/* * Frame buffer device for IBM GXT4500P and GXT6000P display adaptors * * Copyright (C) 2006 Paul Mackerras, IBM Corp. <paulus@samba.org> */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/fb.h> #include <linux/console.h> #include <linux/pci.h> #include <linux/pci_ids.h> #include <linux/delay.h> #include <linux/string.h> #define PCI_DEVICE_ID_IBM_GXT4500P 0x21c #define PCI_DEVICE_ID_IBM_GXT6000P 0x170 /* GXT4500P registers */ /* Registers in PCI config space */ #define CFG_ENDIAN0 0x40 /* Misc control/status registers */ #define STATUS 0x1000 #define CTRL_REG0 0x1004 #define CR0_HALT_DMA 0x4 #define CR0_RASTER_RESET 0x8 #define CR0_GEOM_RESET 0x10 #define CR0_MEM_CTRLER_RESET 0x20 /* Framebuffer control registers */ #define FB_AB_CTRL 0x1100 #define FB_CD_CTRL 0x1104 #define FB_WID_CTRL 0x1108 #define FB_Z_CTRL 0x110c #define FB_VGA_CTRL 0x1110 #define REFRESH_AB_CTRL 0x1114 #define REFRESH_CD_CTRL 0x1118 #define FB_OVL_CTRL 0x111c #define FB_CTRL_TYPE 0x80000000 #define FB_CTRL_WIDTH_MASK 0x007f0000 #define FB_CTRL_WIDTH_SHIFT 16 #define FB_CTRL_START_SEG_MASK 0x00003fff #define REFRESH_START 0x1098 #define REFRESH_SIZE 0x109c /* "Direct" framebuffer access registers */ #define DFA_FB_A 0x11e0 #define DFA_FB_B 0x11e4 #define DFA_FB_C 0x11e8 #define DFA_FB_D 0x11ec #define DFA_FB_ENABLE 0x80000000 #define DFA_FB_BASE_MASK 0x03f00000 #define DFA_FB_STRIDE_1k 0x00000000 #define DFA_FB_STRIDE_2k 0x00000010 #define DFA_FB_STRIDE_4k 0x00000020 #define DFA_PIX_8BIT 0x00000000 #define DFA_PIX_16BIT_565 0x00000001 #define DFA_PIX_16BIT_1555 0x00000002 #define DFA_PIX_24BIT 0x00000004 #define DFA_PIX_32BIT 0x00000005 /* maps DFA_PIX_* to pixel size in bytes */ static const unsigned char pixsize[] = { 1, 2, 2, 2, 4, 4 }; /* Display timing generator registers */ #define DTG_CONTROL 0x1900 #define DTG_CTL_SCREEN_REFRESH 2 #define DTG_CTL_ENABLE 1 #define DTG_HORIZ_EXTENT 0x1904 #define DTG_HORIZ_DISPLAY 0x1908 #define DTG_HSYNC_START 0x190c #define DTG_HSYNC_END 0x1910 #define DTG_HSYNC_END_COMP 0x1914 #define DTG_VERT_EXTENT 0x1918 #define DTG_VERT_DISPLAY 0x191c #define DTG_VSYNC_START 0x1920 #define DTG_VSYNC_END 0x1924 #define DTG_VERT_SHORT 0x1928 /* PLL/RAMDAC registers */ #define DISP_CTL 0x402c #define DISP_CTL_OFF 2 #define SYNC_CTL 0x4034 #define SYNC_CTL_SYNC_ON_RGB 1 #define SYNC_CTL_SYNC_OFF 2 #define SYNC_CTL_HSYNC_INV 8 #define SYNC_CTL_VSYNC_INV 0x10 #define SYNC_CTL_HSYNC_OFF 0x20 #define SYNC_CTL_VSYNC_OFF 0x40 #define PLL_M 0x4040 #define PLL_N 0x4044 #define PLL_POSTDIV 0x4048 #define PLL_C 0x404c /* Hardware cursor */ #define CURSOR_X 0x4078 #define CURSOR_Y 0x407c #define CURSOR_HOTSPOT 0x4080 #define CURSOR_MODE 0x4084 #define CURSOR_MODE_OFF 0 #define CURSOR_MODE_4BPP 1 #define CURSOR_PIXMAP 0x5000 #define CURSOR_CMAP 0x7400 /* Window attribute table */ #define WAT_FMT 0x4100 #define WAT_FMT_24BIT 0 #define WAT_FMT_16BIT_565 1 #define WAT_FMT_16BIT_1555 