linux_old1/drivers/net/usb/r8152.c

5366 lines
123 KiB
C

/*
* Copyright (c) 2014 Realtek Semiconductor Corp. All rights reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* version 2 as published by the Free Software Foundation.
*
*/
#include <linux/signal.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/mii.h>
#include <linux/ethtool.h>
#include <linux/usb.h>
#include <linux/crc32.h>
#include <linux/if_vlan.h>
#include <linux/uaccess.h>
#include <linux/list.h>
#include <linux/ip.h>
#include <linux/ipv6.h>
#include <net/ip6_checksum.h>
#include <uapi/linux/mdio.h>
#include <linux/mdio.h>
#include <linux/usb/cdc.h>
#include <linux/suspend.h>
#include <linux/acpi.h>
/* Information for net-next */
#define NETNEXT_VERSION "09"
/* Information for net */
#define NET_VERSION "9"
#define DRIVER_VERSION "v1." NETNEXT_VERSION "." NET_VERSION
#define DRIVER_AUTHOR "Realtek linux nic maintainers <nic_swsd@realtek.com>"
#define DRIVER_DESC "Realtek RTL8152/RTL8153 Based USB Ethernet Adapters"
#define MODULENAME "r8152"
#define R8152_PHY_ID 32
#define PLA_IDR 0xc000
#define PLA_RCR 0xc010
#define PLA_RMS 0xc016
#define PLA_RXFIFO_CTRL0 0xc0a0
#define PLA_RXFIFO_CTRL1 0xc0a4
#define PLA_RXFIFO_CTRL2 0xc0a8
#define PLA_DMY_REG0 0xc0b0
#define PLA_FMC 0xc0b4
#define PLA_CFG_WOL 0xc0b6
#define PLA_TEREDO_CFG 0xc0bc
#define PLA_TEREDO_WAKE_BASE 0xc0c4
#define PLA_MAR 0xcd00
#define PLA_BACKUP 0xd000
#define PAL_BDC_CR 0xd1a0
#define PLA_TEREDO_TIMER 0xd2cc
#define PLA_REALWOW_TIMER 0xd2e8
#define PLA_EFUSE_DATA 0xdd00
#define PLA_EFUSE_CMD 0xdd02
#define PLA_LEDSEL 0xdd90
#define PLA_LED_FEATURE 0xdd92
#define PLA_PHYAR 0xde00
#define PLA_BOOT_CTRL 0xe004
#define PLA_GPHY_INTR_IMR 0xe022
#define PLA_EEE_CR 0xe040
#define PLA_EEEP_CR 0xe080
#define PLA_MAC_PWR_CTRL 0xe0c0
#define PLA_MAC_PWR_CTRL2 0xe0ca
#define PLA_MAC_PWR_CTRL3 0xe0cc
#define PLA_MAC_PWR_CTRL4 0xe0ce
#define PLA_WDT6_CTRL 0xe428
#define PLA_TCR0 0xe610
#define PLA_TCR1 0xe612
#define PLA_MTPS 0xe615
#define PLA_TXFIFO_CTRL 0xe618
#define PLA_RSTTALLY 0xe800
#define PLA_CR 0xe813
#define PLA_CRWECR 0xe81c
#define PLA_CONFIG12 0xe81e /* CONFIG1, CONFIG2 */
#define PLA_CONFIG34 0xe820 /* CONFIG3, CONFIG4 */
#define PLA_CONFIG5 0xe822
#define PLA_PHY_PWR 0xe84c
#define PLA_OOB_CTRL 0xe84f
#define PLA_CPCR 0xe854
#define PLA_MISC_0 0xe858
#define PLA_MISC_1 0xe85a
#define PLA_OCP_GPHY_BASE 0xe86c
#define PLA_TALLYCNT 0xe890
#define PLA_SFF_STS_7 0xe8de
#define PLA_PHYSTATUS 0xe908
#define PLA_BP_BA 0xfc26
#define PLA_BP_0 0xfc28
#define PLA_BP_1 0xfc2a
#define PLA_BP_2 0xfc2c
#define PLA_BP_3 0xfc2e
#define PLA_BP_4 0xfc30
#define PLA_BP_5 0xfc32
#define PLA_BP_6 0xfc34
#define PLA_BP_7 0xfc36
#define PLA_BP_EN 0xfc38
#define USB_USB2PHY 0xb41e
#define USB_SSPHYLINK2 0xb428
#define USB_U2P3_CTRL 0xb460
#define USB_CSR_DUMMY1 0xb464
#define USB_CSR_DUMMY2 0xb466
#define USB_DEV_STAT 0xb808
#define USB_CONNECT_TIMER 0xcbf8
#define USB_MSC_TIMER 0xcbfc
#define USB_BURST_SIZE 0xcfc0
#define USB_LPM_CONFIG 0xcfd8
#define USB_USB_CTRL 0xd406
#define USB_PHY_CTRL 0xd408
#define USB_TX_AGG 0xd40a
#define USB_RX_BUF_TH 0xd40c
#define USB_USB_TIMER 0xd428
#define USB_RX_EARLY_TIMEOUT 0xd42c
#define USB_RX_EARLY_SIZE 0xd42e
#define USB_PM_CTRL_STATUS 0xd432 /* RTL8153A */
#define USB_RX_EXTRA_AGGR_TMR 0xd432 /* RTL8153B */
#define USB_TX_DMA 0xd434
#define USB_UPT_RXDMA_OWN 0xd437
#define USB_TOLERANCE 0xd490
#define USB_LPM_CTRL 0xd41a
#define USB_BMU_RESET 0xd4b0
#define USB_U1U2_TIMER 0xd4da
#define USB_UPS_CTRL 0xd800
#define USB_POWER_CUT 0xd80a
#define USB_MISC_0 0xd81a
#define USB_AFE_CTRL2 0xd824
#define USB_UPS_CFG 0xd842
#define USB_UPS_FLAGS 0xd848
#define USB_WDT11_CTRL 0xe43c
#define USB_BP_BA 0xfc26
#define USB_BP_0 0xfc28
#define USB_BP_1 0xfc2a
#define USB_BP_2 0xfc2c
#define USB_BP_3 0xfc2e
#define USB_BP_4 0xfc30
#define USB_BP_5 0xfc32
#define USB_BP_6 0xfc34
#define USB_BP_7 0xfc36
#define USB_BP_EN 0xfc38
#define USB_BP_8 0xfc38
#define USB_BP_9 0xfc3a
#define USB_BP_10 0xfc3c
#define USB_BP_11 0xfc3e
#define USB_BP_12 0xfc40
#define USB_BP_13 0xfc42
#define USB_BP_14 0xfc44
#define USB_BP_15 0xfc46
#define USB_BP2_EN 0xfc48
/* OCP Registers */
#define OCP_ALDPS_CONFIG 0x2010
#define OCP_EEE_CONFIG1 0x2080
#define OCP_EEE_CONFIG2 0x2092
#define OCP_EEE_CONFIG3 0x2094
#define OCP_BASE_MII 0xa400
#define OCP_EEE_AR 0xa41a
#define OCP_EEE_DATA 0xa41c
#define OCP_PHY_STATUS 0xa420
#define OCP_NCTL_CFG 0xa42c
#define OCP_POWER_CFG 0xa430
#define OCP_EEE_CFG 0xa432
#define OCP_SRAM_ADDR 0xa436
#define OCP_SRAM_DATA 0xa438
#define OCP_DOWN_SPEED 0xa442
#define OCP_EEE_ABLE 0xa5c4
#define OCP_EEE_ADV 0xa5d0
#define OCP_EEE_LPABLE 0xa5d2
#define OCP_PHY_STATE 0xa708 /* nway state for 8153 */
#define OCP_PHY_PATCH_STAT 0xb800
#define OCP_PHY_PATCH_CMD 0xb820
#define OCP_ADC_IOFFSET 0xbcfc
#define OCP_ADC_CFG 0xbc06
#define OCP_SYSCLK_CFG 0xc416
/* SRAM Register */
#define SRAM_GREEN_CFG 0x8011
#define SRAM_LPF_CFG 0x8012
#define SRAM_10M_AMP1 0x8080
#define SRAM_10M_AMP2 0x8082
#define SRAM_IMPEDANCE 0x8084
/* PLA_RCR */
#define RCR_AAP 0x00000001
#define RCR_APM 0x00000002
#define RCR_AM 0x00000004
#define RCR_AB 0x00000008
#define RCR_ACPT_ALL (RCR_AAP | RCR_APM | RCR_AM | RCR_AB)
/* PLA_RXFIFO_CTRL0 */
#define RXFIFO_THR1_NORMAL 0x00080002
#define RXFIFO_THR1_OOB 0x01800003
/* PLA_RXFIFO_CTRL1 */
#define RXFIFO_THR2_FULL 0x00000060
#define RXFIFO_THR2_HIGH 0x00000038
#define RXFIFO_THR2_OOB 0x0000004a
#define RXFIFO_THR2_NORMAL 0x00a0
/* PLA_RXFIFO_CTRL2 */
#define RXFIFO_THR3_FULL 0x00000078
#define RXFIFO_THR3_HIGH 0x00000048
#define RXFIFO_THR3_OOB 0x0000005a
#define RXFIFO_THR3_NORMAL 0x0110
/* PLA_TXFIFO_CTRL */
#define TXFIFO_THR_NORMAL 0x00400008
#define TXFIFO_THR_NORMAL2 0x01000008
/* PLA_DMY_REG0 */
#define ECM_ALDPS 0x0002
/* PLA_FMC */
#define FMC_FCR_MCU_EN 0x0001
/* PLA_EEEP_CR */
#define EEEP_CR_EEEP_TX 0x0002
/* PLA_WDT6_CTRL */
#define WDT6_SET_MODE 0x0010
/* PLA_TCR0 */
#define TCR0_TX_EMPTY 0x0800
#define TCR0_AUTO_FIFO 0x0080
/* PLA_TCR1 */
#define VERSION_MASK 0x7cf0
/* PLA_MTPS */
#define MTPS_JUMBO (12 * 1024 / 64)
#define MTPS_DEFAULT (6 * 1024 / 64)
/* PLA_RSTTALLY */
#define TALLY_RESET 0x0001
/* PLA_CR */
#define CR_RST 0x10
#define CR_RE 0x08
#define CR_TE 0x04
/* PLA_CRWECR */
#define CRWECR_NORAML 0x00
#define CRWECR_CONFIG 0xc0
/* PLA_OOB_CTRL */
#define NOW_IS_OOB 0x80
#define TXFIFO_EMPTY 0x20
#define RXFIFO_EMPTY 0x10
#define LINK_LIST_READY 0x02
#define DIS_MCU_CLROOB 0x01
#define FIFO_EMPTY (TXFIFO_EMPTY | RXFIFO_EMPTY)
/* PLA_MISC_1 */
#define RXDY_GATED_EN 0x0008
/* PLA_SFF_STS_7 */
#define RE_INIT_LL 0x8000
#define MCU_BORW_EN 0x4000
/* PLA_CPCR */
#define CPCR_RX_VLAN 0x0040
/* PLA_CFG_WOL */
#define MAGIC_EN 0x0001
/* PLA_TEREDO_CFG */
#define TEREDO_SEL 0x8000
#define TEREDO_WAKE_MASK 0x7f00
#define TEREDO_RS_EVENT_MASK 0x00fe
#define OOB_TEREDO_EN 0x0001
/* PAL_BDC_CR */
#define ALDPS_PROXY_MODE 0x0001
/* PLA_EFUSE_CMD */
#define EFUSE_READ_CMD BIT(15)
#define EFUSE_DATA_BIT16 BIT(7)
/* PLA_CONFIG34 */
#define LINK_ON_WAKE_EN 0x0010
#define LINK_OFF_WAKE_EN 0x0008
/* PLA_CONFIG5 */
#define BWF_EN 0x0040
#define MWF_EN 0x0020
#define UWF_EN 0x0010
#define LAN_WAKE_EN 0x0002
/* PLA_LED_FEATURE */
#define LED_MODE_MASK 0x0700
/* PLA_PHY_PWR */
#define TX_10M_IDLE_EN 0x0080
#define PFM_PWM_SWITCH 0x0040
/* PLA_MAC_PWR_CTRL */
#define D3_CLK_GATED_EN 0x00004000
#define MCU_CLK_RATIO 0x07010f07
#define MCU_CLK_RATIO_MASK 0x0f0f0f0f
#define ALDPS_SPDWN_RATIO 0x0f87
/* PLA_MAC_PWR_CTRL2 */
#define EEE_SPDWN_RATIO 0x8007
#define MAC_CLK_SPDWN_EN BIT(15)
/* PLA_MAC_PWR_CTRL3 */
#define PKT_AVAIL_SPDWN_EN 0x0100
#define SUSPEND_SPDWN_EN 0x0004
#define U1U2_SPDWN_EN 0x0002
#define L1_SPDWN_EN 0x0001
/* PLA_MAC_PWR_CTRL4 */
#define PWRSAVE_SPDWN_EN 0x1000
#define RXDV_SPDWN_EN 0x0800
#define TX10MIDLE_EN 0x0100
#define TP100_SPDWN_EN 0x0020
#define TP500_SPDWN_EN 0x0010
#define TP1000_SPDWN_EN 0x0008
#define EEE_SPDWN_EN 0x0001
/* PLA_GPHY_INTR_IMR */
#define GPHY_STS_MSK 0x0001
#define SPEED_DOWN_MSK 0x0002
#define SPDWN_RXDV_MSK 0x0004
#define SPDWN_LINKCHG_MSK 0x0008
/* PLA_PHYAR */
#define PHYAR_FLAG 0x80000000
/* PLA_EEE_CR */
#define EEE_RX_EN 0x0001
#define EEE_TX_EN 0x0002
/* PLA_BOOT_CTRL */
#define AUTOLOAD_DONE 0x0002
/* USB_USB2PHY */
#define USB2PHY_SUSPEND 0x0001
#define USB2PHY_L1 0x0002
/* USB_SSPHYLINK2 */
#define pwd_dn_scale_mask 0x3ffe
#define pwd_dn_scale(x) ((x) << 1)
/* USB_CSR_DUMMY1 */
#define DYNAMIC_BURST 0x0001
/* USB_CSR_DUMMY2 */
#define EP4_FULL_FC 0x0001
/* USB_DEV_STAT */
#define STAT_SPEED_MASK 0x0006
#define STAT_SPEED_HIGH 0x0000
#define STAT_SPEED_FULL 0x0002
/* USB_LPM_CONFIG */
#define LPM_U1U2_EN BIT(0)
/* USB_TX_AGG */
#define TX_AGG_MAX_THRESHOLD 0x03
/* USB_RX_BUF_TH */
#define RX_THR_SUPPER 0x0c350180
#define RX_THR_HIGH 0x7a120180
#define RX_THR_SLOW 0xffff0180
#define RX_THR_B 0x00010001
/* USB_TX_DMA */
#define TEST_MODE_DISABLE 0x00000001
#define TX_SIZE_ADJUST1 0x00000100
/* USB_BMU_RESET */
#define BMU_RESET_EP_IN 0x01
#define BMU_RESET_EP_OUT 0x02
/* USB_UPT_RXDMA_OWN */
#define OWN_UPDATE BIT(0)
#define OWN_CLEAR BIT(1)
/* USB_UPS_CTRL */
#define POWER_CUT 0x0100
/* USB_PM_CTRL_STATUS */
#define RESUME_INDICATE 0x0001
/* USB_USB_CTRL */
#define RX_AGG_DISABLE 0x0010
#define RX_ZERO_EN 0x0080
/* USB_U2P3_CTRL */
#define U2P3_ENABLE 0x0001
/* USB_POWER_CUT */
#define PWR_EN 0x0001
#define PHASE2_EN 0x0008
#define UPS_EN BIT(4)
#define USP_PREWAKE BIT(5)
/* USB_MISC_0 */
#define PCUT_STATUS 0x0001
/* USB_RX_EARLY_TIMEOUT */
#define COALESCE_SUPER 85000U
#define COALESCE_HIGH 250000U
#define COALESCE_SLOW 524280U
/* USB_WDT11_CTRL */
#define TIMER11_EN 0x0001
/* USB_LPM_CTRL */
/* bit 4 ~ 5: fifo empty boundary */
#define FIFO_EMPTY_1FB 0x30 /* 0x1fb * 64 = 32448 bytes */
/* bit 2 ~ 3: LMP timer */
#define LPM_TIMER_MASK 0x0c
#define LPM_TIMER_500MS 0x04 /* 500 ms */
#define LPM_TIMER_500US 0x0c /* 500 us */
#define ROK_EXIT_LPM 0x02
/* USB_AFE_CTRL2 */
#define SEN_VAL_MASK 0xf800
#define SEN_VAL_NORMAL 0xa000
#define SEL_RXIDLE 0x0100
/* USB_UPS_CFG */
#define SAW_CNT_1MS_MASK 0x0fff
/* USB_UPS_FLAGS */
#define UPS_FLAGS_R_TUNE BIT(0)
#define UPS_FLAGS_EN_10M_CKDIV BIT(1)
#define UPS_FLAGS_250M_CKDIV BIT(2)
#define UPS_FLAGS_EN_ALDPS BIT(3)
#define UPS_FLAGS_CTAP_SHORT_DIS BIT(4)
#define UPS_FLAGS_SPEED_MASK (0xf << 16)
#define ups_flags_speed(x) ((x) << 16)
#define UPS_FLAGS_EN_EEE BIT(20)
#define UPS_FLAGS_EN_500M_EEE BIT(21)
#define UPS_FLAGS_EN_EEE_CKDIV BIT(22)
#define UPS_FLAGS_EEE_PLLOFF_GIGA BIT(24)
#define UPS_FLAGS_EEE_CMOD_LV_EN BIT(25)
#define UPS_FLAGS_EN_GREEN BIT(26)
#define UPS_FLAGS_EN_FLOW_CTR BIT(27)
enum spd_duplex {
NWAY_10M_HALF = 1,
NWAY_10M_FULL,
NWAY_100M_HALF,
NWAY_100M_FULL,
NWAY_1000M_FULL,
FORCE_10M_HALF,
FORCE_10M_FULL,
FORCE_100M_HALF,
FORCE_100M_FULL,
};
/* OCP_ALDPS_CONFIG */
#define ENPWRSAVE 0x8000
#define ENPDNPS 0x0200
#define LINKENA 0x0100
#define DIS_SDSAVE 0x0010
/* OCP_PHY_STATUS */
#define PHY_STAT_MASK 0x0007
#define PHY_STAT_EXT_INIT 2
#define PHY_STAT_LAN_ON 3
#define PHY_STAT_PWRDN 5
/* OCP_NCTL_CFG */
#define PGA_RETURN_EN BIT(1)
/* OCP_POWER_CFG */
#define EEE_CLKDIV_EN 0x8000
#define EN_ALDPS 0x0004
#define EN_10M_PLLOFF 0x0001
/* OCP_EEE_CONFIG1 */
#define RG_TXLPI_MSK_HFDUP 0x8000
#define RG_MATCLR_EN 0x4000
#define EEE_10_CAP 0x2000
#define EEE_NWAY_EN 0x1000
#define TX_QUIET_EN 0x0200
#define RX_QUIET_EN 0x0100
#define sd_rise_time_mask 0x0070
#define sd_rise_time(x) (min(x, 7) << 4) /* bit 4 ~ 6 */
#define RG_RXLPI_MSK_HFDUP 0x0008
#define SDFALLTIME 0x0007 /* bit 0 ~ 2 */
/* OCP_EEE_CONFIG2 */
#define RG_LPIHYS_NUM 0x7000 /* bit 12 ~ 15 */
#define RG_DACQUIET_EN 0x0400
#define RG_LDVQUIET_EN 0x0200
#define RG_CKRSEL 0x0020
#define RG_EEEPRG_EN 0x0010
/* OCP_EEE_CONFIG3 */
#define fast_snr_mask 0xff80
#define fast_snr(x) (min(x, 0x1ff) << 7) /* bit 7 ~ 15 */
#define RG_LFS_SEL 0x0060 /* bit 6 ~ 5 */
#define MSK_PH 0x0006 /* bit 0 ~ 3 */
/* OCP_EEE_AR */
/* bit[15:14] function */
#define FUN_ADDR 0x0000
#define FUN_DATA 0x4000
/* bit[4:0] device addr */
/* OCP_EEE_CFG */
#define CTAP_SHORT_EN 0x0040
#define EEE10_EN 0x0010
/* OCP_DOWN_SPEED */
#define EN_EEE_CMODE BIT(14)
#define EN_EEE_1000 BIT(13)
#define EN_EEE_100 BIT(12)
#define EN_10M_CLKDIV BIT(11)
#define EN_10M_BGOFF 0x0080
/* OCP_PHY_STATE */
#define TXDIS_STATE 0x01
#define ABD_STATE 0x02
/* OCP_PHY_PATCH_STAT */
#define PATCH_READY BIT(6)
/* OCP_PHY_PATCH_CMD */
