linux_old1/arch/blackfin/mm/blackfin_sram.c

609 lines
14 KiB
C

/*
* File: arch/blackfin/mm/blackfin_sram.c
* Based on:
* Author:
*
* Created:
* Description: SRAM driver for Blackfin ADSP-BF5xx
*
* Modified:
* Copyright 2004-2007 Analog Devices Inc.
*
* Bugs: Enter bugs at http://blackfin.uclinux.org/
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see the file COPYING, or write
* to the Free Software Foundation, Inc.,
* 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <linux/autoconf.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/miscdevice.h>
#include <linux/ioport.h>
#include <linux/fcntl.h>
#include <linux/init.h>
#include <linux/poll.h>
#include <linux/proc_fs.h>
#include <linux/spinlock.h>
#include <linux/rtc.h>
#include <asm/blackfin.h>
#include "blackfin_sram.h"
spinlock_t l1sram_lock, l1_data_sram_lock, l1_inst_sram_lock;
#if CONFIG_L1_MAX_PIECE < 16
#undef CONFIG_L1_MAX_PIECE
#define CONFIG_L1_MAX_PIECE 16
#endif
#if CONFIG_L1_MAX_PIECE > 1024
#undef CONFIG_L1_MAX_PIECE
#define CONFIG_L1_MAX_PIECE 1024
#endif
#define SRAM_SLT_NULL 0
#define SRAM_SLT_FREE 1
#define SRAM_SLT_ALLOCATED 2
/* the data structure for L1 scratchpad and DATA SRAM */
struct l1_sram_piece {
void *paddr;
int size;
int flag;
pid_t pid;
};
static struct l1_sram_piece l1_ssram[CONFIG_L1_MAX_PIECE];
#if L1_DATA_A_LENGTH != 0
static struct l1_sram_piece l1_data_A_sram[CONFIG_L1_MAX_PIECE];
#endif
#if L1_DATA_B_LENGTH != 0
static struct l1_sram_piece l1_data_B_sram[CONFIG_L1_MAX_PIECE];
#endif
#if L1_CODE_LENGTH != 0
static struct l1_sram_piece l1_inst_sram[CONFIG_L1_MAX_PIECE];
#endif
/* L1 Scratchpad SRAM initialization function */
void __init l1sram_init(void)
{
printk(KERN_INFO "Blackfin Scratchpad data SRAM: %d KB\n",
L1_SCRATCH_LENGTH >> 10);
memset(&l1_ssram, 0x00, sizeof(l1_ssram));
l1_ssram[0].paddr = (void*)L1_SCRATCH_START;
l1_ssram[0].size = L1_SCRATCH_LENGTH;
l1_ssram[0].flag = SRAM_SLT_FREE;
/* mutex initialize */
spin_lock_init(&l1sram_lock);
}
void __init l1_data_sram_init(void)
{
#if L1_DATA_A_LENGTH != 0
memset(&l1_data_A_sram, 0x00, sizeof(l1_data_A_sram));
l1_data_A_sram[0].paddr = (void *)L1_DATA_A_START +
(_ebss_l1 - _sdata_l1);
l1_data_A_sram[0].size = L1_DATA_A_LENGTH - (_ebss_l1 - _sdata_l1);
l1_data_A_sram[0].flag = SRAM_SLT_FREE;
printk(KERN_INFO "Blackfin Data A SRAM: %d KB (%d KB free)\n",
L1_DATA_A_LENGTH >> 10, l1_data_A_sram[0].size >> 10);
#endif
#if L1_DATA_B_LENGTH != 0
memset(&l1_data_B_sram, 0x00, sizeof(l1_data_B_sram));
l1_data_B_sram[0].paddr = (void*)L1_DATA_B_START;
l1_data_B_sram[0].size = L1_DATA_B_LENGTH;
l1_data_B_sram[0].flag = SRAM_SLT_FREE;
printk(KERN_INFO "Blackfin Data B SRAM: %d KB (%d KB free)\n",
L1_DATA_B_LENGTH >> 10, l1_data_B_sram[0].size >> 10);
#endif
/* mutex initialize */
spin_lock_init(&l1_data_sram_lock);
}
void __init l1_inst_sram_init(void)
{
#if L1_CODE_LENGTH != 0
memset(&l1_inst_sram, 0x00, sizeof(l1_inst_sram));
l1_inst_sram[0].paddr = (void*)L1_CODE_START + (_etext_l1 - _stext_l1);
l1_inst_sram[0].size = L1_CODE_LENGTH - (_etext_l1 - _stext_l1);
l1_inst_sram[0].flag = SRAM_SLT_FREE;
printk(KERN_INFO "Blackfin Instruction SRAM: %d KB (%d KB free)\n",
L1_CODE_LENGTH >> 10, l1_inst_sram[0].size >> 10);
#endif
/* mutex initialize */
