/* * Copyright (C) 2006-2007 PA Semi, Inc * * Driver for the PA Semi PWRficient onchip 1G/10G Ethernet MACs * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "pasemi_mac.h" /* We have our own align, since ppc64 in general has it at 0 because * of design flaws in some of the server bridge chips. However, for * PWRficient doing the unaligned copies is more expensive than doing * unaligned DMA, so make sure the data is aligned instead. */ #define LOCAL_SKB_ALIGN 2 /* TODO list * * - Multicast support * - Large MTU support * - SW LRO * - Multiqueue RX/TX */ /* Must be a power of two */ #define RX_RING_SIZE 4096 #define TX_RING_SIZE 4096 #define DEFAULT_MSG_ENABLE \ (NETIF_MSG_DRV | \ NETIF_MSG_PROBE | \ NETIF_MSG_LINK | \ NETIF_MSG_TIMER | \ NETIF_MSG_IFDOWN | \ NETIF_MSG_IFUP | \ NETIF_MSG_RX_ERR | \ NETIF_MSG_TX_ERR) #define TX_RING(mac, num) ((mac)->tx->ring[(num) & (TX_RING_SIZE-1)]) #define TX_RING_INFO(mac, num) ((mac)->tx->ring_info[(num) & (TX_RING_SIZE-1)]) #define RX_RING(mac, num) ((mac)->rx->ring[(num) & (RX_RING_SIZE-1)]) #define RX_RING_INFO(mac, num) ((mac)->rx->ring_info[(num) & (RX_RING_SIZE-1)]) #define RX_BUFF(mac, num) ((mac)->rx->buffers[(num) & (RX_RING_SIZE-1)]) #define RING_USED(ring) (((ring)->next_to_fill - (ring)->next_to_clean) \ & ((ring)->size - 1)) #define RING_AVAIL(ring) ((ring->size) - RING_USED(ring)) #define BUF_SIZE 1646 /* 1500 MTU + ETH_HLEN + VLAN_HLEN + 2 64B cachelines */ MODULE_LICENSE("GPL"); MODULE_AUTHOR ("Olof Johansson "); MODULE_DESCRIPTION("PA Semi PWRficient Ethernet driver"); static int debug = -1; /* -1 == use DEFAULT_MSG_ENABLE as value */ module_param(debug, int, 0); MODULE_PARM_DESC(debug, "PA Semi MAC bitmapped debugging message enable value"); static struct pasdma_status *dma_status; static void write_iob_reg(struct pasemi_mac *mac, unsigned int reg, unsigned int val) { out_le32(mac->iob_regs+reg, val); } static unsigned int read_mac_reg(struct pasemi_mac *mac, unsigned int reg) { return in_le32(mac->regs+reg); } static void write_mac_reg(struct pasemi_mac *mac, unsigned int reg, unsigned int val) { out_le32(mac->regs+reg, val); } static unsigned int read_dma_reg(struct pasemi_mac *mac, unsigned int reg) { return in_le32(mac->dma_regs+reg); } static void write_dma_reg(struct pasemi_mac *mac, unsigned int reg, unsigned int val) { out_le32(mac->dma_regs+reg, val); } static int pasemi_get_mac_addr(struct pasemi_mac *mac) { struct pci_dev *pdev = mac->pdev; struct device_node *dn = pci_device_to_OF_node(pdev); int len; const u8 *maddr; u8 addr[6]; if (!dn) { dev_dbg(&pdev->dev, "No device node for mac, not configuring\n"); return -ENOENT; } maddr = of_get_property(dn, "local-mac-address", &len); if (maddr && len == 6) { memcpy(mac->mac_addr, maddr, 6); return 0; } /* Some old versions of firmware mistakenly uses mac-address * (and as a string) instead of a byte array in local-mac-address. */ if (maddr == NULL) maddr = of_get_property(dn, "mac-address", NULL); if (maddr == NULL) { dev_warn(&pdev->dev, "no mac address in device tree, not configuring\n"); return -ENOENT; } if (sscanf(maddr, "%hhx:%hhx:%hhx:%hhx:%hhx:%hhx", &addr[0], &addr[1], &addr[2], &addr[3], &addr[4], &addr[5]) != 6) { dev_warn(&pdev->dev, "can't parse mac address, not configuring\n"); return -EINVAL; } memcpy(mac->mac_addr, addr, 6); return 0; } static int pasemi_mac_unmap_tx_skb(struct pasemi_mac *mac, struct sk_buff *skb, dma_addr_t *dmas) { int f; int nfrags = skb_shinfo(skb)->nr_frags; pci_unmap_single(mac->dma_pdev, dmas[0], skb_headlen(skb), PCI_DMA_TODEVICE); for (f = 0; f < nfrags; f++) { skb_frag_t *frag = &skb_shinfo(skb)->frags[f]; pci_unmap_page(mac->dma_pdev, dmas[f+1], frag->size, PCI_DMA_TODEVICE); } dev_kfree_skb_irq(skb); /* Freed descriptor slot + main SKB ptr + nfrags additional ptrs, * aligned up to a power of 2 */ return (nfrags + 3) & ~1; } static int pasemi_mac_setup_rx_resources(struct net_device *dev) { struct pasemi_mac_rxring *ring; struct pasemi_mac *mac = netdev_priv(dev); int chan_id = mac->dma_rxch; ring = kzalloc(sizeof(*ring), GFP_KERNEL); if (!ring) goto out_ring; spin_lock_init(&ring->lock); ring->size = RX_RING_SIZE; ring->ring_info = kzalloc(sizeof(struct