dev, (size_t)a->uncached_size, (dma_addr_t *)&bus_addr, GFP_KERNEL); if (a->uncached == NULL) { esas2r_log(ESAS2R_LOG_CRIT, "failed to allocate %d bytes of consistent memory!", a->uncached_size); esas2r_kill_adapter(index); return 0; } a->uncached_phys = bus_addr; esas2r_debug("%d bytes uncached memory allocated @ %p (%x:%x)", a->uncached_size, a->uncached, upper_32_bits(bus_addr), lower_32_bits(bus_addr)); memset(a->uncached, 0, a->uncached_size); next_uncached = a->uncached; if (!esas2r_init_adapter_struct(a, &next_uncached)) { esas2r_log(ESAS2R_LOG_CRIT, "failed to initialize adapter structure (2)!"); esas2r_kill_adapter(index); return 0; } tasklet_init(&a->tasklet, esas2r_adapter_tasklet, (unsigned long)a); /* * Disable chip interrupts to prevent spurious interrupts * until we claim the IRQ. */ esas2r_disable_chip_interrupts(a); esas2r_check_adapter(a); if (!esas2r_init_adapter_hw(a, true)) esas2r_log(ESAS2R_LOG_CRIT, "failed to initialize hardware!"); else esas2r_debug("esas2r_init_adapter ok"); esas2r_claim_interrupts(a); if (test_bit(AF2_IRQ_CLAIMED, &a->flags2)) esas2r_enable_chip_interrupts(a); set_bit(AF2_INIT_DONE, &a->flags2); if (!test_bit(AF_DEGRADED_MODE, &a->flags)) esas2r_kickoff_timer(a); esas2r_debug("esas2r_init_adapter done for %p (%d)", a, a->disable_cnt); return 1; } static void esas2r_adapter_power_down(struct esas2r_adapter *a, int power_management) { struct esas2r_mem_desc *memdesc, *next; if ((test_bit(AF2_INIT_DONE, &a->flags2)) && (!test_bit(AF_DEGRADED_MODE, &a->flags))) { if (!power_management) { del_timer_sync(&a->timer); tasklet_kill(&a->tasklet); } esas2r_power_down(a); /* * There are versions of firmware that do not handle the sync * cache command correctly. Stall here to ensure that the * cache is lazily flushed. */ mdelay(500); esas2r_debug("chip halted"); } /* Remove sysfs binary files */ if (a->sysfs_fw_created) { sysfs_remove_bin_file(&a->host->shost_dev.kobj, &bin_attr_fw); a->sysfs_fw_created = 0; } if (a->sysfs_fs_created) { sysfs_remove_bin_file(&a->host->shost_dev.kobj, &bin_attr_fs); a->sysfs_fs_created = 0; } if (a->sysfs_vda_created) { sysfs_remove_bin_file(&a->host->shost_dev.kobj, &bin_attr_vda); a->sysfs_vda_created = 0; } if (a->sysfs_hw_created) { sysfs_remove_bin_file(&a->host->shost_dev.kobj, &bin_attr_hw); a->sysfs_hw_created = 0; } if (a->sysfs_live_nvram_created) { sysfs_remove_bin_file(&a->host->shost_dev.kobj, &bin_attr_live_nvram); a->sysfs_live_nvram_created = 0; } if (a->sysfs_default_nvram_created) { sysfs_remove_bin_file(&a->host->shost_dev.kobj, &bin_attr_default_nvram); a->sysfs_default_nvram_created = 0; } /* Clean up interrupts */ if (test_bit(AF2_IRQ_CLAIMED, &a->flags2)) { esas2r_log_dev(ESAS2R_LOG_INFO, &(a->pcid->dev), "free_irq(%d) called", a->pcid->irq); free_irq(a->pcid->irq, a); esas2r_debug("IRQ released"); clear_bit(AF2_IRQ_CLAIMED, &a->flags2); } if (test_bit(AF2_MSI_ENABLED, &a->flags2)) { pci_disable_msi(a->pcid); clear_bit(AF2_MSI_ENABLED, &a->flags2); esas2r_debug("MSI disabled"); } if (a->inbound_list_md.virt_addr) esas2r_initmem_free(a, &a->inbound_list_md); if (a->outbound_list_md.virt_addr) esas2r_initmem_free(a, &a->outbound_list_md); list_for_each_entry_safe(memdesc, next, &a->free_sg_list_head, next_desc) { esas2r_initmem_free(a, memdesc); } /* Following frees everything allocated via alloc_vda_req */ list_for_each_entry_safe(memdesc, next, &a->vrq_mds_head, next_desc) { esas2r_initmem_free(a, memdesc); list_del(&memdesc->next_desc); kfree(memdesc); } kfree(a->first_ae_req); a->first_ae_req = NULL; kfree(a->sg_list_mds); a->sg_list_mds = NULL; kfree(a->req_table); a->req_table = NULL; if (a->regs) { esas2r_unmap_regions(a); a->regs = NULL; a->data_window = NULL; esas2r_debug("regions unmapped"); } } /* Release/free allocated resources for specified adapters. */ void esas2r_kill_adapter(int i) { struct esas2r_adapter *a = esas2r_adapters[i]; if (a) { unsigned long flags; struct workqueue_struct *wq; esas2r_debug("killing adapter %p [%d] ", a, i); esas2r_fw_event_off(a); esas2r_adapter_power_down(a, 0); if (esas2r_buffered_ioctl && (a->pcid == esas2r_buffered_ioctl_pcid)) { dma_free_coherent(&a->pcid->dev, (size_t)esas2r_buffered_ioctl_size, esas2r_buffered_ioctl, esas2r_buffered_ioctl_addr); esas2r_buffered_ioctl = NULL; } if (a->vda_buffer) { dma_free_coherent(&a->pcid->dev, (size_t)VDA_MAX_BUFFER_SIZE, a->vda_buffer, (dma_addr_t)a->ppvda_buffer); a->vda_buffer = NULL; } if (a->fs_api_buffer) { dma_free_coherent(&a->pcid->dev, (size_t)a->fs_api_buffer_size, a->fs_api_buffer, (dma_addr_t)a->ppfs_api_buffer); a->fs_api_buffer = NULL; } kfree(a->local_atto_ioctl); a->local_atto_ioctl = NULL; spin_lock_irqsave(&a->fw_event_lock, flags); wq = a->fw_event_q; a->fw_event_q = NULL; spin_unlock_irqrestore(&a->fw_event_lock, flags); if (wq) destroy_workqueue(wq); if (a->uncached) { dma_free_coherent(&a->pcid->dev, (size_t)a->uncached_size, a->uncached, (dma_addr_t)a->uncached_phys); a->uncached = NULL; esas2r_debug("uncached area freed"); } esas2r_log_dev(ESAS2R_LOG_INFO, &(a->pcid->dev), "pci_disable_device() called. msix_enabled: %d " "msi_enabled: %d irq: %d pin: %d", a->pcid->msix_enabled, a->pcid->msi_enabled, a->pcid->irq, a->pcid->pin); esas2r_log_dev(ESAS2R_LOG_INFO, &(a->pcid->dev), "before pci_disable_device() enable_cnt: %d", a->pcid->enable_cnt.counter); pci_disable_device(a->pcid); esas2r_log_dev(ESAS2R_LOG_INFO, &(a->pcid->dev), "after pci_disable_device() enable_cnt: %d", a->pcid->enable_cnt.counter); esas2r_log_dev(ESAS2R_LOG_INFO, &(a->pcid->dev), "pci_set_drv_data(%p, NULL) called", a->pcid); pci_set_drvdata(a->pcid, NULL); esas2r_adapters[i] = NULL; if (test_bit(AF2_INIT_DONE, &a->flags2)) { clear_bit(AF2_INIT_DONE, &a->flags2); set_bit(AF_DEGRADED_MODE, &a->flags); esas2r_log_dev(ESAS2R_LOG_INFO, &(a->host->shost_gendev), "scsi_remove_host() called"); scsi_remove_host(a->host); esas2r_log_dev(ESAS2R_LOG_INFO, &(a->host->shost_gendev), "scsi_host_put() called"); scsi_host_put(a->host); } } } int esas2r_cleanup(struct Scsi_Host *host) { struct esas2r_adapter *a; int index; if (host == NULL) { int i; esas2r_debug("esas2r_cleanup everything"); for (i = 0; i < MAX_ADAPTERS; i++) esas2r_kill_adapter(i); return -1; } esas2r_debug("esas2r_cleanup called for host %p", host); a = (struct esas2r_adapter *)host->hostdata; index = a->index; esas2r_kill_adapter(index); return index; } int esas2r_suspend(struct pci_dev *pdev, pm_message_t state) { struct Scsi_Host *host = pci_get_drvdata(pdev); u32 device_state; struct esas2r_adapter *a = (struct esas2r_adapter *)host->hostdata; esas2r_log_dev(ESAS2R_LOG_INFO, &(pdev->dev), "suspending adapter()"); if (!a) return -ENODEV; esas2r_adapter_power_down(a, 1); device_state = pci_choose_state(pdev, state); esas2r_log_dev(ESAS2R_LOG_INFO, &(pdev->dev), "pci_save_state() called"); pci_save_state(pdev); esas2r_log_dev(ESAS2R_LOG_INFO, &(pdev->dev), "pci_disable_device() called"); pci_disable_device(pdev); esas2r_log_dev(ESAS2R_LOG_INFO, &(pdev->dev), "pci_set_power_state() called"); pci_set_power_state(pdev, device_state); esas2r_log_dev(ESAS2R_LOG_INFO, &(pdev->dev), "esas2r_suspend(): 0"); return 0; } int esas2r_resume(struct pci_dev *pdev) { struct Scsi_Host *host = pci_get_drvdata(pdev); struct esas2r_adapter *a = (struct esas2r_adapter *)host->hostdata; int rez; esas2r_log_dev(ESAS2R_LOG_INFO, &(pdev->dev), "resuming adapter()"); esas2r_log_dev(ESAS2R_LOG_INFO, &(pdev->dev), "pci_set_power_state(PCI_D0) " "called"); pci_set_power_state(pdev, PCI_D0); esas2r_log_dev(ESAS2R_LOG_INFO, &(pdev->dev), "pci_enable_wake(PCI_D0, 0) " "called"); pci_enable_wake(pdev, PCI_D0, 0); esas2r_log_dev(ESAS2R_LOG_INFO, &(pdev->dev), "pci_restore_state() called"); pci_restore_state(pdev); esas2r_log_dev(ESAS2R_LOG_INFO, &(pdev->dev), "pci_enable_device() called"); rez = pci_enable_device(pdev); pci_set_master(pdev); if (!a) { rez = -ENODEV; goto error_exit; } if (esas2r_map_regions(a) != 0) { esas2r_log(ESAS2R_LOG_CRIT, "could not re-map PCI regions!"); rez = -ENOMEM; goto error_exit; } /* Set up interupt mode */ esas2r_setup_interrupts(a, a->intr_mode); /* * Disable chip interrupts to prevent spurious interrupts until we * claim the IRQ. */ esas2r_disable_chip_interrupts(a); if (!esas2r_power_up(a, true)) { esas2r_debug("yikes, esas2r_power_up failed"); rez = -ENOMEM; goto error_exit; } esas2r_claim_interrupts(a); if (test_bit(AF2_IRQ_CLAIMED, &a->flags2)) { /* * Now that system interrupt(s) are claimed, we can enable * chip interrupts. */ esas2r_enable_chip_interrupts(a); esas2r_kickoff_timer(a); } else { esas2r_debug("yikes, unable to claim IRQ"); esas2r_log(ESAS2R_LOG_CRIT, "could not re-claim IRQ!"); rez = -ENOMEM; goto error_exit; } error_exit: esas2r_log_dev(ESAS2R_LOG_CRIT, &(pdev->dev), "esas2r_resume(): %d", rez); return rez; } bool esas2r_set_degraded_mode(struct esas2r_adapter *a, char *error_str) { set_bit(AF_DEGRADED_MODE, &a->flags); esas2r_log(ESAS2R_LOG_CRIT, "setting adapter to degraded mode: %s\n", error_str); return false; } u32 esas2r_get_uncached_size(struct esas2r_adapter *a) { return sizeof(struct esas2r_sas_nvram) + ALIGN(ESAS2R_DISC_BUF_LEN, 8) + ALIGN(sizeof(u32), 8) /* outbound list copy pointer */ + 8 + (num_sg_lists * (u16)sgl_page_size) + ALIGN((num_requests + num_ae_requests + 1 + ESAS2R_LIST_EXTRA) * sizeof(struct esas2r_inbound_list_source_entry), 8) + ALIGN((num_requests + num_ae_requests + 1 + ESAS2R_LIST_EXTRA) * sizeof(struct atto_vda_ob_rsp), 8) + 256; /* VDA request and buffer align */ } static void esas2r_init_pci_cfg_space(struct esas2r_adapter *a) { int pcie_cap_reg; pcie_cap_reg = pci_find_capability(a->pcid, PCI_CAP_ID_EXP); if (0xffff & pcie_cap_reg) { u16 devcontrol; pci_read_config_word(a->pcid, pcie_cap_reg + PCI_EXP_DEVCTL, &devcontrol); if ((devcontrol & PCI_EXP_DEVCTL_READRQ) > 0x2000) { esas2r_log(ESAS2R_LOG_INFO, "max read request size > 512B"); devcontrol &= ~PCI_EXP_DEVCTL_READRQ; devcontrol |= 0x2000; pci_write_config_word(a->pcid, pcie_cap_reg + PCI_EXP_DEVCTL, devcontrol); } } } /* * Determine the organization of the uncached data area and * finish initializing the adapter structure */ bool esas2r_init_adapter_struct(struct esas2r_adapter *a, void **uncached_area) { u32 i; u8 *high; struct esas2r_inbound_list_source_entry *element; struct esas2r_request *rq; struct esas2r_mem_desc *sgl; spin_lock_init(&a->sg_list_lock); spin_lock_init(&a->mem_lock); spin_lock_init(&a->queue_lock); a->targetdb_end = &a->targetdb[ESAS2R_MAX_TARGETS]; if (!alloc_vda_req(a, &a->general_req)) { esas2r_hdebug( "failed to allocate a VDA request for the general req!"); return false; } /* allocate requests for asynchronous events */ a->first_ae_req = kzalloc(num_ae_requests * sizeof(struct esas2r_request), GFP_KERNEL); if (a->first_ae_req == NULL) { esas2r_log(ESAS2R_LOG_CRIT, "failed to allocate memory for asynchronous events"); return false; } /* allocate the S/G list memory descriptors */ a->sg_list_mds = kzalloc( num_sg_lists * sizeof(struct esas2r_mem_desc), GFP_KERNEL); if (a->sg_list_mds == NULL) { esas2r_log(ESAS2R_LOG_CRIT, "failed to allocate memory for s/g list descriptors"); return false; } /* allocate the request table */ a->req_table = kzalloc((num_requests + num_ae_requests + 1) * sizeof(struct esas2r_request *), GFP_KERNEL); if (a->req_table == NULL) { esas2r_log(ESAS2R_LOG_CRIT, "failed to allocate memory for the request table"); return false; } /* initialize PCI configuration space */ esas2r_init_pci_cfg_space(a); /* * the thunder_stream boards all have a serial flash part that has a * different base address on the AHB bus. */ if ((a->pcid->subsystem_vendor == ATTO_VENDOR_ID) && (a->pcid->subsystem_device & ATTO_SSDID_TBT)) a->flags2 |= AF2_THUNDERBOLT; if (test_bit(AF2_THUNDERBOLT, &a->flags2)) a->flags2 |= AF2_SERIAL_FLASH; if (a->pcid->subsystem_device == ATTO_TLSH_1068) a->flags2 |= AF2_THUNDERLINK; /* Uncached Area */ high = (u8 *)*uncached_area; /* initialize the scatter/gather table pages */ for (i = 0, sgl = a->sg_list_mds; i < num_sg_lists; i++, sgl++) { sgl->size = sgl_page_size; list_add_tail(&sgl->next_desc, &a->free_sg_list_head); if (!esas2r_initmem_alloc(a, sgl, ESAS2R_SGL_ALIGN)) { /* Allow the driver to load if the minimum count met. */ if (i < NUM_SGL_MIN) return false; break; } } /* compute the size of the lists */ a->list_size = num_requests + ESAS2R_LIST_EXTRA; /* allocate the