linux_old1/drivers/crypto/stm32/stm32-hash.c

1642 lines
38 KiB
C

/*
* This file is part of STM32 Crypto driver for Linux.
*
* Copyright (C) 2017, STMicroelectronics - All Rights Reserved
* Author(s): Lionel DEBIEVE <lionel.debieve@st.com> for STMicroelectronics.
*
* License terms: GPL V2.0.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published by
* the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include <linux/clk.h>
#include <linux/crypto.h>
#include <linux/delay.h>
#include <linux/dmaengine.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/reset.h>
#include <crypto/engine.h>
#include <crypto/hash.h>
#include <crypto/md5.h>
#include <crypto/scatterwalk.h>
#include <crypto/sha.h>
#include <crypto/internal/hash.h>
#define HASH_CR 0x00
#define HASH_DIN 0x04
#define HASH_STR 0x08
#define HASH_IMR 0x20
#define HASH_SR 0x24
#define HASH_CSR(x) (0x0F8 + ((x) * 0x04))
#define HASH_HREG(x) (0x310 + ((x) * 0x04))
#define HASH_HWCFGR 0x3F0
#define HASH_VER 0x3F4
#define HASH_ID 0x3F8
/* Control Register */
#define HASH_CR_INIT BIT(2)
#define HASH_CR_DMAE BIT(3)
#define HASH_CR_DATATYPE_POS 4
#define HASH_CR_MODE BIT(6)
#define HASH_CR_MDMAT BIT(13)
#define HASH_CR_DMAA BIT(14)
#define HASH_CR_LKEY BIT(16)
#define HASH_CR_ALGO_SHA1 0x0
#define HASH_CR_ALGO_MD5 0x80
#define HASH_CR_ALGO_SHA224 0x40000
#define HASH_CR_ALGO_SHA256 0x40080
/* Interrupt */
#define HASH_DINIE BIT(0)
#define HASH_DCIE BIT(1)
/* Interrupt Mask */
#define HASH_MASK_CALC_COMPLETION BIT(0)
#define HASH_MASK_DATA_INPUT BIT(1)
/* Context swap register */
#define HASH_CSR_REGISTER_NUMBER 53
/* Status Flags */
#define HASH_SR_DATA_INPUT_READY BIT(0)
#define HASH_SR_OUTPUT_READY BIT(1)
#define HASH_SR_DMA_ACTIVE BIT(2)
#define HASH_SR_BUSY BIT(3)
/* STR Register */
#define HASH_STR_NBLW_MASK GENMASK(4, 0)
#define HASH_STR_DCAL BIT(8)
#define HASH_FLAGS_INIT BIT(0)
#define HASH_FLAGS_OUTPUT_READY BIT(1)
#define HASH_FLAGS_CPU BIT(2)
#define HASH_FLAGS_DMA_READY BIT(3)
#define HASH_FLAGS_DMA_ACTIVE BIT(4)
#define HASH_FLAGS_HMAC_INIT BIT(5)
#define HASH_FLAGS_HMAC_FINAL BIT(6)
#define HASH_FLAGS_HMAC_KEY BIT(7)
#define HASH_FLAGS_FINAL BIT(15)
#define HASH_FLAGS_FINUP BIT(16)
#define HASH_FLAGS_ALGO_MASK GENMASK(21, 18)
#define HASH_FLAGS_MD5 BIT(18)
#define HASH_FLAGS_SHA1 BIT(19)
#define HASH_FLAGS_SHA224 BIT(20)
#define HASH_FLAGS_SHA256 BIT(21)
#define HASH_FLAGS_ERRORS BIT(22)
#define HASH_FLAGS_HMAC BIT(23)
#define HASH_OP_UPDATE 1
#define HASH_OP_FINAL 2
enum stm32_hash_data_format {
HASH_DATA_32_BITS = 0x0,
HASH_DATA_16_BITS = 0x1,
HASH_DATA_8_BITS = 0x2,
HASH_DATA_1_BIT = 0x3
};
#define HASH_BUFLEN 256
#define HASH_LONG_KEY 64
#define HASH_MAX_KEY_SIZE (SHA256_BLOCK_SIZE * 8)
#define HASH_QUEUE_LENGTH 16
#define HASH_DMA_THRESHOLD 50
#define HASH_AUTOSUSPEND_DELAY 50
struct stm32_hash_ctx {
struct crypto_engine_ctx enginectx;
struct stm32_hash_dev *hdev;
unsigned long flags;
u8 key[HASH_MAX_KEY_SIZE];
int keylen;
};
struct stm32_hash_request_ctx {
struct stm32_hash_dev *hdev;
unsigned long flags;
unsigned long op;
u8 digest[SHA256_DIGEST_SIZE] __aligned(sizeof(u32));
size_t digcnt;
size_t bufcnt;
size_t buflen;
/* DMA */
struct scatterlist *sg;
unsigned int offset;
unsigned int total;
struct scatterlist sg_key;
dma_addr_t dma_addr;
size_t dma_ct;
int nents;
u8 data_type;
u8 buffer[HASH_BUFLEN] __aligned(sizeof(u32));
/* Export Context */
u32 *hw_context;
};
struct stm32_hash_algs_info {
struct ahash_alg *algs_list;
size_t size;
};
struct stm32_hash_pdata {
struct stm32_hash_algs_info *algs_info;
size_t algs_info_size;
};
struct stm32_hash_dev {
struct list_head list;
struct device *dev;
struct clk *clk;
struct reset_control *rst;
void __iomem *io_base;
phys_addr_t phys_base;
u32 dma_mode;
u32 dma_maxburst;
struct ahash_request *req;
struct crypto_engine *engine;
int err;
unsigned long flags;
struct dma_chan *dma_lch;
struct completion dma_completion;
const struct stm32_hash_pdata *pdata;
};
struct stm32_hash_drv {
struct list_head dev_list;
spinlock_t lock; /* List protection access */
};
static struct stm32_hash_drv stm32_hash = {
.dev_list = LIST_HEAD_INIT(stm32_hash.dev_list),
.lock = __SPIN_LOCK_UNLOCKED(stm32_hash.lock),
};
static void stm32_hash_dma_callback(void *param);
static inline u32 stm32_hash_read(struct stm32_hash_dev *hdev, u32 offset)
{
return readl_relaxed(hdev->io_base + offset);
}