pasemi_mac_buffer) * RX_RING_SIZE, GFP_KERNEL); if (!ring->ring_info) goto out_ring_info; /* Allocate descriptors */ ring->ring = dma_alloc_coherent(&mac->dma_pdev->dev, RX_RING_SIZE * sizeof(u64), &ring->dma, GFP_KERNEL); if (!ring->ring) goto out_ring_desc; memset(ring->ring, 0, RX_RING_SIZE * sizeof(u64)); ring->buffers = dma_alloc_coherent(&mac->dma_pdev->dev, RX_RING_SIZE * sizeof(u64), &ring->buf_dma, GFP_KERNEL); if (!ring->buffers) goto out_buffers; memset(ring->buffers, 0, RX_RING_SIZE * sizeof(u64)); write_dma_reg(mac, PAS_DMA_RXCHAN_BASEL(chan_id), PAS_DMA_RXCHAN_BASEL_BRBL(ring->dma)); write_dma_reg(mac, PAS_DMA_RXCHAN_BASEU(chan_id), PAS_DMA_RXCHAN_BASEU_BRBH(ring->dma >> 32) | PAS_DMA_RXCHAN_BASEU_SIZ(RX_RING_SIZE >> 3)); write_dma_reg(mac, PAS_DMA_RXCHAN_CFG(chan_id), PAS_DMA_RXCHAN_CFG_HBU(2)); write_dma_reg(mac, PAS_DMA_RXINT_BASEL(mac->dma_if), PAS_DMA_RXINT_BASEL_BRBL(__pa(ring->buffers))); write_dma_reg(mac, PAS_DMA_RXINT_BASEU(mac->dma_if), PAS_DMA_RXINT_BASEU_BRBH(__pa(ring->buffers) >> 32) | PAS_DMA_RXINT_BASEU_SIZ(RX_RING_SIZE >> 3)); write_dma_reg(mac, PAS_DMA_RXINT_CFG(mac->dma_if), PAS_DMA_RXINT_CFG_DHL(3) | PAS_DMA_RXINT_CFG_L2 | PAS_DMA_RXINT_CFG_LW); ring->next_to_fill = 0; ring->next_to_clean = 0; snprintf(ring->irq_name, sizeof(ring->irq_name), "%s rx", dev->name); mac->rx = ring; return 0; out_buffers: dma_free_coherent(&mac->dma_pdev->dev, RX_RING_SIZE * sizeof(u64), mac->rx->ring, mac->rx->dma); out_ring_desc: kfree(ring->ring_info); out_ring_info: kfree(ring); out_ring: return -ENOMEM; } static int pasemi_mac_setup_tx_resources(struct net_device *dev) { struct pasemi_mac *mac = netdev_priv(dev); u32 val; int chan_id = mac->dma_txch; struct pasemi_mac_txring *ring; ring = kzalloc(sizeof(*ring), GFP_KERNEL); if (!ring) goto out_ring; spin_lock_init(&ring->lock); ring->size = TX_RING_SIZE; ring->ring_info = kzalloc(sizeof(struct pasemi_mac_buffer) * TX_RING_SIZE, GFP_KERNEL); if (!ring->ring_info) goto out_ring_info; /* Allocate descriptors */ ring->ring = dma_alloc_coherent(&mac->dma_pdev->dev, TX_RING_SIZE * sizeof(u64), &ring->dma, GFP_KERNEL); if (!ring->ring) goto out_ring_desc; memset(ring->ring, 0, TX_RING_SIZE * sizeof(u64)); write_dma_reg(mac, PAS_DMA_TXCHAN_BASEL(chan_id), PAS_DMA_TXCHAN_BASEL_BRBL(ring->dma)); val = PAS_DMA_TXCHAN_BASEU_BRBH(ring->dma >> 32); val |= PAS_DMA_TXCHAN_BASEU_SIZ(TX_RING_SIZE >> 3); write_dma_reg(mac, PAS_DMA_TXCHAN_BASEU(chan_id), val); write_dma_reg(mac, PAS_DMA_TXCHAN_CFG(chan_id), PAS_DMA_TXCHAN_CFG_TY_IFACE | PAS_DMA_TXCHAN_CFG_TATTR(mac->dma_if) | PAS_DMA_TXCHAN_CFG_UP | PAS_DMA_TXCHAN_CFG_WT(2)); ring->next_to_fill = 0; ring->next_to_clean = 0; snprintf(ring->irq_name, sizeof(ring->irq_name), "%s tx", dev->name); mac->tx = ring; return 0; out_ring_desc: kfree(ring->ring_info); out_ring_info: kfree(ring); out_ring: return -ENOMEM; } static void pasemi_mac_free_tx_resources(struct net_device *dev) { struct pasemi_mac *mac = netdev_priv(dev); unsigned int i, j; struct pasemi_mac_buffer *info; dma_addr_t dmas[MAX_SKB_FRAGS+1]; int freed; int start, limit; start = mac->tx->next_to_clean; limit = mac->tx->next_to_fill; /* Compensate for when fill has wrapped and clean has not */ if (start > limit) limit += TX_RING_SIZE; for (i = start; i < limit; i += freed) { info = &TX_RING_INFO(mac, i+1); if (info->dma && info->skb) { for (j = 0; j <= skb_shinfo(info->skb)->nr_frags; j++) dmas[j] = TX_RING_INFO(mac, i+1+j).dma; freed = pasemi_mac_unmap_tx_skb(mac, info->skb, dmas); } else freed = 2; } for (i = 0; i < TX_RING_SIZE; i++) TX_RING(mac, i) = 0; dma_free_coherent(&mac->dma_pdev->dev, TX_RING_SIZE * sizeof(u64), mac->tx->ring, mac->tx->dma); kfree(mac->tx->ring_info); kfree(mac->tx); mac->tx = NULL; } static void pasemi_mac_free_rx_resources(struct net_device *dev) { struct pasemi_mac *mac = netdev_priv(dev); unsigned int i; struct pasemi_mac_buffer *info; for (i = 0; i < RX_RING_SIZE; i++) { info = &RX_RING_INFO(mac, i); if (info->skb && info->dma) { pci_unmap_single(mac->dma_pdev, info->dma, info->skb->len, PCI_DMA_FROMDEVICE); dev_kfree_skb_any(info->skb); } info->dma = 0; info->skb = NULL; } for (i = 0; i < RX_RING_SIZE; i++) RX_RING(mac, i) = 