inbound list */ a->inbound_list_md.size = a->list_size * sizeof(struct esas2r_inbound_list_source_entry); if (!esas2r_initmem_alloc(a, &a->inbound_list_md, ESAS2R_LIST_ALIGN)) { esas2r_hdebug("failed to allocate IB list"); return false; } /* allocate the outbound list */ a->outbound_list_md.size = a->list_size * sizeof(struct atto_vda_ob_rsp); if (!esas2r_initmem_alloc(a, &a->outbound_list_md, ESAS2R_LIST_ALIGN)) { esas2r_hdebug("failed to allocate IB list"); return false; } /* allocate the NVRAM structure */ a->nvram = (struct esas2r_sas_nvram *)high; high += sizeof(struct esas2r_sas_nvram); /* allocate the discovery buffer */ a->disc_buffer = high; high += ESAS2R_DISC_BUF_LEN; high = PTR_ALIGN(high, 8); /* allocate the outbound list copy pointer */ a->outbound_copy = (u32 volatile *)high; high += sizeof(u32); if (!test_bit(AF_NVR_VALID, &a->flags)) esas2r_nvram_set_defaults(a); /* update the caller's uncached memory area pointer */ *uncached_area = (void *)high; /* initialize the allocated memory */ if (test_bit(AF_FIRST_INIT, &a->flags)) { memset(a->req_table, 0, (num_requests + num_ae_requests + 1) * sizeof(struct esas2r_request *)); esas2r_targ_db_initialize(a); /* prime parts of the inbound list */ element = (struct esas2r_inbound_list_source_entry *)a-> inbound_list_md. virt_addr; for (i = 0; i < a->list_size; i++) { element->address = 0; element->reserved = 0; element->length = cpu_to_le32(HWILSE_INTERFACE_F0 | (sizeof(union atto_vda_req) / sizeof(u32))); element++; } /* init the AE requests */ for (rq = a->first_ae_req, i = 0; i < num_ae_requests; rq++, i++) { INIT_LIST_HEAD(&rq->req_list); if (!alloc_vda_req(a, rq)) { esas2r_hdebug( "failed to allocate a VDA request!"); return false; } esas2r_rq_init_request(rq, a); /* override the completion function */ rq->comp_cb = esas2r_ae_complete; } } return true; } /* This code will verify that the chip is operational. */ bool esas2r_check_adapter(struct esas2r_adapter *a) { u32 starttime; u32 doorbell; u64 ppaddr; u32 dw; /* * if the chip reset detected flag is set, we can bypass a bunch of * stuff. */ if (test_bit(AF_CHPRST_DETECTED, &a->flags)) goto skip_chip_reset; /* * BEFORE WE DO ANYTHING, disable the chip interrupts! the boot driver * may have left them enabled or we may be recovering from a fault. */ esas2r_write_register_dword(a, MU_INT_MASK_OUT, ESAS2R_INT_DIS_MASK); esas2r_flush_register_dword(a, MU_INT_MASK_OUT); /* * wait for the firmware to become ready by forcing an interrupt and * waiting for a response. */ starttime = jiffies_to_msecs(jiffies); while (true) { esas2r_force_interrupt(a); doorbell = esas2r_read_register_dword(a, MU_DOORBELL_OUT); if (doorbell == 0xFFFFFFFF) { /* * Give the firmware up to two seconds to enable * register access after a reset. */ if ((jiffies_to_msecs(jiffies) - starttime) > 2000) return esas2r_set_degraded_mode(a, "unable to access registers"); } else if (doorbell & DRBL_FORCE_INT) { u32 ver = (doorbell & DRBL_FW_VER_MSK); /* * This driver supports version 0 and version 1 of * the API */ esas2r_write_register_dword(a, MU_DOORBELL_OUT, doorbell); if (ver == DRBL_FW_VER_0) { set_bit(AF_LEGACY_SGE_MODE, &a->flags); a->max_vdareq_size = 128; a->build_sgl = esas2r_build_sg_list_sge; } else if (ver == DRBL_FW_VER_1) { clear_bit(AF_LEGACY_SGE_MODE, &a->flags); a->max_vdareq_size = 1024; a->build_sgl = esas2r_build_sg_list_prd; } else { return esas2r_set_degraded_mode(a, "unknown firmware version"); } break; } schedule_timeout_interruptible(msecs_to_jiffies(100)); if ((jiffies_to_msecs(jiffies) - starttime) > 180000) { esas2r_hdebug("FW ready TMO"); esas2r_bugon(); return esas2r_set_degraded_mode(a, "firmware start has timed out"); } } /* purge any asynchronous events since we will repost them later */ esas2r_write_register_dword(a, MU_DOORBELL_IN, DRBL_MSG_IFC_DOWN); starttime = jiffies_to_msecs(jiffies); while (true) { doorbell = esas2r_read_register_dword(a, MU_DOORBELL_OUT); if (doorbell & DRBL_MSG_IFC_DOWN) { esas2r_write_register_dword(a, MU_DOORBELL_OUT, doorbell); break; } schedule_timeout_interruptible(msecs_to_jiffies(50)); if ((jiffies_to_msecs(jiffies) - starttime) > 