2 #define WAT_FMT_32BIT 3 /* 0 vs. 3 is a guess */ #define WAT_FMT_8BIT_332 9 #define WAT_FMT_8BIT 0xa #define WAT_FMT_NO_CMAP 4 /* ORd in to other values */ #define WAT_CMAP_OFFSET 0x4104 /* 4-bit value gets << 6 */ #define WAT_CTRL 0x4108 #define WAT_CTRL_SEL_B 1 /* select B buffer if 1 */ #define WAT_CTRL_NO_INC 2 #define WAT_GAMMA_CTRL 0x410c #define WAT_GAMMA_DISABLE 1 /* disables gamma cmap */ #define WAT_OVL_CTRL 0x430c /* controls overlay */ /* Indexed by DFA_PIX_* values */ static const unsigned char watfmt[] = { WAT_FMT_8BIT, WAT_FMT_16BIT_565, WAT_FMT_16BIT_1555, 0, WAT_FMT_24BIT, WAT_FMT_32BIT }; /* Colormap array; 1k entries of 4 bytes each */ #define CMAP 0x6000 #define readreg(par, reg) readl((par)->regs + (reg)) #define writereg(par, reg, val) writel((val), (par)->regs + (reg)) struct gxt4500_par { void __iomem *regs; int pixfmt; /* pixel format, see DFA_PIX_* values */ /* PLL parameters */ int refclk_ps; /* ref clock period in picoseconds */ int pll_m; /* ref clock divisor */ int pll_n; /* VCO divisor */ int pll_pd1; /* first post-divisor */ int pll_pd2; /* second post-divisor */ u32 pseudo_palette[16]; /* used in color blits */ }; /* mode requested by user */ static char *mode_option; /* default mode: 1280x1024 @ 60 Hz, 8 bpp */ static const struct fb_videomode defaultmode __devinitdata = { .refresh = 60, .xres = 1280, .yres = 1024, .pixclock = 9295, .left_margin = 248, .right_margin = 48, .upper_margin = 38, .lower_margin = 1, .hsync_len = 112, .vsync_len = 3, .vmode = FB_VMODE_NONINTERLACED }; /* List of supported cards */ enum gxt_cards { GXT4500P, GXT6000P }; /* Card-specific information */ static const struct cardinfo { int refclk_ps; /* period of PLL reference clock in ps */ const char *cardname; } cardinfo[] = { [GXT4500P] = { .refclk_ps = 9259, .cardname = "IBM GXT4500P" }, [GXT6000P] = { .refclk_ps = 40000, .cardname = "IBM GXT6000P" }, }; /* * The refclk and VCO dividers appear to use a linear feedback shift * register, which gets reloaded when it reaches a terminal value, at * which point the divider output is toggled. Thus one can obtain * whatever divisor is required by putting the appropriate value into * the reload register. For a divisor of N, one puts the value from * the LFSR sequence that comes N-1 places before the terminal value * into the reload register. */ static const unsigned char mdivtab[] = { /* 1 */ 0x3f, 0x00, 0x20, 0x10, 0x28, 0x14, 0x2a, 0x15, 0x0a, /* 10 */ 0x25, 0x32, 0x19, 0x0c, 0x26, 0x13, 0x09, 0x04, 0x22, 0x11, /* 20 */ 0x08, 0x24, 0x12, 0x29, 0x34, 0x1a, 0x2d, 0x36, 0x1b, 0x0d, /* 30 */ 0x06, 0x23, 0x31, 0x38, 0x1c, 0x2e, 0x17, 0x0b, 0x05, 0x02, /* 40 */ 0x21, 0x30, 0x18, 0x2c, 0x16, 0x2b, 0x35, 0x3a, 0x1d, 0x0e, /* 50 */ 0x27, 0x33, 0x39, 0x3c, 0x1e, 0x2f, 0x37, 0x3b, 0x3d, 0x3e, /* 60 */ 0x1f, 0x0f, 0x07, 0x03, 0x01, }; static const unsigned char ndivtab[] = { /* 2 */ 0x00, 0x80, 0xc0, 0xe0, 0xf0, 