#define PATCH_REQUEST BIT(4)
/* OCP_ADC_CFG */
#define CKADSEL_L 0x0100
#define ADC_EN 0x0080
#define EN_EMI_L 0x0040
/* OCP_SYSCLK_CFG */
#define clk_div_expo(x) (min(x, 5) << 8)
/* SRAM_GREEN_CFG */
#define GREEN_ETH_EN BIT(15)
#define R_TUNE_EN BIT(11)
/* SRAM_LPF_CFG */
#define LPF_AUTO_TUNE 0x8000
/* SRAM_10M_AMP1 */
#define GDAC_IB_UPALL 0x0008
/* SRAM_10M_AMP2 */
#define AMP_DN 0x0200
/* SRAM_IMPEDANCE */
#define RX_DRIVING_MASK 0x6000
/* MAC PASSTHRU */
#define AD_MASK 0xfee0
#define EFUSE 0xcfdb
#define PASS_THRU_MASK 0x1
enum rtl_register_content {
_1000bps = 0x10,
_100bps = 0x08,
_10bps = 0x04,
LINK_STATUS = 0x02,
FULL_DUP = 0x01,
};
#define RTL8152_MAX_TX 4
#define RTL8152_MAX_RX 10
#define INTBUFSIZE 2
#define TX_ALIGN 4
#define RX_ALIGN 8
#define INTR_LINK 0x0004
#define RTL8152_REQT_READ 0xc0
#define RTL8152_REQT_WRITE 0x40
#define RTL8152_REQ_GET_REGS 0x05
#define RTL8152_REQ_SET_REGS 0x05
#define BYTE_EN_DWORD 0xff
#define BYTE_EN_WORD 0x33
#define BYTE_EN_BYTE 0x11
#define BYTE_EN_SIX_BYTES 0x3f
#define BYTE_EN_START_MASK 0x0f
#define BYTE_EN_END_MASK 0xf0
#define RTL8153_MAX_PACKET 9216 /* 9K */
#define RTL8153_MAX_MTU (RTL8153_MAX_PACKET - VLAN_ETH_HLEN - \
ETH_FCS_LEN)
#define RTL8152_RMS (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)
#define RTL8153_RMS RTL8153_MAX_PACKET
#define RTL8152_TX_TIMEOUT (5 * HZ)
#define RTL8152_NAPI_WEIGHT 64
#define rx_reserved_size(x) ((x) + VLAN_ETH_HLEN + ETH_FCS_LEN + \
sizeof(struct rx_desc) + RX_ALIGN)
/* rtl8152 flags */
enum rtl8152_flags {
RTL8152_UNPLUG = 0,
RTL8152_SET_RX_MODE,
WORK_ENABLE,
RTL8152_LINK_CHG,
SELECTIVE_SUSPEND,
PHY_RESET,
SCHEDULE_NAPI,
GREEN_ETHERNET,
DELL_TB_RX_AGG_BUG,
};
/* Define these values to match your device */
#define VENDOR_ID_REALTEK 0x0bda
#define VENDOR_ID_MICROSOFT 0x045e
#define VENDOR_ID_SAMSUNG 0x04e8
#define VENDOR_ID_LENOVO 0x17ef
#define VENDOR_ID_LINKSYS 0x13b1
#define VENDOR_ID_NVIDIA 0x0955
#define VENDOR_ID_TPLINK 0x2357
#define MCU_TYPE_PLA 0x0100
#define MCU_TYPE_USB 0x0000
struct tally_counter {
__le64 tx_packets;
__le64 rx_packets;
__le64 tx_errors;
__le32 rx_errors;
__le16 rx_missed;
__le16 align_errors;
__le32 tx_one_collision;
__le32 tx_multi_collision;
__le64 rx_unicast;
__le64 rx_broadcast;
__le32 rx_multicast;
__le16 tx_aborted;
__le16 tx_underrun;
};
struct rx_desc {
__le32 opts1;
#define RX_LEN_MASK 0x7fff
__le32 opts2;
#define RD_UDP_CS BIT(23)
#define RD_TCP_CS BIT(22)
#define RD_IPV6_CS BIT(20)
#define RD_IPV4_CS BIT(19)
__le32 opts3;
#define IPF BIT(23) /* IP checksum fail */
#define UDPF BIT(22) /* UDP checksum fail */
#define TCPF BIT(21) /* TCP checksum fail */
#define RX_VLAN_TAG BIT(16)
__le32 opts4;
__le32 opts5;
__le32 opts6;
};
struct tx_desc {
__le32 opts1;
#define TX_FS BIT(31) /* First segment of a packet */
#define TX_LS BIT(30) /* Final segment of a packet */
#define GTSENDV4 BIT(28)
#define GTSENDV6 BIT(27)
#define GTTCPHO_SHIFT 18
#define GTTCPHO_MAX 0x7fU
#define TX_LEN_MAX 0x3ffffU
__le32 opts2;
#define UDP_CS BIT(31) /* Calculate UDP/IP checksum */
#define TCP_CS BIT(30) /* Calculate TCP/IP checksum */
#define IPV4_CS BIT(29) /* Calculate IPv4 checksum */
#define IPV6_CS BIT(28) /* Calculate IPv6 checksum */
#define MSS_SHIFT 17
#define MSS_MAX 0x7ffU
#define TCPHO_SHIFT 17
#define TCPHO_MAX 0x7ffU
#define TX_VLAN_TAG BIT(16)
};
struct r8152;
struct rx_agg {
struct list_head list;
struct urb *urb;
struct r8152 *context;
void *buffer;
void *head;
};
struct tx_agg {
struct list_head list;
struct urb *urb;
struct r8152 *context;
void *buffer;
void *head;
u32 skb_num;
u32 skb_len;
};
struct r8152 {
unsigned long flags;
struct usb_device *udev;
struct napi_struct napi;
struct usb_interface *intf;
struct net_device *netdev;
struct urb *intr_urb;
struct tx_agg tx_info[RTL8152_MAX_TX];
struct rx_agg rx_info[RTL8152_MAX_RX];
struct list_head rx_done, tx_free;
struct sk_buff_head tx_queue, rx_queue;
spinlock_t rx_lock, tx_lock;
struct delayed_work schedule, hw_phy_work;
struct mii_if_info mii;
struct mutex control; /* use for hw setting */
#ifdef CONFIG_PM_SLEEP
struct notifier_block pm_notifier;
#endif
struct rtl_ops {
void (*init)(struct r8152 *);
int (*enable)(struct r8152 *);
void (*disable)(struct r8152 *);
void (*up)(struct r8152 *);
void (*down)(struct r8152 *);
void (*unload)(struct r8152 *);
int (*eee_get)(struct r8152 *, struct ethtool_eee *);
int (*eee_set)(struct r8152 *, struct ethtool_eee *);
bool (*in_nway)(struct r8152 *);
void (*hw_phy_cfg)(struct r8152 *);
void (*autosuspend_en)(struct r8152 *tp, bool enable);
} rtl_ops;
int intr_interval;
u32 saved_wolopts;
u32 msg_enable;
u32 tx_qlen;
u32 coalesce;
u16 ocp_base;
u16 speed;
u8 *intr_buff;
u8 version;
u8 duplex;
u8 autoneg;
};
enum rtl_version {
RTL_VER_UNKNOWN = 0,
RTL_VER_01,
RTL_VER_02,
RTL_VER_03,
RTL_VER_04,
RTL_VER_05,
RTL_VER_06,
RTL_VER_07,
RTL_VER_08,
RTL_VER_09,
RTL_VER_MAX
};
enum tx_csum_stat {
TX_CSUM_SUCCESS = 0,
TX_CSUM_TSO,
TX_CSUM_NONE
};
/* Maximum number of multicast addresses to filter (vs. Rx-all-multicast).
* The RTL chips use a 64 element hash table based on the Ethernet CRC.
*/
static const int multicast_filter_limit = 32;
static unsigned int agg_buf_sz = 16384;
#define RTL_LIMITED_TSO_SIZE (agg_buf_sz - sizeof(struct tx_desc) - \
VLAN_ETH_HLEN - ETH_FCS_LEN)
static
int get_registers(struct r8152 *tp, u16 value, u16 index, u16 size, void *data)
{
int ret;
void *tmp;
tmp = kmalloc(size, GFP_KERNEL);
if (!tmp)
return -ENOMEM;
ret = usb_control_msg(tp->udev, usb_rcvctrlpipe(tp->udev, 0),
RTL8152_REQ_GET_REGS, RTL8152_REQT_READ,
value, index, tmp, size, 500);
memcpy(data, tmp, size);
kfree(tmp);
return ret;
}
static
int set_registers(struct r8152 *tp, u16 value, u16 index, u16 size, void *data)
{
int ret;
void *tmp;
tmp = kmemdup(data, size, GFP_KERNEL);
if (!tmp)
return -ENOMEM;
ret = usb_control_msg(tp->udev, usb_sndctrlpipe(tp->udev, 0),
RTL8152_REQ_SET_REGS, RTL8152_REQT_WRITE,
value, index, tmp, size, 500);
kfree(tmp);
return ret;
}
static int generic_ocp_read(struct r8152 *tp, u16 index, u16 size,
void *data, u16 type)
{
u16 limit = 64;
int ret = 0;
if (test_bit(RTL8152_UNPLUG, &tp->flags))
return -ENODEV;
/* both size and indix must be 4 bytes align */
if ((size & 3) || !size || (index & 3) || !data)
return -EPERM;
if ((u32)index + (u32)size > 0xffff)
return -EPERM;
while (size) {
if (size > limit) {
ret = get_registers(tp, index, type, limit, data);
if (ret < 0)
break;
index += limit;
data += limit;
size -= limit;
} else {
ret = get_registers(tp, index, type, size, data);
if (ret < 0)
break;
index += size;
data += size;
size = 0;
break;
}
}
if (ret == -ENODEV)
set_bit(RTL8152_UNPLUG, &tp->flags);
return ret;
}
static int generic_ocp_write(struct r8152 *tp, u16 index, u16 byteen,
u16 size, void *data, u16 type)
{
int ret;
u16 byteen_start, byteen_end, byen;
u16 limit = 512;
if (test_bit(RTL8152_UNPLUG, &tp->flags))
return -ENODEV;
/* both size and indix must be 4 bytes align */
if ((size & 3) || !size || (index & 3) || !data)
return -EPERM;
if ((u32)index + (u32)size > 0xffff)
return -EPERM;
byteen_start = byteen & BYTE_EN_START_MASK;
byteen_end = byteen & BYTE_EN_END_MASK;
byen = byteen_start | (byteen_start << 4);
ret = set_registers(tp, index, type | byen, 4, data);
if (ret < 0)
goto error1;
index += 4;
data += 4;
size -= 4;
if (size) {
size -= 4;
while (size) {
if (size > limit) {
ret = set_registers(tp, index,
type | BYTE_EN_DWORD,
limit, data);
if (ret < 0)
goto error1;
index += limit;
data += limit;
size -= limit;
} else {
ret = set_registers(tp, index,
type | BYTE_EN_DWORD,
size, data);
if (ret < 0)
goto error1;
index += size;
data += size;
size = 0;
break;
}
}
byen = byteen_end | (byteen_end >> 4);
ret = set_registers(tp, index, type | byen, 4, data);
if (ret < 0)
goto error1;
}
error1:
if (ret == -ENODEV)
set_bit(RTL8152_UNPLUG, &tp->flags);
return ret;
}
static inline
int pla_ocp_read(struct r8152 *tp, u16 index, u16 size, void *data)
{
return generic_ocp_read(tp, index, size, data, MCU_TYPE_PLA);
}
static inline
int pla_ocp_write(struct r8152 *tp, u16 index, u16 byteen, u16 size, void *data)
{
return generic_ocp_write(tp, index, byteen, size, data, MCU_TYPE_PLA);
}
static inline
int usb_ocp_write(struct r8152 *tp, u16 index, u16 byteen, u16 size, void *data)
{
return generic_ocp_write(tp, index, byteen, size, data, MCU_TYPE_USB);
}
static u32 ocp_read_dword(struct r8152 *tp, u16 type, u16 index)
{
__le32 data;
generic_ocp_read(tp, index, sizeof(data), &data, type);
return __le32_to_cpu(data);
}
static void ocp_write_dword(struct r8152 *tp, u16 type, u16 index, u32 data)
{
__le32 tmp = __cpu_to_le32(data);
generic_ocp_write(tp, index, BYTE_EN_DWORD, sizeof(tmp), &tmp, type);
}
static u16 ocp_read_word(struct r8152 *tp, u16 type, u16 index)
{
u32 data;
__le32 tmp;
u16 byen = BYTE_EN_WORD;
u8 shift = index & 2;
index &= ~3;
byen <<= shift;
generic_ocp_read(tp, index, sizeof(tmp), &tmp, type | byen);
data = __le32_to_cpu(tmp);
data >>= (shift * 8);
data &= 0xffff;
return (u16)data;
}
static void ocp_write_word(struct r8152 *tp, u16 type, u16 index, u32 data)
{
u32 mask = 0xffff;
__le32 tmp;
u16 byen = BYTE_EN_WORD;
u8 shift = index & 2;
data &= mask;
if (index & 2) {
byen <<= shift;
mask <<= (shift * 8);
data <<= (shift * 8);
index &= ~3;
}
tmp = __cpu_to_le32(data);
generic_ocp_write(tp, index, byen, sizeof(tmp), &tmp, type);
}
static u8 ocp_read_byte(struct r8152 *tp, u16 type, u16 index)
{
u32 data;
__le32 tmp;
u8 shift = index & 3;
index &= ~3;
generic_ocp_read(tp, index, sizeof(tmp), &tmp, type);
data = __le32_to_cpu(tmp);
data >>= (shift * 8);
data &= 0xff;
return (u8)data;
}
static void ocp_write_byte(struct r8152 *tp, u16 type, u16 index, u32 data)
{
u32 mask = 0xff;
__le32 tmp;
u16 byen = BYTE_EN_BYTE;
u8 shift = index & 3;
data &= mask;
if (index & 3) {
byen <<= shift;
mask <<= (shift * 8);
data <<= (shift * 8);
index &= ~3;
}
tmp = __cpu_to_le32(data);
generic_ocp_write(tp, index, byen, sizeof(tmp), &tmp, type);
}
static u16 ocp_reg_read(struct r8152 *tp, u16 addr)
{
u16 ocp_base, ocp_index;
ocp_base = addr & 0xf000;
if (ocp_base != tp->ocp_base) {
ocp_write_word(tp, MCU_TYPE_PLA, PLA_OCP_GPHY_BASE, ocp_base);
tp->ocp_base = ocp_base;
}
ocp_index = (addr & 0x0fff) | 0xb000;
return ocp_read_word(tp, MCU_TYPE_PLA, ocp_index);
}
static void ocp_reg_write(struct r8152 *tp, u16 addr, u16 data)
{
u16 ocp_base, ocp_index;
ocp_base = addr & 0xf000;
if (ocp_base != tp->ocp_base) {
ocp_write_word(tp, MCU_TYPE_PLA, PLA_OCP_GPHY_BASE, ocp_base);
tp->ocp_base = ocp_base;
}
ocp_index = (addr & 0x0fff) | 0xb000;
ocp_write_word(tp, MCU_TYPE_PLA, ocp_index, data);
}
static inline void r8152_mdio_write(struct r8152 *tp, u32 reg_addr, u32 value)
{
ocp_reg_write(tp, OCP_BASE_MII + reg_addr * 2, value);
}
static inline int r8152_mdio_read(struct r8152 *tp, u32 reg_addr)
{
return ocp_reg_read(tp, OCP_BASE_MII + reg_addr * 2);
}
static void sram_write(struct r8152 *tp, u16 addr, u16 data)
{
ocp_reg_write(tp, OCP_SRAM_ADDR, addr);
ocp_reg_write(tp, OCP_SRAM_DATA, data);
}
static u16 sram_read(struct r8152 *tp, u16 addr)
{
ocp_reg_write(tp, OCP_SRAM_ADDR, addr);
return ocp_reg_read(tp, OCP_SRAM_DATA);
}
static int read_mii_word(struct net_device *netdev, int phy_id, int reg)
{
struct r8152 *tp = netdev_priv(netdev);
int ret;
if (test_bit(RTL8152_UNPLUG, &tp->flags))
return -ENODEV;
if (phy_id != R8152_PHY_ID)
return -EINVAL;
ret = r8152_mdio_read(tp, reg);
return ret;
}
static
void write_mii_word(struct net_device *netdev, int phy_id, int reg, int val)
{
struct r8152 *tp = netdev_priv(netdev);
if (test_bit(RTL8152_UNPLUG, &tp->flags))
return;
if (phy_id != R8152_PHY_ID)
return;
r8152_mdio_write(tp, reg, val);
}
static int
r8152_submit_rx(struct r8152 *tp, struct rx_agg *agg, gfp_t mem_flags);
static int rtl8152_set_mac_address(struct net_device *netdev, void *p)
{
struct r8152 *tp = netdev_priv(netdev);
struct sockaddr *addr = p;
int ret = -EADDRNOTAVAIL;
if (!is_valid_ether_addr(addr->sa_data))
goto out1;
ret = usb_autopm_get_interface(tp->intf);
if (ret < 0)
goto out1;
mutex_lock(&tp->control);
memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
ocp_write_byte(tp, MCU_TYPE_PLA, PLA_CRWECR, CRWECR_CONFIG);
pla_ocp_write(tp, PLA_IDR, BYTE_EN_SIX_BYTES, 8, addr->sa_data);
ocp_write_byte(tp, MCU_TYPE_PLA, PLA_CRWECR, CRWECR_NORAML);
mutex_unlock(&tp->control);
usb_autopm_put_interface(tp->intf);
out1:
return ret;
}
/* Devices containing RTL8153-AD can support a persistent
* host system provided MAC address.