0; dma_free_coherent(&mac->dma_pdev->dev, RX_RING_SIZE * sizeof(u64), mac->rx->ring, mac->rx->dma); dma_free_coherent(&mac->dma_pdev->dev, RX_RING_SIZE * sizeof(u64), mac->rx->buffers, mac->rx->buf_dma); kfree(mac->rx->ring_info); kfree(mac->rx); mac->rx = NULL; } static void pasemi_mac_replenish_rx_ring(struct net_device *dev, int limit) { struct pasemi_mac *mac = netdev_priv(dev); int start = mac->rx->next_to_fill; unsigned int fill, count; if (limit <= 0) return; fill = start; for (count = 0; count < limit; count++) { struct pasemi_mac_buffer *info = &RX_RING_INFO(mac, fill); u64 *buff = &RX_BUFF(mac, fill); struct sk_buff *skb; dma_addr_t dma; /* Entry in use? */ WARN_ON(*buff); /* skb might still be in there for recycle on short receives */ if (info->skb) skb = info->skb; else { skb = dev_alloc_skb(BUF_SIZE); skb_reserve(skb, LOCAL_SKB_ALIGN); } if (unlikely(!skb)) break; dma = pci_map_single(mac->dma_pdev, skb->data, BUF_SIZE - LOCAL_SKB_ALIGN, PCI_DMA_FROMDEVICE); if (unlikely(dma_mapping_error(dma))) { dev_kfree_skb_irq(info->skb); break; } info->skb = skb; info->dma = dma; *buff = XCT_RXB_LEN(BUF_SIZE) | XCT_RXB_ADDR(dma); fill++; } wmb(); write_dma_reg(mac, PAS_DMA_RXCHAN_INCR(mac->dma_rxch), count); write_dma_reg(mac, PAS_DMA_RXINT_INCR(mac->dma_if), count); mac->rx->next_to_fill += count; } static void pasemi_mac_restart_rx_intr(struct pasemi_mac *mac) { unsigned int reg, pcnt; /* Re-enable packet count interrupts: finally * ack the packet count interrupt we got in rx_intr. */ pcnt = *mac->rx_status & PAS_STATUS_PCNT_M; reg = PAS_IOB_DMA_RXCH_RESET_PCNT(pcnt) | PAS_IOB_DMA_RXCH_RESET_PINTC; write_iob_reg(mac, PAS_IOB_DMA_RXCH_RESET(mac->dma_rxch), reg); } static void pasemi_mac_restart_tx_intr(struct pasemi_mac *mac) { unsigned int reg, pcnt; /* Re-enable packet count interrupts */ pcnt = *mac->tx_status & PAS_STATUS_PCNT_M; reg = PAS_IOB_DMA_TXCH_RESET_PCNT(pcnt) | PAS_IOB_DMA_TXCH_RESET_PINTC; write_iob_reg(mac, PAS_IOB_DMA_TXCH_RESET(mac->dma_txch), reg); } static inline void pasemi_mac_rx_error(struct pasemi_mac *mac, u64 macrx) { unsigned int rcmdsta, ccmdsta; if (!netif_msg_rx_err(mac)) return; rcmdsta = read_dma_reg(mac, PAS_DMA_RXINT_RCMDSTA(mac->dma_if)); ccmdsta = read_dma_reg(mac, PAS_DMA_RXCHAN_CCMDSTA(mac->dma_rxch)); printk(KERN_ERR "pasemi_mac: rx error. macrx %016lx, rx status %lx\n", macrx, *mac->rx_status); printk(KERN_ERR "pasemi_mac: rcmdsta %08x ccmdsta %08x\n", rcmdsta, ccmdsta); } static inline void pasemi_mac_tx_error(struct pasemi_mac *mac, u64 mactx) { unsigned int cmdsta; if (!netif_msg_tx_err(mac)) return; cmdsta = read_dma_reg(mac, PAS_DMA_TXCHAN_TCMDSTA(mac->dma_txch)); printk(KERN_ERR "pasemi_mac: tx error. mactx 0x%016lx, "\ "tx status 0x%016lx\n", mactx, *mac->tx_status); printk(KERN_ERR "pasemi_mac: tcmdsta 0x%08x\n", cmdsta); } static int pasemi_mac_clean_rx(struct pasemi_mac *mac, int limit) { unsigned int n; int count; struct pasemi_mac_buffer *info; struct sk_buff *skb; unsigned int i, len; u64 macrx; dma_addr_t dma; spin_lock(&mac->rx->lock); n = mac->rx->next_to_clean; for (count = limit; count; count--) { macrx = RX_RING(mac, n); if ((macrx & XCT_MACRX_E) || (*mac->rx_status & PAS_STATUS_ERROR)) pasemi_mac_rx_error(mac, macrx); if (!(macrx & XCT_MACRX_O)) break; info = NULL; /* We have to scan for our skb since there's no way * to back-map them from the descriptor, and if we * have several receive channels then they might not * show up in the same order as they were put on the * interface ring. */ dma = (RX_RING(mac, n+1) & XCT_PTR_ADDR_M); for (i = mac->rx->next_to_fill; i < (mac->rx->next_to_fill + RX_RING_SIZE); i++) { info = &RX_RING_INFO(mac, i); if (info->dma == dma) break; } skb = info->skb; prefetch(skb); prefetch(&skb->data_len); len = (macrx & XCT_MACRX_LLEN_M) >> XCT_MACRX_LLEN_S; if (len < 256) { struct sk_buff *new_skb; new_skb = netdev_alloc_skb(mac->netdev, len + LOCAL_SKB_ALIGN); if (new_skb) { skb_reserve(new_skb, LOCAL_SKB_ALIGN); memcpy(new_skb->data, skb->data, len); /* save the skb in buffer_info as good */ skb = new_skb; } /* else just continue with the old one */ } else info->skb = NULL; pci_unmap_single(mac->dma_pdev, dma, len, PCI_DMA_FROMDEVICE); info->dma = 0; skb_put(skb, len); if (likely((macrx & XCT_MACRX_HTY_M) == XCT_MACRX_HTY_IPV4_OK)) { skb->ip_summed = CHECKSUM_UNNECESSARY; skb->csum = (macrx & XCT_MACRX_CSUM_M) >> XCT_MACRX_CSUM_S; } else skb->ip_summed = CHECKSUM_NONE; mac->netdev->stats.rx_bytes += len; mac->netdev->stats.rx_packets++; skb->protocol = eth_type_trans(skb, mac->netdev); netif_receive_skb(skb); RX_RING(mac, n) = 0; RX_RING(mac, n+1) = 0; /* Need to zero it out since hardware doesn't, since the * replenish loop uses it to tell when it's done. */ RX_BUFF(mac, i) = 0; n += 2; } if (n > RX_RING_SIZE) { /* Errata 5971 workaround: L2 target of headers */ write_iob_reg(mac, PAS_IOB_COM_PKTHDRCNT, 0); n &= (RX_RING_SIZE-1); } mac->rx->next_to_clean = n; pasemi_mac_replenish_rx_ring(mac->netdev, limit-count); spin_unlock(&mac->rx->lock); return count; } /* Can't make this too large or we blow the kernel stack limits */ #define TX_CLEAN_BATCHSIZE (128/MAX_SKB_FRAGS) static int pasemi_mac_clean_tx(struct pasemi_mac *mac) { int i, j; unsigned int start, descr_count, buf_count, batch_limit; unsigned int ring_limit; unsigned int total_count; unsigned long flags; struct sk_buff *skbs[TX_CLEAN_BATCHSIZE]; dma_addr_t dmas[TX_CLEAN_BATCHSIZE][MAX_SKB_FRAGS+1]; total_count = 0; batch_limit = TX_CLEAN_BATCHSIZE; restart: spin_lock_irqsave(&mac->tx->lock, flags); start = mac->tx->next_to_clean; ring_limit = mac->tx->next_to_fill; /* Compensate for when fill has wrapped but clean has not */ if (start > ring_limit) ring_limit += TX_RING_SIZE; buf_count = 0; descr_count = 0; for (i = start; descr_count < batch_limit && i < ring_limit; i += buf_count) { u64 mactx = TX_RING(mac, i); struct sk_buff *skb; if ((mactx & XCT_MACTX_E) || (*mac->tx_status & PAS_STATUS_ERROR)) pasemi_mac_tx_error(mac, mactx); if (unlikely(mactx & XCT_MACTX_O)) /* Not yet transmitted */ break; skb = TX_RING_INFO(mac, i+1).skb; skbs[descr_count] = skb; buf_count = 2 + skb_shinfo(skb)->nr_frags; for (j = 0; j <= skb_shinfo(skb)->nr_frags; j++) dmas[descr_count][j] = TX_RING_INFO(mac, i+1+j).dma; TX_RING(mac, i) = 0; TX_RING(mac, i+1) = 0; /* Since we always fill with an even number of entries, make * sure we skip any unused one at the end as well. */ if (buf_count & 1) buf_count++; descr_count++; } mac->tx->next_to_clean = i & (TX_RING_SIZE-1); spin_unlock_irqrestore(&mac->tx->lock, flags); netif_wake_queue(mac->netdev); for (i = 0; i < descr_count; i++) pasemi_mac_unmap_tx_skb(mac, skbs[i], dmas[i]); total_count += descr_count; /* If the batch was full, try to clean more */ if (descr_count == batch_limit) goto restart; return total_count; } static irqreturn_t pasemi_mac_rx_intr(int irq, void *data) { struct net_device *dev = data; struct pasemi_mac *mac = netdev_priv(dev); unsigned int reg; if (!(*mac->rx_status & PAS_STATUS_CAUSE_M)) return IRQ_NONE; /* Don't reset packet count so it won't fire again but clear * all others. */ reg = 0; if (*mac->rx_status & PAS_STATUS_SOFT) reg |= PAS_IOB_DMA_RXCH_RESET_SINTC; if (*mac->rx_status & PAS_STATUS_ERROR) reg |= PAS_IOB_DMA_RXCH_RESET_DINTC; if (*mac->rx_status & PAS_STATUS_TIMER) reg |= PAS_IOB_DMA_RXCH_RESET_TINTC; netif_rx_schedule(dev, &mac->napi); write_iob_reg(mac, PAS_IOB_DMA_RXCH_RESET(mac->dma_rxch), reg); return IRQ_HANDLED; } static irqreturn_t pasemi_mac_tx_intr(int irq, void *data) { struct net_device *dev = data; struct pasemi_mac *mac = netdev_priv(dev); unsigned int reg, pcnt; if (!(*mac->tx_status & PAS_STATUS_CAUSE_M)) return IRQ_NONE; pasemi_mac_clean_tx(mac); pcnt = *mac->tx_status & PAS_STATUS_PCNT_M; reg = PAS_IOB_DMA_TXCH_RESET_PCNT(pcnt) | PAS_IOB_DMA_TXCH_RESET_PINTC; if (*mac->tx_status & PAS_STATUS_SOFT) reg |= PAS_IOB_DMA_TXCH_RESET_SINTC; if (*mac->tx_status & PAS_STATUS_ERROR) reg |= PAS_IOB_DMA_TXCH_RESET_DINTC; write_iob_reg(mac, PAS_IOB_DMA_TXCH_RESET(mac->dma_txch), reg); return IRQ_HANDLED; } static void pasemi_adjust_link(struct net_device *dev) { struct pasemi_mac *mac = netdev_priv(dev); int msg; unsigned int flags; unsigned int new_flags; if (!mac->phydev->link) { /* If no link, MAC speed settings don't matter. Just report * link down and return. */ if (mac->link && netif_msg_link(mac)) printk(KERN_INFO "%s: Link is down.