0x78, 0xbc, 0x5e, /* 10 */ 0x2f, 0x17, 0x0b, 0x85, 0xc2, 0xe1, 0x70, 0x38, 0x9c, 0x4e, /* 20 */ 0xa7, 0xd3, 0xe9, 0xf4, 0xfa, 0xfd, 0xfe, 0x7f, 0xbf, 0xdf, /* 30 */ 0xef, 0x77, 0x3b, 0x1d, 0x8e, 0xc7, 0xe3, 0x71, 0xb8, 0xdc, /* 40 */ 0x6e, 0xb7, 0x5b, 0x2d, 0x16, 0x8b, 0xc5, 0xe2, 0xf1, 0xf8, /* 50 */ 0xfc, 0x7e, 0x3f, 0x9f, 0xcf, 0x67, 0xb3, 0xd9, 0x6c, 0xb6, /* 60 */ 0xdb, 0x6d, 0x36, 0x9b, 0x4d, 0x26, 0x13, 0x89, 0xc4, 0x62, /* 70 */ 0xb1, 0xd8, 0xec, 0xf6, 0xfb, 0x7d, 0xbe, 0x5f, 0xaf, 0x57, /* 80 */ 0x2b, 0x95, 0x4a, 0x25, 0x92, 0x49, 0xa4, 0x52, 0x29, 0x94, /* 90 */ 0xca, 0x65, 0xb2, 0x59, 0x2c, 0x96, 0xcb, 0xe5, 0xf2, 0x79, /* 100 */ 0x3c, 0x1e, 0x0f, 0x07, 0x83, 0x41, 0x20, 0x90, 0x48, 0x24, /* 110 */ 0x12, 0x09, 0x84, 0x42, 0xa1, 0x50, 0x28, 0x14, 0x8a, 0x45, /* 120 */ 0xa2, 0xd1, 0xe8, 0x74, 0xba, 0xdd, 0xee, 0xf7, 0x7b, 0x3d, /* 130 */ 0x9e, 0x4f, 0x27, 0x93, 0xc9, 0xe4, 0x72, 0x39, 0x1c, 0x0e, /* 140 */ 0x87, 0xc3, 0x61, 0x30, 0x18, 0x8c, 0xc6, 0x63, 0x31, 0x98, /* 150 */ 0xcc, 0xe6, 0x73, 0xb9, 0x5c, 0x2e, 0x97, 0x4b, 0xa5, 0xd2, /* 160 */ 0x69, }; static int calc_pll(int period_ps, struct gxt4500_par *par) { int m, n, pdiv1, pdiv2, postdiv; int pll_period, best_error, t, intf; /* only deal with range 5MHz - 300MHz */ if (period_ps < 3333 || period_ps > 200000) return -1; best_error = 1000000; for (pdiv1 = 1; pdiv1 <= 8; ++pdiv1) { for (pdiv2 = 1; pdiv2 <= pdiv1; ++pdiv2) { postdiv = pdiv1 * pdiv2; pll_period = DIV_ROUND_UP(period_ps, postdiv); /* keep pll in range 350..600 MHz */ if (pll_period < 1666 || pll_period > 2857) continue; for (m = 1; m <= 64; ++m) { intf = m * par->refclk_ps; if (intf > 500000) break; n = intf * postdiv / period_ps; if (n < 3 || n > 160) continue; t = par->refclk_ps * m * postdiv / n; t -= period_ps; if (t >= 0 && t < best_error) { par->pll_m = m; par->pll_n = n; par->pll_pd1 = pdiv1; par->pll_pd2 = pdiv2; best_error = t; } } } } if (best_error == 1000000) return -1; return 0; } static int calc_pixclock(struct gxt4500_par *par) { return par->refclk_ps * par->pll_m * par->pll_pd1 * par->pll_pd2 / par->pll_n; } static int gxt4500_var_to_par(struct fb_var_screeninfo *var, struct gxt4500_par *par) { if (var->xres + var->xoffset > var->xres_virtual || var->yres + var->yoffset > var->yres_virtual || var->xres_virtual > 4096) return -EINVAL; if ((var->vmode & FB_VMODE_MASK) != FB_VMODE_NONINTERLACED) return -EINVAL; if (calc_pll(var->pixclock, par) < 0) return -EINVAL; switch (var->bits_per_pixel) { case 32: if (var->transp.length) par->pixfmt = DFA_PIX_32BIT; else par->pixfmt = DFA_PIX_24BIT; break; case 24: par->pixfmt = DFA_PIX_24BIT; break; case 16: if (var->green.length == 5) par->pixfmt = DFA_PIX_16BIT_1555; else par->pixfmt = DFA_PIX_16BIT_565; break; case 8: par->pixfmt = DFA_PIX_8BIT; break; default: return -EINVAL; } return 0; } static const struct fb_bitfield eightbits = {0, 8}; static const struct fb_bitfield nobits = {0, 0}; static void gxt4500_unpack_pixfmt(struct fb_var_screeninfo *var, int pixfmt) { var->bits_per_pixel = pixsize[pixfmt] * 8; var->red = eightbits; var->green = eightbits; var->blue = eightbits; var->transp = nobits; switch (pixfmt) { case DFA_PIX_16BIT_565: var->red.length = 5; var->green.length = 6; var->blue.length = 5; break; case DFA_PIX_16BIT_1555: var->red.length = 5; var->green.length = 5; var->blue.length = 5; var->transp.length = 1; break; case DFA_PIX_32BIT: var->transp.length = 8; break; } if (pixfmt != DFA_PIX_8BIT) { var->green.offset = var->red.length; var->blue.offset = var->green.offset + var->green.length; if (var->transp.length) var->transp.offset = var->blue.offset + var->blue.length; } } static int gxt4500_check_var(struct fb_var_screeninfo *var, struct fb_info *info) { struct gxt4500_par par; int err; par = *(struct gxt4500_par *)info->par; err = gxt4500_var_to_par(var, &par); if (!err) { var->pixclock = calc_pixclock(&par); gxt4500_unpack_pixfmt(var, par.pixfmt); } return err; } static int gxt4500_set_par(struct fb_info *info) { struct gxt4500_par *par = info->par; struct fb_var_screeninfo *var = &info->var; int err; u32 ctrlreg, tmp; unsigned int dfa_ctl, pixfmt, stride; unsigned int wid_tiles, i; unsigned int prefetch_pix, htot; struct gxt4500_par save_par; save_par = *par; err = gxt4500_var_to_par(var, par); if (err) { *par = save_par; return err; } /* turn off DTG for now */ ctrlreg = readreg(par, DTG_CONTROL); ctrlreg &= ~(DTG_CTL_ENABLE | DTG_CTL_SCREEN_REFRESH); writereg(par, DTG_CONTROL, ctrlreg); /* set PLL registers */ tmp = readreg(par, PLL_C) & ~0x7f; if (par->pll_n < 38) tmp |= 0x29; if (par->pll_n < 69) tmp |= 0x35; else if (par->pll_n < 100) tmp |= 0x76; else tmp |= 0x7e; writereg(par, PLL_C, tmp); writereg(par, PLL_M, mdivtab[par->pll_m - 1]); writereg(par, PLL_N, ndivtab[par->pll_n - 2]); tmp = ((8 - par->pll_pd2) << 3) | (8 - par->pll_pd1); if (par->pll_pd1 == 8 || par->pll_pd2 == 8) { /* work around erratum */ writereg(par, PLL_POSTDIV, tmp | 0x9); udelay(1); } writereg(par, PLL_POSTDIV, tmp); msleep(20); /* turn off hardware cursor */ writereg(par, CURSOR_MODE, CURSOR_MODE_OFF); /* reset raster engine */ writereg(par, CTRL_REG0, CR0_RASTER_RESET | (CR0_RASTER_RESET << 16)); udelay(10); writereg(par, CTRL_REG0, CR0_RASTER_RESET << 16); /* set display timing generator registers */ htot = var->xres + var->left_margin + var->right_margin + var->hsync_len; writereg(par, DTG_HORIZ_EXTENT, htot - 1); writereg(par, DTG_HORIZ_DISPLAY, var->xres - 1); writereg(par, DTG_HSYNC_START, var->xres + var->right_margin - 1); writereg(par, DTG_HSYNC_END, var->xres + var->right_margin + var->hsync_len - 1); writereg(par, DTG_HSYNC_END_COMP, var->xres + var->right_margin + var->hsync_len - 1); writereg(par, DTG_VERT_EXTENT, var->yres + var->upper_margin + var->lower_margin + var->vsync_len - 1); writereg(par, DTG_VERT_DISPLAY, var->yres - 1); writereg(par, DTG_VSYNC_START, var->yres + var->lower_margin - 1); writereg(par, DTG_VSYNC_END, var->yres + var->lower_margin + var->vsync_len - 1); prefetch_pix = 3300000 / var->pixclock; if (prefetch_pix >= htot) prefetch_pix = htot - 1; writereg(par, DTG_VERT_SHORT, htot - prefetch_pix - 1); ctrlreg |= DTG_CTL_ENABLE | DTG_CTL_SCREEN_REFRESH; writereg(par, DTG_CONTROL, ctrlreg); /* calculate stride in DFA aperture */ if (var->xres_virtual > 2048) { stride = 4096; dfa_ctl = DFA_FB_STRIDE_4k; } else if (var->xres_virtual > 1024) { stride = 2048; dfa_ctl = DFA_FB_STRIDE_2k; } else { stride = 1024; dfa_ctl = DFA_FB_STRIDE_1k; } /* Set up framebuffer definition */ wid_tiles = (var->xres_virtual + 63) >> 6; /* XXX add proper FB allocation here someday */ writereg(par, FB_AB_CTRL, FB_CTRL_TYPE | (wid_tiles << 16) | 0); writereg(par, REFRESH_AB_CTRL, FB_CTRL_TYPE | (wid_tiles << 16) | 0); writereg(par, FB_CD_CTRL, FB_CTRL_TYPE | (wid_tiles << 16) | 0); writereg(par, REFRESH_CD_CTRL, FB_CTRL_TYPE | (wid_tiles << 16) | 0); writereg(par, REFRESH_START, (var->xoffset << 16) | var->yoffset); writereg(par, REFRESH_SIZE, (var->xres << 16) | var->yres); /* Set up framebuffer access by CPU */ pixfmt = par->pixfmt; dfa_ctl |= DFA_FB_ENABLE | pixfmt; writereg(par, DFA_FB_A, dfa_ctl); /* * Set up window attribute table. * We set all WAT entries the same so it doesn't matter what the * window ID (WID) plane contains. */ for (i = 0; i < 32; ++i) { writereg(par, WAT_FMT + (i << 4), watfmt[pixfmt]); writereg(par, WAT_CMAP_OFFSET + (i << 4), 0); writereg(par, WAT_CTRL + (i << 4), 0); writereg(par, WAT_GAMMA_CTRL + (i << 4), WAT_GAMMA_DISABLE); } /* Set sync polarity etc. */ ctrlreg = readreg(par, SYNC_CTL) & ~(SYNC_CTL_SYNC_ON_RGB | SYNC_CTL_HSYNC_INV | SYNC_CTL_VSYNC_INV); if (var->sync & FB_SYNC_ON_GREEN) ctrlreg |= SYNC_CTL_SYNC_ON_RGB; if (!(var->sync & FB_SYNC_HOR_HIGH_ACT)) ctrlreg |= SYNC_CTL_HSYNC_INV; if (!(var->sync & FB_SYNC_VERT_HIGH_ACT)) ctrlreg |= SYNC_CTL_VSYNC_INV; writereg(par, SYNC_CTL, ctrlreg); info->fix.line_length = stride * pixsize[pixfmt]; info->fix.visual = (pixfmt == DFA_PIX_8BIT)? FB_VISUAL_PSEUDOCOLOR: FB_VISUAL_DIRECTCOLOR; return 0; } static int gxt4500_setcolreg(unsigned int reg, unsigned int red, unsigned int green, unsigned int blue, unsigned int transp, struct fb_info *info) { u32 cmap_entry; struct gxt4500_par *par = info->par; if (reg > 1023) return 1; cmap_entry = ((transp & 0xff00) << 16) | ((red & 0xff00) << 8) | (green & 0xff00) | (blue >> 8); writereg(par, CMAP + reg * 4, cmap_entry); if (reg < 16 && par->pixfmt != DFA_PIX_8BIT) { u32 *pal = info->pseudo_palette; u32 val = reg; switch (par->pixfmt) { case DFA_PIX_16BIT_565: val |= (reg << 11) | (reg << 6); break; case DFA_PIX_16BIT_1555: val |= (reg << 10) | (reg << 5); break; case DFA_PIX_32BIT: val |= (reg << 24); /* fall through */ case DFA_PIX_24BIT: val |= (reg << 16) | (reg << 