static inline void stm32_hash_write(struct stm32_hash_dev *hdev,
u32 offset, u32 value)
{
writel_relaxed(value, hdev->io_base + offset);
}
static inline int stm32_hash_wait_busy(struct stm32_hash_dev *hdev)
{
u32 status;
return readl_relaxed_poll_timeout(hdev->io_base + HASH_SR, status,
!(status & HASH_SR_BUSY), 10, 10000);
}
static void stm32_hash_set_nblw(struct stm32_hash_dev *hdev, int length)
{
u32 reg;
reg = stm32_hash_read(hdev, HASH_STR);
reg &= ~(HASH_STR_NBLW_MASK);
reg |= (8U * ((length) % 4U));
stm32_hash_write(hdev, HASH_STR, reg);
}
static int stm32_hash_write_key(struct stm32_hash_dev *hdev)
{
struct crypto_ahash *tfm = crypto_ahash_reqtfm(hdev->req);
struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
u32 reg;
int keylen = ctx->keylen;
void *key = ctx->key;
if (keylen) {
stm32_hash_set_nblw(hdev, keylen);
while (keylen > 0) {
stm32_hash_write(hdev, HASH_DIN, *(u32 *)key);
keylen -= 4;
key += 4;
}
reg = stm32_hash_read(hdev, HASH_STR);
reg |= HASH_STR_DCAL;
stm32_hash_write(hdev, HASH_STR, reg);
return -EINPROGRESS;
}
return 0;
}
static void stm32_hash_write_ctrl(struct stm32_hash_dev *hdev)
{
struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(hdev->req);
struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
u32 reg = HASH_CR_INIT;
if (!(hdev->flags & HASH_FLAGS_INIT)) {
switch (rctx->flags & HASH_FLAGS_ALGO_MASK) {
case HASH_FLAGS_MD5:
reg |= HASH_CR_ALGO_MD5;
break;
case HASH_FLAGS_SHA1:
reg |= HASH_CR_ALGO_SHA1;
break;
case HASH_FLAGS_SHA224:
reg |= HASH_CR_ALGO_SHA224;
break;
case HASH_FLAGS_SHA256:
reg |= HASH_CR_ALGO_SHA256;
break;
default:
reg |= HASH_CR_ALGO_MD5;
}
reg |= (rctx->data_type << HASH_CR_DATATYPE_POS);
if (rctx->flags & HASH_FLAGS_HMAC) {
hdev->flags |= HASH_FLAGS_HMAC;
reg |= HASH_CR_MODE;
if (ctx->keylen > HASH_LONG_KEY)
reg |= HASH_CR_LKEY;
}
stm32_hash_write(hdev, HASH_IMR, HASH_DCIE);
stm32_hash_write(hdev, HASH_CR, reg);
hdev->flags |= HASH_FLAGS_INIT;
dev_dbg(hdev->dev, "Write Control %x\n", reg);
}
}
static void stm32_hash_append_sg(struct stm32_hash_request_ctx *rctx)
{
size_t count;
while ((rctx->bufcnt < rctx->buflen) && rctx->total) {
count = min(rctx->sg->length - rctx->offset, rctx->total);
count = min(count, rctx->buflen - rctx->bufcnt);
if (count <= 0) {
if ((rctx->sg->length == 0) && !sg_is_last(rctx->sg)) {
rctx->sg = sg_next(rctx->sg);
continue;
} else {
break;
}
}
scatterwalk_map_and_copy(rctx->buffer + rctx->bufcnt, rctx->sg,
rctx->offset, count, 0);
rctx->bufcnt += count;
rctx->offset += count;
rctx->total -= count;
if (rctx->offset == rctx->sg->length) {
rctx->sg = sg_next(rctx->sg);
if (rctx->sg)
rctx->offset = 0;
else
rctx->total = 0;
}
}
}
static int stm32_hash_xmit_cpu(struct stm32_hash_dev *hdev,
const u8 *buf, size_t length, int final)
{
unsigned int count, len32;
const u32 *buffer = (const u32 *)buf;
u32 reg;
if (final)
hdev->flags |= HASH_FLAGS_FINAL;
len32 = DIV_ROUND_UP(length, sizeof(u32));
dev_dbg(hdev->dev, "%s: length: %d, final: %x len32 %i\n",
__func__, length, final, len32);
hdev->flags |= HASH_FLAGS_CPU;
stm32_hash_write_ctrl(hdev);
if (stm32_hash_wait_busy(hdev))
return -ETIMEDOUT;
if ((hdev->flags & HASH_FLAGS_HMAC) &&
(hdev->flags & ~HASH_FLAGS_HMAC_KEY)) {
hdev->flags |= HASH_FLAGS_HMAC_KEY;
stm32_hash_write_key(hdev);
if (stm32_hash_wait_busy(hdev))
return -ETIMEDOUT;
}
for (count = 0; count < len32; count++)
stm32_hash_write(hdev, HASH_DIN, buffer[count]);
if (final) {
stm32_hash_set_nblw(hdev, length);
reg = stm32_hash_read(hdev, HASH_STR);
reg |= HASH_STR_DCAL;
stm32_hash_write(hdev, HASH_STR, reg);
if (hdev->flags & HASH_FLAGS_HMAC) {
if (stm32_hash_wait_busy(hdev))
return -ETIMEDOUT;
stm32_hash_write_key(hdev);
}
return -EINPROGRESS;
}
return 0;
}
static int stm32_hash_update_cpu(struct stm32_hash_dev *hdev)
{
struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
int bufcnt, err = 0, final;
dev_dbg(hdev->dev, "%s flags %lx\n", __func__, rctx->flags);
final = (rctx->flags & HASH_FLAGS_FINUP);
while ((rctx->total >= rctx->buflen) ||
(rctx->bufcnt + rctx->total >= rctx->buflen)) {
stm32_hash_append_sg(rctx);
bufcnt = rctx->bufcnt;
rctx->bufcnt = 0;
err = stm32_hash_xmit_cpu(hdev, rctx->buffer, bufcnt, 0);
}
stm32_hash_append_sg(rctx);
if (final) {
bufcnt = rctx->bufcnt;
rctx->bufcnt = 0;
err = stm32_hash_xmit_cpu(hdev, rctx->buffer, bufcnt,
(rctx->flags & HASH_FLAGS_FINUP));
}
return err;
}
static int stm32_hash_xmit_dma(struct stm32_hash_dev *hdev,