3000) { esas2r_hdebug("timeout waiting for interface down"); break; } } skip_chip_reset: /* * first things first, before we go changing any of these registers * disable the communication lists. */ dw = esas2r_read_register_dword(a, MU_IN_LIST_CONFIG); dw &= ~MU_ILC_ENABLE; esas2r_write_register_dword(a, MU_IN_LIST_CONFIG, dw); dw = esas2r_read_register_dword(a, MU_OUT_LIST_CONFIG); dw &= ~MU_OLC_ENABLE; esas2r_write_register_dword(a, MU_OUT_LIST_CONFIG, dw); /* configure the communication list addresses */ ppaddr = a->inbound_list_md.phys_addr; esas2r_write_register_dword(a, MU_IN_LIST_ADDR_LO, lower_32_bits(ppaddr)); esas2r_write_register_dword(a, MU_IN_LIST_ADDR_HI, upper_32_bits(ppaddr)); ppaddr = a->outbound_list_md.phys_addr; esas2r_write_register_dword(a, MU_OUT_LIST_ADDR_LO, lower_32_bits(ppaddr)); esas2r_write_register_dword(a, MU_OUT_LIST_ADDR_HI, upper_32_bits(ppaddr)); ppaddr = a->uncached_phys + ((u8 *)a->outbound_copy - a->uncached); esas2r_write_register_dword(a, MU_OUT_LIST_COPY_PTR_LO, lower_32_bits(ppaddr)); esas2r_write_register_dword(a, MU_OUT_LIST_COPY_PTR_HI, upper_32_bits(ppaddr)); /* reset the read and write pointers */ *a->outbound_copy = a->last_write = a->last_read = a->list_size - 1; set_bit(AF_COMM_LIST_TOGGLE, &a->flags); esas2r_write_register_dword(a, MU_IN_LIST_WRITE, MU_ILW_TOGGLE | a->last_write); esas2r_write_register_dword(a, MU_OUT_LIST_COPY, MU_OLC_TOGGLE | a->last_write); esas2r_write_register_dword(a, MU_IN_LIST_READ, MU_ILR_TOGGLE | a->last_write); esas2r_write_register_dword(a, MU_OUT_LIST_WRITE, MU_OLW_TOGGLE | a->last_write); /* configure the interface select fields */ dw = esas2r_read_register_dword(a, MU_IN_LIST_IFC_CONFIG); dw &= ~(MU_ILIC_LIST | MU_ILIC_DEST); esas2r_write_register_dword(a, MU_IN_LIST_IFC_CONFIG, (dw | MU_ILIC_LIST_F0 | MU_ILIC_DEST_DDR)); dw = esas2r_read_register_dword(a, MU_OUT_LIST_IFC_CONFIG); dw &= ~(MU_OLIC_LIST | MU_OLIC_SOURCE); esas2r_write_register_dword(a, MU_OUT_LIST_IFC_CONFIG, (dw | MU_OLIC_LIST_F0 | MU_OLIC_SOURCE_DDR)); /* finish configuring the communication lists */ dw = esas2r_read_register_dword(a, MU_IN_LIST_CONFIG); dw &= ~(MU_ILC_ENTRY_MASK | MU_ILC_NUMBER_MASK); dw |= MU_ILC_ENTRY_4_DW | MU_ILC_DYNAMIC_SRC | (a->list_size << MU_ILC_NUMBER_SHIFT); esas2r_write_register_dword(a, MU_IN_LIST_CONFIG, dw); dw = esas2r_read_register_dword(a, MU_OUT_LIST_CONFIG); dw &= ~(MU_OLC_ENTRY_MASK | MU_OLC_NUMBER_MASK); dw |= MU_OLC_ENTRY_4_DW | (a->list_size << MU_OLC_NUMBER_SHIFT); esas2r_write_register_dword(a, MU_OUT_LIST_CONFIG, dw); /* * notify the firmware that we're done setting up the communication * list registers. wait here until the firmware is done configuring * its lists. it will signal that it is done by enabling the lists. */ esas2r_write_register_dword(a, MU_DOORBELL_IN, DRBL_MSG_IFC_INIT); starttime = jiffies_to_msecs(jiffies); while (true) { doorbell = esas2r_read_register_dword(a, MU_DOORBELL_OUT); if (doorbell & DRBL_MSG_IFC_INIT) { esas2r_write_register_dword(a, MU_DOORBELL_OUT, doorbell); break; } schedule_timeout_interruptible(msecs_to_jiffies(100)); if ((jiffies_to_msecs(jiffies) - starttime) > 3000) { esas2r_hdebug( "timeout waiting for communication list init"); esas2r_bugon(); return esas2r_set_degraded_mode(a, "timeout waiting for communication list init"); } } /* * flag whether the firmware supports the power down doorbell. we * determine this by reading the inbound doorbell enable mask. */ doorbell = esas2r_read_register_dword(a, MU_DOORBELL_IN_ENB); if (doorbell & DRBL_POWER_DOWN) set_bit(AF2_VDA_POWER_DOWN, &a->flags2); else clear_bit(AF2_VDA_POWER_DOWN, &a->flags2); /* * enable assertion of outbound queue and doorbell interrupts in the * main interrupt cause register. */ esas2r_write_register_dword(a, MU_OUT_LIST_INT_MASK, MU_OLIS_MASK); esas2r_write_register_dword(a, MU_DOORBELL_OUT_ENB, DRBL_ENB_MASK); return true; } /* Process the initialization message just completed and format the next one. */ static bool esas2r_format_init_msg(struct esas2r_adapter *a, struct esas2r_request *rq) { u32 msg = a->init_msg; struct atto_vda_cfg_init *ci; a->init_msg = 0; switch (msg) { case ESAS2R_INIT_MSG_START: case ESAS2R_INIT_MSG_REINIT: { struct timeval now; do_gettimeofday(&now); esas2r_hdebug("CFG init"); esas2r_build_cfg_req(a, rq, VDA_CFG_INIT, 0, NULL); ci = (struct atto_vda_cfg_init *)&rq->vrq->cfg.data.init; ci->sgl_page_size = cpu_to_le32(sgl_page_size); ci->epoch_time = cpu_to_le32(now.tv_sec); rq->flags |= RF_FAILURE_OK; a->init_msg = ESAS2R_INIT_MSG_INIT; break; } case ESAS2R_INIT_MSG_INIT: if (rq->req_stat == RS_SUCCESS) { u32 major; u32 minor; u16 fw_release; a->fw_version = le16_to_cpu( rq->func_rsp.cfg_rsp.vda_version); a->fw_build = rq->func_rsp.cfg_rsp.fw_build; fw_release = le16_to_cpu( rq->func_rsp.cfg_rsp.fw_release); major = LOBYTE(fw_release); minor = HIBYTE(fw_release); a->fw_version += (major << 16) + (minor << 24); } else { esas2r_hdebug("FAILED"); } /* * the 2.71 and earlier releases of R6xx firmware did not error * unsupported config requests correctly. */ if ((test_bit(AF2_THUNDERBOLT, &a->flags2)) || (be32_to_cpu(a->fw_version) > 0x00524702)) { esas2r_hdebug("CFG get init"); esas2r_build_cfg_req(a, rq, VDA_CFG_GET_INIT2, sizeof(struct atto_vda_cfg_init), NULL); rq->vrq->cfg.sg_list_offset = offsetof( struct atto_vda_cfg_req, data.sge); rq->vrq->cfg.data.prde.ctl_len = cpu_to_le32(sizeof(struct atto_vda_cfg_init)); rq->vrq->cfg.data.prde.address = cpu_to_le64( rq->vrq_md->phys_addr + sizeof(union atto_vda_req)); rq->flags |= RF_FAILURE_OK; a->init_msg = ESAS2R_INIT_MSG_GET_INIT; break; } case ESAS2R_INIT_MSG_GET_INIT: if (msg == ESAS2R_INIT_MSG_GET_INIT) { ci = (struct atto_vda_cfg_init *)rq->data_buf; if (rq->req_stat == RS_SUCCESS) { a->num_targets_backend = le32_to_cpu(ci->num_targets_backend); a->ioctl_tunnel = le32_to_cpu(ci->ioctl_tunnel); } else { esas2r_hdebug("FAILED"); } } /* fall through */ default: rq->req_stat = RS_SUCCESS; return false; } return true; } /* * Perform initialization messages via the request queue. Messages are * performed with interrupts disabled. */ bool esas2r_init_msgs(struct esas2r_adapter *a) { bool success = true; struct esas2r_request *rq = &a->general_req; esas2r_rq_init_request(rq, a); rq->comp_cb = esas2r_dummy_complete; if (a->init_msg == 0) a->init_msg = ESAS2R_INIT_MSG_REINIT; while (a->init_msg) { if (esas2r_format_init_msg(a, rq)) { unsigned long flags; while (true) { spin_lock_irqsave(&a->queue_lock, flags); esas2r_start_vda_request(a, rq); spin_unlock_irqrestore(&a->queue_lock, flags); esas2r_wait_request(a, rq); if (rq->req_stat != RS_PENDING) break; } } if (rq->req_stat == RS_SUCCESS || ((rq->flags & RF_FAILURE_OK) && rq->req_stat != RS_TIMEOUT)) continue; esas2r_log(ESAS2R_LOG_CRIT, "init message %x failed (%x, %x)", a->init_msg, rq->req_stat, rq->flags); a->init_msg = ESAS2R_INIT_MSG_START; success = false; break; } esas2r_rq_destroy_request(rq, a); return success; } /* Initialize the adapter chip */ bool esas2r_init_adapter_hw(struct esas2r_adapter *a, bool init_poll) { bool rslt = false; struct esas2r_request *rq; u32 i; if (test_bit(AF_DEGRADED_MODE, &a->flags)) goto exit; if (!test_bit(AF_NVR_VALID, &a->flags)) { if (!esas2r_nvram_read_direct(a)) esas2r_log(ESAS2R_LOG_WARN, "invalid/missing NVRAM parameters"); } if (!esas2r_init_msgs(a)) { esas2r_set_degraded_mode(a, "init messages failed"); goto exit; } /* The firmware is ready. */ clear_bit(AF_DEGRADED_MODE, &a->flags); clear_bit(AF_CHPRST_PENDING, &a->flags); /* Post all the async event requests */ for (i = 0, rq = a->first_ae_req; i < num_ae_requests; i++, rq++) esas2r_start_ae_request(a, rq); if (!a->flash_rev[0]) esas2r_read_flash_rev(a); if (!a->image_type[0]) esas2r_read_image_type(a); if (a->fw_version == 0) a->fw_rev[0] = 0; else sprintf(a->fw_rev, "%1d.