* Examples of this are Dell TB15 and Dell WD15 docks
*/
static int vendor_mac_passthru_addr_read(struct r8152 *tp, struct sockaddr *sa)
{
acpi_status status;
struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
union acpi_object *obj;
int ret = -EINVAL;
u32 ocp_data;
unsigned char buf[6];
/* test for -AD variant of RTL8153 */
ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_MISC_0);
if ((ocp_data & AD_MASK) != 0x1000)
return -ENODEV;
/* test for MAC address pass-through bit */
ocp_data = ocp_read_byte(tp, MCU_TYPE_USB, EFUSE);
if ((ocp_data & PASS_THRU_MASK) != 1)
return -ENODEV;
/* returns _AUXMAC_#AABBCCDDEEFF# */
status = acpi_evaluate_object(NULL, "\\_SB.AMAC", NULL, &buffer);
obj = (union acpi_object *)buffer.pointer;
if (!ACPI_SUCCESS(status))
return -ENODEV;
if (obj->type != ACPI_TYPE_BUFFER || obj->string.length != 0x17) {
netif_warn(tp, probe, tp->netdev,
"Invalid buffer for pass-thru MAC addr: (%d, %d)\n",
obj->type, obj->string.length);
goto amacout;
}
if (strncmp(obj->string.pointer, "_AUXMAC_#", 9) != 0 ||
strncmp(obj->string.pointer + 0x15, "#", 1) != 0) {
netif_warn(tp, probe, tp->netdev,
"Invalid header when reading pass-thru MAC addr\n");
goto amacout;
}
ret = hex2bin(buf, obj->string.pointer + 9, 6);
if (!(ret == 0 && is_valid_ether_addr(buf))) {
netif_warn(tp, probe, tp->netdev,
"Invalid MAC for pass-thru MAC addr: %d, %pM\n",
ret, buf);
ret = -EINVAL;
goto amacout;
}
memcpy(sa->sa_data, buf, 6);
ether_addr_copy(tp->netdev->dev_addr, sa->sa_data);
netif_info(tp, probe, tp->netdev,
"Using pass-thru MAC addr %pM\n", sa->sa_data);
amacout:
kfree(obj);
return ret;
}
static int set_ethernet_addr(struct r8152 *tp)
{
struct net_device *dev = tp->netdev;
struct sockaddr sa;
int ret;
if (tp->version == RTL_VER_01) {
ret = pla_ocp_read(tp, PLA_IDR, 8, sa.sa_data);
} else {
/* if this is not an RTL8153-AD, no eFuse mac pass thru set,
* or system doesn't provide valid _SB.AMAC this will be
* be expected to non-zero
*/
ret = vendor_mac_passthru_addr_read(tp, &sa);
if (ret < 0)
ret = pla_ocp_read(tp, PLA_BACKUP, 8, sa.sa_data);
}
if (ret < 0) {
netif_err(tp, probe, dev, "Get ether addr fail\n");
} else if (!is_valid_ether_addr(sa.sa_data)) {
netif_err(tp, probe, dev, "Invalid ether addr %pM\n",
sa.sa_data);
eth_hw_addr_random(dev);
ether_addr_copy(sa.sa_data, dev->dev_addr);
ret = rtl8152_set_mac_address(dev, &sa);
netif_info(tp, probe, dev, "Random ether addr %pM\n",
sa.sa_data);
} else {
if (tp->version == RTL_VER_01)
ether_addr_copy(dev->dev_addr, sa.sa_data);
else
ret = rtl8152_set_mac_address(dev, &sa);
}
return ret;
}
static void read_bulk_callback(struct urb *urb)
{
struct net_device *netdev;
int status = urb->status;
struct rx_agg *agg;
struct r8152 *tp;
unsigned long flags;
agg = urb->context;
if (!agg)
return;
tp = agg->context;
if (!tp)
return;
if (test_bit(RTL8152_UNPLUG, &tp->flags))
return;
if (!test_bit(WORK_ENABLE, &tp->flags))
return;
netdev = tp->netdev;
/* When link down, the driver would cancel all bulks. */
/* This avoid the re-submitting bulk */
if (!netif_carrier_ok(netdev))
return;
usb_mark_last_busy(tp->udev);
switch (status) {
case 0:
if (urb->actual_length < ETH_ZLEN)
break;
spin_lock_irqsave(&tp->rx_lock, flags);
list_add_tail(&agg->list, &tp->rx_done);
spin_unlock_irqrestore(&tp->rx_lock, flags);
napi_schedule(&tp->napi);
return;
case -ESHUTDOWN:
set_bit(RTL8152_UNPLUG, &tp->flags);
netif_device_detach(tp->netdev);
return;
case -ENOENT:
return; /* the urb is in unlink state */
case -ETIME:
if (net_ratelimit())
netdev_warn(netdev, "maybe reset is needed?\n");
break;
default:
if (net_ratelimit())
netdev_warn(netdev, "Rx status %d\n", status);
break;
}
r8152_submit_rx(tp, agg, GFP_ATOMIC);
}
static void write_bulk_callback(struct urb *urb)
{
struct net_device_stats *stats;
struct net_device *netdev;
struct tx_agg *agg;
struct r8152 *tp;
unsigned long flags;
int status = urb->status;
agg = urb->context;
if (!agg)
return;
tp = agg->context;
if (!tp)
return;
netdev = tp->netdev;
stats = &netdev->stats;
if (status) {
if (net_ratelimit())
netdev_warn(netdev, "Tx status %d\n", status);
stats->tx_errors += agg->skb_num;
} else {
stats->tx_packets += agg->skb_num;
stats->tx_bytes += agg->skb_len;
}
spin_lock_irqsave(&tp->tx_lock, flags);
list_add_tail(&agg->list, &tp->tx_free);
spin_unlock_irqrestore(&tp->tx_lock, flags);
usb_autopm_put_interface_async(tp->intf);
if (!netif_carrier_ok(netdev))
return;
if (!test_bit(WORK_ENABLE, &tp->flags))
return;
if (test_bit(RTL8152_UNPLUG, &tp->flags))
return;
if (!skb_queue_empty(&tp->tx_queue))
napi_schedule(&tp->napi);
}
static void intr_callback(struct urb *urb)
{
struct r8152 *tp;
__le16 *d;
int status = urb->status;
int res;
tp = urb->context;
if (!tp)
return;
if (!test_bit(WORK_ENABLE, &tp->flags))
return;
if (test_bit(RTL8152_UNPLUG, &tp->flags))
return;
switch (status) {
case 0: /* success */
break;
case -ECONNRESET: /* unlink */
case -ESHUTDOWN:
netif_device_detach(tp->netdev);
/* fall through */
case -ENOENT:
case -EPROTO:
netif_info(tp, intr, tp->netdev,
"Stop submitting intr, status %d\n", status);
return;
case -EOVERFLOW:
netif_info(tp, intr, tp->netdev, "intr status -EOVERFLOW\n");
goto resubmit;
/* -EPIPE: should clear the halt */
default:
netif_info(tp, intr, tp->netdev, "intr status %d\n", status);
goto resubmit;
}
d = urb->transfer_buffer;
if (INTR_LINK & __le16_to_cpu(d[0])) {
if (!netif_carrier_ok(tp->netdev)) {
set_bit(RTL8152_LINK_CHG, &tp->flags);
schedule_delayed_work(&tp->schedule, 0);
}
} else {
if (netif_carrier_ok(tp->netdev)) {
netif_stop_queue(tp->netdev);
set_bit(RTL8152_LINK_CHG, &tp->flags);
schedule_delayed_work(&tp->schedule, 0);
}
}
resubmit:
res = usb_submit_urb(urb, GFP_ATOMIC);
if (res == -ENODEV) {
set_bit(RTL8152_UNPLUG, &tp->flags);
netif_device_detach(tp->netdev);
} else if (res) {
netif_err(tp, intr, tp->netdev,
"can't resubmit intr, status %d\n", res);
}
}
static inline void *rx_agg_align(void *data)
{
return (void *)ALIGN((uintptr_t)data, RX_ALIGN);
}
static inline void *tx_agg_align(void *data)
{
return (void *)ALIGN((uintptr_t)data, TX_ALIGN);
}
static void free_all_mem(struct r8152 *tp)
{
int i;
for (i = 0; i < RTL8152_MAX_RX; i++) {
usb_free_urb(tp->rx_info[i].urb);
tp->rx_info[i].urb = NULL;
kfree(tp->rx_info[i].buffer);
tp->rx_info[i].buffer = NULL;
tp->rx_info[i].head = NULL;
}
for (i = 0; i < RTL8152_MAX_TX; i++) {
usb_free_urb(tp->tx_info[i].urb);
tp->tx_info[i].urb = NULL;
kfree(tp->tx_info[i].buffer);
tp->tx_info[i].buffer = NULL;
tp->tx_info[i].head = NULL;
}
usb_free_urb(tp->intr_urb);
tp->intr_urb = NULL;
kfree(tp->intr_buff);
tp->intr_buff = NULL;
}
static int alloc_all_mem(struct r8152 *tp)
{
struct net_device *netdev = tp->netdev;
struct usb_interface *intf = tp->intf;
struct usb_host_interface *alt = intf->cur_altsetting;
struct usb_host_endpoint *ep_intr = alt->endpoint + 2;
struct urb *urb;
int node, i;
u8 *buf;
node = netdev->dev.parent ? dev_to_node(netdev->dev.parent) : -1;
spin_lock_init(&tp->rx_lock);
spin_lock_init(&tp->tx_lock);
INIT_LIST_HEAD(&tp->tx_free);
INIT_LIST_HEAD(&tp->rx_done);
skb_queue_head_init(&tp->tx_queue);
skb_queue_head_init(&tp->rx_queue);
for (i = 0; i < RTL8152_MAX_RX; i++) {
buf = kmalloc_node(agg_buf_sz, GFP_KERNEL, node);
if (!buf)
goto err1;
if (buf != rx_agg_align(buf)) {
kfree(buf);
buf = kmalloc_node(agg_buf_sz + RX_ALIGN, GFP_KERNEL,
node);
if (!buf)
goto err1;
}
urb = usb_alloc_urb(0, GFP_KERNEL);
if (!urb) {
kfree(buf);
goto err1;
}
INIT_LIST_HEAD(&tp->rx_info[i].list);
tp->rx_info[i].context = tp;
tp->rx_info[i].urb = urb;
tp->rx_info[i].buffer = buf;
tp->rx_info[i].head = rx_agg_align(buf);
}
for (i = 0; i < RTL8152_MAX_TX; i++) {
buf = kmalloc_node(agg_buf_sz, GFP_KERNEL, node);
if (!buf)
goto err1;
if (buf != tx_agg_align(buf)) {
kfree(buf);
buf = kmalloc_node(agg_buf_sz + TX_ALIGN, GFP_KERNEL,
node);
if (!buf)
goto err1;
}
urb = usb_alloc_urb(0, GFP_KERNEL);
if (!urb) {
kfree(buf);
goto err1;
}
INIT_LIST_HEAD(&tp->tx_info[i].list);
tp->tx_info[i].context = tp;
tp->tx_info[i].urb = urb;
tp->tx_info[i].buffer = buf;
tp->tx_info[i].head = tx_agg_align(buf);
list_add_tail(&tp->tx_info[i].list, &tp->tx_free);
}
tp->intr_urb = usb_alloc_urb(0, GFP_KERNEL);
if (!tp->intr_urb)
goto err1;
tp->intr_buff = kmalloc(INTBUFSIZE, GFP_KERNEL);
if (!tp->intr_buff)
goto err1;
tp->intr_interval = (int)ep_intr->desc.bInterval;
usb_fill_int_urb(tp->intr_urb, tp->udev, usb_rcvintpipe(tp->udev, 3),
tp->intr_buff, INTBUFSIZE, intr_callback,
tp, tp->intr_interval);
return 0;
err1:
free_all_mem(tp);
return -ENOMEM;
}
static struct tx_agg *r8152_get_tx_agg(struct r8152 *tp)
{
struct tx_agg *agg = NULL;
unsigned long flags;
if (list_empty(&tp->tx_free))
return NULL;
spin_lock_irqsave(&tp->tx_lock, flags);
if (!list_empty(&tp->tx_free)) {
struct list_head *cursor;
cursor = tp->tx_free.next;
list_del_init(cursor);
agg = list_entry(cursor, struct tx_agg, list);
}
spin_unlock_irqrestore(&tp->tx_lock, flags);
return agg;
}
/* r8152_csum_workaround()
* The hw limites the value the transport offset. When the offset is out of the
* range, calculate the checksum by sw.
*/
static void r8152_csum_workaround(struct r8152 *tp, struct sk_buff *skb,
struct sk_buff_head *list)
{
if (skb_shinfo(skb)->gso_size) {
netdev_features_t features = tp->netdev->features;
struct sk_buff_head seg_list;
struct sk_buff *segs, *nskb;
features &= ~(NETIF_F_SG | NETIF_F_IPV6_CSUM | NETIF_F_TSO6);
segs = skb_gso_segment(skb, features);
if (IS_ERR(segs) || !segs)
goto drop;
__skb_queue_head_init(&seg_list);
do {
nskb = segs;
segs = segs->next;
nskb->next = NULL;
__skb_queue_tail(&seg_list, nskb);
} while (segs);
skb_queue_splice(&seg_list, list);
dev_kfree_skb(skb);
} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
if (skb_checksum_help(skb) < 0)
goto drop;
__skb_queue_head(list, skb);
} else {
struct net_device_stats *stats;
drop:
stats = &tp->netdev->stats;
stats->tx_dropped++;
dev_kfree_skb(skb);
}
}
/* msdn_giant_send_check()
* According to the document of microsoft, the TCP Pseudo Header excludes the
* packet length for IPv6 TCP large packets.
*/
static int msdn_giant_send_check(struct sk_buff *skb)
{
const struct ipv6hdr *ipv6h;
struct tcphdr *th;
int ret;
ret = skb_cow_head(skb, 0);
if (ret)
return ret;
ipv6h = ipv6_hdr(skb);
th = tcp_hdr(skb);
th->check = 0;
th->check = ~tcp_v6_check(0, &ipv6h->saddr, &ipv6h->daddr, 0);
return ret;
}
static inline void rtl_tx_vlan_tag(struct tx_desc *desc, struct sk_buff *skb)
{
if (skb_vlan_tag_present(skb)) {
u32 opts2;
opts2 = TX_VLAN_TAG | swab16(skb_vlan_tag_get(skb));
desc->opts2 |= cpu_to_le32(opts2);
}
}
static inline void rtl_rx_vlan_tag(struct rx_desc *desc, struct sk_buff *skb)
{
u32 opts2 = le32_to_cpu(desc->opts2);
if (opts2 & RX_VLAN_TAG)
__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
swab16(opts2 & 0xffff));
}
static int r8152_tx_csum(struct r8152 *tp, struct tx_desc *desc,
struct sk_buff *skb, u32 len, u32 transport_offset)
{
u32 mss = skb_shinfo(skb)->gso_size;
u32 opts1, opts2 = 0;
int ret = TX_CSUM_SUCCESS;
WARN_ON_ONCE(len > TX_LEN_MAX);
opts1 = len | TX_FS | TX_LS;
if (mss) {
if (transport_offset > GTTCPHO_MAX) {
netif_warn(tp, tx_err, tp->netdev,
"Invalid transport offset 0x%x for TSO\n",
transport_offset);
ret = TX_CSUM_TSO;
goto unavailable;
}
switch (vlan_get_protocol(skb)) {
case htons(ETH_P_IP):
opts1 |= GTSENDV4;
break;
case htons(ETH_P_IPV6):
if (msdn_giant_send_check(skb)) {
ret = TX_CSUM_TSO;
goto unavailable;
}
opts1 |= GTSENDV6;
break;
default:
WARN_ON_ONCE(1);
break;
}
opts1 |= transport_offset << GTTCPHO_SHIFT;
opts2 |= min(mss, MSS_MAX) << MSS_SHIFT;
} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
u8 ip_protocol;
if (transport_offset > TCPHO_MAX) {
netif_warn(tp, tx_err, tp->netdev,
"Invalid transport offset 0x%x\n",
transport_offset);
ret = TX_CSUM_NONE;
goto unavailable;
}
switch (vlan_get_protocol(skb)) {
case htons(ETH_P_IP):
opts2 |= IPV4_CS;
ip_protocol = ip_hdr(skb)->protocol;
break;
case htons(ETH_P_IPV6):
opts2 |= IPV6_CS;
ip_protocol = ipv6_hdr(skb)->nexthdr;
break;
default:
ip_protocol = IPPROTO_RAW;
break;
}
if (ip_protocol == IPPROTO_TCP)
opts2 |= TCP_CS;
else if (ip_protocol == IPPROTO_UDP)
opts2 |= UDP_CS;
else
WARN_ON_ONCE(1);
opts2 |= transport_offset << TCPHO_SHIFT;
}
desc->opts2 = cpu_to_le32(opts2);
desc->opts1 = cpu_to_le32(opts1);
unavailable:
return ret;
}
static int r8152_tx_agg_fill(struct r8152 *tp, struct tx_agg *agg)
{
struct sk_buff_head skb_head, *tx_queue = &tp->tx_queue;
int remain, ret;
u8 *tx_data;
__skb_queue_head_init(&skb_head);
spin_lock(&tx_queue->lock);
skb_queue_splice_init(tx_queue, &skb_head);
spin_unlock(&tx_queue->lock);
tx_data = agg->head;
agg->skb_num = 0;
agg->skb_len = 0;
remain = agg_buf_sz;
while (remain >= ETH_ZLEN + sizeof(struct tx_desc)) {
struct tx_desc *tx_desc;
struct sk_buff *skb;
unsigned int len;
u32 offset;
skb = __skb_dequeue(&skb_head);
if (!skb)
break;
len = skb->len + sizeof(*tx_desc);
if (len > remain) {
__skb_queue_head(&skb_head, skb);
break;
}
tx_data = tx_agg_align(tx_data);
tx_desc = (struct tx_desc *)tx_data;
offset = (u32)skb_transport_offset(skb);
if (r8152_tx_csum(tp, tx_desc, skb, skb->len, offset)) {
r8152_csum_workaround(tp, skb, &skb_head);
continue;
}
rtl_tx_vlan_tag(tx_desc, skb);
tx_data += sizeof(*tx_desc);
len = skb->len;
if (skb_copy_bits(skb, 0, tx_data, len) < 0) {
struct net_device_stats *stats = &tp->netdev->stats;
stats->tx_dropped++;
dev_kfree_skb_any(skb);
tx_data -= sizeof(*tx_desc);
continue;
}
tx_data += len;
agg->skb_len += len;
agg->skb_num += skb_shinfo(skb)->gso_segs ?: 1;
dev_kfree_skb_any(skb);
remain = agg_buf_sz - (int)(tx_agg_align(tx_data) - agg->head);
if (test_bit(DELL_TB_RX_AGG_BUG, &tp->flags))
break;
}
if (!skb_queue_empty(&skb_head)) {
spin_lock(&tx_queue->lock);
skb_queue_splice(&skb_head, tx_queue);
spin_unlock(&tx_queue->lock);
}
netif_tx_lock(tp->netdev);
if (netif_queue_stopped(tp->netdev) &&
skb_queue_len(&tp->tx_queue) < tp->tx_qlen)
netif_wake_queue(tp->netdev);
netif_tx_unlock(tp->netdev);
ret = usb_autopm_get_interface_async(tp->intf);
if (ret < 0)
goto out_tx_fill;
usb_fill_bulk_urb(agg->urb, tp->udev, usb_sndbulkpipe(tp->udev, 2),
agg->head, (int)(tx_data - (u8 *)agg->head),
(usb_complete_t)write_bulk_callback, agg);
ret = usb_submit_urb(agg->urb, GFP_ATOMIC);
if (ret < 0)
usb_autopm_put_interface_async(tp->intf);
out_tx_fill:
return ret;
}
static u8 r8152_rx_csum(struct r8152 *tp, struct rx_desc *rx_desc)
{
u8 checksum = CHECKSUM_NONE;
u32 opts2, opts3;
if (!(tp->netdev->features & NETIF_F_RXCSUM))
goto return_result;
opts2 = le32_to_cpu(rx_desc->opts2);
opts3 = le32_to_cpu(rx_desc->opts3);
if (opts2 & RD_IPV4_CS) {
if (opts3 & IPF)
checksum = CHECKSUM_NONE;
else if ((opts2 & RD_UDP_CS) && !(opts3 & UDPF))
checksum = CHECKSUM_UNNECESSARY;
else if ((opts2 & RD_TCP_CS) && !(opts3 & TCPF))
checksum = CHECKSUM_UNNECESSARY;
} else if (opts2 & RD_IPV6_CS) {
if ((opts2 & RD_UDP_CS) && !(opts3 & UDPF))
checksum = CHECKSUM_UNNECESSARY;
else if ((opts2 & RD_TCP_CS) && !(opts3 & TCPF))
checksum = CHECKSUM_UNNECESSARY;
}
return_result:
return checksum;
}
static int rx_bottom(struct r8152 *tp, int budget)
{
unsigned long flags;
struct list_head *cursor, *next, rx_queue;
int ret = 0, work_done = 0;
struct napi_struct *napi = &tp->napi;
if (!skb_queue_empty(&tp->rx_queue)) {
while (work_done < budget) {
struct sk_buff *skb = __skb_dequeue(&tp->rx_queue);
struct net_device *netdev = tp->netdev;
struct net_device_stats *stats = &netdev->stats;
unsigned int pkt_len;
if (!skb)
break;
pkt_len = skb->len;
napi_gro_receive(napi, skb);
work_done++;
stats->rx_packets++;
stats->rx_bytes += pkt_len;
}
}
if (list_empty(&tp->rx_done))
goto out1;
INIT_LIST_HEAD(&rx_queue);
spin_lock_irqsave(&tp->rx_lock, flags);
list_splice_init(&tp->rx_done, &rx_queue);
spin_unlock_irqrestore(&tp->rx_lock, flags);
list_for_each_safe(cursor, next, &rx_queue) {
struct rx_desc *rx_desc;
struct rx_agg *agg;
int len_used = 0;
struct urb *urb;
u8 *rx_data;
list_del_init(cursor);
agg = list_entry(cursor, struct rx_agg, list);
urb = agg->urb;
if (urb->actual_length < ETH_ZLEN)
goto submit;
rx_desc = agg->head;
rx_data = agg->head;
len_used += sizeof(struct rx_desc);
while (urb->actual_length > len_used) {
struct net_device *netdev = tp->netdev;
struct net_device_stats *stats = &netdev->stats;
unsigned int pkt_len;
struct sk_buff *skb;
/* limite the skb numbers for rx_queue */
if (unlikely(skb_queue_len(&tp->rx_queue) >= 1000))
break;
pkt_len = le32_to_cpu(rx_desc->opts1) & RX_LEN_MASK;
if (pkt_len < ETH_ZLEN)
break;
len_used += pkt_len;
if (urb->actual_length < len_used)
break;
pkt_len -= ETH_FCS_LEN;
rx_data += sizeof(struct rx_desc);
skb = napi_alloc_skb(napi, pkt_len);
if (!skb) {
stats->rx_dropped++;