\n", dev->name); netif_carrier_off(dev); mac->link = 0; return; } else netif_carrier_on(dev); flags = read_mac_reg(mac, PAS_MAC_CFG_PCFG); new_flags = flags & ~(PAS_MAC_CFG_PCFG_HD | PAS_MAC_CFG_PCFG_SPD_M | PAS_MAC_CFG_PCFG_TSR_M); if (!mac->phydev->duplex) new_flags |= PAS_MAC_CFG_PCFG_HD; switch (mac->phydev->speed) { case 1000: new_flags |= PAS_MAC_CFG_PCFG_SPD_1G | PAS_MAC_CFG_PCFG_TSR_1G; break; case 100: new_flags |= PAS_MAC_CFG_PCFG_SPD_100M | PAS_MAC_CFG_PCFG_TSR_100M; break; case 10: new_flags |= PAS_MAC_CFG_PCFG_SPD_10M | PAS_MAC_CFG_PCFG_TSR_10M; break; default: printk("Unsupported speed %d\n", mac->phydev->speed); } /* Print on link or speed/duplex change */ msg = mac->link != mac->phydev->link || flags != new_flags; mac->duplex = mac->phydev->duplex; mac->speed = mac->phydev->speed; mac->link = mac->phydev->link; if (new_flags != flags) write_mac_reg(mac, PAS_MAC_CFG_PCFG, new_flags); if (msg && netif_msg_link(mac)) printk(KERN_INFO "%s: Link is up at %d Mbps, %s duplex.\n", dev->name, mac->speed, mac->duplex ? "full" : "half"); } static int pasemi_mac_phy_init(struct net_device *dev) { struct pasemi_mac *mac = netdev_priv(dev); struct device_node *dn, *phy_dn; struct phy_device *phydev; unsigned int phy_id; const phandle *ph; const unsigned int *prop; struct resource r; int ret; dn = pci_device_to_OF_node(mac->pdev); ph = of_get_property(dn, "phy-handle", NULL); if (!ph) return -ENODEV; phy_dn = of_find_node_by_phandle(*ph); prop = of_get_property(phy_dn, "reg", NULL); ret = of_address_to_resource(phy_dn->parent, 0, &r); if (ret) goto err; phy_id = *prop; snprintf(mac->phy_id, BUS_ID_SIZE, PHY_ID_FMT, (int)r.start, phy_id); of_node_put(phy_dn); mac->link = 0; mac->speed = 0; mac->duplex = -1; phydev = phy_connect(dev, mac->phy_id, &pasemi_adjust_link, 0, PHY_INTERFACE_MODE_SGMII); if (IS_ERR(phydev)) { printk(KERN_ERR "%s: Could not attach to phy\n", dev->name); return PTR_ERR(phydev); } mac->phydev = phydev; return 0; err: of_node_put(phy_dn); return -ENODEV; } static int pasemi_mac_open(struct net_device *dev) { struct pasemi_mac *mac = netdev_priv(dev); int base_irq; unsigned int flags; int ret; /* enable rx section */ write_dma_reg(mac, PAS_DMA_COM_RXCMD, PAS_DMA_COM_RXCMD_EN); /* enable tx section */ write_dma_reg(mac, PAS_DMA_COM_TXCMD, PAS_DMA_COM_TXCMD_EN); flags = PAS_MAC_CFG_TXP_FCE | PAS_MAC_CFG_TXP_FPC(3) | PAS_MAC_CFG_TXP_SL(3) | PAS_MAC_CFG_TXP_COB(0xf) | PAS_MAC_CFG_TXP_TIFT(8) | PAS_MAC_CFG_TXP_TIFG(12); write_mac_reg(mac, PAS_MAC_CFG_TXP, flags); write_iob_reg(mac, PAS_IOB_DMA_RXCH_CFG(mac->dma_rxch), PAS_IOB_DMA_RXCH_CFG_CNTTH(0)); write_iob_reg(mac, PAS_IOB_DMA_TXCH_CFG(mac->dma_txch), PAS_IOB_DMA_TXCH_CFG_CNTTH(128)); /* Clear out any residual packet count state from firmware */ pasemi_mac_restart_rx_intr(mac); pasemi_mac_restart_tx_intr(mac); /* 0xffffff is max value, about 16ms */ write_iob_reg(mac, PAS_IOB_DMA_COM_TIMEOUTCFG, PAS_IOB_DMA_COM_TIMEOUTCFG_TCNT(0xffffff)); ret = pasemi_mac_setup_rx_resources(dev); if (ret) goto out_rx_resources; ret = pasemi_mac_setup_tx_resources(dev); if (ret) goto out_tx_resources; write_mac_reg(mac, PAS_MAC_IPC_CHNL, PAS_MAC_IPC_CHNL_DCHNO(mac->dma_rxch) | PAS_MAC_IPC_CHNL_BCH(mac->dma_rxch)); /* enable rx if */ write_dma_reg(mac, PAS_DMA_RXINT_RCMDSTA(mac->dma_if), PAS_DMA_RXINT_RCMDSTA_EN | PAS_DMA_RXINT_RCMDSTA_DROPS_M | PAS_DMA_RXINT_RCMDSTA_BP | PAS_DMA_RXINT_RCMDSTA_OO | PAS_DMA_RXINT_RCMDSTA_BT); /* enable rx channel */ write_dma_reg(mac, PAS_DMA_RXCHAN_CCMDSTA(mac->dma_rxch), PAS_DMA_RXCHAN_CCMDSTA_EN | PAS_DMA_RXCHAN_CCMDSTA_DU | PAS_DMA_RXCHAN_CCMDSTA_OD | PAS_DMA_RXCHAN_CCMDSTA_FD | PAS_DMA_RXCHAN_CCMDSTA_DT); /* enable tx channel */ write_dma_reg(mac, PAS_DMA_TXCHAN_TCMDSTA(mac->dma_txch), PAS_DMA_TXCHAN_TCMDSTA_EN | PAS_DMA_TXCHAN_TCMDSTA_SZ | PAS_DMA_TXCHAN_TCMDSTA_DB | PAS_DMA_TXCHAN_TCMDSTA_DE | PAS_DMA_TXCHAN_TCMDSTA_DA); pasemi_mac_replenish_rx_ring(dev, RX_RING_SIZE); flags = PAS_MAC_CFG_PCFG_S1 | PAS_MAC_CFG_PCFG_PE | PAS_MAC_CFG_PCFG_PR | PAS_MAC_CFG_PCFG_CE; if (mac->type == MAC_TYPE_GMAC) flags |= PAS_MAC_CFG_PCFG_TSR_1G | PAS_MAC_CFG_PCFG_SPD_1G; else flags |= PAS_MAC_CFG_PCFG_TSR_10G | PAS_MAC_CFG_PCFG_SPD_10G; /* Enable interface in MAC */ write_mac_reg(mac, PAS_MAC_CFG_PCFG, flags); ret = pasemi_mac_phy_init(dev); /* Some configs don't have PHYs (XAUI etc), so don't complain about * failed init due to -ENODEV. */ if (ret && ret != -ENODEV) dev_warn(&mac->pdev->dev, "phy init failed: %d\n", ret); netif_start_queue(dev); napi_enable(&mac->napi); /* Interrupts are a bit different for our DMA controller: While * it's got one a regular PCI device header, the interrupt there * is really the base of the range it's using. Each tx and rx * channel has it's own interrupt source. */ base_irq = virq_to_hw(mac->dma_pdev->irq); mac->tx_irq = irq_create_mapping(NULL, base_irq + mac->dma_txch); mac->rx_irq = irq_create_mapping(NULL, base_irq + 20 + mac->dma_txch); ret = request_irq(mac->tx_irq, &pasemi_mac_tx_intr, IRQF_DISABLED, mac->tx->irq_name, dev); if (ret) { dev_err(&mac->pdev->dev, "request_irq of irq %d failed: %d\n", base_irq + mac->dma_txch, ret); goto out_tx_int; } ret = request_irq(mac->rx_irq, &pasemi_mac_rx_intr, IRQF_DISABLED, mac->rx->irq_name, dev); if (ret) { dev_err(&mac->pdev->dev, "request_irq of irq %d failed: %d\n", base_irq + 20 + mac->dma_rxch, ret); goto out_rx_int; } if (mac->phydev) phy_start(mac->phydev); return 0; out_rx_int: free_irq(mac->tx_irq, dev); out_tx_int: napi_disable(&mac->napi); netif_stop_queue(dev); pasemi_mac_free_tx_resources(dev); out_tx_resources: pasemi_mac_free_rx_resources(dev); out_rx_resources: return ret; } #define MAX_RETRIES 5000 static int pasemi_mac_close(struct net_device *dev) { struct pasemi_mac *mac = netdev_priv(dev); unsigned int sta; int retries; if (mac->phydev) { phy_stop(mac->phydev); phy_disconnect(mac->phydev); } netif_stop_queue(dev); napi_disable(&mac->napi); sta = read_dma_reg(mac, PAS_DMA_RXINT_RCMDSTA(mac->dma_if)); if (sta & (PAS_DMA_RXINT_RCMDSTA_BP | PAS_DMA_RXINT_RCMDSTA_OO | PAS_DMA_RXINT_RCMDSTA_BT)) printk(KERN_DEBUG "pasemi_mac: rcmdsta error: 0x%08x\n", sta); sta = read_dma_reg(mac, PAS_DMA_RXCHAN_CCMDSTA(mac->dma_rxch)); if (sta & (PAS_DMA_RXCHAN_CCMDSTA_DU | PAS_DMA_RXCHAN_CCMDSTA_OD | PAS_DMA_RXCHAN_CCMDSTA_FD | PAS_DMA_RXCHAN_CCMDSTA_DT)) printk(KERN_DEBUG "pasemi_mac: ccmdsta error: 0x%08x\n", sta); sta = read_dma_reg(mac, PAS_DMA_TXCHAN_TCMDSTA(mac->dma_txch)); if (sta & (PAS_DMA_TXCHAN_TCMDSTA_SZ | PAS_DMA_TXCHAN_TCMDSTA_DB | PAS_DMA_TXCHAN_TCMDSTA_DE | PAS_DMA_TXCHAN_TCMDSTA_DA)) printk(KERN_DEBUG "pasemi_mac: tcmdsta error: 0x%08x\n", sta); /* Clean out any pending buffers */ pasemi_mac_clean_tx(mac); pasemi_mac_clean_rx(mac, RX_RING_SIZE); /* Disable interface */ write_dma_reg(mac, PAS_DMA_TXCHAN_TCMDSTA(mac->dma_txch), PAS_DMA_TXCHAN_TCMDSTA_ST); write_dma_reg(mac, PAS_DMA_RXINT_RCMDSTA(mac->dma_if), PAS_DMA_RXINT_RCMDSTA_ST); write_dma_reg(mac, PAS_DMA_RXCHAN_CCMDSTA(mac->dma_rxch), PAS_DMA_RXCHAN_CCMDSTA_ST); for (retries = 0; retries < MAX_RETRIES; retries++) { sta = read_dma_reg(mac, PAS_DMA_TXCHAN_TCMDSTA(mac->dma_txch)); if (!(sta & PAS_DMA_TXCHAN_TCMDSTA_ACT)) break; cond_resched(); } if (sta & PAS_DMA_TXCHAN_TCMDSTA_ACT) dev_err(&mac->dma_pdev->dev, "Failed to stop tx channel\n"); for (retries = 0; retries < MAX_RETRIES; retries++) { sta = read_dma_reg(mac, PAS_DMA_RXCHAN_CCMDSTA(mac->dma_rxch)); if (!(sta & PAS_DMA_RXCHAN_CCMDSTA_ACT)) break; cond_resched(); } if (sta & PAS_DMA_RXCHAN_CCMDSTA_ACT) dev_err(&mac->dma_pdev->dev, "Failed to stop rx channel\n"); for (retries = 0; retries < MAX_RETRIES; retries++) { sta = read_dma_reg(mac, PAS_DMA_RXINT_RCMDSTA(mac->dma_if)); if (!(sta & PAS_DMA_RXINT_RCMDSTA_ACT)) break; cond_resched(); } if (sta & PAS_DMA_RXINT_RCMDSTA_ACT) dev_err(&mac->dma_pdev->dev, "Failed to stop rx interface\n"); /* Then, disable the channel. This must be done separately from * stopping, since you can't disable when active. */ write_dma_reg(mac, PAS_DMA_TXCHAN_TCMDSTA(mac->dma_txch), 0); write_dma_reg(mac, PAS_DMA_RXCHAN_CCMDSTA(mac->dma_rxch), 0); write_dma_reg(mac, PAS_DMA_RXINT_RCMDSTA(mac->dma_if), 0); free_irq(mac->tx_irq, dev); free_irq(mac->rx_irq, dev); /* Free resources */ pasemi_mac_free_rx_resources(dev); pasemi_mac_free_tx_resources(dev); return 0; } static int pasemi_mac_start_tx(struct sk_buff *skb, struct net_device *dev) { struct pasemi_mac *mac = netdev_priv(dev); struct pasemi_mac_txring *txring; u64 dflags, mactx; dma_addr_t map[MAX_SKB_FRAGS+1]; unsigned int map_size[MAX_SKB_FRAGS+1]; unsigned long flags; int i, nfrags; dflags = XCT_MACTX_O | XCT_MACTX_ST | XCT_MACTX_SS | XCT_MACTX_CRC_PAD; if (skb->ip_summed == CHECKSUM_PARTIAL) { const unsigned char *nh = skb_network_header(skb); switch (ip_hdr(skb)->protocol) { case IPPROTO_TCP: dflags |= XCT_MACTX_CSUM_TCP; dflags |= XCT_MACTX_IPH(skb_network_header_len(skb) >> 2); dflags |= XCT_MACTX_IPO(nh - skb->data); break; case IPPROTO_UDP: dflags |= XCT_MACTX_CSUM_UDP; dflags |= XCT_MACTX_IPH(skb_network_header_len(skb) >> 2); dflags |= XCT_MACTX_IPO(nh - skb->data); break; } } nfrags = skb_shinfo(skb)->nr_frags; map[0] = pci_map_single(mac->dma_pdev, skb->data, skb_headlen(skb), PCI_DMA_TODEVICE); map_size[0] = skb_headlen(skb); if (dma_mapping_error(map[0])) goto out_err_nolock; for (i = 0; i < nfrags; i++) { skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; map[i+1] = pci_map_page(mac->dma_pdev, frag->page, frag->page_offset, frag->size, PCI_DMA_TODEVICE); map_size[i+1] = frag->size; if (dma_mapping_error(map[i+1])) { nfrags = i; goto out_err_nolock; } } mactx = dflags | XCT_MACTX_LLEN(skb->len); txring = mac->tx; spin_lock_irqsave(&txring->lock, flags); /* Avoid stepping on the same cache line that the DMA controller * is currently about to send, so leave at least 8 words available. * Total free space needed is mactx + fragments + 8 */ if (RING_AVAIL(txring) < nfrags + 10) { /* no room -- stop the queue and wait for tx intr */ netif_stop_queue(dev); goto out_err; } TX_RING(mac, txring->next_to_fill) = mactx; txring->next_to_fill++; TX_RING_INFO(mac, txring->next_to_fill).skb = skb; for (i = 0; i <= nfrags; i++) { TX_RING(mac, txring->next_to_fill+i) = XCT_PTR_LEN(map_size[i]) | XCT_PTR_ADDR(map[i]); TX_RING_INFO(mac, txring->next_to_fill+i).dma = map[i]; } /* We have to add an even number of 8-byte entries to the ring * even if the last one is unused. That means always an odd number * of pointers + one mactx descriptor. */ if (nfrags & 1) nfrags++; txring->next_to_fill = (txring->next_to_fill + nfrags + 1) & (TX_RING_SIZE-1); dev->stats.tx_packets++; dev->stats.tx_bytes += skb->len; spin_unlock_irqrestore(&txring->lock, flags); write_dma_reg(mac, PAS_DMA_TXCHAN_INCR(mac->dma_txch), (nfrags+2) >> 1); return NETDEV_TX_OK; out_err: spin_unlock_irqrestore(&txring->lock, flags); out_err_nolock: while (nfrags--) pci_unmap_single(mac->dma_pdev, map[nfrags], map_size[nfrags], PCI_DMA_TODEVICE); return NETDEV_TX_BUSY; } static void pasemi_mac_set_rx_mode(struct net_device *dev) { struct pasemi_mac *mac = netdev_priv(dev); unsigned int flags; flags = read_mac_reg(mac, PAS_MAC_CFG_PCFG); /* Set promiscuous */ if (dev->flags & IFF_PROMISC) flags |= PAS_MAC_CFG_PCFG_PR; else flags &= ~PAS_MAC_CFG_PCFG_PR; write_mac_reg(mac, PAS_MAC_CFG_PCFG, flags); } static int pasemi_mac_poll(struct napi_struct *napi, int budget) { struct pasemi_mac *mac = container_of(napi, struct pasemi_mac, napi); struct net_device *dev = mac->netdev; int pkts; pasemi_mac_clean_tx(mac); pkts = pasemi_mac_clean_rx(mac, budget); if (pkts < budget) { /* all done, no more packets present */ netif_rx_complete(dev, napi); pasemi_mac_restart_rx_intr(mac); } return pkts; } static void __iomem * __devinit map_onedev(struct pci_dev *p, int index) { struct device_node *dn; void __iomem *ret; dn = pci_device_to_OF_node(p); if (!dn) goto fallback; ret = of_iomap(dn, index); if (!ret) goto fallback; return ret; fallback: /* This is hardcoded and ugly, but we have some firmware versions * that don't provide the register space in the device tree. Luckily * they are at well-known locations so we can just do the math here. */ return ioremap(0xe0000000 + (p->devfn << 12), 0x2000); } static int __devinit pasemi_mac_map_regs(struct pasemi_mac *mac) { struct resource res; struct device_node *dn; int err; mac->dma_pdev = pci_get_device(PCI_VENDOR_ID_PASEMI, 0xa007, NULL); if (!mac->dma_pdev) { dev_err(&mac->pdev->dev, "Can't find DMA Controller\n"); return -ENODEV; } mac->iob_pdev = pci_get_device(PCI_VENDOR_ID_PASEMI, 0xa001, NULL); if (!mac->iob_pdev) { dev_err(&mac->pdev->dev, "Can't