%02d", (int)LOBYTE(HIWORD(a->fw_version)), (int)HIBYTE(HIWORD(a->fw_version))); esas2r_hdebug("firmware revision: %s", a->fw_rev); if (test_bit(AF_CHPRST_DETECTED, &a->flags) && (test_bit(AF_FIRST_INIT, &a->flags))) { esas2r_enable_chip_interrupts(a); return true; } /* initialize discovery */ esas2r_disc_initialize(a); /* * wait for the device wait time to expire here if requested. this is * usually requested during initial driver load and possibly when * resuming from a low power state. deferred device waiting will use * interrupts. chip reset recovery always defers device waiting to * avoid being in a TASKLET too long. */ if (init_poll) { u32 currtime = a->disc_start_time; u32 nexttick = 100; u32 deltatime; /* * Block Tasklets from getting scheduled and indicate this is * polled discovery. */ set_bit(AF_TASKLET_SCHEDULED, &a->flags); set_bit(AF_DISC_POLLED, &a->flags); /* * Temporarily bring the disable count to zero to enable * deferred processing. Note that the count is already zero * after the first initialization. */ if (test_bit(AF_FIRST_INIT, &a->flags)) atomic_dec(&a->disable_cnt); while (test_bit(AF_DISC_PENDING, &a->flags)) { schedule_timeout_interruptible(msecs_to_jiffies(100)); /* * Determine the need for a timer tick based on the * delta time between this and the last iteration of * this loop. We don't use the absolute time because * then we would have to worry about when nexttick * wraps and currtime hasn't yet. */ deltatime = jiffies_to_msecs(jiffies) - currtime; currtime += deltatime; /* * Process any waiting discovery as long as the chip is * up. If a chip reset happens during initial polling, * we have to make sure the timer tick processes the * doorbell indicating the firmware is ready. */ if (!test_bit(AF_CHPRST_PENDING, &a->flags)) esas2r_disc_check_for_work(a); /* Simulate a timer tick. */ if (nexttick <= deltatime) { /* Time for a timer tick */ nexttick += 100; esas2r_timer_tick(a); } if (nexttick > deltatime) nexttick -= deltatime; /* Do any deferred processing */ if (esas2r_is_tasklet_pending(a)) esas2r_do_tasklet_tasks(a); } if (test_bit(AF_FIRST_INIT, &a->flags)) atomic_inc(&a->disable_cnt); clear_bit(AF_DISC_POLLED, &a->flags); clear_bit(AF_TASKLET_SCHEDULED, &a->flags); } esas2r_targ_db_report_changes(a); /* * For cases where (a) the initialization messages processing may * handle an interrupt for a port event and a discovery is waiting, but * we are not waiting for devices, or (b) the device wait time has been * exhausted but there is still discovery pending, start any leftover * discovery in interrupt driven mode. */ esas2r_disc_start_waiting(a); /* Enable chip interrupts */ a->int_mask = ESAS2R_INT_STS_MASK; esas2r_enable_chip_interrupts(a); esas2r_enable_heartbeat(a); rslt = true; exit: /* * Regardless of whether initialization was successful, certain things * need to get done before we exit. */ if (test_bit(AF_CHPRST_DETECTED, &a->flags) && test_bit(AF_FIRST_INIT, &a->flags)) { /* * Reinitialization was performed during the first * initialization. Only clear the chip reset flag so the * original device polling is not cancelled. */ if (!rslt) clear_bit(AF_CHPRST_PENDING, &a->flags); } else { /* First initialization or a subsequent re-init is complete. */ if (!rslt) { clear_bit(AF_CHPRST_PENDING, &a->flags); clear_bit(AF_DISC_PENDING, &a->flags); } /* Enable deferred processing after the first initialization. */ if (test_bit(AF_FIRST_INIT, &a->flags)) { clear_bit(AF_FIRST_INIT, &a->flags); if (atomic_dec_return(&a->disable_cnt) == 0) esas2r_do_deferred_processes(a); } } return rslt; } void esas2r_reset_adapter(struct esas2r_adapter *a) { set_bit(AF_OS_RESET, &a->flags); esas2r_local_reset_adapter(a); esas2r_schedule_tasklet(a); } void esas2r_reset_chip(struct esas2r_adapter *a) { if (!esas2r_is_adapter_present(a)) return; /* * Before we reset the chip, save off the VDA core dump. The VDA core * dump is located in the upper 512KB of the onchip SRAM. Make sure * to not overwrite a previous crash that was saved. */ if (test_bit(AF2_COREDUMP_AVAIL, &a->flags2) && !test_bit(AF2_COREDUMP_SAVED, &a->flags2)) { esas2r_read_mem_block(a, a->fw_coredump_buff, MW_DATA_ADDR_SRAM + 0x80000, ESAS2R_FWCOREDUMP_SZ); set_bit(AF2_COREDUMP_SAVED, &a->flags2); } clear_bit(AF2_COREDUMP_AVAIL, &a->flags2); /* Reset the chip */ if (a->pcid->revision == MVR_FREY_B2) esas2r_write_register_dword(a, MU_CTL_STATUS_IN_B2, MU_CTL_IN_FULL_RST2); else esas2r_write_register_dword(a, MU_CTL_STATUS_IN, MU_CTL_IN_FULL_RST); /* Stall a little while to let the reset condition