goto find_next_rx;
}
skb->ip_summed = r8152_rx_csum(tp, rx_desc);
memcpy(skb->data, rx_data, pkt_len);
skb_put(skb, pkt_len);
skb->protocol = eth_type_trans(skb, netdev);
rtl_rx_vlan_tag(rx_desc, skb);
if (work_done < budget) {
napi_gro_receive(napi, skb);
work_done++;
stats->rx_packets++;
stats->rx_bytes += pkt_len;
} else {
__skb_queue_tail(&tp->rx_queue, skb);
}
find_next_rx:
rx_data = rx_agg_align(rx_data + pkt_len + ETH_FCS_LEN);
rx_desc = (struct rx_desc *)rx_data;
len_used = (int)(rx_data - (u8 *)agg->head);
len_used += sizeof(struct rx_desc);
}
submit:
if (!ret) {
ret = r8152_submit_rx(tp, agg, GFP_ATOMIC);
} else {
urb->actual_length = 0;
list_add_tail(&agg->list, next);
}
}
if (!list_empty(&rx_queue)) {
spin_lock_irqsave(&tp->rx_lock, flags);
list_splice_tail(&rx_queue, &tp->rx_done);
spin_unlock_irqrestore(&tp->rx_lock, flags);
}
out1:
return work_done;
}
static void tx_bottom(struct r8152 *tp)
{
int res;
do {
struct tx_agg *agg;
if (skb_queue_empty(&tp->tx_queue))
break;
agg = r8152_get_tx_agg(tp);
if (!agg)
break;
res = r8152_tx_agg_fill(tp, agg);
if (res) {
struct net_device *netdev = tp->netdev;
if (res == -ENODEV) {
set_bit(RTL8152_UNPLUG, &tp->flags);
netif_device_detach(netdev);
} else {
struct net_device_stats *stats = &netdev->stats;
unsigned long flags;
netif_warn(tp, tx_err, netdev,
"failed tx_urb %d\n", res);
stats->tx_dropped += agg->skb_num;
spin_lock_irqsave(&tp->tx_lock, flags);
list_add_tail(&agg->list, &tp->tx_free);
spin_unlock_irqrestore(&tp->tx_lock, flags);
}
}
} while (res == 0);
}
static void bottom_half(struct r8152 *tp)
{
if (test_bit(RTL8152_UNPLUG, &tp->flags))
return;
if (!test_bit(WORK_ENABLE, &tp->flags))
return;
/* When link down, the driver would cancel all bulks. */
/* This avoid the re-submitting bulk */
if (!netif_carrier_ok(tp->netdev))
return;
clear_bit(SCHEDULE_NAPI, &tp->flags);
tx_bottom(tp);
}
static int r8152_poll(struct napi_struct *napi, int budget)
{
struct r8152 *tp = container_of(napi, struct r8152, napi);
int work_done;
work_done = rx_bottom(tp, budget);
bottom_half(tp);
if (work_done < budget) {
if (!napi_complete_done(napi, work_done))
goto out;
if (!list_empty(&tp->rx_done))
napi_schedule(napi);
else if (!skb_queue_empty(&tp->tx_queue) &&
!list_empty(&tp->tx_free))
napi_schedule(napi);
}
out:
return work_done;
}
static
int r8152_submit_rx(struct r8152 *tp, struct rx_agg *agg, gfp_t mem_flags)
{
int ret;
/* The rx would be stopped, so skip submitting */
if (test_bit(RTL8152_UNPLUG, &tp->flags) ||
!test_bit(WORK_ENABLE, &tp->flags) || !netif_carrier_ok(tp->netdev))
return 0;
usb_fill_bulk_urb(agg->urb, tp->udev, usb_rcvbulkpipe(tp->udev, 1),
agg->head, agg_buf_sz,
(usb_complete_t)read_bulk_callback, agg);
ret = usb_submit_urb(agg->urb, mem_flags);
if (ret == -ENODEV) {
set_bit(RTL8152_UNPLUG, &tp->flags);
netif_device_detach(tp->netdev);
} else if (ret) {
struct urb *urb = agg->urb;
unsigned long flags;
urb->actual_length = 0;
spin_lock_irqsave(&tp->rx_lock, flags);
list_add_tail(&agg->list, &tp->rx_done);
spin_unlock_irqrestore(&tp->rx_lock, flags);
netif_err(tp, rx_err, tp->netdev,
"Couldn't submit rx[%p], ret = %d\n", agg, ret);
napi_schedule(&tp->napi);
}
return ret;
}
static void rtl_drop_queued_tx(struct r8152 *tp)
{
struct net_device_stats *stats = &tp->netdev->stats;
struct sk_buff_head skb_head, *tx_queue = &tp->tx_queue;
struct sk_buff *skb;
if (skb_queue_empty(tx_queue))
return;
__skb_queue_head_init(&skb_head);
spin_lock_bh(&tx_queue->lock);
skb_queue_splice_init(tx_queue, &skb_head);
spin_unlock_bh(&tx_queue->lock);
while ((skb = __skb_dequeue(&skb_head))) {
dev_kfree_skb(skb);
stats->tx_dropped++;
}
}
static void rtl8152_tx_timeout(struct net_device *netdev)
{
struct r8152 *tp = netdev_priv(netdev);
netif_warn(tp, tx_err, netdev, "Tx timeout\n");
usb_queue_reset_device(tp->intf);
}
static void rtl8152_set_rx_mode(struct net_device *netdev)
{
struct r8152 *tp = netdev_priv(netdev);
if (netif_carrier_ok(netdev)) {
set_bit(RTL8152_SET_RX_MODE, &tp->flags);
schedule_delayed_work(&tp->schedule, 0);
}
}
static void _rtl8152_set_rx_mode(struct net_device *netdev)
{
struct r8152 *tp = netdev_priv(netdev);
u32 mc_filter[2]; /* Multicast hash filter */
__le32 tmp[2];
u32 ocp_data;
netif_stop_queue(netdev);
ocp_data = ocp_read_dword(tp, MCU_TYPE_PLA, PLA_RCR);
ocp_data &= ~RCR_ACPT_ALL;
ocp_data |= RCR_AB | RCR_APM;
if (netdev->flags & IFF_PROMISC) {
/* Unconditionally log net taps. */
netif_notice(tp, link, netdev, "Promiscuous mode enabled\n");
ocp_data |= RCR_AM | RCR_AAP;
mc_filter[1] = 0xffffffff;
mc_filter[0] = 0xffffffff;
} else if ((netdev_mc_count(netdev) > multicast_filter_limit) ||
(netdev->flags & IFF_ALLMULTI)) {
/* Too many to filter perfectly -- accept all multicasts. */
ocp_data |= RCR_AM;
mc_filter[1] = 0xffffffff;
mc_filter[0] = 0xffffffff;
} else {
struct netdev_hw_addr *ha;
mc_filter[1] = 0;
mc_filter[0] = 0;
netdev_for_each_mc_addr(ha, netdev) {
int bit_nr = ether_crc(ETH_ALEN, ha->addr) >> 26;
mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
ocp_data |= RCR_AM;
}
}
tmp[0] = __cpu_to_le32(swab32(mc_filter[1]));
tmp[1] = __cpu_to_le32(swab32(mc_filter[0]));
pla_ocp_write(tp, PLA_MAR, BYTE_EN_DWORD, sizeof(tmp), tmp);
ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RCR, ocp_data);
netif_wake_queue(netdev);
}
static netdev_features_t
rtl8152_features_check(struct sk_buff *skb, struct net_device *dev,
netdev_features_t features)
{
u32 mss = skb_shinfo(skb)->gso_size;
int max_offset = mss ? GTTCPHO_MAX : TCPHO_MAX;
int offset = skb_transport_offset(skb);
if ((mss || skb->ip_summed == CHECKSUM_PARTIAL) && offset > max_offset)
features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
else if ((skb->len + sizeof(struct tx_desc)) > agg_buf_sz)
features &= ~NETIF_F_GSO_MASK;
return features;
}
static netdev_tx_t rtl8152_start_xmit(struct sk_buff *skb,
struct net_device *netdev)
{
struct r8152 *tp = netdev_priv(netdev);
skb_tx_timestamp(skb);
skb_queue_tail(&tp->tx_queue, skb);
if (!list_empty(&tp->tx_free)) {
if (test_bit(SELECTIVE_SUSPEND, &tp->flags)) {
set_bit(SCHEDULE_NAPI, &tp->flags);
schedule_delayed_work(&tp->schedule, 0);
} else {
usb_mark_last_busy(tp->udev);
napi_schedule(&tp->napi);
}
} else if (skb_queue_len(&tp->tx_queue) > tp->tx_qlen) {
netif_stop_queue(netdev);
}
return NETDEV_TX_OK;
}
static void r8152b_reset_packet_filter(struct r8152 *tp)
{
u32 ocp_data;
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_FMC);
ocp_data &= ~FMC_FCR_MCU_EN;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_FMC, ocp_data);
ocp_data |= FMC_FCR_MCU_EN;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_FMC, ocp_data);
}
static void rtl8152_nic_reset(struct r8152 *tp)
{
int i;
ocp_write_byte(tp, MCU_TYPE_PLA, PLA_CR, CR_RST);
for (i = 0; i < 1000; i++) {
if (!(ocp_read_byte(tp, MCU_TYPE_PLA, PLA_CR) & CR_RST))
break;
usleep_range(100, 400);
}
}
static void set_tx_qlen(struct r8152 *tp)
{
struct net_device *netdev = tp->netdev;
tp->tx_qlen = agg_buf_sz / (netdev->mtu + VLAN_ETH_HLEN + ETH_FCS_LEN +
sizeof(struct tx_desc));
}
static inline u8 rtl8152_get_speed(struct r8152 *tp)
{
return ocp_read_byte(tp, MCU_TYPE_PLA, PLA_PHYSTATUS);
}
static void rtl_set_eee_plus(struct r8152 *tp)
{
u32 ocp_data;
u8 speed;
speed = rtl8152_get_speed(tp);
if (speed & _10bps) {
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_EEEP_CR);
ocp_data |= EEEP_CR_EEEP_TX;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_EEEP_CR, ocp_data);
} else {
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_EEEP_CR);
ocp_data &= ~EEEP_CR_EEEP_TX;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_EEEP_CR, ocp_data);
}
}
static void rxdy_gated_en(struct r8152 *tp, bool enable)
{
u32 ocp_data;
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_MISC_1);
if (enable)
ocp_data |= RXDY_GATED_EN;
else
ocp_data &= ~RXDY_GATED_EN;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_MISC_1, ocp_data);
}
static int rtl_start_rx(struct r8152 *tp)
{
int i, ret = 0;
INIT_LIST_HEAD(&tp->rx_done);
for (i = 0; i < RTL8152_MAX_RX; i++) {
INIT_LIST_HEAD(&tp->rx_info[i].list);
ret = r8152_submit_rx(tp, &tp->rx_info[i], GFP_KERNEL);
if (ret)
break;
}
if (ret && ++i < RTL8152_MAX_RX) {
struct list_head rx_queue;
unsigned long flags;
INIT_LIST_HEAD(&rx_queue);
do {
struct rx_agg *agg = &tp->rx_info[i++];
struct urb *urb = agg->urb;
urb->actual_length = 0;
list_add_tail(&agg->list, &rx_queue);
} while (i < RTL8152_MAX_RX);
spin_lock_irqsave(&tp->rx_lock, flags);
list_splice_tail(&rx_queue, &tp->rx_done);
spin_unlock_irqrestore(&tp->rx_lock, flags);
}
return ret;
}
static int rtl_stop_rx(struct r8152 *tp)
{
int i;
for (i = 0; i < RTL8152_MAX_RX; i++)
usb_kill_urb(tp->rx_info[i].urb);
while (!skb_queue_empty(&tp->rx_queue))
dev_kfree_skb(__skb_dequeue(&tp->rx_queue));
return 0;
}
static int rtl_enable(struct r8152 *tp)
{
u32 ocp_data;
r8152b_reset_packet_filter(tp);
ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_CR);
ocp_data |= CR_RE | CR_TE;
ocp_write_byte(tp, MCU_TYPE_PLA, PLA_CR, ocp_data);
rxdy_gated_en(tp, false);
return 0;
}
static int rtl8152_enable(struct r8152 *tp)
{
if (test_bit(RTL8152_UNPLUG, &tp->flags))
return -ENODEV;
set_tx_qlen(tp);
rtl_set_eee_plus(tp);
return rtl_enable(tp);
}
static inline void r8153b_rx_agg_chg_indicate(struct r8152 *tp)
{
ocp_write_byte(tp, MCU_TYPE_USB, USB_UPT_RXDMA_OWN,
OWN_UPDATE | OWN_CLEAR);
}
static void r8153_set_rx_early_timeout(struct r8152 *tp)
{
u32 ocp_data = tp->coalesce / 8;
switch (tp->version) {
case RTL_VER_03:
case RTL_VER_04:
case RTL_VER_05:
case RTL_VER_06:
ocp_write_word(tp, MCU_TYPE_USB, USB_RX_EARLY_TIMEOUT,
ocp_data);
break;
case RTL_VER_08:
case RTL_VER_09:
/* The RTL8153B uses USB_RX_EXTRA_AGGR_TMR for rx timeout
* primarily. For USB_RX_EARLY_TIMEOUT, we fix it to 128ns.
*/
ocp_write_word(tp, MCU_TYPE_USB, USB_RX_EARLY_TIMEOUT,
128 / 8);
ocp_write_word(tp, MCU_TYPE_USB, USB_RX_EXTRA_AGGR_TMR,
ocp_data);
r8153b_rx_agg_chg_indicate(tp);
break;
default:
break;
}
}
static void r8153_set_rx_early_size(struct r8152 *tp)
{
u32 ocp_data = agg_buf_sz - rx_reserved_size(tp->netdev->mtu);
switch (tp->version) {
case RTL_VER_03:
case RTL_VER_04:
case RTL_VER_05:
case RTL_VER_06:
ocp_write_word(tp, MCU_TYPE_USB, USB_RX_EARLY_SIZE,
ocp_data / 4);
break;
case RTL_VER_08:
case RTL_VER_09:
ocp_write_word(tp, MCU_TYPE_USB, USB_RX_EARLY_SIZE,
ocp_data / 8);
r8153b_rx_agg_chg_indicate(tp);
break;
default:
WARN_ON_ONCE(1);
break;
}
}
static int rtl8153_enable(struct r8152 *tp)
{
if (test_bit(RTL8152_UNPLUG, &tp->flags))
return -ENODEV;
set_tx_qlen(tp);
rtl_set_eee_plus(tp);
r8153_set_rx_early_timeout(tp);
r8153_set_rx_early_size(tp);
return rtl_enable(tp);
}
static void rtl_disable(struct r8152 *tp)
{
u32 ocp_data;
int i;
if (test_bit(RTL8152_UNPLUG, &tp->flags)) {
rtl_drop_queued_tx(tp);
return;
}
ocp_data = ocp_read_dword(tp, MCU_TYPE_PLA, PLA_RCR);
ocp_data &= ~RCR_ACPT_ALL;
ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RCR, ocp_data);
rtl_drop_queued_tx(tp);
for (i = 0; i < RTL8152_MAX_TX; i++)
usb_kill_urb(tp->tx_info[i].urb);
rxdy_gated_en(tp, true);
for (i = 0; i < 1000; i++) {
ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL);
if ((ocp_data & FIFO_EMPTY) == FIFO_EMPTY)
break;
usleep_range(1000, 2000);
}
for (i = 0; i < 1000; i++) {
if (ocp_read_word(tp, MCU_TYPE_PLA, PLA_TCR0) & TCR0_TX_EMPTY)
break;
usleep_range(1000, 2000);
}
rtl_stop_rx(tp);
rtl8152_nic_reset(tp);
}
static void r8152_power_cut_en(struct r8152 *tp, bool enable)
{
u32 ocp_data;
ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_UPS_CTRL);
if (enable)
ocp_data |= POWER_CUT;
else
ocp_data &= ~POWER_CUT;
ocp_write_word(tp, MCU_TYPE_USB, USB_UPS_CTRL, ocp_data);
ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_PM_CTRL_STATUS);
ocp_data &= ~RESUME_INDICATE;
ocp_write_word(tp, MCU_TYPE_USB, USB_PM_CTRL_STATUS, ocp_data);
}
static void rtl_rx_vlan_en(struct r8152 *tp, bool enable)
{
u32 ocp_data;
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_CPCR);
if (enable)
ocp_data |= CPCR_RX_VLAN;
else
ocp_data &= ~CPCR_RX_VLAN;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_CPCR, ocp_data);
}
static int rtl8152_set_features(struct net_device *dev,
netdev_features_t features)
{
netdev_features_t changed = features ^ dev->features;
struct r8152 *tp = netdev_priv(dev);
int ret;
ret = usb_autopm_get_interface(tp->intf);
if (ret < 0)
goto out;
mutex_lock(&tp->control);
if (changed & NETIF_F_HW_VLAN_CTAG_RX) {
if (features & NETIF_F_HW_VLAN_CTAG_RX)
rtl_rx_vlan_en(tp, true);
else
rtl_rx_vlan_en(tp, false);
}
mutex_unlock(&tp->control);
usb_autopm_put_interface(tp->intf);
out:
return ret;
}
#define WAKE_ANY (WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_BCAST | WAKE_MCAST)
static u32 __rtl_get_wol(struct r8152 *tp)
{
u32 ocp_data;
u32 wolopts = 0;
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_CONFIG34);
if (ocp_data & LINK_ON_WAKE_EN)
wolopts |= WAKE_PHY;
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_CONFIG5);
if (ocp_data & UWF_EN)
wolopts |= WAKE_UCAST;
if (ocp_data & BWF_EN)
wolopts |= WAKE_BCAST;
if (ocp_data & MWF_EN)
wolopts |= WAKE_MCAST;
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_CFG_WOL);
if (ocp_data & MAGIC_EN)
wolopts |= WAKE_MAGIC;
return wolopts;
}
static void __rtl_set_wol(struct r8152 *tp, u32 wolopts)
{
u32 ocp_data;
ocp_write_byte(tp, MCU_TYPE_PLA, PLA_CRWECR, CRWECR_CONFIG);
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_CONFIG34);
ocp_data &= ~LINK_ON_WAKE_EN;
if (wolopts & WAKE_PHY)
ocp_data |= LINK_ON_WAKE_EN;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_CONFIG34, ocp_data);
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_CONFIG5);
ocp_data &= ~(UWF_EN | BWF_EN | MWF_EN);
if (wolopts & WAKE_UCAST)
ocp_data |= UWF_EN;
if (wolopts & WAKE_BCAST)
ocp_data |= BWF_EN;
if (wolopts & WAKE_MCAST)
ocp_data |= MWF_EN;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_CONFIG5, ocp_data);
ocp_write_byte(tp, MCU_TYPE_PLA, PLA_CRWECR, CRWECR_NORAML);
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_CFG_WOL);
ocp_data &= ~MAGIC_EN;
if (wolopts & WAKE_MAGIC)
ocp_data |= MAGIC_EN;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_CFG_WOL, ocp_data);
if (wolopts & WAKE_ANY)
device_set_wakeup_enable(&tp->udev->dev, true);
else
device_set_wakeup_enable(&tp->udev->dev, false);
}
static void r8153_mac_clk_spd(struct r8152 *tp, bool enable)
{
/* MAC clock speed down */
if (enable) {
ocp_write_word(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL,
ALDPS_SPDWN_RATIO);
ocp_write_word(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL2,
EEE_SPDWN_RATIO);
ocp_write_word(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL3,
PKT_AVAIL_SPDWN_EN | SUSPEND_SPDWN_EN |
U1U2_SPDWN_EN | L1_SPDWN_EN);
ocp_write_word(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL4,
PWRSAVE_SPDWN_EN | RXDV_SPDWN_EN | TX10MIDLE_EN |
TP100_SPDWN_EN | TP500_SPDWN_EN | EEE_SPDWN_EN |
TP1000_SPDWN_EN);
} else {
ocp_write_word(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL, 0);
ocp_write_word(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL2, 0);
ocp_write_word(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL3, 0);
ocp_write_word(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL4, 0);
}
}
static void r8153_u1u2en(struct r8152 *tp, bool enable)
{
u8 u1u2[8];
if (enable)
memset(u1u2, 0xff, sizeof(u1u2));
else
memset(u1u2, 0x00, sizeof(u1u2));
usb_ocp_write(tp, USB_TOLERANCE, BYTE_EN_SIX_BYTES, sizeof(u1u2), u1u2);
}
static void r8153b_u1u2en(struct r8152 *tp, bool enable)
{
u32 ocp_data;
ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_LPM_CONFIG);
if (enable)
ocp_data |= LPM_U1U2_EN;
else
ocp_data &= ~LPM_U1U2_EN;
ocp_write_word(tp, MCU_TYPE_USB, USB_LPM_CONFIG, ocp_data);
}
static void r8153_u2p3en(struct r8152 *tp, bool enable)
{
u32 ocp_data;
ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_U2P3_CTRL);
if (enable)
ocp_data |= U2P3_ENABLE;
else
ocp_data &= ~U2P3_ENABLE;
ocp_write_word(tp, MCU_TYPE_USB, USB_U2P3_CTRL, ocp_data);
}
static void r8153b_ups_flags_w1w0(struct r8152 *tp, u32 set, u32 clear)
{
u32 ocp_data;
ocp_data = ocp_read_dword(tp, MCU_TYPE_USB, USB_UPS_FLAGS);
ocp_data &= ~clear;
ocp_data |= set;
ocp_write_dword(tp, MCU_TYPE_USB, USB_UPS_FLAGS, ocp_data);
}
static void r8153b_green_en(struct r8152 *tp, bool enable)
{
u16 data;
if (enable) {
sram_write(tp, 0x8045, 0); /* 10M abiq&ldvbias */
sram_write(tp, 0x804d, 0x1222); /* 100M short abiq&ldvbias */
sram_write(tp, 0x805d, 0x0022); /* 1000M short abiq&ldvbias */
} else {
sram_write(tp, 0x8045, 0x2444); /* 10M abiq&ldvbias */
sram_write(tp, 0x804d, 0x2444); /* 100M short abiq&ldvbias */
sram_write(tp, 0x805d, 0x2444); /* 1000M short abiq&ldvbias */
}