struct scatterlist *sg, int length, int mdma)
{
struct dma_async_tx_descriptor *in_desc;
dma_cookie_t cookie;
u32 reg;
int err;
in_desc = dmaengine_prep_slave_sg(hdev->dma_lch, sg, 1,
DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT |
DMA_CTRL_ACK);
if (!in_desc) {
dev_err(hdev->dev, "dmaengine_prep_slave error\n");
return -ENOMEM;
}
reinit_completion(&hdev->dma_completion);
in_desc->callback = stm32_hash_dma_callback;
in_desc->callback_param = hdev;
hdev->flags |= HASH_FLAGS_FINAL;
hdev->flags |= HASH_FLAGS_DMA_ACTIVE;
reg = stm32_hash_read(hdev, HASH_CR);
if (mdma)
reg |= HASH_CR_MDMAT;
else
reg &= ~HASH_CR_MDMAT;
reg |= HASH_CR_DMAE;
stm32_hash_write(hdev, HASH_CR, reg);
stm32_hash_set_nblw(hdev, length);
cookie = dmaengine_submit(in_desc);
err = dma_submit_error(cookie);
if (err)
return -ENOMEM;
dma_async_issue_pending(hdev->dma_lch);
if (!wait_for_completion_interruptible_timeout(&hdev->dma_completion,
msecs_to_jiffies(100)))
err = -ETIMEDOUT;
if (dma_async_is_tx_complete(hdev->dma_lch, cookie,
NULL, NULL) != DMA_COMPLETE)
err = -ETIMEDOUT;
if (err) {
dev_err(hdev->dev, "DMA Error %i\n", err);
dmaengine_terminate_all(hdev->dma_lch);
return err;
}
return -EINPROGRESS;
}
static void stm32_hash_dma_callback(void *param)
{
struct stm32_hash_dev *hdev = param;
complete(&hdev->dma_completion);
hdev->flags |= HASH_FLAGS_DMA_READY;
}
static int stm32_hash_hmac_dma_send(struct stm32_hash_dev *hdev)
{
struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(hdev->req);
struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
int err;
if (ctx->keylen < HASH_DMA_THRESHOLD || (hdev->dma_mode == 1)) {
err = stm32_hash_write_key(hdev);
if (stm32_hash_wait_busy(hdev))
return -ETIMEDOUT;
} else {
if (!(hdev->flags & HASH_FLAGS_HMAC_KEY))
sg_init_one(&rctx->sg_key, ctx->key,
ALIGN(ctx->keylen, sizeof(u32)));
rctx->dma_ct = dma_map_sg(hdev->dev, &rctx->sg_key, 1,
DMA_TO_DEVICE);
if (rctx->dma_ct == 0) {
dev_err(hdev->dev, "dma_map_sg error\n");
return -ENOMEM;
}
err = stm32_hash_xmit_dma(hdev, &rctx->sg_key, ctx->keylen, 0);
dma_unmap_sg(hdev->dev, &rctx->sg_key, 1, DMA_TO_DEVICE);
}
return err;
}
static int stm32_hash_dma_init(struct stm32_hash_dev *hdev)
{
struct dma_slave_config dma_conf;
int err;
memset(&dma_conf, 0, sizeof(dma_conf));
dma_conf.direction = DMA_MEM_TO_DEV;
dma_conf.dst_addr = hdev->phys_base + HASH_DIN;
dma_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
dma_conf.src_maxburst = hdev->dma_maxburst;
dma_conf.dst_maxburst = hdev->dma_maxburst;
dma_conf.device_fc = false;
hdev->dma_lch = dma_request_slave_channel(hdev->dev, "in");
if (!hdev->dma_lch) {
dev_err(hdev->dev, "Couldn't acquire a slave DMA channel.\n");
return -EBUSY;
}
err = dmaengine_slave_config(hdev->dma_lch, &dma_conf);
if (err) {
dma_release_channel(hdev->dma_lch);
hdev->dma_lch = NULL;
dev_err(hdev->dev, "Couldn't configure DMA slave.\n");
return err;
}
init_completion(&hdev->dma_completion);
return 0;
}
static int stm32_hash_dma_send(struct stm32_hash_dev *hdev)
{
struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
struct scatterlist sg[1], *tsg;
int err = 0, len = 0, reg, ncp = 0;
unsigned int i;
u32 *buffer = (void *)rctx->buffer;
rctx->sg = hdev->req->src;
rctx->total = hdev->req->nbytes;
rctx->nents = sg_nents(rctx->sg);
if (rctx->nents < 0)
return -EINVAL;
stm32_hash_write_ctrl(hdev);
if (hdev->flags & HASH_FLAGS_HMAC) {
err = stm32_hash_hmac_dma_send(hdev);
if (err != -EINPROGRESS)
return err;
}
for_each_sg(rctx->sg, tsg, rctx->nents, i) {
len = sg->length;
sg[0] = *tsg;
if (sg_is_last(sg)) {
if (hdev->dma_mode == 1) {
len = (ALIGN(sg->length, 16) - 16);
ncp = sg_pcopy_to_buffer(
rctx->sg, rctx->nents,
rctx->buffer, sg->length - len,
rctx->total - sg->length + len);
sg->length = len;
} else {
if (!(IS_ALIGNED(sg->length, sizeof(u32)))) {
len = sg->length;
sg->length = ALIGN(sg->length,
sizeof(u32));
}
}
}
rctx->dma_ct = dma_map_sg(hdev->dev, sg, 1,
DMA_TO_DEVICE);
if (rctx->dma_ct == 0) {
dev_err(hdev->dev, "dma_map_sg error\n");
return -ENOMEM;
}
err = stm32_hash_xmit_dma(hdev, sg, len,
!sg_is_last(sg));
dma_unmap_sg(hdev->dev, sg, 1, DMA_TO_DEVICE);
if (err == -ENOMEM)
return err;
}
if (hdev->dma_mode == 1) {
if (stm32_hash_wait_busy(hdev))
return -ETIMEDOUT;
reg = stm32_hash_read(hdev, HASH_CR);
reg &= ~HASH_CR_DMAE;
reg |= HASH_CR_DMAA;
stm32_hash_write(hdev, HASH_CR, reg);
if (ncp) {
memset(buffer + ncp, 0,