clear */ mdelay(10); } static void esas2r_power_down_notify_firmware(struct esas2r_adapter *a) { u32 starttime; u32 doorbell; esas2r_write_register_dword(a, MU_DOORBELL_IN, DRBL_POWER_DOWN); starttime = jiffies_to_msecs(jiffies); while (true) { doorbell = esas2r_read_register_dword(a, MU_DOORBELL_OUT); if (doorbell & DRBL_POWER_DOWN) { esas2r_write_register_dword(a, MU_DOORBELL_OUT, doorbell); break; } schedule_timeout_interruptible(msecs_to_jiffies(100)); if ((jiffies_to_msecs(jiffies) - starttime) > 30000) { esas2r_hdebug("Timeout waiting for power down"); break; } } } /* * Perform power management processing including managing device states, adapter * states, interrupts, and I/O. */ void esas2r_power_down(struct esas2r_adapter *a) { set_bit(AF_POWER_MGT, &a->flags); set_bit(AF_POWER_DOWN, &a->flags); if (!test_bit(AF_DEGRADED_MODE, &a->flags)) { u32 starttime; u32 doorbell; /* * We are currently running OK and will be reinitializing later. * increment the disable count to coordinate with * esas2r_init_adapter. We don't have to do this in degraded * mode since we never enabled interrupts in the first place. */ esas2r_disable_chip_interrupts(a); esas2r_disable_heartbeat(a); /* wait for any VDA activity to clear before continuing */ esas2r_write_register_dword(a, MU_DOORBELL_IN, DRBL_MSG_IFC_DOWN); starttime = jiffies_to_msecs(jiffies); while (true) { doorbell = esas2r_read_register_dword(a, MU_DOORBELL_OUT); if (doorbell & DRBL_MSG_IFC_DOWN) { esas2r_write_register_dword(a, MU_DOORBELL_OUT, doorbell); break; } schedule_timeout_interruptible(msecs_to_jiffies(100)); if ((jiffies_to_msecs(jiffies) - starttime) > 3000) { esas2r_hdebug( "timeout waiting for interface down"); break; } } /* * For versions of firmware that support it tell them the driver * is powering down. */ if (test_bit(AF2_VDA_POWER_DOWN, &a->flags2)) esas2r_power_down_notify_firmware(a); } /* Suspend I/O processing. */ set_bit(AF_OS_RESET, &a->flags); set_bit(AF_DISC_PENDING, &a->flags); set_bit(AF_CHPRST_PENDING, &a->flags); esas2r_process_adapter_reset(a); /* Remove devices now that I/O is cleaned up. */ a->prev_dev_cnt = esas2r_targ_db_get_tgt_cnt(a); esas2r_targ_db_remove_all(a, false); } /* * Perform power management processing including managing device states, adapter * states, interrupts, and I/O. */ bool esas2r_power_up(struct esas2r_adapter *a, bool init_poll) { bool ret; clear_bit(AF_POWER_DOWN, &a->flags); esas2r_init_pci_cfg_space(a); set_bit(AF_FIRST_INIT, &a->flags); atomic_inc(&a->disable_cnt); /* reinitialize the adapter */ ret = esas2r_check_adapter(a); if (!esas2r_init_adapter_hw(a, init_poll)) ret = false; /* send the reset asynchronous event */ esas2r_send_reset_ae(a, true); /* clear this flag after initialization. */ clear_bit(AF_POWER_MGT, &a->flags); return ret; } bool esas2r_is_adapter_present(struct esas2r_adapter *a) { if (test_bit(AF_NOT_PRESENT, &a->flags)) return false; if (esas2r_read_register_dword(a, MU_DOORBELL_OUT) == 0xFFFFFFFF) { set_bit(AF_NOT_PRESENT, &a->flags); return false; } return true; } const char *esas2r_get_model_name(struct esas2r_adapter *a) { switch (a->pcid->subsystem_device) { case ATTO_ESAS_R680: return "ATTO ExpressSAS R680"; case ATTO_ESAS_R608: return "ATTO ExpressSAS R608"; case ATTO_ESAS_R60F: return "ATTO ExpressSAS R60F"; case ATTO_ESAS_R6F0: return "ATTO ExpressSAS R6F0"; case ATTO_ESAS_R644: return "ATTO ExpressSAS R644"; case ATTO_ESAS_R648: return "ATTO ExpressSAS R648"; case ATTO_TSSC_3808: return "ATTO ThunderStream SC 3808D"; case ATTO_TSSC_3808E: return "ATTO ThunderStream SC 3808E"; case ATTO_TLSH_1068: return "ATTO ThunderLink SH 1068"; } return "ATTO SAS Controller"; } const char *esas2r_get_model_name_short(struct esas2r_adapter *a) { switch (a->pcid->subsystem_device) { case ATTO_ESAS_R680: return "R680"; case ATTO_ESAS_R608: return "R608"; case ATTO_ESAS_R60F: return "R60F"; case ATTO_ESAS_R6F0: return "R6F0"; case ATTO_ESAS_R644: return "R644"; case ATTO_ESAS_R648: return "R648"; case ATTO_TSSC_3808: return "SC 3808D"; case ATTO_TSSC_3808E: return "SC 3808E"; case ATTO_TLSH_1068: return "SH 1068"; } return "unknown"; }