data = sram_read(tp, SRAM_GREEN_CFG);
data |= GREEN_ETH_EN;
sram_write(tp, SRAM_GREEN_CFG, data);
r8153b_ups_flags_w1w0(tp, UPS_FLAGS_EN_GREEN, 0);
}
static u16 r8153_phy_status(struct r8152 *tp, u16 desired)
{
u16 data;
int i;
for (i = 0; i < 500; i++) {
data = ocp_reg_read(tp, OCP_PHY_STATUS);
data &= PHY_STAT_MASK;
if (desired) {
if (data == desired)
break;
} else if (data == PHY_STAT_LAN_ON || data == PHY_STAT_PWRDN ||
data == PHY_STAT_EXT_INIT) {
break;
}
msleep(20);
}
return data;
}
static void r8153b_ups_en(struct r8152 *tp, bool enable)
{
u32 ocp_data = ocp_read_byte(tp, MCU_TYPE_USB, USB_POWER_CUT);
if (enable) {
ocp_data |= UPS_EN | USP_PREWAKE | PHASE2_EN;
ocp_write_byte(tp, MCU_TYPE_USB, USB_POWER_CUT, ocp_data);
ocp_data = ocp_read_byte(tp, MCU_TYPE_USB, 0xcfff);
ocp_data |= BIT(0);
ocp_write_byte(tp, MCU_TYPE_USB, 0xcfff, ocp_data);
} else {
u16 data;
ocp_data &= ~(UPS_EN | USP_PREWAKE);
ocp_write_byte(tp, MCU_TYPE_USB, USB_POWER_CUT, ocp_data);
ocp_data = ocp_read_byte(tp, MCU_TYPE_USB, 0xcfff);
ocp_data &= ~BIT(0);
ocp_write_byte(tp, MCU_TYPE_USB, 0xcfff, ocp_data);
ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_MISC_0);
ocp_data &= ~PCUT_STATUS;
ocp_write_word(tp, MCU_TYPE_USB, USB_MISC_0, ocp_data);
data = r8153_phy_status(tp, 0);
switch (data) {
case PHY_STAT_PWRDN:
case PHY_STAT_EXT_INIT:
r8153b_green_en(tp,
test_bit(GREEN_ETHERNET, &tp->flags));
data = r8152_mdio_read(tp, MII_BMCR);
data &= ~BMCR_PDOWN;
data |= BMCR_RESET;
r8152_mdio_write(tp, MII_BMCR, data);
data = r8153_phy_status(tp, PHY_STAT_LAN_ON);
/* fall through */
default:
if (data != PHY_STAT_LAN_ON)
netif_warn(tp, link, tp->netdev,
"PHY not ready");
break;
}
}
}
static void r8153_power_cut_en(struct r8152 *tp, bool enable)
{
u32 ocp_data;
ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_POWER_CUT);
if (enable)
ocp_data |= PWR_EN | PHASE2_EN;
else
ocp_data &= ~(PWR_EN | PHASE2_EN);
ocp_write_word(tp, MCU_TYPE_USB, USB_POWER_CUT, ocp_data);
ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_MISC_0);
ocp_data &= ~PCUT_STATUS;
ocp_write_word(tp, MCU_TYPE_USB, USB_MISC_0, ocp_data);
}
static void r8153b_power_cut_en(struct r8152 *tp, bool enable)
{
u32 ocp_data;
ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_POWER_CUT);
if (enable)
ocp_data |= PWR_EN | PHASE2_EN;
else
ocp_data &= ~PWR_EN;
ocp_write_word(tp, MCU_TYPE_USB, USB_POWER_CUT, ocp_data);
ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_MISC_0);
ocp_data &= ~PCUT_STATUS;
ocp_write_word(tp, MCU_TYPE_USB, USB_MISC_0, ocp_data);
}
static void r8153b_queue_wake(struct r8152 *tp, bool enable)
{
u32 ocp_data;
ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, 0xd38a);
if (enable)
ocp_data |= BIT(0);
else
ocp_data &= ~BIT(0);
ocp_write_byte(tp, MCU_TYPE_PLA, 0xd38a, ocp_data);
ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, 0xd38c);
ocp_data &= ~BIT(0);
ocp_write_byte(tp, MCU_TYPE_PLA, 0xd38c, ocp_data);
}
static bool rtl_can_wakeup(struct r8152 *tp)
{
struct usb_device *udev = tp->udev;
return (udev->actconfig->desc.bmAttributes & USB_CONFIG_ATT_WAKEUP);
}
static void rtl_runtime_suspend_enable(struct r8152 *tp, bool enable)
{
if (enable) {
u32 ocp_data;
__rtl_set_wol(tp, WAKE_ANY);
ocp_write_byte(tp, MCU_TYPE_PLA, PLA_CRWECR, CRWECR_CONFIG);
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_CONFIG34);
ocp_data |= LINK_OFF_WAKE_EN;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_CONFIG34, ocp_data);
ocp_write_byte(tp, MCU_TYPE_PLA, PLA_CRWECR, CRWECR_NORAML);
} else {
u32 ocp_data;
__rtl_set_wol(tp, tp->saved_wolopts);
ocp_write_byte(tp, MCU_TYPE_PLA, PLA_CRWECR, CRWECR_CONFIG);
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_CONFIG34);
ocp_data &= ~LINK_OFF_WAKE_EN;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_CONFIG34, ocp_data);
ocp_write_byte(tp, MCU_TYPE_PLA, PLA_CRWECR, CRWECR_NORAML);
}
}
static void rtl8153_runtime_enable(struct r8152 *tp, bool enable)
{
if (enable) {
r8153_u1u2en(tp, false);
r8153_u2p3en(tp, false);
r8153_mac_clk_spd(tp, true);
rtl_runtime_suspend_enable(tp, true);
} else {
rtl_runtime_suspend_enable(tp, false);
r8153_mac_clk_spd(tp, false);
switch (tp->version) {
case RTL_VER_03:
case RTL_VER_04:
break;
case RTL_VER_05:
case RTL_VER_06:
default:
r8153_u2p3en(tp, true);
break;
}
r8153_u1u2en(tp, true);
}
}
static void rtl8153b_runtime_enable(struct r8152 *tp, bool enable)
{
if (enable) {
r8153b_queue_wake(tp, true);
r8153b_u1u2en(tp, false);
r8153_u2p3en(tp, false);
rtl_runtime_suspend_enable(tp, true);
r8153b_ups_en(tp, true);
} else {
r8153b_ups_en(tp, false);
r8153b_queue_wake(tp, false);
rtl_runtime_suspend_enable(tp, false);
r8153_u2p3en(tp, true);
r8153b_u1u2en(tp, true);
}
}
static void r8153_teredo_off(struct r8152 *tp)
{
u32 ocp_data;
switch (tp->version) {
case RTL_VER_01:
case RTL_VER_02:
case RTL_VER_03:
case RTL_VER_04:
case RTL_VER_05:
case RTL_VER_06:
case RTL_VER_07:
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_TEREDO_CFG);
ocp_data &= ~(TEREDO_SEL | TEREDO_RS_EVENT_MASK |
OOB_TEREDO_EN);
ocp_write_word(tp, MCU_TYPE_PLA, PLA_TEREDO_CFG, ocp_data);
break;
case RTL_VER_08:
case RTL_VER_09:
/* The bit 0 ~ 7 are relative with teredo settings. They are
* W1C (write 1 to clear), so set all 1 to disable it.
*/
ocp_write_byte(tp, MCU_TYPE_PLA, PLA_TEREDO_CFG, 0xff);
break;
default:
break;
}
ocp_write_word(tp, MCU_TYPE_PLA, PLA_WDT6_CTRL, WDT6_SET_MODE);
ocp_write_word(tp, MCU_TYPE_PLA, PLA_REALWOW_TIMER, 0);
ocp_write_dword(tp, MCU_TYPE_PLA, PLA_TEREDO_TIMER, 0);
}
static void rtl_reset_bmu(struct r8152 *tp)
{
u32 ocp_data;
ocp_data = ocp_read_byte(tp, MCU_TYPE_USB, USB_BMU_RESET);
ocp_data &= ~(BMU_RESET_EP_IN | BMU_RESET_EP_OUT);
ocp_write_byte(tp, MCU_TYPE_USB, USB_BMU_RESET, ocp_data);
ocp_data |= BMU_RESET_EP_IN | BMU_RESET_EP_OUT;
ocp_write_byte(tp, MCU_TYPE_USB, USB_BMU_RESET, ocp_data);
}
static void r8152_aldps_en(struct r8152 *tp, bool enable)
{
if (enable) {
ocp_reg_write(tp, OCP_ALDPS_CONFIG, ENPWRSAVE | ENPDNPS |
LINKENA | DIS_SDSAVE);
} else {
ocp_reg_write(tp, OCP_ALDPS_CONFIG, ENPDNPS | LINKENA |
DIS_SDSAVE);
msleep(20);
}
}
static inline void r8152_mmd_indirect(struct r8152 *tp, u16 dev, u16 reg)
{
ocp_reg_write(tp, OCP_EEE_AR, FUN_ADDR | dev);
ocp_reg_write(tp, OCP_EEE_DATA, reg);
ocp_reg_write(tp, OCP_EEE_AR, FUN_DATA | dev);
}
static u16 r8152_mmd_read(struct r8152 *tp, u16 dev, u16 reg)
{
u16 data;
r8152_mmd_indirect(tp, dev, reg);
data = ocp_reg_read(tp, OCP_EEE_DATA);
ocp_reg_write(tp, OCP_EEE_AR, 0x0000);
return data;
}
static void r8152_mmd_write(struct r8152 *tp, u16 dev, u16 reg, u16 data)
{
r8152_mmd_indirect(tp, dev, reg);
ocp_reg_write(tp, OCP_EEE_DATA, data);
ocp_reg_write(tp, OCP_EEE_AR, 0x0000);
}
static void r8152_eee_en(struct r8152 *tp, bool enable)
{
u16 config1, config2, config3;
u32 ocp_data;
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_EEE_CR);
config1 = ocp_reg_read(tp, OCP_EEE_CONFIG1) & ~sd_rise_time_mask;
config2 = ocp_reg_read(tp, OCP_EEE_CONFIG2);
config3 = ocp_reg_read(tp, OCP_EEE_CONFIG3) & ~fast_snr_mask;
if (enable) {
ocp_data |= EEE_RX_EN | EEE_TX_EN;
config1 |= EEE_10_CAP | EEE_NWAY_EN | TX_QUIET_EN | RX_QUIET_EN;
config1 |= sd_rise_time(1);
config2 |= RG_DACQUIET_EN | RG_LDVQUIET_EN;
config3 |= fast_snr(42);
} else {
ocp_data &= ~(EEE_RX_EN | EEE_TX_EN);
config1 &= ~(EEE_10_CAP | EEE_NWAY_EN | TX_QUIET_EN |
RX_QUIET_EN);
config1 |= sd_rise_time(7);
config2 &= ~(RG_DACQUIET_EN | RG_LDVQUIET_EN);
config3 |= fast_snr(511);
}
ocp_write_word(tp, MCU_TYPE_PLA, PLA_EEE_CR, ocp_data);
ocp_reg_write(tp, OCP_EEE_CONFIG1, config1);
ocp_reg_write(tp, OCP_EEE_CONFIG2, config2);
ocp_reg_write(tp, OCP_EEE_CONFIG3, config3);
}
static void r8152b_enable_eee(struct r8152 *tp)
{
r8152_eee_en(tp, true);
r8152_mmd_write(tp, MDIO_MMD_AN, MDIO_AN_EEE_ADV, MDIO_EEE_100TX);
}
static void r8152b_enable_fc(struct r8152 *tp)
{
u16 anar;
anar = r8152_mdio_read(tp, MII_ADVERTISE);
anar |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
r8152_mdio_write(tp, MII_ADVERTISE, anar);
}
static void rtl8152_disable(struct r8152 *tp)
{
r8152_aldps_en(tp, false);
rtl_disable(tp);
r8152_aldps_en(tp, true);
}
static void r8152b_hw_phy_cfg(struct r8152 *tp)
{
r8152b_enable_eee(tp);
r8152_aldps_en(tp, true);
r8152b_enable_fc(tp);
set_bit(PHY_RESET, &tp->flags);
}
static void r8152b_exit_oob(struct r8152 *tp)
{
u32 ocp_data;
int i;
ocp_data = ocp_read_dword(tp, MCU_TYPE_PLA, PLA_RCR);
ocp_data &= ~RCR_ACPT_ALL;
ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RCR, ocp_data);
rxdy_gated_en(tp, true);
r8153_teredo_off(tp);
ocp_write_byte(tp, MCU_TYPE_PLA, PLA_CRWECR, CRWECR_NORAML);
ocp_write_byte(tp, MCU_TYPE_PLA, PLA_CR, 0x00);
ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL);
ocp_data &= ~NOW_IS_OOB;
ocp_write_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL, ocp_data);
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_SFF_STS_7);
ocp_data &= ~MCU_BORW_EN;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_SFF_STS_7, ocp_data);
for (i = 0; i < 1000; i++) {
ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL);
if (ocp_data & LINK_LIST_READY)
break;
usleep_range(1000, 2000);
}
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_SFF_STS_7);
ocp_data |= RE_INIT_LL;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_SFF_STS_7, ocp_data);
for (i = 0; i < 1000; i++) {
ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL);
if (ocp_data & LINK_LIST_READY)
break;
usleep_range(1000, 2000);
}
rtl8152_nic_reset(tp);
/* rx share fifo credit full threshold */
ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RXFIFO_CTRL0, RXFIFO_THR1_NORMAL);
if (tp->udev->speed == USB_SPEED_FULL ||
tp->udev->speed == USB_SPEED_LOW) {
/* rx share fifo credit near full threshold */
ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RXFIFO_CTRL1,
RXFIFO_THR2_FULL);
ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RXFIFO_CTRL2,
RXFIFO_THR3_FULL);
} else {
/* rx share fifo credit near full threshold */
ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RXFIFO_CTRL1,
RXFIFO_THR2_HIGH);
ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RXFIFO_CTRL2,
RXFIFO_THR3_HIGH);
}
/* TX share fifo free credit full threshold */
ocp_write_dword(tp, MCU_TYPE_PLA, PLA_TXFIFO_CTRL, TXFIFO_THR_NORMAL);
ocp_write_byte(tp, MCU_TYPE_USB, USB_TX_AGG, TX_AGG_MAX_THRESHOLD);
ocp_write_dword(tp, MCU_TYPE_USB, USB_RX_BUF_TH, RX_THR_HIGH);
ocp_write_dword(tp, MCU_TYPE_USB, USB_TX_DMA,
TEST_MODE_DISABLE | TX_SIZE_ADJUST1);
rtl_rx_vlan_en(tp, tp->netdev->features & NETIF_F_HW_VLAN_CTAG_RX);
ocp_write_word(tp, MCU_TYPE_PLA, PLA_RMS, RTL8152_RMS);
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_TCR0);
ocp_data |= TCR0_AUTO_FIFO;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_TCR0, ocp_data);
}
static void r8152b_enter_oob(struct r8152 *tp)
{
u32 ocp_data;
int i;
ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL);
ocp_data &= ~NOW_IS_OOB;
ocp_write_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL, ocp_data);
ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RXFIFO_CTRL0, RXFIFO_THR1_OOB);
ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RXFIFO_CTRL1, RXFIFO_THR2_OOB);
ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RXFIFO_CTRL2, RXFIFO_THR3_OOB);
rtl_disable(tp);
for (i = 0; i < 1000; i++) {
ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL);
if (ocp_data & LINK_LIST_READY)
break;
usleep_range(1000, 2000);
}
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_SFF_STS_7);
ocp_data |= RE_INIT_LL;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_SFF_STS_7, ocp_data);
for (i = 0; i < 1000; i++) {
ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL);
if (ocp_data & LINK_LIST_READY)
break;
usleep_range(1000, 2000);
}
ocp_write_word(tp, MCU_TYPE_PLA, PLA_RMS, RTL8152_RMS);
rtl_rx_vlan_en(tp, true);
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PAL_BDC_CR);
ocp_data |= ALDPS_PROXY_MODE;
ocp_write_word(tp, MCU_TYPE_PLA, PAL_BDC_CR, ocp_data);
ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL);
ocp_data |= NOW_IS_OOB | DIS_MCU_CLROOB;
ocp_write_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL, ocp_data);
rxdy_gated_en(tp, false);
ocp_data = ocp_read_dword(tp, MCU_TYPE_PLA, PLA_RCR);
ocp_data |= RCR_APM | RCR_AM | RCR_AB;
ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RCR, ocp_data);
}
static int r8153_patch_request(struct r8152 *tp, bool request)
{
u16 data;
int i;
data = ocp_reg_read(tp, OCP_PHY_PATCH_CMD);
if (request)
data |= PATCH_REQUEST;
else
data &= ~PATCH_REQUEST;
ocp_reg_write(tp, OCP_PHY_PATCH_CMD, data);
for (i = 0; request && i < 5000; i++) {
usleep_range(1000, 2000);
if (ocp_reg_read(tp, OCP_PHY_PATCH_STAT) & PATCH_READY)
break;
}
if (request && !(ocp_reg_read(tp, OCP_PHY_PATCH_STAT) & PATCH_READY)) {
netif_err(tp, drv, tp->netdev, "patch request fail\n");
r8153_patch_request(tp, false);
return -ETIME;
} else {
return 0;
}
}
static void r8153_aldps_en(struct r8152 *tp, bool enable)
{
u16 data;
data = ocp_reg_read(tp, OCP_POWER_CFG);
if (enable) {
data |= EN_ALDPS;
ocp_reg_write(tp, OCP_POWER_CFG, data);
} else {
int i;
data &= ~EN_ALDPS;
ocp_reg_write(tp, OCP_POWER_CFG, data);
for (i = 0; i < 20; i++) {
usleep_range(1000, 2000);
if (ocp_read_word(tp, MCU_TYPE_PLA, 0xe000) & 0x0100)
break;
}
}
}
static void r8153b_aldps_en(struct r8152 *tp, bool enable)
{
r8153_aldps_en(tp, enable);
if (enable)
r8153b_ups_flags_w1w0(tp, UPS_FLAGS_EN_ALDPS, 0);
else
r8153b_ups_flags_w1w0(tp, 0, UPS_FLAGS_EN_ALDPS);
}
static void r8153_eee_en(struct r8152 *tp, bool enable)
{
u32 ocp_data;
u16 config;
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_EEE_CR);
config = ocp_reg_read(tp, OCP_EEE_CFG);
if (enable) {
ocp_data |= EEE_RX_EN | EEE_TX_EN;
config |= EEE10_EN;
} else {
ocp_data &= ~(EEE_RX_EN | EEE_TX_EN);
config &= ~EEE10_EN;
}
ocp_write_word(tp, MCU_TYPE_PLA, PLA_EEE_CR, ocp_data);
ocp_reg_write(tp, OCP_EEE_CFG, config);
}
static void r8153b_eee_en(struct r8152 *tp, bool enable)
{
r8153_eee_en(tp, enable);
if (enable)
r8153b_ups_flags_w1w0(tp, UPS_FLAGS_EN_EEE, 0);
else
r8153b_ups_flags_w1w0(tp, 0, UPS_FLAGS_EN_EEE);
}
static void r8153b_enable_fc(struct r8152 *tp)
{
r8152b_enable_fc(tp);
r8153b_ups_flags_w1w0(tp, UPS_FLAGS_EN_FLOW_CTR, 0);
}
static void r8153_hw_phy_cfg(struct r8152 *tp)
{
u32 ocp_data;
u16 data;
/* disable ALDPS before updating the PHY parameters */
r8153_aldps_en(tp, false);
/* disable EEE before updating the PHY parameters */
r8153_eee_en(tp, false);
ocp_reg_write(tp, OCP_EEE_ADV, 0);
if (tp->version == RTL_VER_03) {
data = ocp_reg_read(tp, OCP_EEE_CFG);
data &= ~CTAP_SHORT_EN;
ocp_reg_write(tp, OCP_EEE_CFG, data);
}
data = ocp_reg_read(tp, OCP_POWER_CFG);
data |= EEE_CLKDIV_EN;
ocp_reg_write(tp, OCP_POWER_CFG, data);
data = ocp_reg_read(tp, OCP_DOWN_SPEED);
data |= EN_10M_BGOFF;
ocp_reg_write(tp, OCP_DOWN_SPEED, data);
data = ocp_reg_read(tp, OCP_POWER_CFG);
data |= EN_10M_PLLOFF;
ocp_reg_write(tp, OCP_POWER_CFG, data);
sram_write(tp, SRAM_IMPEDANCE, 0x0b13);
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_PHY_PWR);
ocp_data |= PFM_PWM_SWITCH;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_PHY_PWR, ocp_data);
/* Enable LPF corner auto tune */
sram_write(tp, SRAM_LPF_CFG, 0xf70f);
/* Adjust 10M Amplitude */
sram_write(tp, SRAM_10M_AMP1, 0x00af);
sram_write(tp, SRAM_10M_AMP2, 0x0208);
r8153_eee_en(tp, true);
ocp_reg_write(tp, OCP_EEE_ADV, MDIO_EEE_1000T | MDIO_EEE_100TX);
r8153_aldps_en(tp, true);
r8152b_enable_fc(tp);
switch (tp->version) {
case RTL_VER_03:
case RTL_VER_04:
break;
case RTL_VER_05:
case RTL_VER_06:
default:
r8153_u2p3en(tp, true);
break;
}
set_bit(PHY_RESET, &tp->flags);
}
static u32 r8152_efuse_read(struct r8152 *tp, u8 addr)
{
u32 ocp_data;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_EFUSE_CMD, EFUSE_READ_CMD | addr);
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_EFUSE_CMD);
ocp_data = (ocp_data & EFUSE_DATA_BIT16) << 9; /* data of bit16 */
ocp_data |= ocp_read_word(tp, MCU_TYPE_PLA, PLA_EFUSE_DATA);
return ocp_data;
}
static void r8153b_hw_phy_cfg(struct r8152 *tp)
{
u32 ocp_data, ups_flags = 0;
u16 data;
/* disable ALDPS before updating the PHY parameters */
r8153b_aldps_en(tp, false);
/* disable EEE before updating the PHY parameters */
r8153b_eee_en(tp, false);
ocp_reg_write(tp, OCP_EEE_ADV, 0);
r8153b_green_en(tp, test_bit(GREEN_ETHERNET, &tp->flags));
data = sram_read(tp, SRAM_GREEN_CFG);
data |= R_TUNE_EN;
sram_write(tp, SRAM_GREEN_CFG, data);
data = ocp_reg_read(tp, OCP_NCTL_CFG);
data |= PGA_RETURN_EN;
ocp_reg_write(tp, OCP_NCTL_CFG, data);
/* ADC Bias Calibration:
* read efuse offset 0x7d to get a 17-bit data. Remove the dummy/fake
* bit (bit3) to rebuild the real 16-bit data. Write the data to the
* ADC ioffset.
