/* * arch/arm/mach-ep93xx/core.c * Core routines for Cirrus EP93xx chips. * * Copyright (C) 2006 Lennert Buytenhek * Copyright (C) 2007 Herbert Valerio Riedel * * Thanks go to Michael Burian and Ray Lehtiniemi for their key * role in the ep93xx linux community. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or (at * your option) any later version. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /************************************************************************* * Static I/O mappings that are needed for all EP93xx platforms *************************************************************************/ static struct map_desc ep93xx_io_desc[] __initdata = { { .virtual = EP93XX_AHB_VIRT_BASE, .pfn = __phys_to_pfn(EP93XX_AHB_PHYS_BASE), .length = EP93XX_AHB_SIZE, .type = MT_DEVICE, }, { .virtual = EP93XX_APB_VIRT_BASE, .pfn = __phys_to_pfn(EP93XX_APB_PHYS_BASE), .length = EP93XX_APB_SIZE, .type = MT_DEVICE, }, }; void __init ep93xx_map_io(void) { iotable_init(ep93xx_io_desc, ARRAY_SIZE(ep93xx_io_desc)); } /************************************************************************* * Timer handling for EP93xx ************************************************************************* * The ep93xx has four internal timers. Timers 1, 2 (both 16 bit) and * 3 (32 bit) count down at 508 kHz, are self-reloading, and can generate * an interrupt on underflow. Timer 4 (40 bit) counts down at 983.04 kHz, * is free-running, and can't generate interrupts. * * The 508 kHz timers are ideal for use for the timer interrupt, as the * most common values of HZ divide 508 kHz nicely. We pick one of the 16 * bit timers (timer 1) since we don't need more than 16 bits of reload * value as long as HZ >= 8. * * The higher clock rate of timer 4 makes it a better choice than the * other timers for use in gettimeoffset(), while the fact that it can't * generate interrupts means we don't have to worry about not being able * to use this timer for something else. We also use timer 4 for keeping * track of lost jiffies. */ static unsigned int last_jiffy_time; #define TIMER4_TICKS_PER_JIFFY ((CLOCK_TICK_RATE + (HZ/2)) / HZ) static int ep93xx_timer_interrupt(int irq, void *dev_id) { __raw_writel(1, EP93XX_TIMER1_CLEAR); while ((signed long) (__raw_readl(EP93XX_TIMER4_VALUE_LOW) - last_jiffy_time) >= TIMER4_TICKS_PER_JIFFY) { last_jiffy_time += TIMER4_TICKS_PER_JIFFY; timer_tick(); } return IRQ_HANDLED; } static struct irqaction ep93xx_timer_irq = { .name = "ep93xx timer", .flags = IRQF_DISABLED | IRQF_TIMER | IRQF_IRQPOLL, .handler = ep93xx_timer_interrupt, }; static void __init ep93xx_timer_init(void) { /* Enable periodic HZ timer. */ __raw_writel(0x48, EP93XX_TIMER1_CONTROL); __raw_writel((508469 / HZ) - 1, EP93XX_TIMER1_LOAD); __raw_writel(0xc8, EP93XX_TIMER1_CONTROL); /* Enable lost jiffy timer. */ __raw_writel(0x100, EP93XX_TIMER4_VALUE_HIGH); setup_irq(IRQ_EP93XX_TIMER1, &ep93xx_timer_irq); } static unsigned long ep93xx_gettimeoffset(void) { int offset; offset = __raw_readl(EP93XX_TIMER4_VALUE_LOW) - last_jiffy_time; /* Calculate (1000000 / 983040) * offset. */ return offset + (53 * offset / 3072); } struct sys_timer ep93xx_timer = { .init = ep93xx_timer_init, .offset = ep93xx_gettimeoffset, }; /************************************************************************* * GPIO handling for EP93xx *************************************************************************/ static unsigned char gpio_int_unmasked[3]; static unsigned char gpio_int_enabled[3]; static unsigned char gpio_int_type1[3]; static unsigned char gpio_int_type2[3]; /* Port ordering is: A B F */ static const u8 int_type1_register_offset[3] = { 0x90, 0xac, 0x4c }; static const u8 int_type2_register_offset[3] = { 0x94, 0xb0, 0x50 }; static const u8 eoi_register_offset[3] = { 0x98, 0xb4, 0x54 }; static const u8 int_en_register_offset[3] = { 0x9c, 0xb8, 0x58 }; void ep93xx_gpio_update_int_params(unsigned port) { BUG_ON(port > 2); __raw_writeb(0, EP93XX_GPIO_REG(int_en_register_offset[port])); __raw_writeb(gpio_int_type2[port], EP93XX_GPIO_REG(int_type2_register_offset[port])); __raw_writeb(gpio_int_type1[port], EP93XX_GPIO_REG(int_type1_register_offset[port])); __raw_writeb(gpio_int_unmasked[port] & gpio_int_enabled[port], EP93XX_GPIO_REG(int_en_register_offset[port])); } void ep93xx_gpio_int_mask(unsigned line) { gpio_int_unmasked[line >> 3] &= ~(1 << (line & 7)); } /************************************************************************* * EP93xx IRQ handling *************************************************************************/ static void ep93xx_gpio_ab_irq_handler(unsigned int irq, struct irq_desc *desc) { unsigned char status; int i; status = __raw_readb(EP93XX_GPIO_A_INT_STATUS); for (i = 0; i < 8; i++) { if (status & (1 << i)) { int gpio_irq = gpio_to_irq(EP93XX_GPIO_LINE_A(0)) + i; generic_handle_irq(gpio_irq); } } status = __raw_readb(EP93XX_GPIO_B_INT_STATUS); for (i = 0; i < 8; i++) { if (status & (1 << i)) { int gpio_irq = gpio_to_irq(EP93XX_GPIO_LINE_B(0)) + i; desc = irq_desc + gpio_irq; generic_handle_irq(gpio_irq); } } } static void ep93xx_gpio_f_irq_handler(unsigned int irq, struct irq_desc *desc) { /* * map discontiguous hw irq range to continous sw irq range: * * IRQ_EP93XX_GPIO{0..7}MUX -> gpio_to_irq(EP93XX_GPIO_LINE_F({0..7}) */ int port_f_idx = ((irq + 1) & 7) ^ 4; /* {19..22,47..50} -> {0..7} */ int gpio_irq = gpio_to_irq(EP93XX_GPIO_LINE_F(0)) + port_f_idx; generic_handle_irq(gpio_irq); } static void ep93xx_gpio_irq_ack(unsigned int irq) { int line = irq_to_gpio(irq); int port = line >> 3; int port_mask = 1 << (line & 7); if ((irq_desc[irq].status & IRQ_TYPE_SENSE_MASK) == IRQ_TYPE_EDGE_BOTH) { gpio_int_type2[port] ^= port_mask; /* switch edge direction */ ep93xx_gpio_update_int_params(port); } __raw_writeb(port_mask, EP93XX_GPIO_REG(eoi_register_offset[port])); } static void ep93xx_gpio_irq_mask_ack(unsigned int irq) { int line = irq_to_gpio(irq); int port = line >> 3; int port_mask = 1 << (line & 7); if ((irq_desc[irq].status & IRQ_TYPE_SENSE_MASK) == IRQ_TYPE_EDGE_BOTH) gpio_int_type2[port] ^= port_mask; /* switch edge direction */ gpio_int_unmasked[port] &= ~port_mask; ep93xx_gpio_update_int_params(port); __raw_writeb(port_mask, EP93XX_GPIO_REG(eoi_register_offset[port])); } static void ep93xx_gpio_irq_mask(unsigned int irq) { int line = irq_to_gpio(irq); int port = line >> 3; gpio_int_unmasked[port] &= ~(1 << (line & 7)); ep93xx_gpio_update_int_params(port); } static void ep93xx_gpio_irq_unmask(unsigned int irq) { int line = irq_to_gpio(irq); int port = line >> 3; gpio_int_unmasked[port] |= 1 << (line & 7); ep93xx_gpio_update_int_params(port); } /* * gpio_int_type1 controls whether the interrupt is