spin_lock_init(&l1_inst_sram_lock);
}
/* L1 memory allocate function */
static void *_l1_sram_alloc(size_t size, struct l1_sram_piece *pfree, int count)
{
int i, index = 0;
void *addr = NULL;
if (size <= 0)
return NULL;
/* Align the size */
size = (size + 3) & ~3;
/* not use the good method to match the best slot !!! */
/* search an available memory slot */
for (i = 0; i < count; i++) {
if ((pfree[i].flag == SRAM_SLT_FREE)
&& (pfree[i].size >= size)) {
addr = pfree[i].paddr;
pfree[i].flag = SRAM_SLT_ALLOCATED;
pfree[i].pid = current->pid;
index = i;
break;
}
}
if (i >= count)
return NULL;
/* updated the NULL memory slot !!! */
if (pfree[i].size > size) {
for (i = 0; i < count; i++) {
if (pfree[i].flag == SRAM_SLT_NULL) {
pfree[i].pid = 0;
pfree[i].flag = SRAM_SLT_FREE;
pfree[i].paddr = addr + size;
pfree[i].size = pfree[index].size - size;
pfree[index].size = size;
break;
}
}
}
return addr;
}
/* Allocate the largest available block. */
static void *_l1_sram_alloc_max(struct l1_sram_piece *pfree, int count,
unsigned long *psize)
{
unsigned long best = 0;
int i, index = -1;
void *addr = NULL;
/* search an available memory slot */
for (i = 0; i < count; i++) {
if (pfree[i].flag == SRAM_SLT_FREE && pfree[i].size > best) {
addr = pfree[i].paddr;
index = i;
best = pfree[i].size;
}
}
if (index < 0)
return NULL;
*psize = best;
pfree[index].pid = current->pid;
pfree[index].flag = SRAM_SLT_ALLOCATED;
return addr;
}
/* L1 memory free function */
static int _l1_sram_free(const void *addr,
struct l1_sram_piece *pfree,
int count)
{
int i, index = 0;
/* search the relevant memory slot */
for (i = 0; i < count; i++) {
if (pfree[i].paddr == addr) {
if (pfree[i].flag != SRAM_SLT_ALLOCATED) {
/* error log */
return -1;
}
index = i;
break;
}
}
if (i >= count)
return -1;
pfree[index].pid = 0;
pfree[index].flag = SRAM_SLT_FREE;
/* link the next address slot */
for (i = 0; i < count; i++) {
if (((pfree[index].paddr + pfree[index].size) == pfree[i].paddr)
&& (pfree[i].flag == SRAM_SLT_FREE)) {
pfree[i].pid = 0;
pfree[i].flag = SRAM_SLT_NULL;
pfree[index].size += pfree[i].size;
pfree[index].flag = SRAM_SLT_FREE;
break;
}
}
/* link the last address slot */
for (i = 0; i < count; i++) {
if (((pfree[i].paddr + pfree[i].size) == pfree[index].paddr) &&
(pfree[i].flag == SRAM_SLT_FREE)) {
pfree[index].flag = SRAM_SLT_NULL;
pfree[i].size += pfree[index].size;
break;
}
}
return 0;
}
int sram_free(const void *addr)
{
if (0) {}
#if L1_CODE_LENGTH != 0
else if (addr >= (void *)L1_CODE_START
&& addr < (void *)(L1_CODE_START + L1_CODE_LENGTH))
return l1_inst_sram_free(addr);
#endif
#if L1_DATA_A_LENGTH != 0
else if (addr >= (void *)L1_DATA_A_START
&& addr < (void *)(L1_DATA_A_START + L1_DATA_A_LENGTH))
return l1_data_A_sram_free(addr);
#endif
#if L1_DATA_B_LENGTH != 0
else if (addr >= (void *)L1_DATA_B_START
&& addr < (void *)(L1_DATA_B_START + L1_DATA_B_LENGTH))
return l1_data_B_sram_free(addr);
#endif
else
return -1;
}
EXPORT_SYMBOL(sram_free);
void *l1_data_A_sram_alloc(size_t size)
{
unsigned flags;
void *addr = NULL;
/* add mutex operation */
spin_lock_irqsave(&l1_data_sram_lock, flags);
#if L1_DATA_A_LENGTH != 0
addr = _l1_sram_alloc(size, l1_data_A_sram, ARRAY_SIZE(l1_data_A_sram));
#endif
/* add mutex operation */