*/
ocp_data = r8152_efuse_read(tp, 0x7d);
data = (u16)(((ocp_data & 0x1fff0) >> 1) | (ocp_data & 0x7));
if (data != 0xffff)
ocp_reg_write(tp, OCP_ADC_IOFFSET, data);
/* ups mode tx-link-pulse timing adjustment:
* rg_saw_cnt = OCP reg 0xC426 Bit[13:0]
* swr_cnt_1ms_ini = 16000000 / rg_saw_cnt
*/
ocp_data = ocp_reg_read(tp, 0xc426);
ocp_data &= 0x3fff;
if (ocp_data) {
u32 swr_cnt_1ms_ini;
swr_cnt_1ms_ini = (16000000 / ocp_data) & SAW_CNT_1MS_MASK;
ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_UPS_CFG);
ocp_data = (ocp_data & ~SAW_CNT_1MS_MASK) | swr_cnt_1ms_ini;
ocp_write_word(tp, MCU_TYPE_USB, USB_UPS_CFG, ocp_data);
}
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_PHY_PWR);
ocp_data |= PFM_PWM_SWITCH;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_PHY_PWR, ocp_data);
/* Advnace EEE */
if (!r8153_patch_request(tp, true)) {
data = ocp_reg_read(tp, OCP_POWER_CFG);
data |= EEE_CLKDIV_EN;
ocp_reg_write(tp, OCP_POWER_CFG, data);
data = ocp_reg_read(tp, OCP_DOWN_SPEED);
data |= EN_EEE_CMODE | EN_EEE_1000 | EN_10M_CLKDIV;
ocp_reg_write(tp, OCP_DOWN_SPEED, data);
ocp_reg_write(tp, OCP_SYSCLK_CFG, 0);
ocp_reg_write(tp, OCP_SYSCLK_CFG, clk_div_expo(5));
ups_flags |= UPS_FLAGS_EN_10M_CKDIV | UPS_FLAGS_250M_CKDIV |
UPS_FLAGS_EN_EEE_CKDIV | UPS_FLAGS_EEE_CMOD_LV_EN |
UPS_FLAGS_EEE_PLLOFF_GIGA;
r8153_patch_request(tp, false);
}
r8153b_ups_flags_w1w0(tp, ups_flags, 0);
r8153b_eee_en(tp, true);
ocp_reg_write(tp, OCP_EEE_ADV, MDIO_EEE_1000T | MDIO_EEE_100TX);
r8153b_aldps_en(tp, true);
r8153b_enable_fc(tp);
r8153_u2p3en(tp, true);
set_bit(PHY_RESET, &tp->flags);
}
static void r8153_first_init(struct r8152 *tp)
{
u32 ocp_data;
int i;
r8153_mac_clk_spd(tp, false);
rxdy_gated_en(tp, true);
r8153_teredo_off(tp);
ocp_data = ocp_read_dword(tp, MCU_TYPE_PLA, PLA_RCR);
ocp_data &= ~RCR_ACPT_ALL;
ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RCR, ocp_data);
rtl8152_nic_reset(tp);
rtl_reset_bmu(tp);
ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL);
ocp_data &= ~NOW_IS_OOB;
ocp_write_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL, ocp_data);
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_SFF_STS_7);
ocp_data &= ~MCU_BORW_EN;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_SFF_STS_7, ocp_data);
for (i = 0; i < 1000; i++) {
ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL);
if (ocp_data & LINK_LIST_READY)
break;
usleep_range(1000, 2000);
}
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_SFF_STS_7);
ocp_data |= RE_INIT_LL;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_SFF_STS_7, ocp_data);
for (i = 0; i < 1000; i++) {
ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL);
if (ocp_data & LINK_LIST_READY)
break;
usleep_range(1000, 2000);
}
rtl_rx_vlan_en(tp, tp->netdev->features & NETIF_F_HW_VLAN_CTAG_RX);
ocp_data = tp->netdev->mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_RMS, ocp_data);
ocp_write_byte(tp, MCU_TYPE_PLA, PLA_MTPS, MTPS_JUMBO);
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_TCR0);
ocp_data |= TCR0_AUTO_FIFO;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_TCR0, ocp_data);
rtl8152_nic_reset(tp);
/* rx share fifo credit full threshold */
ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RXFIFO_CTRL0, RXFIFO_THR1_NORMAL);
ocp_write_word(tp, MCU_TYPE_PLA, PLA_RXFIFO_CTRL1, RXFIFO_THR2_NORMAL);
ocp_write_word(tp, MCU_TYPE_PLA, PLA_RXFIFO_CTRL2, RXFIFO_THR3_NORMAL);
/* TX share fifo free credit full threshold */
ocp_write_dword(tp, MCU_TYPE_PLA, PLA_TXFIFO_CTRL, TXFIFO_THR_NORMAL2);
}
static void r8153_enter_oob(struct r8152 *tp)
{
u32 ocp_data;
int i;
r8153_mac_clk_spd(tp, true);
ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL);
ocp_data &= ~NOW_IS_OOB;
ocp_write_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL, ocp_data);
rtl_disable(tp);
rtl_reset_bmu(tp);
for (i = 0; i < 1000; i++) {
ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL);
if (ocp_data & LINK_LIST_READY)
break;
usleep_range(1000, 2000);
}
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_SFF_STS_7);
ocp_data |= RE_INIT_LL;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_SFF_STS_7, ocp_data);
for (i = 0; i < 1000; i++) {
ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL);
if (ocp_data & LINK_LIST_READY)
break;
usleep_range(1000, 2000);
}
ocp_data = tp->netdev->mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_RMS, ocp_data);
switch (tp->version) {
case RTL_VER_03:
case RTL_VER_04:
case RTL_VER_05:
case RTL_VER_06:
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_TEREDO_CFG);
ocp_data &= ~TEREDO_WAKE_MASK;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_TEREDO_CFG, ocp_data);
break;
case RTL_VER_08:
case RTL_VER_09:
/* Clear teredo wake event. bit[15:8] is the teredo wakeup
* type. Set it to zero. bits[7:0] are the W1C bits about
* the events. Set them to all 1 to clear them.
*/
ocp_write_word(tp, MCU_TYPE_PLA, PLA_TEREDO_WAKE_BASE, 0x00ff);
break;
default:
break;
}
rtl_rx_vlan_en(tp, true);
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PAL_BDC_CR);
ocp_data |= ALDPS_PROXY_MODE;
ocp_write_word(tp, MCU_TYPE_PLA, PAL_BDC_CR, ocp_data);
ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL);
ocp_data |= NOW_IS_OOB | DIS_MCU_CLROOB;
ocp_write_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL, ocp_data);
rxdy_gated_en(tp, false);
ocp_data = ocp_read_dword(tp, MCU_TYPE_PLA, PLA_RCR);
ocp_data |= RCR_APM | RCR_AM | RCR_AB;
ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RCR, ocp_data);
}
static void rtl8153_disable(struct r8152 *tp)
{
r8153_aldps_en(tp, false);
rtl_disable(tp);
rtl_reset_bmu(tp);
r8153_aldps_en(tp, true);
}
static void rtl8153b_disable(struct r8152 *tp)
{
r8153b_aldps_en(tp, false);
rtl_disable(tp);
rtl_reset_bmu(tp);
r8153b_aldps_en(tp, true);
}
static int rtl8152_set_speed(struct r8152 *tp, u8 autoneg, u16 speed, u8 duplex)
{
u16 bmcr, anar, gbcr;
enum spd_duplex speed_duplex;
int ret = 0;
anar = r8152_mdio_read(tp, MII_ADVERTISE);
anar &= ~(ADVERTISE_10HALF | ADVERTISE_10FULL |
ADVERTISE_100HALF | ADVERTISE_100FULL);
if (tp->mii.supports_gmii) {
gbcr = r8152_mdio_read(tp, MII_CTRL1000);
gbcr &= ~(ADVERTISE_1000FULL | ADVERTISE_1000HALF);
} else {
gbcr = 0;
}
if (autoneg == AUTONEG_DISABLE) {
if (speed == SPEED_10) {
bmcr = 0;
anar |= ADVERTISE_10HALF | ADVERTISE_10FULL;
speed_duplex = FORCE_10M_HALF;
} else if (speed == SPEED_100) {
bmcr = BMCR_SPEED100;
anar |= ADVERTISE_100HALF | ADVERTISE_100FULL;
speed_duplex = FORCE_100M_HALF;
} else if (speed == SPEED_1000 && tp->mii.supports_gmii) {
bmcr = BMCR_SPEED1000;
gbcr |= ADVERTISE_1000FULL | ADVERTISE_1000HALF;
speed_duplex = NWAY_1000M_FULL;
} else {
ret = -EINVAL;
goto out;
}
if (duplex == DUPLEX_FULL) {
bmcr |= BMCR_FULLDPLX;
if (speed != SPEED_1000)
speed_duplex++;
}
} else {
if (speed == SPEED_10) {
if (duplex == DUPLEX_FULL) {
anar |= ADVERTISE_10HALF | ADVERTISE_10FULL;
speed_duplex = NWAY_10M_FULL;
} else {
anar |= ADVERTISE_10HALF;
speed_duplex = NWAY_10M_HALF;
}
} else if (speed == SPEED_100) {
if (duplex == DUPLEX_FULL) {
anar |= ADVERTISE_10HALF | ADVERTISE_10FULL;
anar |= ADVERTISE_100HALF | ADVERTISE_100FULL;
speed_duplex = NWAY_100M_FULL;
} else {
anar |= ADVERTISE_10HALF;
anar |= ADVERTISE_100HALF;
speed_duplex = NWAY_100M_HALF;
}
} else if (speed == SPEED_1000 && tp->mii.supports_gmii) {
if (duplex == DUPLEX_FULL) {
anar |= ADVERTISE_10HALF | ADVERTISE_10FULL;
anar |= ADVERTISE_100HALF | ADVERTISE_100FULL;
gbcr |= ADVERTISE_1000FULL | ADVERTISE_1000HALF;
} else {
anar |= ADVERTISE_10HALF;
anar |= ADVERTISE_100HALF;
gbcr |= ADVERTISE_1000HALF;
}
speed_duplex = NWAY_1000M_FULL;
} else {
ret = -EINVAL;
goto out;
}
bmcr = BMCR_ANENABLE | BMCR_ANRESTART;
}
if (test_and_clear_bit(PHY_RESET, &tp->flags))
bmcr |= BMCR_RESET;
if (tp->mii.supports_gmii)
r8152_mdio_write(tp, MII_CTRL1000, gbcr);
r8152_mdio_write(tp, MII_ADVERTISE, anar);
r8152_mdio_write(tp, MII_BMCR, bmcr);
switch (tp->version) {
case RTL_VER_08:
case RTL_VER_09:
r8153b_ups_flags_w1w0(tp, ups_flags_speed(speed_duplex),
UPS_FLAGS_SPEED_MASK);
break;
default:
break;
}
if (bmcr & BMCR_RESET) {
int i;
for (i = 0; i < 50; i++) {
msleep(20);
if ((r8152_mdio_read(tp, MII_BMCR) & BMCR_RESET) == 0)
break;
}
}
out:
return ret;
}
static void rtl8152_up(struct r8152 *tp)
{
if (test_bit(RTL8152_UNPLUG, &tp->flags))
return;
r8152_aldps_en(tp, false);
r8152b_exit_oob(tp);
r8152_aldps_en(tp, true);
}
static void rtl8152_down(struct r8152 *tp)
{
if (test_bit(RTL8152_UNPLUG, &tp->flags)) {
rtl_drop_queued_tx(tp);
return;
}
r8152_power_cut_en(tp, false);
r8152_aldps_en(tp, false);
r8152b_enter_oob(tp);
r8152_aldps_en(tp, true);
}
static void rtl8153_up(struct r8152 *tp)
{
if (test_bit(RTL8152_UNPLUG, &tp->flags))
return;
r8153_u1u2en(tp, false);
r8153_u2p3en(tp, false);
r8153_aldps_en(tp, false);
r8153_first_init(tp);
r8153_aldps_en(tp, true);
switch (tp->version) {
case RTL_VER_03:
case RTL_VER_04:
break;
case RTL_VER_05:
case RTL_VER_06:
default:
r8153_u2p3en(tp, true);
break;
}
r8153_u1u2en(tp, true);
}
static void rtl8153_down(struct r8152 *tp)
{
if (test_bit(RTL8152_UNPLUG, &tp->flags)) {
rtl_drop_queued_tx(tp);
return;
}
r8153_u1u2en(tp, false);
r8153_u2p3en(tp, false);
r8153_power_cut_en(tp, false);
r8153_aldps_en(tp, false);
r8153_enter_oob(tp);
r8153_aldps_en(tp, true);
}
static void rtl8153b_up(struct r8152 *tp)
{
if (test_bit(RTL8152_UNPLUG, &tp->flags))
return;
r8153b_u1u2en(tp, false);
r8153_u2p3en(tp, false);
r8153b_aldps_en(tp, false);
r8153_first_init(tp);
ocp_write_dword(tp, MCU_TYPE_USB, USB_RX_BUF_TH, RX_THR_B);
r8153b_aldps_en(tp, true);
r8153_u2p3en(tp, true);
r8153b_u1u2en(tp, true);
}
static void rtl8153b_down(struct r8152 *tp)
{
if (test_bit(RTL8152_UNPLUG, &tp->flags)) {
rtl_drop_queued_tx(tp);
return;
}
r8153b_u1u2en(tp, false);
r8153_u2p3en(tp, false);
r8153b_power_cut_en(tp, false);
r8153b_aldps_en(tp, false);
r8153_enter_oob(tp);
r8153b_aldps_en(tp, true);
}
static bool rtl8152_in_nway(struct r8152 *tp)
{
u16 nway_state;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_OCP_GPHY_BASE, 0x2000);
tp->ocp_base = 0x2000;
ocp_write_byte(tp, MCU_TYPE_PLA, 0xb014, 0x4c); /* phy state */
nway_state = ocp_read_word(tp, MCU_TYPE_PLA, 0xb01a);
/* bit 15: TXDIS_STATE, bit 14: ABD_STATE */
if (nway_state & 0xc000)
return false;
else
return true;
}
static bool rtl8153_in_nway(struct r8152 *tp)
{
u16 phy_state = ocp_reg_read(tp, OCP_PHY_STATE) & 0xff;
if (phy_state == TXDIS_STATE || phy_state == ABD_STATE)
return false;
else
return true;
}
static void set_carrier(struct r8152 *tp)
{
struct net_device *netdev = tp->netdev;
struct napi_struct *napi = &tp->napi;
u8 speed;
speed = rtl8152_get_speed(tp);
if (speed & LINK_STATUS) {
if (!netif_carrier_ok(netdev)) {
tp->rtl_ops.enable(tp);
netif_stop_queue(netdev);
napi_disable(napi);
netif_carrier_on(netdev);
rtl_start_rx(tp);
clear_bit(RTL8152_SET_RX_MODE, &tp->flags);
_rtl8152_set_rx_mode(netdev);
napi_enable(&tp->napi);
netif_wake_queue(netdev);
netif_info(tp, link, netdev, "carrier on\n");
} else if (netif_queue_stopped(netdev) &&
skb_queue_len(&tp->tx_queue) < tp->tx_qlen) {
netif_wake_queue(netdev);
}
} else {
if (netif_carrier_ok(netdev)) {
netif_carrier_off(netdev);
napi_disable(napi);
tp->rtl_ops.disable(tp);
napi_enable(napi);
netif_info(tp, link, netdev, "carrier off\n");
}
}
}
static void rtl_work_func_t(struct work_struct *work)
{
struct r8152 *tp = container_of(work, struct r8152, schedule.work);
/* If the device is unplugged or !netif_running(), the workqueue
* doesn't need to wake the device, and could return directly.