level (0) or * edge (1) triggered, while gpio_int_type2 controls whether it * triggers on low/falling (0) or high/rising (1). */ static int ep93xx_gpio_irq_type(unsigned int irq, unsigned int type) { struct irq_desc *desc = irq_desc + irq; const int gpio = irq_to_gpio(irq); const int port = gpio >> 3; const int port_mask = 1 << (gpio & 7); gpio_direction_input(gpio); switch (type) { case IRQ_TYPE_EDGE_RISING: gpio_int_type1[port] |= port_mask; gpio_int_type2[port] |= port_mask; desc->handle_irq = handle_edge_irq; break; case IRQ_TYPE_EDGE_FALLING: gpio_int_type1[port] |= port_mask; gpio_int_type2[port] &= ~port_mask; desc->handle_irq = handle_edge_irq; break; case IRQ_TYPE_LEVEL_HIGH: gpio_int_type1[port] &= ~port_mask; gpio_int_type2[port] |= port_mask; desc->handle_irq = handle_level_irq; break; case IRQ_TYPE_LEVEL_LOW: gpio_int_type1[port] &= ~port_mask; gpio_int_type2[port] &= ~port_mask; desc->handle_irq = handle_level_irq; break; case IRQ_TYPE_EDGE_BOTH: gpio_int_type1[port] |= port_mask; /* set initial polarity based on current input level */ if (gpio_get_value(gpio)) gpio_int_type2[port] &= ~port_mask; /* falling */ else gpio_int_type2[port] |= port_mask; /* rising */ desc->handle_irq = handle_edge_irq; break; default: pr_err("ep93xx: failed to set irq type %d for gpio %d\n", type, gpio); return -EINVAL; } gpio_int_enabled[port] |= port_mask; desc->status &= ~IRQ_TYPE_SENSE_MASK; desc->status |= type & IRQ_TYPE_SENSE_MASK; ep93xx_gpio_update_int_params(port); return 0; } static struct irq_chip ep93xx_gpio_irq_chip = { .name = "GPIO", .ack = ep93xx_gpio_irq_ack, .mask_ack = ep93xx_gpio_irq_mask_ack, .mask = ep93xx_gpio_irq_mask, .unmask = ep93xx_gpio_irq_unmask, .set_type = ep93xx_gpio_irq_type, }; void __init ep93xx_init_irq(void) { int gpio_irq; vic_init((void *)EP93XX_VIC1_BASE, 0, EP93XX_VIC1_VALID_IRQ_MASK); vic_init((void *)EP93XX_VIC2_BASE, 32, EP93XX_VIC2_VALID_IRQ_MASK); for (gpio_irq = gpio_to_irq(0); gpio_irq <= gpio_to_irq(EP93XX_GPIO_LINE_MAX_IRQ); ++gpio_irq) { set_irq_chip(gpio_irq, &ep93xx_gpio_irq_chip); set_irq_handler(gpio_irq, handle_level_irq); set_irq_flags(gpio_irq, IRQF_VALID); } set_irq_chained_handler(IRQ_EP93XX_GPIO_AB, ep93xx_gpio_ab_irq_handler); set_irq_chained_handler(IRQ_EP93XX_GPIO0MUX, ep93xx_gpio_f_irq_handler); set_irq_chained_handler(IRQ_EP93XX_GPIO1MUX, ep93xx_gpio_f_irq_handler); set_irq_chained_handler(IRQ_EP93XX_GPIO2MUX, ep93xx_gpio_f_irq_handler); set_irq_chained_handler(IRQ_EP93XX_GPIO3MUX, ep93xx_gpio_f_irq_handler); set_irq_chained_handler(IRQ_EP93XX_GPIO4MUX, ep93xx_gpio_f_irq_handler); set_irq_chained_handler(IRQ_EP93XX_GPIO5MUX, ep93xx_gpio_f_irq_handler); set_irq_chained_handler(IRQ_EP93XX_GPIO6MUX, ep93xx_gpio_f_irq_handler); set_irq_chained_handler(IRQ_EP93XX_GPIO7MUX, ep93xx_gpio_f_irq_handler); } /************************************************************************* * EP93xx peripheral handling *************************************************************************/ #define EP93XX_UART_MCR_OFFSET (0x0100) static void ep93xx_uart_set_mctrl(struct amba_device *dev, void __iomem *base, unsigned int mctrl) { unsigned int mcr; mcr = 0; if (!(mctrl & TIOCM_RTS)) mcr |= 2; if (!