DIV_ROUND_UP(ncp, sizeof(u32)) - ncp);
writesl(hdev->io_base + HASH_DIN, buffer,
DIV_ROUND_UP(ncp, sizeof(u32)));
}
stm32_hash_set_nblw(hdev, ncp);
reg = stm32_hash_read(hdev, HASH_STR);
reg |= HASH_STR_DCAL;
stm32_hash_write(hdev, HASH_STR, reg);
err = -EINPROGRESS;
}
if (hdev->flags & HASH_FLAGS_HMAC) {
if (stm32_hash_wait_busy(hdev))
return -ETIMEDOUT;
err = stm32_hash_hmac_dma_send(hdev);
}
return err;
}
static struct stm32_hash_dev *stm32_hash_find_dev(struct stm32_hash_ctx *ctx)
{
struct stm32_hash_dev *hdev = NULL, *tmp;
spin_lock_bh(&stm32_hash.lock);
if (!ctx->hdev) {
list_for_each_entry(tmp, &stm32_hash.dev_list, list) {
hdev = tmp;
break;
}
ctx->hdev = hdev;
} else {
hdev = ctx->hdev;
}
spin_unlock_bh(&stm32_hash.lock);
return hdev;
}
static bool stm32_hash_dma_aligned_data(struct ahash_request *req)
{
struct scatterlist *sg;
struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
int i;
if (req->nbytes <= HASH_DMA_THRESHOLD)
return false;
if (sg_nents(req->src) > 1) {
if (hdev->dma_mode == 1)
return false;
for_each_sg(req->src, sg, sg_nents(req->src), i) {
if ((!IS_ALIGNED(sg->length, sizeof(u32))) &&
(!sg_is_last(sg)))
return false;
}
}
if (req->src->offset % 4)
return false;
return true;
}
static int stm32_hash_init(struct ahash_request *req)
{
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
rctx->hdev = hdev;
rctx->flags = HASH_FLAGS_CPU;
rctx->digcnt = crypto_ahash_digestsize(tfm);
switch (rctx->digcnt) {
case MD5_DIGEST_SIZE:
rctx->flags |= HASH_FLAGS_MD5;
break;
case SHA1_DIGEST_SIZE:
rctx->flags |= HASH_FLAGS_SHA1;
break;
case SHA224_DIGEST_SIZE:
rctx->flags |= HASH_FLAGS_SHA224;
break;
case SHA256_DIGEST_SIZE:
rctx->flags |= HASH_FLAGS_SHA256;
break;
default:
return -EINVAL;
}
rctx->bufcnt = 0;
rctx->buflen = HASH_BUFLEN;
rctx->total = 0;
rctx->offset = 0;
rctx->data_type = HASH_DATA_8_BITS;
memset(rctx->buffer, 0, HASH_BUFLEN);
if (ctx->flags & HASH_FLAGS_HMAC)
rctx->flags |= HASH_FLAGS_HMAC;
dev_dbg(hdev->dev, "%s Flags %lx\n", __func__, rctx->flags);
return 0;
}
static int stm32_hash_update_req(struct stm32_hash_dev *hdev)
{
return stm32_hash_update_cpu(hdev);
}
static int stm32_hash_final_req(struct stm32_hash_dev *hdev)
{
struct ahash_request *req = hdev->req;
struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
int err;
int buflen = rctx->bufcnt;
rctx->bufcnt = 0;
if (!(rctx->flags & HASH_FLAGS_CPU))
err = stm32_hash_dma_send(hdev);
else
err = stm32_hash_xmit_cpu(hdev, rctx->buffer, buflen, 1);
return err;
}
static void stm32_hash_copy_hash(struct ahash_request *req)
{
struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
u32 *hash = (u32 *)rctx->digest;
unsigned int i, hashsize;
switch (rctx->flags & HASH_FLAGS_ALGO_MASK) {
case HASH_FLAGS_MD5:
hashsize = MD5_DIGEST_SIZE;
break;
case HASH_FLAGS_SHA1:
hashsize = SHA1_DIGEST_SIZE;
break;
case HASH_FLAGS_SHA224:
hashsize = SHA224_DIGEST_SIZE;
break;
case HASH_FLAGS_SHA256:
hashsize = SHA256_DIGEST_SIZE;
break;
default:
return;
}
for (i = 0; i < hashsize / sizeof(u32); i++)
hash[i] = be32_to_cpu(stm32_hash_read(rctx->hdev,
HASH_HREG(i)));
}
static int stm32_hash_finish(struct ahash_request *req)
{
struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
if (!req->result)
return -EINVAL;
memcpy(req->result, rctx->digest, rctx->digcnt);
return 0;
}
static void stm32_hash_finish_req(struct ahash_request *req, int err)
{
struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
struct stm32_hash_dev *hdev = rctx->hdev;
if (!err && (HASH_FLAGS_FINAL & hdev->flags)) {
stm32_hash_copy_hash(req);
err = stm32_hash_finish(req);
hdev->flags &= ~(HASH_FLAGS_FINAL | HASH_FLAGS_CPU |
HASH_FLAGS_INIT | HASH_FLAGS_DMA_READY |
HASH_FLAGS_OUTPUT_READY | HASH_FLAGS_HMAC |
HASH_FLAGS_HMAC_INIT | HASH_FLAGS_HMAC_FINAL |
HASH_FLAGS_HMAC_KEY);
} else {
rctx->flags |= HASH_FLAGS_ERRORS;
}
pm_runtime_mark_last_busy(hdev->dev);
pm_runtime_put_autosuspend(hdev->dev);
crypto_finalize_hash_request(hdev->engine, req, err);
}
static int stm32_hash_hw_init(struct stm32_hash_dev *hdev,
struct stm32_hash_request_ctx *rctx)
{
pm_runtime_get_sync(hdev->dev);
if (!(HASH_FLAGS_INIT & hdev->flags)) {
stm32_hash_write(hdev, HASH_CR, HASH_CR_INIT);
stm32_hash_write(hdev, HASH_STR, 0);
stm32_hash_write(hdev, HASH_DIN, 0);
stm32_hash_write(hdev, HASH_IMR, 0);
hdev->err = 0;
}
return 0;
}
static int stm32_hash_one_request(struct crypto_engine *engine, void *areq);