*/
if (test_bit(RTL8152_UNPLUG, &tp->flags) || !netif_running(tp->netdev))
return;
if (usb_autopm_get_interface(tp->intf) < 0)
return;
if (!test_bit(WORK_ENABLE, &tp->flags))
goto out1;
if (!mutex_trylock(&tp->control)) {
schedule_delayed_work(&tp->schedule, 0);
goto out1;
}
if (test_and_clear_bit(RTL8152_LINK_CHG, &tp->flags))
set_carrier(tp);
if (test_and_clear_bit(RTL8152_SET_RX_MODE, &tp->flags))
_rtl8152_set_rx_mode(tp->netdev);
/* don't schedule napi before linking */
if (test_and_clear_bit(SCHEDULE_NAPI, &tp->flags) &&
netif_carrier_ok(tp->netdev))
napi_schedule(&tp->napi);
mutex_unlock(&tp->control);
out1:
usb_autopm_put_interface(tp->intf);
}
static void rtl_hw_phy_work_func_t(struct work_struct *work)
{
struct r8152 *tp = container_of(work, struct r8152, hw_phy_work.work);
if (test_bit(RTL8152_UNPLUG, &tp->flags))
return;
if (usb_autopm_get_interface(tp->intf) < 0)
return;
mutex_lock(&tp->control);
tp->rtl_ops.hw_phy_cfg(tp);
rtl8152_set_speed(tp, tp->autoneg, tp->speed, tp->duplex);
mutex_unlock(&tp->control);
usb_autopm_put_interface(tp->intf);
}
#ifdef CONFIG_PM_SLEEP
static int rtl_notifier(struct notifier_block *nb, unsigned long action,
void *data)
{
struct r8152 *tp = container_of(nb, struct r8152, pm_notifier);
switch (action) {
case PM_HIBERNATION_PREPARE:
case PM_SUSPEND_PREPARE:
usb_autopm_get_interface(tp->intf);
break;
case PM_POST_HIBERNATION:
case PM_POST_SUSPEND:
usb_autopm_put_interface(tp->intf);
break;
case PM_POST_RESTORE:
case PM_RESTORE_PREPARE:
default:
break;
}
return NOTIFY_DONE;
}
#endif
static int rtl8152_open(struct net_device *netdev)
{
struct r8152 *tp = netdev_priv(netdev);
int res = 0;
res = alloc_all_mem(tp);
if (res)
goto out;
res = usb_autopm_get_interface(tp->intf);
if (res < 0)
goto out_free;
mutex_lock(&tp->control);
tp->rtl_ops.up(tp);
netif_carrier_off(netdev);
netif_start_queue(netdev);
set_bit(WORK_ENABLE, &tp->flags);
res = usb_submit_urb(tp->intr_urb, GFP_KERNEL);
if (res) {
if (res == -ENODEV)
netif_device_detach(tp->netdev);
netif_warn(tp, ifup, netdev, "intr_urb submit failed: %d\n",
res);
goto out_unlock;
}
napi_enable(&tp->napi);
mutex_unlock(&tp->control);
usb_autopm_put_interface(tp->intf);
#ifdef CONFIG_PM_SLEEP
tp->pm_notifier.notifier_call = rtl_notifier;
register_pm_notifier(&tp->pm_notifier);
#endif
return 0;
out_unlock:
mutex_unlock(&tp->control);
usb_autopm_put_interface(tp->intf);
out_free:
free_all_mem(tp);
out:
return res;
}
static int rtl8152_close(struct net_device *netdev)
{
struct r8152 *tp = netdev_priv(netdev);
int res = 0;
#ifdef CONFIG_PM_SLEEP
unregister_pm_notifier(&tp->pm_notifier);
#endif
if (!test_bit(RTL8152_UNPLUG, &tp->flags))
napi_disable(&tp->napi);
clear_bit(WORK_ENABLE, &tp->flags);
usb_kill_urb(tp->intr_urb);
cancel_delayed_work_sync(&tp->schedule);
netif_stop_queue(netdev);
res = usb_autopm_get_interface(tp->intf);
if (res < 0 || test_bit(RTL8152_UNPLUG, &tp->flags)) {
rtl_drop_queued_tx(tp);
rtl_stop_rx(tp);
} else {
mutex_lock(&tp->control);
tp->rtl_ops.down(tp);
mutex_unlock(&tp->control);
usb_autopm_put_interface(tp->intf);
}
free_all_mem(tp);
return res;
}
static void rtl_tally_reset(struct r8152 *tp)
{
u32 ocp_data;
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_RSTTALLY);
ocp_data |= TALLY_RESET;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_RSTTALLY, ocp_data);
}
static void r8152b_init(struct r8152 *tp)
{
u32 ocp_data;
u16 data;
if (test_bit(RTL8152_UNPLUG, &tp->flags))
return;
data = r8152_mdio_read(tp, MII_BMCR);
if (data & BMCR_PDOWN) {
data &= ~BMCR_PDOWN;
r8152_mdio_write(tp, MII_BMCR, data);
}
r8152_aldps_en(tp, false);
if (tp->version == RTL_VER_01) {
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_LED_FEATURE);
ocp_data &= ~LED_MODE_MASK;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_LED_FEATURE, ocp_data);
}
r8152_power_cut_en(tp, false);
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_PHY_PWR);
ocp_data |= TX_10M_IDLE_EN | PFM_PWM_SWITCH;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_PHY_PWR, ocp_data);
ocp_data = ocp_read_dword(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL);
ocp_data &= ~MCU_CLK_RATIO_MASK;
ocp_data |= MCU_CLK_RATIO | D3_CLK_GATED_EN;
ocp_write_dword(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL, ocp_data);
ocp_data = GPHY_STS_MSK | SPEED_DOWN_MSK |
SPDWN_RXDV_MSK | SPDWN_LINKCHG_MSK;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_GPHY_INTR_IMR, ocp_data);
rtl_tally_reset(tp);
/* enable rx aggregation */
ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_USB_CTRL);
ocp_data &= ~(RX_AGG_DISABLE | RX_ZERO_EN);
ocp_write_word(tp, MCU_TYPE_USB, USB_USB_CTRL, ocp_data);
}
static void r8153_init(struct r8152 *tp)
{
u32 ocp_data;
u16 data;
int i;
if (test_bit(RTL8152_UNPLUG, &tp->flags))
return;
r8153_u1u2en(tp, false);
for (i = 0; i < 500; i++) {
if (ocp_read_word(tp, MCU_TYPE_PLA, PLA_BOOT_CTRL) &
AUTOLOAD_DONE)
break;
msleep(20);
}
data = r8153_phy_status(tp, 0);
if (tp->version == RTL_VER_03 || tp->version == RTL_VER_04 ||
tp->version == RTL_VER_05)
ocp_reg_write(tp, OCP_ADC_CFG, CKADSEL_L | ADC_EN | EN_EMI_L);
data = r8152_mdio_read(tp, MII_BMCR);
if (data & BMCR_PDOWN) {
data &= ~BMCR_PDOWN;
r8152_mdio_write(tp, MII_BMCR, data);
}
data = r8153_phy_status(tp, PHY_STAT_LAN_ON);
r8153_u2p3en(tp, false);
if (tp->version == RTL_VER_04) {
ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_SSPHYLINK2);
ocp_data &= ~pwd_dn_scale_mask;
ocp_data |= pwd_dn_scale(96);
ocp_write_word(tp, MCU_TYPE_USB, USB_SSPHYLINK2, ocp_data);
ocp_data = ocp_read_byte(tp, MCU_TYPE_USB, USB_USB2PHY);
ocp_data |= USB2PHY_L1 | USB2PHY_SUSPEND;
ocp_write_byte(tp, MCU_TYPE_USB, USB_USB2PHY, ocp_data);
} else if (tp->version == RTL_VER_05) {
ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_DMY_REG0);
ocp_data &= ~ECM_ALDPS;
ocp_write_byte(tp, MCU_TYPE_PLA, PLA_DMY_REG0, ocp_data);
ocp_data = ocp_read_byte(tp, MCU_TYPE_USB, USB_CSR_DUMMY1);
if (ocp_read_word(tp, MCU_TYPE_USB, USB_BURST_SIZE) == 0)
ocp_data &= ~DYNAMIC_BURST;
else
ocp_data |= DYNAMIC_BURST;
ocp_write_byte(tp, MCU_TYPE_USB, USB_CSR_DUMMY1, ocp_data);
} else if (tp->version == RTL_VER_06) {
ocp_data = ocp_read_byte(tp, MCU_TYPE_USB, USB_CSR_DUMMY1);
if (ocp_read_word(tp, MCU_TYPE_USB, USB_BURST_SIZE) == 0)
ocp_data &= ~DYNAMIC_BURST;
else
ocp_data |= DYNAMIC_BURST;
ocp_write_byte(tp, MCU_TYPE_USB, USB_CSR_DUMMY1, ocp_data);
}
ocp_data = ocp_read_byte(tp, MCU_TYPE_USB, USB_CSR_DUMMY2);
ocp_data |= EP4_FULL_FC;
ocp_write_byte(tp, MCU_TYPE_USB, USB_CSR_DUMMY2, ocp_data);
ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_WDT11_CTRL);
ocp_data &= ~TIMER11_EN;
ocp_write_word(tp, MCU_TYPE_USB, USB_WDT11_CTRL, ocp_data);
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_LED_FEATURE);
ocp_data &= ~LED_MODE_MASK;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_LED_FEATURE, ocp_data);
ocp_data = FIFO_EMPTY_1FB | ROK_EXIT_LPM;
if (tp->version == RTL_VER_04 && tp->udev->speed < USB_SPEED_SUPER)
ocp_data |= LPM_TIMER_500MS;
else
ocp_data |= LPM_TIMER_500US;
ocp_write_byte(tp, MCU_TYPE_USB, USB_LPM_CTRL, ocp_data);
ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_AFE_CTRL2);
ocp_data &= ~SEN_VAL_MASK;
ocp_data |= SEN_VAL_NORMAL | SEL_RXIDLE;
ocp_write_word(tp, MCU_TYPE_USB, USB_AFE_CTRL2, ocp_data);
ocp_write_word(tp, MCU_TYPE_USB, USB_CONNECT_TIMER, 0x0001);
r8153_power_cut_en(tp, false);
r8153_u1u2en(tp, true);
r8153_mac_clk_spd(tp, false);
usb_enable_lpm(tp->udev);
/* rx aggregation */
ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_USB_CTRL);
ocp_data &= ~(RX_AGG_DISABLE | RX_ZERO_EN);
if (test_bit(DELL_TB_RX_AGG_BUG, &tp->flags))
ocp_data |= RX_AGG_DISABLE;
ocp_write_word(tp, MCU_TYPE_USB, USB_USB_CTRL, ocp_data);
rtl_tally_reset(tp);
switch (tp->udev->speed) {
case USB_SPEED_SUPER:
case USB_SPEED_SUPER_PLUS:
tp->coalesce = COALESCE_SUPER;
break;
case USB_SPEED_HIGH:
tp->coalesce = COALESCE_HIGH;
break;
default:
tp->coalesce = COALESCE_SLOW;
break;
}
}
static void r8153b_init(struct r8152 *tp)
{
u32 ocp_data;
u16 data;
int i;
if (test_bit(RTL8152_UNPLUG, &tp->flags))
return;
r8153b_u1u2en(tp, false);
for (i = 0; i < 500; i++) {
if (ocp_read_word(tp, MCU_TYPE_PLA, PLA_BOOT_CTRL) &
AUTOLOAD_DONE)
break;
msleep(20);
}
data = r8153_phy_status(tp, 0);
data = r8152_mdio_read(tp, MII_BMCR);
if (data & BMCR_PDOWN) {
data &= ~BMCR_PDOWN;
r8152_mdio_write(tp, MII_BMCR, data);
}
data = r8153_phy_status(tp, PHY_STAT_LAN_ON);
r8153_u2p3en(tp, false);
/* MSC timer = 0xfff * 8ms = 32760 ms */
ocp_write_word(tp, MCU_TYPE_USB, USB_MSC_TIMER, 0x0fff);
/* U1/U2/L1 idle timer. 500 us */
ocp_write_word(tp, MCU_TYPE_USB, USB_U1U2_TIMER, 500);
r8153b_power_cut_en(tp, false);
r8153b_ups_en(tp, false);
r8153b_queue_wake(tp, false);
rtl_runtime_suspend_enable(tp, false);
r8153b_u1u2en(tp, true);
usb_enable_lpm(tp->udev);
/* MAC clock speed down */
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL2);
ocp_data |= MAC_CLK_SPDWN_EN;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL2, ocp_data);
set_bit(GREEN_ETHERNET, &tp->flags);
/* rx aggregation */
ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_USB_CTRL);
ocp_data &= ~(RX_AGG_DISABLE | RX_ZERO_EN);
ocp_write_word(tp, MCU_TYPE_USB, USB_USB_CTRL, ocp_data);
rtl_tally_reset(tp);
tp->coalesce = 15000; /* 15 us */
}
static int rtl8152_pre_reset(struct usb_interface *intf)
{
struct r8152 *tp = usb_get_intfdata(intf);
struct net_device *netdev;
if (!tp)
return 0;
netdev = tp->netdev;
if (!netif_running(netdev))
return 0;
netif_stop_queue(netdev);
napi_disable(&tp->napi);
clear_bit(WORK_ENABLE, &tp->flags);
usb_kill_urb(tp->intr_urb);
cancel_delayed_work_sync(&tp->schedule);
if (netif_carrier_ok(netdev)) {
mutex_lock(&tp->control);
tp->rtl_ops.disable(tp);
mutex_unlock(&tp->control);
}
return 0;
}
static int rtl8152_post_reset(struct usb_interface *intf)
{
struct r8152 *tp = usb_get_intfdata(intf);
struct net_device *netdev;
if (!tp)
return 0;
netdev = tp->netdev;
if (!netif_running(netdev))
return 0;
set_bit(WORK_ENABLE, &tp->flags);
if (netif_carrier_ok(netdev)) {
mutex_lock(&tp->control);
tp->rtl_ops.enable(tp);
rtl_start_rx(tp);
_rtl8152_set_rx_mode(netdev);
mutex_unlock(&tp->control);
}
napi_enable(&tp->napi);
netif_wake_queue(netdev);
usb_submit_urb(tp->intr_urb, GFP_KERNEL);
if (!list_empty(&tp->rx_done))
napi_schedule(&tp->napi);
return 0;
}
static bool delay_autosuspend(struct r8152 *tp)
{
bool sw_linking = !!netif_carrier_ok(tp->netdev);
bool hw_linking = !!(rtl8152_get_speed(tp) & LINK_STATUS);
/* This means a linking change occurs and the driver doesn't detect it,
* yet. If the driver has disabled tx/rx and hw is linking on, the
* device wouldn't wake up by receiving any packet.
*/
if (work_busy(&tp->schedule.work) || sw_linking != hw_linking)
return true;
/* If the linking down is occurred by nway, the device may miss the
* linking change event. And it wouldn't wake when linking on.
*/
if (!sw_linking && tp->rtl_ops.in_nway(tp))
return true;
else if (!skb_queue_empty(&tp->tx_queue))
return true;
else
return false;
}
static int rtl8152_runtime_resume(struct r8152 *tp)
{
struct net_device *netdev = tp->netdev;
if (netif_running(netdev) && netdev->flags & IFF_UP) {
struct napi_struct *napi = &tp->napi;
tp->rtl_ops.autosuspend_en(tp, false);
napi_disable(napi);
set_bit(WORK_ENABLE, &tp->flags);
if (netif_carrier_ok(netdev)) {
if (rtl8152_get_speed(tp) & LINK_STATUS) {
rtl_start_rx(tp);
} else {
netif_carrier_off(netdev);
tp->rtl_ops.disable(tp);
netif_info(tp, link, netdev, "linking down\n");
}
}
napi_enable(napi);
clear_bit(SELECTIVE_SUSPEND, &tp->flags);
smp_mb__after_atomic();
if (!list_empty(&tp->rx_done))
napi_schedule(&tp->napi);
usb_submit_urb(tp->intr_urb, GFP_NOIO);
} else {
if (netdev->flags & IFF_UP)
tp->rtl_ops.autosuspend_en(tp, false);
clear_bit(SELECTIVE_SUSPEND, &tp->flags);
}
return 0;
}
static int rtl8152_system_resume(struct r8152 *tp)
{
struct net_device *netdev = tp->netdev;
netif_device_attach(netdev);
if (netif_running(netdev) && netdev->flags & IFF_UP) {
tp->rtl_ops.up(tp);
netif_carrier_off(netdev);
set_bit(WORK_ENABLE, &tp->flags);
usb_submit_urb(tp->intr_urb, GFP_NOIO);
}
return 0;
}
static int rtl8152_runtime_suspend(struct r8152 *tp)
{
struct net_device *netdev = tp->netdev;
int ret = 0;
set_bit(SELECTIVE_SUSPEND, &tp->flags);
smp_mb__after_atomic();
if (netif_running(netdev) && test_bit(WORK_ENABLE, &tp->flags)) {
u32 rcr = 0;
if (netif_carrier_ok(netdev)) {
u32 ocp_data;
rcr = ocp_read_dword(tp, MCU_TYPE_PLA, PLA_RCR);
ocp_data = rcr & ~RCR_ACPT_ALL;
ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RCR, ocp_data);
rxdy_gated_en(tp, true);
ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA,
PLA_OOB_CTRL);
if (!(ocp_data & RXFIFO_EMPTY)) {
rxdy_gated_en(tp, false);
ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RCR, rcr);
clear_bit(SELECTIVE_SUSPEND, &tp->flags);
smp_mb__after_atomic();
ret = -EBUSY;
goto out1;
}
}
clear_bit(WORK_ENABLE, &tp->flags);
usb_kill_urb(tp->intr_urb);
tp->rtl_ops.autosuspend_en(tp, true);
if (netif_carrier_ok(netdev)) {
struct napi_struct *napi = &tp->napi;
napi_disable(napi);
rtl_stop_rx(tp);
rxdy_gated_en(tp, false);
ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RCR, rcr);
napi_enable(napi);
}
if (delay_autosuspend(tp)) {
rtl8152_runtime_resume(tp);
ret = -EBUSY;
}
}
out1:
return ret;
}
static int rtl8152_system_suspend(struct r8152 *tp)
{
struct net_device *netdev = tp->netdev;
int ret = 0;
netif_device_detach(netdev);
if (netif_running(netdev) && test_bit(WORK_ENABLE, &tp->flags)) {
struct napi_struct *napi = &tp->napi;
clear_bit(WORK_ENABLE, &tp->flags);
usb_kill_urb(tp->intr_urb);
napi_disable(napi);
cancel_delayed_work_sync(&tp->schedule);
tp->rtl_ops.down(tp);
napi_enable(napi);
}
return ret;
}
static int rtl8152_suspend(struct usb_interface *intf, pm_message_t message)
{
struct r8152 *tp = usb_get_intfdata(intf);
int ret;
mutex_lock(&tp->control);
if (PMSG_IS_AUTO(message))
ret = rtl8152_runtime_suspend(tp);
else
ret = rtl8152_system_suspend(tp);
mutex_unlock(&tp->control);
return ret;
}
static int rtl8152_resume(struct usb_interface *intf)
{
struct r8152 *tp = usb_get_intfdata(intf);
int ret;
mutex_lock(&tp->control);
if (test_bit(SELECTIVE_SUSPEND, &tp->flags))
ret = rtl8152_runtime_resume(tp);
else
ret = rtl8152_system_resume(tp);
mutex_unlock(&tp->control);
return ret;
}
static int rtl8152_reset_resume(struct usb_interface *intf)
{
struct r8152 *tp = usb_get_intfdata(intf);
clear_bit(SELECTIVE_SUSPEND, &tp->flags);
mutex_lock(&tp->control);
tp->rtl_ops.init(tp);
queue_delayed_work(system_long_wq, &tp->hw_phy_work, 0);
mutex_unlock(&tp->control);
return rtl8152_resume(intf);
}
static void rtl8152_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
{
struct r8152 *tp = netdev_priv(dev);
if (usb_autopm_get_interface(tp->intf) < 0)
return;
if (!rtl_can_wakeup(tp)) {
wol->supported = 0;
wol->wolopts = 0;
} else {
mutex_lock(&tp->control);
wol->supported = WAKE_ANY;
wol->wolopts = __rtl_get_wol(tp);
mutex_unlock(&tp->control);
}
usb_autopm_put_interface(tp->intf);
}
static int rtl8152_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
{
struct r8152 *tp = netdev_priv(dev);
int ret;
if (!rtl_can_wakeup(tp))
return -EOPNOTSUPP;
ret = usb_autopm_get_interface(tp->intf);
if (ret < 0)
goto out_set_wol;
mutex_lock(&tp->control);
__rtl_set_wol(tp, wol->wolopts);
tp->saved_wolopts = wol->wolopts & WAKE_ANY;
mutex_unlock(&tp->control);
usb_autopm_put_interface(tp->intf);
out_set_wol:
return ret;
}
static u32 rtl8152_get_msglevel(struct net_device *dev)
{
struct r8152 *tp = netdev_priv(dev);
return tp->msg_enable;
}
static void rtl8152_set_msglevel(struct net_device *dev, u32 value)
{
struct r8152 *tp = netdev_priv(dev);
tp->msg_enable = value;
}
static void rtl8152_get_drvinfo(struct net_device *netdev,
struct ethtool_drvinfo *info)
{
struct r8152 *tp = netdev_priv(netdev);
strlcpy(info->driver, MODULENAME, sizeof(info->driver));
strlcpy(info->version, DRIVER_VERSION, sizeof(info->version));
usb_make_path(tp->udev, info->bus_info, sizeof(info->bus_info));
}
static
int rtl8152_get_link_ksettings(struct net_device *netdev,
struct ethtool_link_ksettings *cmd)
{
struct r8152 *tp = netdev_priv(netdev);
int ret;
if (!tp->mii.mdio_read)
return -EOPNOTSUPP;
ret = usb_autopm_get_interface(tp->intf);
if (ret < 0)
goto out;
mutex_lock(&tp->control);
mii_ethtool_get_link_ksettings(&tp->mii, cmd);
mutex_unlock(&tp->control);
usb_autopm_put_interface(tp->intf);
out:
return ret;
}
static int rtl8152_set_link_ksettings(struct net_device *dev,
const struct ethtool_link_ksettings *cmd)
{
struct r8152 *tp = netdev_priv(dev);
int ret;
ret = usb_autopm_get_interface(tp->intf);
if (ret < 0)
goto out;
mutex_lock(&tp->control);
ret = rtl8152_set_speed(tp, cmd->base.autoneg, cmd->base.speed,
cmd->base.duplex);