find I/O Bridge\n"); return -ENODEV; } mac->regs = map_onedev(mac->pdev, 0); mac->dma_regs = map_onedev(mac->dma_pdev, 0); mac->iob_regs = map_onedev(mac->iob_pdev, 0); if (!mac->regs || !mac->dma_regs || !mac->iob_regs) { dev_err(&mac->pdev->dev, "Can't map registers\n"); return -ENODEV; } /* The dma status structure is located in the I/O bridge, and * is cache coherent. */ if (!dma_status) { dn = pci_device_to_OF_node(mac->iob_pdev); if (dn) err = of_address_to_resource(dn, 1, &res); if (!dn || err) { /* Fallback for old firmware */ res.start = 0xfd800000; res.end = res.start + 0x1000; } dma_status = __ioremap(res.start, res.end-res.start, 0); } return 0; } static int __devinit pasemi_mac_probe(struct pci_dev *pdev, const struct pci_device_id *ent) { static int index = 0; struct net_device *dev; struct pasemi_mac *mac; int err; DECLARE_MAC_BUF(mac_buf); err = pci_enable_device(pdev); if (err) return err; dev = alloc_etherdev(sizeof(struct pasemi_mac)); if (dev == NULL) { dev_err(&pdev->dev, "pasemi_mac: Could not allocate ethernet device.\n"); err = -ENOMEM; goto out_disable_device; } pci_set_drvdata(pdev, dev); SET_NETDEV_DEV(dev, &pdev->dev); mac = netdev_priv(dev); mac->pdev = pdev; mac->netdev = dev; netif_napi_add(dev, &mac->napi, pasemi_mac_poll, 64); dev->features = NETIF_F_HW_CSUM | NETIF_F_LLTX | NETIF_F_SG; /* These should come out of the device tree eventually */ mac->dma_txch = index; mac->dma_rxch = index; /* We probe GMAC before XAUI, but the DMA interfaces are * in XAUI, GMAC order. */ if (index < 4) mac->dma_if = index + 2; else mac->dma_if = index - 4; index++; switch (pdev->device) { case 0xa005: mac->type = MAC_TYPE_GMAC; break; case 0xa006: mac->type = MAC_TYPE_XAUI; break; default: err = -ENODEV; goto out; } /* get mac addr from device tree */ if (pasemi_get_mac_addr(mac) || !is_valid_ether_addr(mac->mac_addr)) { err = -ENODEV; goto out; } memcpy(dev->dev_addr, mac->mac_addr, sizeof(mac->mac_addr)); dev->open = pasemi_mac_open; dev->stop = pasemi_mac_close; dev->hard_start_xmit = pasemi_mac_start_tx; dev->set_multicast_list = pasemi_mac_set_rx_mode; err = pasemi_mac_map_regs(mac); if (err) goto out; mac->rx_status = &dma_status->rx_sta[mac->dma_rxch]; mac->tx_status = &dma_status->tx_sta[mac->dma_txch]; mac->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE); /* Enable most messages by default */ mac->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1; err = register_netdev(dev); if (err) { dev_err(&mac->pdev->dev, "register_netdev failed with error %d\n", err); goto out; } else if netif_msg_probe(mac) printk(KERN_INFO "%s: PA Semi %s: intf %d, txch %d, rxch %d, " "hw addr %s\n", dev->name, mac->type == MAC_TYPE_GMAC ? "GMAC" : "XAUI", mac->dma_if, mac->dma_txch, mac->dma_rxch, print_mac(mac_buf, dev->dev_addr)); return err; out: if (mac->iob_pdev) pci_dev_put(mac->iob_pdev); if (mac->dma_pdev) pci_dev_put(mac->dma_pdev); if (mac->dma_regs) iounmap(mac->dma_regs); if (mac->iob_regs) iounmap(mac->iob_regs); if (mac->regs) iounmap(mac->regs); free_netdev(dev); out_disable_device: pci_disable_device(pdev); return err; } static void __devexit pasemi_mac_remove(struct pci_dev *pdev) { struct net_device *netdev = pci_get_drvdata(pdev); struct pasemi_mac *mac; if (!netdev) return; mac = netdev_priv(netdev); unregister_netdev(netdev); pci_disable_device(pdev); pci_dev_put(mac->dma_pdev); pci_dev_put(mac->iob_pdev); iounmap(mac->regs); iounmap(mac->dma_regs); iounmap(mac->iob_regs); pci_set_drvdata(pdev, NULL); free_netdev(netdev); } static struct pci_device_id pasemi_mac_pci_tbl[] = { { PCI_DEVICE(PCI_VENDOR_ID_PASEMI, 0xa005) }, { PCI_DEVICE(PCI_VENDOR_ID_PASEMI, 0xa006) }, { }, }; MODULE_DEVICE_TABLE(pci, pasemi_mac_pci_tbl); static struct pci_driver pasemi_mac_driver = { .name = "pasemi_mac", .id_table = pasemi_mac_pci_tbl, .probe = pasemi_mac_probe, .remove = __devexit_p(pasemi_mac_remove), }; static void __exit pasemi_mac_cleanup_module(void) { pci_unregister_driver(&pasemi_mac_driver); __iounmap(dma_status); dma_status = NULL; } int pasemi_mac_init_module(void) { return pci_register_driver(&pasemi_mac_driver); } module_init(pasemi_mac_init_module); module_exit(pasemi_mac_cleanup_module);