static int stm32_hash_prepare_req(struct crypto_engine *engine, void *areq);
static int stm32_hash_handle_queue(struct stm32_hash_dev *hdev,
struct ahash_request *req)
{
return crypto_transfer_hash_request_to_engine(hdev->engine, req);
}
static int stm32_hash_prepare_req(struct crypto_engine *engine, void *areq)
{
struct ahash_request *req = container_of(areq, struct ahash_request,
base);
struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
struct stm32_hash_request_ctx *rctx;
if (!hdev)
return -ENODEV;
hdev->req = req;
rctx = ahash_request_ctx(req);
dev_dbg(hdev->dev, "processing new req, op: %lu, nbytes %d\n",
rctx->op, req->nbytes);
return stm32_hash_hw_init(hdev, rctx);
}
static int stm32_hash_one_request(struct crypto_engine *engine, void *areq)
{
struct ahash_request *req = container_of(areq, struct ahash_request,
base);
struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
struct stm32_hash_request_ctx *rctx;
int err = 0;
if (!hdev)
return -ENODEV;
hdev->req = req;
rctx = ahash_request_ctx(req);
if (rctx->op == HASH_OP_UPDATE)
err = stm32_hash_update_req(hdev);
else if (rctx->op == HASH_OP_FINAL)
err = stm32_hash_final_req(hdev);
if (err != -EINPROGRESS)
/* done task will not finish it, so do it here */
stm32_hash_finish_req(req, err);
return 0;
}
static int stm32_hash_enqueue(struct ahash_request *req, unsigned int op)
{
struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
struct stm32_hash_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
struct stm32_hash_dev *hdev = ctx->hdev;
rctx->op = op;
return stm32_hash_handle_queue(hdev, req);
}
static int stm32_hash_update(struct ahash_request *req)
{
struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
if (!req->nbytes || !(rctx->flags & HASH_FLAGS_CPU))
return 0;
rctx->total = req->nbytes;
rctx->sg = req->src;
rctx->offset = 0;
if ((rctx->bufcnt + rctx->total < rctx->buflen)) {
stm32_hash_append_sg(rctx);
return 0;
}
return stm32_hash_enqueue(req, HASH_OP_UPDATE);
}
static int stm32_hash_final(struct ahash_request *req)
{
struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
rctx->flags |= HASH_FLAGS_FINUP;
return stm32_hash_enqueue(req, HASH_OP_FINAL);
}
static int stm32_hash_finup(struct ahash_request *req)
{
struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
int err1, err2;
rctx->flags |= HASH_FLAGS_FINUP;
if (hdev->dma_lch && stm32_hash_dma_aligned_data(req))
rctx->flags &= ~HASH_FLAGS_CPU;
err1 = stm32_hash_update(req);
if (err1 == -EINPROGRESS || err1 == -EBUSY)
return err1;
/*
* final() has to be always called to cleanup resources
* even if update() failed, except EINPROGRESS
*/
err2 = stm32_hash_final(req);
return err1 ?: err2;
}
static int stm32_hash_digest(struct ahash_request *req)
{
return stm32_hash_init(req) ?: stm32_hash_finup(req);
}
static int stm32_hash_export(struct ahash_request *req, void *out)
{
struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
u32 *preg;
unsigned int i;
pm_runtime_get_sync(hdev->dev);
while ((stm32_hash_read(hdev, HASH_SR) & HASH_SR_BUSY))
cpu_relax();
rctx->hw_context = kmalloc_array(3 + HASH_CSR_REGISTER_NUMBER,
sizeof(u32),
GFP_KERNEL);
preg = rctx->hw_context;
*preg++ = stm32_hash_read(hdev, HASH_IMR);
*preg++ = stm32_hash_read(hdev, HASH_STR);
*preg++ = stm32_hash_read(hdev, HASH_CR);
for (i = 0; i < HASH_CSR_REGISTER_NUMBER; i++)
*preg++ = stm32_hash_read(hdev, HASH_CSR(i));
pm_runtime_mark_last_busy(hdev->dev);
pm_runtime_put_autosuspend(hdev->dev);
memcpy(out, rctx, sizeof(*rctx));
return 0;
}
static int stm32_hash_import(struct ahash_request *req, const void *in)
{
struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
const u32 *preg = in;
u32 reg;
unsigned int i;
memcpy(rctx, in, sizeof(*rctx));
preg = rctx->hw_context;
pm_runtime_get_sync(hdev->dev);
stm32_hash_write(hdev, HASH_IMR, *preg++);
stm32_hash_write(hdev, HASH_STR, *preg++);
stm32_hash_write(hdev, HASH_CR, *preg);
reg = *preg++ | HASH_CR_INIT;
stm32_hash_write(hdev, HASH_CR, reg);
for (i = 0; i < HASH_CSR_REGISTER_NUMBER; i++)
stm32_hash_write(hdev, HASH_CSR(i), *preg++);
pm_runtime_mark_last_busy(hdev->dev);
pm_runtime_put_autosuspend(hdev->dev);
kfree(rctx->hw_context);
return 0;
}
static int stm32_hash_setkey(struct crypto_ahash *tfm,
const u8 *key, unsigned int keylen)
{
struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
if (keylen <= HASH_MAX_KEY_SIZE) {
memcpy(ctx->key, key, keylen);
ctx->keylen = keylen;