spin_unlock_irqrestore(&l1_data_sram_lock, flags);
pr_debug("Allocated address in l1_data_A_sram_alloc is 0x%lx+0x%lx\n",
(long unsigned int)addr, size);
return addr;
}
EXPORT_SYMBOL(l1_data_A_sram_alloc);
int l1_data_A_sram_free(const void *addr)
{
unsigned flags;
int ret;
/* add mutex operation */
spin_lock_irqsave(&l1_data_sram_lock, flags);
#if L1_DATA_A_LENGTH != 0
ret = _l1_sram_free(addr,
l1_data_A_sram, ARRAY_SIZE(l1_data_A_sram));
#else
ret = -1;
#endif
/* add mutex operation */
spin_unlock_irqrestore(&l1_data_sram_lock, flags);
return ret;
}
EXPORT_SYMBOL(l1_data_A_sram_free);
void *l1_data_B_sram_alloc(size_t size)
{
#if L1_DATA_B_LENGTH != 0
unsigned flags;
void *addr;
/* add mutex operation */
spin_lock_irqsave(&l1_data_sram_lock, flags);
addr = _l1_sram_alloc(size, l1_data_B_sram, ARRAY_SIZE(l1_data_B_sram));
/* add mutex operation */
spin_unlock_irqrestore(&l1_data_sram_lock, flags);
pr_debug("Allocated address in l1_data_B_sram_alloc is 0x%lx+0x%lx\n",
(long unsigned int)addr, size);
return addr;
#else
return NULL;
#endif
}
EXPORT_SYMBOL(l1_data_B_sram_alloc);
int l1_data_B_sram_free(const void *addr)
{
#if L1_DATA_B_LENGTH != 0
unsigned flags;
int ret;
/* add mutex operation */
spin_lock_irqsave(&l1_data_sram_lock, flags);
ret = _l1_sram_free(addr, l1_data_B_sram, ARRAY_SIZE(l1_data_B_sram));
/* add mutex operation */
spin_unlock_irqrestore(&l1_data_sram_lock, flags);
return ret;
#else
return -1;
#endif
}
EXPORT_SYMBOL(l1_data_B_sram_free);
void *l1_data_sram_alloc(size_t size)
{
void *addr = l1_data_A_sram_alloc(size);
if (!addr)
addr = l1_data_B_sram_alloc(size);
return addr;
}
EXPORT_SYMBOL(l1_data_sram_alloc);
void *l1_data_sram_zalloc(size_t size)
{
void *addr = l1_data_sram_alloc(size);
if (addr)
memset(addr, 0x00, size);
return addr;
}
EXPORT_SYMBOL(l1_data_sram_zalloc);
int l1_data_sram_free(const void *addr)
{
int ret;
ret = l1_data_A_sram_free(addr);
if (ret == -1)
ret = l1_data_B_sram_free(addr);
return ret;
}
EXPORT_SYMBOL(l1_data_sram_free);
void *l1_inst_sram_alloc(size_t size)
{
#if L1_DATA_A_LENGTH != 0
unsigned flags;
void *addr;
/* add mutex operation */
spin_lock_irqsave(&l1_inst_sram_lock, flags);
addr = _l1_sram_alloc(size, l1_inst_sram, ARRAY_SIZE(l1_inst_sram));
/* add mutex operation */
spin_unlock_irqrestore(&l1_inst_sram_lock, flags);
pr_debug("Allocated address in l1_inst_sram_alloc is 0x%lx+0x%lx\n",
(long unsigned int)addr, size);
return addr;
#else
return NULL;
#endif
}
EXPORT_SYMBOL(l1_inst_sram_alloc);
int l1_inst_sram_free(const void *addr)
{
#if L1_CODE_LENGTH != 0
unsigned flags;
int ret;
/* add mutex operation */
spin_lock_irqsave(&l1_inst_sram_lock, flags);
ret = _l1_sram_free(addr, l1_inst_sram, ARRAY_SIZE(l1_inst_sram));
/* add mutex operation */
spin_unlock_irqrestore(&l1_inst_sram_lock, flags);
return ret;
#else
return -1;
#endif
}
EXPORT_SYMBOL(l1_inst_sram_free);
/* L1 Scratchpad memory allocate function */
void *l1sram_alloc(size_t size)
{
unsigned flags;
void *addr;
/* add mutex operation */
spin_lock_irqsave(&l1sram_lock, flags);
addr = _l1_sram_alloc(size, l1_ssram, ARRAY_SIZE(l1_ssram));
/* add mutex operation */
spin_unlock_irqrestore(&l1sram_lock, flags);
return addr;
}
/* L1 Scratchpad memory allocate function */
void *l1sram_alloc_max(size_t *psize)