if (!ret) {
tp->autoneg = cmd->base.autoneg;
tp->speed = cmd->base.speed;
tp->duplex = cmd->base.duplex;
}
mutex_unlock(&tp->control);
usb_autopm_put_interface(tp->intf);
out:
return ret;
}
static const char rtl8152_gstrings[][ETH_GSTRING_LEN] = {
"tx_packets",
"rx_packets",
"tx_errors",
"rx_errors",
"rx_missed",
"align_errors",
"tx_single_collisions",
"tx_multi_collisions",
"rx_unicast",
"rx_broadcast",
"rx_multicast",
"tx_aborted",
"tx_underrun",
};
static int rtl8152_get_sset_count(struct net_device *dev, int sset)
{
switch (sset) {
case ETH_SS_STATS:
return ARRAY_SIZE(rtl8152_gstrings);
default:
return -EOPNOTSUPP;
}
}
static void rtl8152_get_ethtool_stats(struct net_device *dev,
struct ethtool_stats *stats, u64 *data)
{
struct r8152 *tp = netdev_priv(dev);
struct tally_counter tally;
if (usb_autopm_get_interface(tp->intf) < 0)
return;
generic_ocp_read(tp, PLA_TALLYCNT, sizeof(tally), &tally, MCU_TYPE_PLA);
usb_autopm_put_interface(tp->intf);
data[0] = le64_to_cpu(tally.tx_packets);
data[1] = le64_to_cpu(tally.rx_packets);
data[2] = le64_to_cpu(tally.tx_errors);
data[3] = le32_to_cpu(tally.rx_errors);
data[4] = le16_to_cpu(tally.rx_missed);
data[5] = le16_to_cpu(tally.align_errors);
data[6] = le32_to_cpu(tally.tx_one_collision);
data[7] = le32_to_cpu(tally.tx_multi_collision);
data[8] = le64_to_cpu(tally.rx_unicast);
data[9] = le64_to_cpu(tally.rx_broadcast);
data[10] = le32_to_cpu(tally.rx_multicast);
data[11] = le16_to_cpu(tally.tx_aborted);
data[12] = le16_to_cpu(tally.tx_underrun);
}
static void rtl8152_get_strings(struct net_device *dev, u32 stringset, u8 *data)
{
switch (stringset) {
case ETH_SS_STATS:
memcpy(data, *rtl8152_gstrings, sizeof(rtl8152_gstrings));
break;
}
}
static int r8152_get_eee(struct r8152 *tp, struct ethtool_eee *eee)
{
u32 ocp_data, lp, adv, supported = 0;
u16 val;
val = r8152_mmd_read(tp, MDIO_MMD_PCS, MDIO_PCS_EEE_ABLE);
supported = mmd_eee_cap_to_ethtool_sup_t(val);
val = r8152_mmd_read(tp, MDIO_MMD_AN, MDIO_AN_EEE_ADV);
adv = mmd_eee_adv_to_ethtool_adv_t(val);
val = r8152_mmd_read(tp, MDIO_MMD_AN, MDIO_AN_EEE_LPABLE);
lp = mmd_eee_adv_to_ethtool_adv_t(val);
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_EEE_CR);
ocp_data &= EEE_RX_EN | EEE_TX_EN;
eee->eee_enabled = !!ocp_data;
eee->eee_active = !!(supported & adv & lp);
eee->supported = supported;
eee->advertised = adv;
eee->lp_advertised = lp;
return 0;
}
static int r8152_set_eee(struct r8152 *tp, struct ethtool_eee *eee)
{
u16 val = ethtool_adv_to_mmd_eee_adv_t(eee->advertised);
r8152_eee_en(tp, eee->eee_enabled);
if (!eee->eee_enabled)
val = 0;
r8152_mmd_write(tp, MDIO_MMD_AN, MDIO_AN_EEE_ADV, val);
return 0;
}
static int r8153_get_eee(struct r8152 *tp, struct ethtool_eee *eee)
{
u32 ocp_data, lp, adv, supported = 0;
u16 val;
val = ocp_reg_read(tp, OCP_EEE_ABLE);
supported = mmd_eee_cap_to_ethtool_sup_t(val);
val = ocp_reg_read(tp, OCP_EEE_ADV);
adv = mmd_eee_adv_to_ethtool_adv_t(val);
val = ocp_reg_read(tp, OCP_EEE_LPABLE);
lp = mmd_eee_adv_to_ethtool_adv_t(val);
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_EEE_CR);
ocp_data &= EEE_RX_EN | EEE_TX_EN;
eee->eee_enabled = !!ocp_data;
eee->eee_active = !!(supported & adv & lp);
eee->supported = supported;
eee->advertised = adv;
eee->lp_advertised = lp;
return 0;
}
static int r8153_set_eee(struct r8152 *tp, struct ethtool_eee *eee)
{
u16 val = ethtool_adv_to_mmd_eee_adv_t(eee->advertised);
r8153_eee_en(tp, eee->eee_enabled);
if (!eee->eee_enabled)
val = 0;
ocp_reg_write(tp, OCP_EEE_ADV, val);
return 0;
}
static int r8153b_set_eee(struct r8152 *tp, struct ethtool_eee *eee)
{
u16 val = ethtool_adv_to_mmd_eee_adv_t(eee->advertised);
r8153b_eee_en(tp, eee->eee_enabled);
if (!eee->eee_enabled)
val = 0;
ocp_reg_write(tp, OCP_EEE_ADV, val);
return 0;
}
static int
rtl_ethtool_get_eee(struct net_device *net, struct ethtool_eee *edata)
{
struct r8152 *tp = netdev_priv(net);
int ret;
ret = usb_autopm_get_interface(tp->intf);
if (ret < 0)
goto out;
mutex_lock(&tp->control);
ret = tp->rtl_ops.eee_get(tp, edata);
mutex_unlock(&tp->control);
usb_autopm_put_interface(tp->intf);
out:
return ret;
}
static int
rtl_ethtool_set_eee(struct net_device *net, struct ethtool_eee *edata)
{
struct r8152 *tp = netdev_priv(net);
int ret;
ret = usb_autopm_get_interface(tp->intf);
if (ret < 0)
goto out;
mutex_lock(&tp->control);
ret = tp->rtl_ops.eee_set(tp, edata);
if (!ret)
ret = mii_nway_restart(&tp->mii);
mutex_unlock(&tp->control);
usb_autopm_put_interface(tp->intf);
out:
return ret;
}
static int rtl8152_nway_reset(struct net_device *dev)
{
struct r8152 *tp = netdev_priv(dev);
int ret;
ret = usb_autopm_get_interface(tp->intf);
if (ret < 0)
goto out;
mutex_lock(&tp->control);
ret = mii_nway_restart(&tp->mii);
mutex_unlock(&tp->control);
usb_autopm_put_interface(tp->intf);
out:
return ret;
}
static int rtl8152_get_coalesce(struct net_device *netdev,
struct ethtool_coalesce *coalesce)
{
struct r8152 *tp = netdev_priv(netdev);
switch (tp->version) {
case RTL_VER_01:
case RTL_VER_02:
case RTL_VER_07:
return -EOPNOTSUPP;
default:
break;
}
coalesce->rx_coalesce_usecs = tp->coalesce;
return 0;
}
static int rtl8152_set_coalesce(struct net_device *netdev,
struct ethtool_coalesce *coalesce)
{
struct r8152 *tp = netdev_priv(netdev);
int ret;
switch (tp->version) {
case RTL_VER_01:
case RTL_VER_02:
case RTL_VER_07:
return -EOPNOTSUPP;
default:
break;
}
if (coalesce->rx_coalesce_usecs > COALESCE_SLOW)
return -EINVAL;
ret = usb_autopm_get_interface(tp->intf);
if (ret < 0)
return ret;
mutex_lock(&tp->control);
if (tp->coalesce != coalesce->rx_coalesce_usecs) {
tp->coalesce = coalesce->rx_coalesce_usecs;
if (netif_running(tp->netdev) && netif_carrier_ok(netdev))
r8153_set_rx_early_timeout(tp);
}
mutex_unlock(&tp->control);
usb_autopm_put_interface(tp->intf);
return ret;
}
static const struct ethtool_ops ops = {
.get_drvinfo = rtl8152_get_drvinfo,
.get_link = ethtool_op_get_link,
.nway_reset = rtl8152_nway_reset,
.get_msglevel = rtl8152_get_msglevel,
.set_msglevel = rtl8152_set_msglevel,
.get_wol = rtl8152_get_wol,
.set_wol = rtl8152_set_wol,
.get_strings = rtl8152_get_strings,
.get_sset_count = rtl8152_get_sset_count,
.get_ethtool_stats = rtl8152_get_ethtool_stats,
.get_coalesce = rtl8152_get_coalesce,
.set_coalesce = rtl8152_set_coalesce,
.get_eee = rtl_ethtool_get_eee,
.set_eee = rtl_ethtool_set_eee,
.get_link_ksettings = rtl8152_get_link_ksettings,
.set_link_ksettings = rtl8152_set_link_ksettings,
};
static int rtl8152_ioctl(struct net_device *netdev, struct ifreq *rq, int cmd)
{
struct r8152 *tp = netdev_priv(netdev);
struct mii_ioctl_data *data = if_mii(rq);
int res;
if (test_bit(RTL8152_UNPLUG, &tp->flags))
return -ENODEV;
res = usb_autopm_get_interface(tp->intf);
if (res < 0)
goto out;
switch (cmd) {
case SIOCGMIIPHY:
data->phy_id = R8152_PHY_ID; /* Internal PHY */
break;
case SIOCGMIIREG:
mutex_lock(&tp->control);
data->val_out = r8152_mdio_read(tp, data->reg_num);
mutex_unlock(&tp->control);
break;
case SIOCSMIIREG:
if (!capable(CAP_NET_ADMIN)) {
res = -EPERM;
break;
}
mutex_lock(&tp->control);
r8152_mdio_write(tp, data->reg_num, data->val_in);
mutex_unlock(&tp->control);
break;
default:
res = -EOPNOTSUPP;
}
usb_autopm_put_interface(tp->intf);
out:
return res;
}
static int rtl8152_change_mtu(struct net_device *dev, int new_mtu)
{
struct r8152 *tp = netdev_priv(dev);
int ret;
switch (tp->version) {
case RTL_VER_01:
case RTL_VER_02:
case RTL_VER_07:
dev->mtu = new_mtu;
return 0;
default:
break;
}
ret = usb_autopm_get_interface(tp->intf);
if (ret < 0)
return ret;
mutex_lock(&tp->control);
dev->mtu = new_mtu;
if (netif_running(dev)) {
u32 rms = new_mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_RMS, rms);
if (netif_carrier_ok(dev))
r8153_set_rx_early_size(tp);
}
mutex_unlock(&tp->control);
usb_autopm_put_interface(tp->intf);
return ret;
}
static const struct net_device_ops rtl8152_netdev_ops = {
.ndo_open = rtl8152_open,
.ndo_stop = rtl8152_close,
.ndo_do_ioctl = rtl8152_ioctl,
.ndo_start_xmit = rtl8152_start_xmit,
.ndo_tx_timeout = rtl8152_tx_timeout,
.ndo_set_features = rtl8152_set_features,
.ndo_set_rx_mode = rtl8152_set_rx_mode,
.ndo_set_mac_address = rtl8152_set_mac_address,
.ndo_change_mtu = rtl8152_change_mtu,
.ndo_validate_addr = eth_validate_addr,
.ndo_features_check = rtl8152_features_check,
};
static void rtl8152_unload(struct r8152 *tp)
{
if (test_bit(RTL8152_UNPLUG, &tp->flags))
return;
if (tp->version != RTL_VER_01)
r8152_power_cut_en(tp, true);
}
static void rtl8153_unload(struct r8152 *tp)
{
if (test_bit(RTL8152_UNPLUG, &tp->flags))
return;
r8153_power_cut_en(tp, false);
}
static void rtl8153b_unload(struct r8152 *tp)
{
if (test_bit(RTL8152_UNPLUG, &tp->flags))
return;
r8153b_power_cut_en(tp, false);
}
static int rtl_ops_init(struct r8152 *tp)
{
struct rtl_ops *ops = &tp->rtl_ops;
int ret = 0;
switch (tp->version) {
case RTL_VER_01:
case RTL_VER_02:
case RTL_VER_07:
ops->init = r8152b_init;
ops->enable = rtl8152_enable;
ops->disable = rtl8152_disable;
ops->up = rtl8152_up;
ops->down = rtl8152_down;
ops->unload = rtl8152_unload;
ops->eee_get = r8152_get_eee;
ops->eee_set = r8152_set_eee;
ops->in_nway = rtl8152_in_nway;
ops->hw_phy_cfg = r8152b_hw_phy_cfg;
ops->autosuspend_en = rtl_runtime_suspend_enable;
break;
case RTL_VER_03:
case RTL_VER_04:
case RTL_VER_05:
case RTL_VER_06:
ops->init = r8153_init;
ops->enable = rtl8153_enable;
ops->disable = rtl8153_disable;
ops->up = rtl8153_up;
ops->down = rtl8153_down;
ops->unload = rtl8153_unload;
ops->eee_get = r8153_get_eee;
ops->eee_set = r8153_set_eee;
ops->in_nway = rtl8153_in_nway;
ops->hw_phy_cfg = r8153_hw_phy_cfg;
ops->autosuspend_en = rtl8153_runtime_enable;
break;
case RTL_VER_08:
case RTL_VER_09:
ops->init = r8153b_init;
ops->enable = rtl8153_enable;
ops->disable = rtl8153b_disable;
ops->up = rtl8153b_up;
ops->down = rtl8153b_down;
ops->unload = rtl8153b_unload;
ops->eee_get = r8153_get_eee;
ops->eee_set = r8153b_set_eee;
ops->in_nway = rtl8153_in_nway;
ops->hw_phy_cfg = r8153b_hw_phy_cfg;
ops->autosuspend_en = rtl8153b_runtime_enable;
break;
default:
ret = -ENODEV;
netif_err(tp, probe, tp->netdev, "Unknown Device\n");
break;
}
return ret;
}
static u8 rtl_get_version(struct usb_interface *intf)
{
struct usb_device *udev = interface_to_usbdev(intf);
u32 ocp_data = 0;
__le32 *tmp;
u8 version;
int ret;
tmp = kmalloc(sizeof(*tmp), GFP_KERNEL);
if (!tmp)
return 0;
ret = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0),
RTL8152_REQ_GET_REGS, RTL8152_REQT_READ,
PLA_TCR0, MCU_TYPE_PLA, tmp, sizeof(*tmp), 500);
if (ret > 0)
ocp_data = (__le32_to_cpu(*tmp) >> 16) & VERSION_MASK;
kfree(tmp);
switch (ocp_data) {
case 0x4c00:
version = RTL_VER_01;
break;
case 0x4c10:
version = RTL_VER_02;
break;
case 0x5c00:
version = RTL_VER_03;
break;
case 0x5c10:
version = RTL_VER_04;
break;
case 0x5c20:
version = RTL_VER_05;
break;
case 0x5c30:
version = RTL_VER_06;
break;
case 0x4800:
version = RTL_VER_07;
break;
case 0x6000:
version = RTL_VER_08;
break;
case 0x6010:
version = RTL_VER_09;
break;
default:
version = RTL_VER_UNKNOWN;
dev_info(&intf->dev, "Unknown version 0x%04x\n", ocp_data);
break;
}
dev_dbg(&intf->dev, "Detected version 0x%04x\n", version);
return version;
}
static int rtl8152_probe(struct usb_interface *intf,
const struct usb_device_id *id)
{
struct usb_device *udev = interface_to_usbdev(intf);
u8 version = rtl_get_version(intf);
struct r8152 *tp;
struct net_device *netdev;
int ret;
if (version == RTL_VER_UNKNOWN)
return -ENODEV;
if (udev->actconfig->desc.bConfigurationValue != 1) {
usb_driver_set_configuration(udev, 1);
return -ENODEV;
}
usb_reset_device(udev);
netdev = alloc_etherdev(sizeof(struct r8152));
if (!netdev) {
dev_err(&intf->dev, "Out of memory\n");
return -ENOMEM;
}
SET_NETDEV_DEV(netdev, &intf->dev);
tp = netdev_priv(netdev);
tp->msg_enable = 0x7FFF;
tp->udev = udev;
tp->netdev = netdev;
tp->intf = intf;
tp->version = version;
switch (version) {
case RTL_VER_01:
case RTL_VER_02:
case RTL_VER_07:
tp->mii.supports_gmii = 0;
break;
default:
tp->mii.supports_gmii = 1;
break;
}
ret = rtl_ops_init(tp);
if (ret)
goto out;
mutex_init(&tp->control);
INIT_DELAYED_WORK(&tp->schedule, rtl_work_func_t);
INIT_DELAYED_WORK(&tp->hw_phy_work, rtl_hw_phy_work_func_t);
netdev->netdev_ops = &rtl8152_netdev_ops;
netdev->watchdog_timeo = RTL8152_TX_TIMEOUT;
netdev->features |= NETIF_F_RXCSUM | NETIF_F_IP_CSUM | NETIF_F_SG |
NETIF_F_TSO | NETIF_F_FRAGLIST | NETIF_F_IPV6_CSUM |
NETIF_F_TSO6 | NETIF_F_HW_VLAN_CTAG_RX |
NETIF_F_HW_VLAN_CTAG_TX;
netdev->hw_features = NETIF_F_RXCSUM | NETIF_F_IP_CSUM | NETIF_F_SG |
NETIF_F_TSO | NETIF_F_FRAGLIST |
NETIF_F_IPV6_CSUM | NETIF_F_TSO6 |
NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX;
netdev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO |
NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
NETIF_F_IPV6_CSUM | NETIF_F_TSO6;
if (tp->version == RTL_VER_01) {
netdev->features &= ~NETIF_F_RXCSUM;
netdev->hw_features &= ~NETIF_F_RXCSUM;
}
if (le16_to_cpu(udev->descriptor.bcdDevice) == 0x3011 &&
udev->serial && !strcmp(udev->serial, "000001000000")) {
dev_info(&udev->dev, "Dell TB16 Dock, disable RX aggregation");
set_bit(DELL_TB_RX_AGG_BUG, &tp->flags);
}
netdev->ethtool_ops = &ops;
netif_set_gso_max_size(netdev, RTL_LIMITED_TSO_SIZE);
/* MTU range: 68 - 1500 or 9194 */
netdev->min_mtu = ETH_MIN_MTU;
switch (tp->version) {
case RTL_VER_01:
case RTL_VER_02:
netdev->max_mtu = ETH_DATA_LEN;
break;
default:
netdev->max_mtu = RTL8153_MAX_MTU;
break;
}
tp->mii.dev = netdev;
tp->mii.mdio_read = read_mii_word;
tp->mii.mdio_write = write_mii_word;
tp->mii.phy_id_mask = 0x3f;
tp->mii.reg_num_mask = 0x1f;
tp->mii.phy_id = R8152_PHY_ID;
tp->autoneg = AUTONEG_ENABLE;
tp->speed = tp->mii.supports_gmii ? SPEED_1000 : SPEED_100;
tp->duplex = DUPLEX_FULL;
intf->needs_remote_wakeup = 1;
tp->rtl_ops.init(tp);
queue_delayed_work(system_long_wq, &tp->hw_phy_work, 0);
set_ethernet_addr(tp);
usb_set_intfdata(intf, tp);
netif_napi_add(netdev, &tp->napi, r8152_poll, RTL8152_NAPI_WEIGHT);
ret = register_netdev(netdev);
if (ret != 0) {
netif_err(tp, probe, netdev, "couldn't register the device\n");
goto out1;
}
if (!rtl_can_wakeup(tp))
__rtl_set_wol(tp, 0);
tp->saved_wolopts = __rtl_get_wol(tp);
if (tp->saved_wolopts)
device_set_wakeup_enable(&udev->dev, true);
else
device_set_wakeup_enable(&udev->dev, false);
netif_info(tp, probe, netdev, "%s\n", DRIVER_VERSION);
return 0;
out1:
netif_napi_del(&tp->napi);
usb_set_intfdata(intf, NULL);
out:
free_netdev(netdev);
return ret;
}
static void rtl8152_disconnect(struct usb_interface *intf)
{
struct r8152 *tp = usb_get_intfdata(intf);
usb_set_intfdata(intf, NULL);
if (tp) {
struct usb_device *udev = tp->udev;
if (udev->state == USB_STATE_NOTATTACHED)
set_bit(RTL8152_UNPLUG, &tp->flags);
netif_napi_del(&tp->napi);
unregister_netdev(tp->netdev);
cancel_delayed_work_sync(&tp->hw_phy_work);
tp->rtl_ops.unload(tp);
free_netdev(tp->netdev);
}
}
#define REALTEK_USB_DEVICE(vend, prod) \
.match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
USB_DEVICE_ID_MATCH_INT_CLASS, \
.idVendor = (vend), \
.idProduct = (prod), \
.bInterfaceClass = USB_CLASS_VENDOR_SPEC \
}, \
{ \
.match_flags = USB_DEVICE_ID_MATCH_INT_INFO | \
USB_DEVICE_ID_MATCH_DEVICE, \
.idVendor = (vend), \
.idProduct = (prod), \
.bInterfaceClass = USB_CLASS_COMM, \
.bInterfaceSubClass = USB_CDC_SUBCLASS_ETHERNET, \
.bInterfaceProtocol = USB_CDC_PROTO_NONE
/* table of devices that work with this driver */
static const struct usb_device_id rtl8152_table[] = {
{REALTEK_USB_DEVICE(VENDOR_ID_REALTEK, 0x8050)},
{REALTEK_USB_DEVICE(VENDOR_ID_REALTEK, 0x8152)},
{REALTEK_USB_DEVICE(VENDOR_ID_REALTEK, 0x8153)},
{REALTEK_USB_DEVICE(VENDOR_ID_MICROSOFT, 0x07ab)},
{REALTEK_USB_DEVICE(VENDOR_ID_MICROSOFT, 0x07c6)},
{REALTEK_USB_DEVICE(VENDOR_ID_SAMSUNG, 0xa101)},
{REALTEK_USB_DEVICE(VENDOR_ID_LENOVO, 0x304f)},
{REALTEK_USB_DEVICE(VENDOR_ID_LENOVO, 0x3062)},
{REALTEK_USB_DEVICE(VENDOR_ID_LENOVO, 0x3069)},
{REALTEK_USB_DEVICE(VENDOR_ID_LENOVO, 0x7205)},
{REALTEK_USB_DEVICE(VENDOR_ID_LENOVO, 0x720c)},
{REALTEK_USB_DEVICE(VENDOR_ID_LENOVO, 0x7214)},
{REALTEK_USB_DEVICE(VENDOR_ID_LINKSYS, 0x0041)},
{REALTEK_USB_DEVICE(VENDOR_ID_NVIDIA, 0x09ff)},
{REALTEK_USB_DEVICE(VENDOR_ID_TPLINK, 0x0601)},
{}
};
MODULE_DEVICE_TABLE(usb, rtl8152_table);
static struct usb_driver rtl8152_driver = {
.name = MODULENAME,
.id_table = rtl8152_table,
.probe = rtl8152_probe,
.disconnect = rtl8152_disconnect,
.suspend = rtl8152_suspend,
.resume = rtl8152_resume,
.reset_resume = rtl8152_reset_resume,
.pre_reset = rtl8152_pre_reset,
.post_reset = rtl8152_post_reset,
.supports_autosuspend = 1,
.disable_hub_initiated_lpm = 1,
};
module_usb_driver(rtl8152_driver);
MODULE_AUTHOR(DRIVER_AUTHOR);
MODULE_DESCRIPTION(DRIVER_DESC);
MODULE_LICENSE("GPL");
MODULE_VERSION(DRIVER_VERSION);