} else {
return -ENOMEM;
}
return 0;
}
static int stm32_hash_cra_init_algs(struct crypto_tfm *tfm,
const char *algs_hmac_name)
{
struct stm32_hash_ctx *ctx = crypto_tfm_ctx(tfm);
crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
sizeof(struct stm32_hash_request_ctx));
ctx->keylen = 0;
if (algs_hmac_name)
ctx->flags |= HASH_FLAGS_HMAC;
ctx->enginectx.op.do_one_request = stm32_hash_one_request;
ctx->enginectx.op.prepare_request = stm32_hash_prepare_req;
ctx->enginectx.op.unprepare_request = NULL;
return 0;
}
static int stm32_hash_cra_init(struct crypto_tfm *tfm)
{
return stm32_hash_cra_init_algs(tfm, NULL);
}
static int stm32_hash_cra_md5_init(struct crypto_tfm *tfm)
{
return stm32_hash_cra_init_algs(tfm, "md5");
}
static int stm32_hash_cra_sha1_init(struct crypto_tfm *tfm)
{
return stm32_hash_cra_init_algs(tfm, "sha1");
}
static int stm32_hash_cra_sha224_init(struct crypto_tfm *tfm)
{
return stm32_hash_cra_init_algs(tfm, "sha224");
}
static int stm32_hash_cra_sha256_init(struct crypto_tfm *tfm)
{
return stm32_hash_cra_init_algs(tfm, "sha256");
}
static irqreturn_t stm32_hash_irq_thread(int irq, void *dev_id)
{
struct stm32_hash_dev *hdev = dev_id;
if (HASH_FLAGS_CPU & hdev->flags) {
if (HASH_FLAGS_OUTPUT_READY & hdev->flags) {
hdev->flags &= ~HASH_FLAGS_OUTPUT_READY;
goto finish;
}
} else if (HASH_FLAGS_DMA_READY & hdev->flags) {
if (HASH_FLAGS_DMA_ACTIVE & hdev->flags) {
hdev->flags &= ~HASH_FLAGS_DMA_ACTIVE;
goto finish;
}
}
return IRQ_HANDLED;
finish:
/* Finish current request */
stm32_hash_finish_req(hdev->req, 0);
return IRQ_HANDLED;
}
static irqreturn_t stm32_hash_irq_handler(int irq, void *dev_id)
{
struct stm32_hash_dev *hdev = dev_id;
u32 reg;
reg = stm32_hash_read(hdev, HASH_SR);
if (reg & HASH_SR_OUTPUT_READY) {
reg &= ~HASH_SR_OUTPUT_READY;
stm32_hash_write(hdev, HASH_SR, reg);
hdev->flags |= HASH_FLAGS_OUTPUT_READY;
/* Disable IT*/
stm32_hash_write(hdev, HASH_IMR, 0);
return IRQ_WAKE_THREAD;
}
return IRQ_NONE;
}
static struct ahash_alg algs_md5_sha1[] = {
{
.init = stm32_hash_init,
.update = stm32_hash_update,
.final = stm32_hash_final,
.finup = stm32_hash_finup,
.digest = stm32_hash_digest,
.export = stm32_hash_export,
.import = stm32_hash_import,
.halg = {
.digestsize = MD5_DIGEST_SIZE,
.statesize = sizeof(struct stm32_hash_request_ctx),
.base = {
.cra_name = "md5",
.cra_driver_name = "stm32-md5",
.cra_priority = 200,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = MD5_HMAC_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct stm32_hash_ctx),
.cra_alignmask = 3,
.cra_init = stm32_hash_cra_init,
.cra_module = THIS_MODULE,
}
}
},
{
.init = stm32_hash_init,
.update = stm32_hash_update,
.final = stm32_hash_final,
.finup = stm32_hash_finup,
.digest = stm32_hash_digest,
.export = stm32_hash_export,
.import = stm32_hash_import,
.setkey = stm32_hash_setkey,
.halg = {
.digestsize = MD5_DIGEST_SIZE,
.statesize = sizeof(struct stm32_hash_request_ctx),
.base = {
.cra_name = "hmac(md5)",
.cra_driver_name = "stm32-hmac-md5",
.cra_priority = 200,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = MD5_HMAC_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct stm32_hash_ctx),
.cra_alignmask = 3,
.cra_init = stm32_hash_cra_md5_init,
.cra_module = THIS_MODULE,
}
}
},
{
.init = stm32_hash_init,
.update = stm32_hash_update,
.final = stm32_hash_final,
.finup = stm32_hash_finup,
.digest = stm32_hash_digest,
.export = stm32_hash_export,
.import = stm32_hash_import,
.halg = {
.digestsize = SHA1_DIGEST_SIZE,
.statesize = sizeof(struct stm32_hash_request_ctx),
.base = {
.cra_name = "sha1",
.cra_driver_name = "stm32-sha1",
.cra_priority = 200,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = SHA1_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct stm32_hash_ctx),
.cra_alignmask = 3,
.cra_init = stm32_hash_cra_init,
.cra_module = THIS_MODULE,
}
}
},
{
.init = stm32_hash_init,
.update = stm32_hash_update,
.final = stm32_hash_final,
.finup = stm32_hash_finup,
.digest = stm32_hash_digest,
.export = stm32_hash_export,
.import = stm32_hash_import,
.setkey = stm32_hash_setkey,
.halg = {
.digestsize = SHA1_DIGEST_SIZE,
.statesize = sizeof(struct stm32_hash_request_ctx),
.base = {
.cra_name = "hmac(sha1)",
.cra_driver_name = "stm32-hmac-sha1",
.cra_priority = 200,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = SHA1_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct stm32_hash_ctx),