{
unsigned flags;
void *addr;
/* add mutex operation */
spin_lock_irqsave(&l1sram_lock, flags);
addr = _l1_sram_alloc_max(l1_ssram, ARRAY_SIZE(l1_ssram), psize);
/* add mutex operation */
spin_unlock_irqrestore(&l1sram_lock, flags);
return addr;
}
/* L1 Scratchpad memory free function */
int l1sram_free(const void *addr)
{
unsigned flags;
int ret;
/* add mutex operation */
spin_lock_irqsave(&l1sram_lock, flags);
ret = _l1_sram_free(addr, l1_ssram, ARRAY_SIZE(l1_ssram));
/* add mutex operation */
spin_unlock_irqrestore(&l1sram_lock, flags);
return ret;
}
int sram_free_with_lsl(const void *addr)
{
struct sram_list_struct *lsl, **tmp;
struct mm_struct *mm = current->mm;
for (tmp = &mm->context.sram_list; *tmp; tmp = &(*tmp)->next)
if ((*tmp)->addr == addr)
goto found;
return -1;
found:
lsl = *tmp;
sram_free(addr);
*tmp = lsl->next;
kfree(lsl);
return 0;
}
EXPORT_SYMBOL(sram_free_with_lsl);
void *sram_alloc_with_lsl(size_t size, unsigned long flags)
{
void *addr = NULL;
struct sram_list_struct *lsl = NULL;
struct mm_struct *mm = current->mm;
lsl = kmalloc(sizeof(struct sram_list_struct), GFP_KERNEL);
if (!lsl)
return NULL;
memset(lsl, 0, sizeof(*lsl));
if (flags & L1_INST_SRAM)
addr = l1_inst_sram_alloc(size);
if (addr == NULL && (flags & L1_DATA_A_SRAM))
addr = l1_data_A_sram_alloc(size);
if (addr == NULL && (flags & L1_DATA_B_SRAM))
addr = l1_data_B_sram_alloc(size);
if (addr == NULL) {
kfree(lsl);
return NULL;
}
lsl->addr = addr;
lsl->length = size;
lsl->next = mm->context.sram_list;
mm->context.sram_list = lsl;
return addr;
}
EXPORT_SYMBOL(sram_alloc_with_lsl);
#ifdef CONFIG_PROC_FS
/* Once we get a real allocator, we'll throw all of this away.
* Until then, we need some sort of visibility into the L1 alloc.
*/
static void _l1sram_proc_read(char *buf, int *len, const char *desc,
struct l1_sram_piece *pfree, const int array_size)
{
int i;
*len += sprintf(&buf[*len], "--- L1 %-14s Size PID State\n", desc);
for (i = 0; i < array_size; ++i) {
const char *alloc_type;
switch (pfree[i].flag) {
case SRAM_SLT_NULL: alloc_type = "NULL"; break;
case SRAM_SLT_FREE: alloc_type = "FREE"; break;
case SRAM_SLT_ALLOCATED: alloc_type = "ALLOCATED"; break;
default: alloc_type = "????"; break;
}
*len += sprintf(&buf[*len], "%p-%p %8i %4i %s\n",
pfree[i].paddr, pfree[i].paddr + pfree[i].size,
pfree[i].size, pfree[i].pid, alloc_type);
}
}
static int l1sram_proc_read(char *buf, char **start, off_t offset, int count,
int *eof, void *data)
{
int len = 0;
_l1sram_proc_read(buf, &len, "Scratchpad",
l1_ssram, ARRAY_SIZE(l1_ssram));
#if L1_DATA_A_LENGTH != 0
_l1sram_proc_read(buf, &len, "Data A",
l1_data_A_sram, ARRAY_SIZE(l1_data_A_sram));
#endif
#if L1_DATA_B_LENGTH != 0
_l1sram_proc_read(buf, &len, "Data B",
l1_data_B_sram, ARRAY_SIZE(l1_data_B_sram));
#endif
#if L1_CODE_LENGTH != 0
_l1sram_proc_read(buf, &len, "Instruction",
l1_inst_sram, ARRAY_SIZE(l1_inst_sram));
#endif
return len;
}
static int __init l1sram_proc_init(void)
{
struct proc_dir_entry *ptr;
ptr = create_proc_entry("sram", S_IFREG | S_IRUGO, NULL);
if (!ptr) {
printk(KERN_WARNING "unable to create /proc/sram\n");
return -1;
}
ptr->owner = THIS_MODULE;
ptr->read_proc = l1sram_proc_read;
return 0;
}
late_initcall(l1sram_proc_init);
#endif