(mctrl & TIOCM_DTR)) mcr |= 1; __raw_writel(mcr, base + EP93XX_UART_MCR_OFFSET); } static struct amba_pl010_data ep93xx_uart_data = { .set_mctrl = ep93xx_uart_set_mctrl, }; static struct amba_device uart1_device = { .dev = { .bus_id = "apb:uart1", .platform_data = &ep93xx_uart_data, }, .res = { .start = EP93XX_UART1_PHYS_BASE, .end = EP93XX_UART1_PHYS_BASE + 0x0fff, .flags = IORESOURCE_MEM, }, .irq = { IRQ_EP93XX_UART1, NO_IRQ }, .periphid = 0x00041010, }; static struct amba_device uart2_device = { .dev = { .bus_id = "apb:uart2", .platform_data = &ep93xx_uart_data, }, .res = { .start = EP93XX_UART2_PHYS_BASE, .end = EP93XX_UART2_PHYS_BASE + 0x0fff, .flags = IORESOURCE_MEM, }, .irq = { IRQ_EP93XX_UART2, NO_IRQ }, .periphid = 0x00041010, }; static struct amba_device uart3_device = { .dev = { .bus_id = "apb:uart3", .platform_data = &ep93xx_uart_data, }, .res = { .start = EP93XX_UART3_PHYS_BASE, .end = EP93XX_UART3_PHYS_BASE + 0x0fff, .flags = IORESOURCE_MEM, }, .irq = { IRQ_EP93XX_UART3, NO_IRQ }, .periphid = 0x00041010, }; static struct platform_device ep93xx_rtc_device = { .name = "ep93xx-rtc", .id = -1, .num_resources = 0, }; static struct resource ep93xx_ohci_resources[] = { [0] = { .start = EP93XX_USB_PHYS_BASE, .end = EP93XX_USB_PHYS_BASE + 0x0fff, .flags = IORESOURCE_MEM, }, [1] = { .start = IRQ_EP93XX_USB, .end = IRQ_EP93XX_USB, .flags = IORESOURCE_IRQ, }, }; static struct platform_device ep93xx_ohci_device = { .name = "ep93xx-ohci", .id = -1, .dev = { .dma_mask = &ep93xx_ohci_device.dev.coherent_dma_mask, .coherent_dma_mask = DMA_BIT_MASK(32), }, .num_resources = ARRAY_SIZE(ep93xx_ohci_resources), .resource = ep93xx_ohci_resources, }; static struct ep93xx_eth_data ep93xx_eth_data; static struct resource ep93xx_eth_resource[] = { { .start = EP93XX_ETHERNET_PHYS_BASE, .end = EP93XX_ETHERNET_PHYS_BASE + 0xffff, .flags = IORESOURCE_MEM, }, { .start = IRQ_EP93XX_ETHERNET, .end = IRQ_EP93XX_ETHERNET, .flags = IORESOURCE_IRQ, } }; static struct platform_device ep93xx_eth_device = { .name = "ep93xx-eth", .id = -1, .dev = { .platform_data = &ep93xx_eth_data, }, .num_resources = ARRAY_SIZE(ep93xx_eth_resource), .resource = ep93xx_eth_resource, }; void __init ep93xx_register_eth(struct ep93xx_eth_data *data, int copy_addr) { if (copy_addr) { memcpy(data->dev_addr, (void *)(EP93XX_ETHERNET_BASE + 0x50), 6); } ep93xx_eth_data = *data; platform_device_register(&ep93xx_eth_device); } static struct i2c_gpio_platform_data ep93xx_i2c_data = { .sda_pin = EP93XX_GPIO_LINE_EEDAT, .sda_is_open_drain = 0, .scl_pin = EP93XX_GPIO_LINE_EECLK, .scl_is_open_drain = 0, .udelay = 2, }; static struct platform_device ep93xx_i2c_device = { .name = "i2c-gpio", .id = 0, .dev.platform_data = &ep93xx_i2c_data, }; void __init ep93xx_register_i2c(struct i2c_board_info *devices, int num) { i2c_register_board_info(0, devices, num); platform_device_register(&ep93xx_i2c_device); } extern void ep93xx_gpio_init(void); void __init ep93xx_init_devices(void) { unsigned int v; /* * Disallow access to MaverickCrunch initially. */ v = __raw_readl(EP93XX_SYSCON_DEVICE_CONFIG); v &= ~EP93XX_SYSCON_DEVICE_CONFIG_CRUNCH_ENABLE; __raw_writel(0xaa, EP93XX_SYSCON_SWLOCK); __raw_writel(v, EP93XX_SYSCON_DEVICE_CONFIG); ep93xx_gpio_init(); amba_device_register(&uart1_device, &iomem_resource); amba_device_register(&uart2_device, &iomem_resource); amba_device_register(&uart3_device, &iomem_resource); platform_device_register(&ep93xx_rtc_device); platform_device_register(&ep93xx_ohci_device); }