.cra_alignmask = 3,
.cra_init = stm32_hash_cra_sha1_init,
.cra_module = THIS_MODULE,
}
}
},
};
static struct ahash_alg algs_sha224_sha256[] = {
{
.init = stm32_hash_init,
.update = stm32_hash_update,
.final = stm32_hash_final,
.finup = stm32_hash_finup,
.digest = stm32_hash_digest,
.export = stm32_hash_export,
.import = stm32_hash_import,
.halg = {
.digestsize = SHA224_DIGEST_SIZE,
.statesize = sizeof(struct stm32_hash_request_ctx),
.base = {
.cra_name = "sha224",
.cra_driver_name = "stm32-sha224",
.cra_priority = 200,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = SHA224_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct stm32_hash_ctx),
.cra_alignmask = 3,
.cra_init = stm32_hash_cra_init,
.cra_module = THIS_MODULE,
}
}
},
{
.init = stm32_hash_init,
.update = stm32_hash_update,
.final = stm32_hash_final,
.finup = stm32_hash_finup,
.digest = stm32_hash_digest,
.setkey = stm32_hash_setkey,
.export = stm32_hash_export,
.import = stm32_hash_import,
.halg = {
.digestsize = SHA224_DIGEST_SIZE,
.statesize = sizeof(struct stm32_hash_request_ctx),
.base = {
.cra_name = "hmac(sha224)",
.cra_driver_name = "stm32-hmac-sha224",
.cra_priority = 200,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = SHA224_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct stm32_hash_ctx),
.cra_alignmask = 3,
.cra_init = stm32_hash_cra_sha224_init,
.cra_module = THIS_MODULE,
}
}
},
{
.init = stm32_hash_init,
.update = stm32_hash_update,
.final = stm32_hash_final,
.finup = stm32_hash_finup,
.digest = stm32_hash_digest,
.export = stm32_hash_export,
.import = stm32_hash_import,
.halg = {
.digestsize = SHA256_DIGEST_SIZE,
.statesize = sizeof(struct stm32_hash_request_ctx),
.base = {
.cra_name = "sha256",
.cra_driver_name = "stm32-sha256",
.cra_priority = 200,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = SHA256_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct stm32_hash_ctx),
.cra_alignmask = 3,
.cra_init = stm32_hash_cra_init,
.cra_module = THIS_MODULE,
}
}
},
{
.init = stm32_hash_init,
.update = stm32_hash_update,
.final = stm32_hash_final,
.finup = stm32_hash_finup,
.digest = stm32_hash_digest,
.export = stm32_hash_export,
.import = stm32_hash_import,
.setkey = stm32_hash_setkey,
.halg = {
.digestsize = SHA256_DIGEST_SIZE,
.statesize = sizeof(struct stm32_hash_request_ctx),
.base = {
.cra_name = "hmac(sha256)",
.cra_driver_name = "stm32-hmac-sha256",
.cra_priority = 200,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = SHA256_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct stm32_hash_ctx),
.cra_alignmask = 3,
.cra_init = stm32_hash_cra_sha256_init,
.cra_module = THIS_MODULE,
}
}
},
};
static int stm32_hash_register_algs(struct stm32_hash_dev *hdev)
{
unsigned int i, j;
int err;
for (i = 0; i < hdev->pdata->algs_info_size; i++) {
for (j = 0; j < hdev->pdata->algs_info[i].size; j++) {
err = crypto_register_ahash(
&hdev->pdata->algs_info[i].algs_list[j]);
if (err)
goto err_algs;
}
}
return 0;
err_algs:
dev_err(hdev->dev, "Algo %d : %d failed\n", i, j);
for (; i--; ) {
for (; j--;)
crypto_unregister_ahash(
&hdev->pdata->algs_info[i].algs_list[j]);
}
return err;
}
static int stm32_hash_unregister_algs(struct stm32_hash_dev *hdev)
{
unsigned int i, j;
for (i = 0; i < hdev->pdata->algs_info_size; i++) {
for (j = 0; j < hdev->pdata->algs_info[i].size; j++)
crypto_unregister_ahash(
&hdev->pdata->algs_info[i].algs_list[j]);
}
return 0;
}
static struct stm32_hash_algs_info stm32_hash_algs_info_stm32f4[] = {
{
.algs_list = algs_md5_sha1,
.size = ARRAY_SIZE(algs_md5_sha1),
},
};
static const struct stm32_hash_pdata stm32_hash_pdata_stm32f4 = {
.algs_info = stm32_hash_algs_info_stm32f4,
.algs_info_size = ARRAY_SIZE(stm32_hash_algs_info_stm32f4),
};
static struct stm32_hash_algs_info stm32_hash_algs_info_stm32f7[] = {
{
.algs_list = algs_md5_sha1,
.size = ARRAY_SIZE(algs_md5_sha1),
},
{
.algs_list = algs_sha224_sha256,
.size = ARRAY_SIZE(algs_sha224_sha256),
},
};
static const struct stm32_hash_pdata stm32_hash_pdata_stm32f7 = {
.algs_info = stm32_hash_algs_info_stm32f7,
.algs_info_size = ARRAY_SIZE(stm32_hash_algs_info_stm32f7),
};
static const struct of_device_id stm32_hash_of_match[] = {
{
.compatible = "st,stm32f456-hash",
.data = &stm32_hash_pdata_stm32f4,
},
{
.compatible = "st,stm32f756-hash",
.data = &stm32_hash_pdata_stm32f7,
},
{},
};
MODULE_DEVICE_TABLE(of, stm32_hash_of_match);
static int stm32_hash_get_of_match(struct stm32_hash_dev *hdev,