8); break; } pal[reg] = val; } return 0; } static int gxt4500_pan_display(struct fb_var_screeninfo *var, struct fb_info *info) { struct gxt4500_par *par = info->par; if (var->xoffset & 7) return -EINVAL; if (var->xoffset + var->xres > var->xres_virtual || var->yoffset + var->yres > var->yres_virtual) return -EINVAL; writereg(par, REFRESH_START, (var->xoffset << 16) | var->yoffset); return 0; } static int gxt4500_blank(int blank, struct fb_info *info) { struct gxt4500_par *par = info->par; int ctrl, dctl; ctrl = readreg(par, SYNC_CTL); ctrl &= ~(SYNC_CTL_SYNC_OFF | SYNC_CTL_HSYNC_OFF | SYNC_CTL_VSYNC_OFF); dctl = readreg(par, DISP_CTL); dctl |= DISP_CTL_OFF; switch (blank) { case FB_BLANK_UNBLANK: dctl &= ~DISP_CTL_OFF; break; case FB_BLANK_POWERDOWN: ctrl |= SYNC_CTL_SYNC_OFF; break; case FB_BLANK_HSYNC_SUSPEND: ctrl |= SYNC_CTL_HSYNC_OFF; break; case FB_BLANK_VSYNC_SUSPEND: ctrl |= SYNC_CTL_VSYNC_OFF; break; default: ; } writereg(par, SYNC_CTL, ctrl); writereg(par, DISP_CTL, dctl); return 0; } static const struct fb_fix_screeninfo gxt4500_fix __devinitdata = { .id = "IBM GXT4500P", .type = FB_TYPE_PACKED_PIXELS, .visual = FB_VISUAL_PSEUDOCOLOR, .xpanstep = 8, .ypanstep = 1, .mmio_len = 0x20000, }; static struct fb_ops gxt4500_ops = { .owner = THIS_MODULE, .fb_check_var = gxt4500_check_var, .fb_set_par = gxt4500_set_par, .fb_setcolreg = gxt4500_setcolreg, .fb_pan_display = gxt4500_pan_display, .fb_blank = gxt4500_blank, .fb_fillrect = cfb_fillrect, .fb_copyarea = cfb_copyarea, .fb_imageblit = cfb_imageblit, }; /* PCI functions */ static int __devinit gxt4500_probe(struct pci_dev *pdev, const struct pci_device_id *ent) { int err; unsigned long reg_phys, fb_phys; struct gxt4500_par *par; struct fb_info *info; struct fb_var_screeninfo var; enum gxt_cards cardtype; err = pci_enable_device(pdev); if (err) { dev_err(&pdev->dev, "gxt4500: cannot enable PCI device: %d\n", err); return err; } reg_phys = pci_resource_start(pdev, 0); if (!request_mem_region(reg_phys, pci_resource_len(pdev, 0), "gxt4500 regs")) { dev_err(&pdev->dev, "gxt4500: cannot get registers\n"); goto err_nodev; } fb_phys = pci_resource_start(pdev, 1); if (!request_mem_region(fb_phys, pci_resource_len(pdev, 1), "gxt4500 FB")) { dev_err(&pdev->dev, "gxt4500: cannot get framebuffer\n"); goto err_free_regs; } info = framebuffer_alloc(sizeof(struct gxt4500_par), &pdev->dev); if (!info) { dev_err(&pdev->dev, "gxt4500: cannot alloc FB info record\n"); goto err_free_fb; } par = info->par; cardtype = ent->driver_data; par->refclk_ps = cardinfo[cardtype].refclk_ps; info->fix = gxt4500_fix; strlcpy(info->fix.id, cardinfo[cardtype].cardname, sizeof(info->fix.id)); info->pseudo_palette = par->pseudo_palette; info->fix.mmio_start = reg_phys; par->regs = pci_ioremap_bar(pdev, 0); if (!par->regs) { dev_err(&pdev->dev, "gxt4500: cannot map registers\n"); goto err_free_all; } info->fix.smem_start = fb_phys; info->fix.smem_len = pci_resource_len(pdev, 1); info->screen_base = pci_ioremap_bar(pdev, 1); if (!info->screen_base) { dev_err(&pdev->dev, "gxt4500: cannot map framebuffer\n"); goto err_unmap_regs; } pci_set_drvdata(pdev, info); /* Set byte-swapping for DFA aperture for all pixel sizes */ pci_write_config_dword(pdev, CFG_ENDIAN0, 0x333300); info->fbops = &gxt4500_ops; info->flags = FBINFO_FLAG_DEFAULT; err = fb_alloc_cmap(&info->cmap, 256, 0); if (err) { dev_err(&pdev->dev, "gxt4500: cannot allocate cmap\n"); goto err_unmap_all; } gxt4500_blank(FB_BLANK_UNBLANK, info); if (!fb_find_mode(&var, info, mode_option, NULL, 0, &defaultmode, 8)) { dev_err(&pdev->dev, "gxt4500: cannot find valid video mode\n"); goto err_free_cmap; } info->var = var; if (gxt4500_set_par(info)) { printk(KERN_ERR "gxt4500: cannot set video mode\n"); goto err_free_cmap; } if (register_framebuffer(info) < 0) { dev_err(&pdev->dev, "gxt4500: cannot register framebuffer\n"); goto err_free_cmap; } printk(KERN_INFO "fb%d: %s frame buffer device\n", info->node, info->fix.id); return 0; err_free_cmap: fb_dealloc_cmap(&info->cmap); err_unmap_all: iounmap(info->screen_base); err_unmap_regs: iounmap(par->regs); err_free_all: framebuffer_release(info); err_free_fb: release_mem_region(fb_phys, pci_resource_len(pdev, 1)); err_free_regs: release_mem_region(reg_phys, pci_resource_len(pdev, 0)); err_nodev: return -ENODEV; } static void __devexit gxt4500_remove(struct pci_dev *pdev) { struct fb_info *info = pci_get_drvdata(pdev); struct gxt4500_par *par; if (!info) return; par = info->par; unregister_framebuffer(info); fb_dealloc_cmap(&info->cmap); iounmap(par->regs); iounmap(info->screen_base); release_mem_region(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0)); release_mem_region(pci_resource_start(pdev, 1), pci_resource_len(pdev, 1)); framebuffer_release(info); } /* supported chipsets */ static const struct pci_device_id gxt4500_pci_tbl[] = { { PCI_DEVICE(PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_GXT4500P), .driver_data = GXT4500P }, { PCI_DEVICE(PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_GXT6000P), .driver_data = GXT6000P }, { 0 } }; MODULE_DEVICE_TABLE(pci, gxt4500_pci_tbl); static struct pci_driver gxt4500_driver = { .name = "gxt4500", .id_table = gxt4500_pci_tbl, .probe = gxt4500_probe, .remove = __devexit_p(gxt4500_remove), }; static int __devinit gxt4500_init(void) { #ifndef MODULE if (fb_get_options("gxt4500", &mode_option)) return -ENODEV; #endif return pci_register_driver(&gxt4500_driver); } module_init(gxt4500_init); static void __exit gxt4500_exit(void) { pci_unregister_driver(&gxt4500_driver); } module_exit(gxt4500_exit); MODULE_AUTHOR("Paul Mackerras <paulus@samba.org>"); MODULE_DESCRIPTION("FBDev driver for IBM GXT4500P/6000P"); MODULE_LICENSE("GPL"); module_param(mode_option, charp, 0); MODULE_PARM_DESC(mode_option, "Specify resolution as \"<xres>x<yres>[-<bpp>][@<refresh>]\"");