struct device *dev)
{
hdev->pdata = of_device_get_match_data(dev);
if (!hdev->pdata) {
dev_err(dev, "no compatible OF match\n");
return -EINVAL;
}
if (of_property_read_u32(dev->of_node, "dma-maxburst",
&hdev->dma_maxburst)) {
dev_info(dev, "dma-maxburst not specified, using 0\n");
hdev->dma_maxburst = 0;
}
return 0;
}
static int stm32_hash_probe(struct platform_device *pdev)
{
struct stm32_hash_dev *hdev;
struct device *dev = &pdev->dev;
struct resource *res;
int ret, irq;
hdev = devm_kzalloc(dev, sizeof(*hdev), GFP_KERNEL);
if (!hdev)
return -ENOMEM;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
hdev->io_base = devm_ioremap_resource(dev, res);
if (IS_ERR(hdev->io_base))
return PTR_ERR(hdev->io_base);
hdev->phys_base = res->start;
ret = stm32_hash_get_of_match(hdev, dev);
if (ret)
return ret;
irq = platform_get_irq(pdev, 0);
if (irq < 0) {
dev_err(dev, "Cannot get IRQ resource\n");
return irq;
}
ret = devm_request_threaded_irq(dev, irq, stm32_hash_irq_handler,
stm32_hash_irq_thread, IRQF_ONESHOT,
dev_name(dev), hdev);
if (ret) {
dev_err(dev, "Cannot grab IRQ\n");
return ret;
}
hdev->clk = devm_clk_get(&pdev->dev, NULL);
if (IS_ERR(hdev->clk)) {
dev_err(dev, "failed to get clock for hash (%lu)\n",
PTR_ERR(hdev->clk));
return PTR_ERR(hdev->clk);
}
ret = clk_prepare_enable(hdev->clk);
if (ret) {
dev_err(dev, "failed to enable hash clock (%d)\n", ret);
return ret;
}
pm_runtime_set_autosuspend_delay(dev, HASH_AUTOSUSPEND_DELAY);
pm_runtime_use_autosuspend(dev);
pm_runtime_get_noresume(dev);
pm_runtime_set_active(dev);
pm_runtime_enable(dev);
hdev->rst = devm_reset_control_get(&pdev->dev, NULL);
if (!IS_ERR(hdev->rst)) {
reset_control_assert(hdev->rst);
udelay(2);
reset_control_deassert(hdev->rst);
}
hdev->dev = dev;
platform_set_drvdata(pdev, hdev);
ret = stm32_hash_dma_init(hdev);
if (ret)
dev_dbg(dev, "DMA mode not available\n");
spin_lock(&stm32_hash.lock);
list_add_tail(&hdev->list, &stm32_hash.dev_list);
spin_unlock(&stm32_hash.lock);
/* Initialize crypto engine */
hdev->engine = crypto_engine_alloc_init(dev, 1);
if (!hdev->engine) {
ret = -ENOMEM;
goto err_engine;
}
ret = crypto_engine_start(hdev->engine);
if (ret)
goto err_engine_start;
hdev->dma_mode = stm32_hash_read(hdev, HASH_HWCFGR);
/* Register algos */
ret = stm32_hash_register_algs(hdev);
if (ret)
goto err_algs;
dev_info(dev, "Init HASH done HW ver %x DMA mode %u\n",
stm32_hash_read(hdev, HASH_VER), hdev->dma_mode);
pm_runtime_put_sync(dev);
return 0;
err_algs:
err_engine_start:
crypto_engine_exit(hdev->engine);
err_engine:
spin_lock(&stm32_hash.lock);
list_del(&hdev->list);
spin_unlock(&stm32_hash.lock);
if (hdev->dma_lch)
dma_release_channel(hdev->dma_lch);
pm_runtime_disable(dev);
pm_runtime_put_noidle(dev);
clk_disable_unprepare(hdev->clk);
return ret;
}
static int stm32_hash_remove(struct platform_device *pdev)
{
struct stm32_hash_dev *hdev;
int ret;
hdev = platform_get_drvdata(pdev);
if (!hdev)
return -ENODEV;
ret = pm_runtime_get_sync(hdev->dev);
if (ret < 0)
return ret;
stm32_hash_unregister_algs(hdev);
crypto_engine_exit(hdev->engine);
spin_lock(&stm32_hash.lock);
list_del(&hdev->list);
spin_unlock(&stm32_hash.lock);
if (hdev->dma_lch)
dma_release_channel(hdev->dma_lch);
pm_runtime_disable(hdev->dev);
pm_runtime_put_noidle(hdev->dev);
clk_disable_unprepare(hdev->clk);
return 0;
}
#ifdef CONFIG_PM
static int stm32_hash_runtime_suspend(struct device *dev)
{
struct stm32_hash_dev *hdev = dev_get_drvdata(dev);
clk_disable_unprepare(hdev->clk);
return 0;
}
static int stm32_hash_runtime_resume(struct device *dev)
{
struct stm32_hash_dev *hdev = dev_get_drvdata(dev);
int ret;
ret = clk_prepare_enable(hdev->clk);
if (ret) {
dev_err(hdev->dev, "Failed to prepare_enable clock\n");
return ret;
}
return 0;
}
#endif
static const struct dev_pm_ops stm32_hash_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
pm_runtime_force_resume)
SET_RUNTIME_PM_OPS(stm32_hash_runtime_suspend,
stm32_hash_runtime_resume, NULL)
};
static struct platform_driver stm32_hash_driver = {
.probe = stm32_hash_probe,
.remove = stm32_hash_remove,
.driver = {
.name = "stm32-hash",
.pm = &stm32_hash_pm_ops,
.of_match_table = stm32_hash_of_match,
}
};
module_platform_driver(stm32_hash_driver);
MODULE_DESCRIPTION("STM32 SHA1/224/256 & MD5 (HMAC) hw accelerator driver");
MODULE_AUTHOR("Lionel Debieve <lionel.debieve@st.com>");
MODULE_LICENSE("GPL v2");