linux_old1/drivers/net/wireless/ath9k/mac.c

1032 lines
29 KiB
C

/*
* Copyright (c) 2008 Atheros Communications Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include "core.h"
#include "hw.h"
#include "reg.h"
#include "phy.h"
static void ath9k_hw_set_txq_interrupts(struct ath_hal *ah,
struct ath9k_tx_queue_info *qi)
{
struct ath_hal_5416 *ahp = AH5416(ah);
DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT,
"%s: tx ok 0x%x err 0x%x desc 0x%x eol 0x%x urn 0x%x\n",
__func__, ahp->ah_txOkInterruptMask,
ahp->ah_txErrInterruptMask, ahp->ah_txDescInterruptMask,
ahp->ah_txEolInterruptMask, ahp->ah_txUrnInterruptMask);
REG_WRITE(ah, AR_IMR_S0,
SM(ahp->ah_txOkInterruptMask, AR_IMR_S0_QCU_TXOK)
| SM(ahp->ah_txDescInterruptMask, AR_IMR_S0_QCU_TXDESC));
REG_WRITE(ah, AR_IMR_S1,
SM(ahp->ah_txErrInterruptMask, AR_IMR_S1_QCU_TXERR)
| SM(ahp->ah_txEolInterruptMask, AR_IMR_S1_QCU_TXEOL));
REG_RMW_FIELD(ah, AR_IMR_S2,
AR_IMR_S2_QCU_TXURN, ahp->ah_txUrnInterruptMask);
}
void ath9k_hw_dmaRegDump(struct ath_hal *ah)
{
u32 val[ATH9K_NUM_DMA_DEBUG_REGS];
int qcuOffset = 0, dcuOffset = 0;
u32 *qcuBase = &val[0], *dcuBase = &val[4];
int i;
REG_WRITE(ah, AR_MACMISC,
((AR_MACMISC_DMA_OBS_LINE_8 << AR_MACMISC_DMA_OBS_S) |
(AR_MACMISC_MISC_OBS_BUS_1 <<
AR_MACMISC_MISC_OBS_BUS_MSB_S)));
DPRINTF(ah->ah_sc, ATH_DBG_REG_IO, "Raw DMA Debug values:\n");
for (i = 0; i < ATH9K_NUM_DMA_DEBUG_REGS; i++) {
if (i % 4 == 0)
DPRINTF(ah->ah_sc, ATH_DBG_REG_IO, "\n");
val[i] = REG_READ(ah, AR_DMADBG_0 + (i * sizeof(u32)));
DPRINTF(ah->ah_sc, ATH_DBG_REG_IO, "%d: %08x ", i, val[i]);
}
DPRINTF(ah->ah_sc, ATH_DBG_REG_IO, "\n\n");
DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
"Num QCU: chain_st fsp_ok fsp_st DCU: chain_st\n");
for (i = 0; i < ATH9K_NUM_QUEUES;
i++, qcuOffset += 4, dcuOffset += 5) {
if (i == 8) {
qcuOffset = 0;
qcuBase++;
}
if (i == 6) {
dcuOffset = 0;
dcuBase++;
}
DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
"%2d %2x %1x %2x %2x\n",
i, (*qcuBase & (0x7 << qcuOffset)) >> qcuOffset,
(*qcuBase & (0x8 << qcuOffset)) >> (qcuOffset + 3),
val[2] & (0x7 << (i * 3)) >> (i * 3),
(*dcuBase & (0x1f << dcuOffset)) >> dcuOffset);
}
DPRINTF(ah->ah_sc, ATH_DBG_REG_IO, "\n");
DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
"qcu_stitch state: %2x qcu_fetch state: %2x\n",
(val[3] & 0x003c0000) >> 18, (val[3] & 0x03c00000) >> 22);
DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
"qcu_complete state: %2x dcu_complete state: %2x\n",
(val[3] & 0x1c000000) >> 26, (val[6] & 0x3));
DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
"dcu_arb state: %2x dcu_fp state: %2x\n",
(val[5] & 0x06000000) >> 25, (val[5] & 0x38000000) >> 27);
DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
"chan_idle_dur: %3d chan_idle_dur_valid: %1d\n",
(val[6] & 0x000003fc) >> 2, (val[6] & 0x00000400) >> 10);
DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
"txfifo_valid_0: %1d txfifo_valid_1: %1d\n",
(val[6] & 0x00000800) >> 11, (val[6] & 0x00001000) >> 12);
DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
"txfifo_dcu_num_0: %2d txfifo_dcu_num_1: %2d\n",
(val[6] & 0x0001e000) >> 13, (val[6] & 0x001e0000) >> 17);
DPRINTF(ah->ah_sc, ATH_DBG_REG_IO, "pcu observe 0x%x \n",
REG_READ(ah, AR_OBS_BUS_1));
DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
"AR_CR 0x%x \n", REG_READ(ah, AR_CR));
}
u32 ath9k_hw_gettxbuf(struct ath_hal *ah, u32 q)
{
return REG_READ(ah, AR_QTXDP(q));
}
bool ath9k_hw_puttxbuf(struct ath_hal *ah, u32 q, u32 txdp)
{
REG_WRITE(ah, AR_QTXDP(q), txdp);
return true;
}
bool ath9k_hw_txstart(struct ath_hal *ah, u32 q)
{
DPRINTF(ah->ah_sc, ATH_DBG_QUEUE, "%s: queue %u\n", __func__, q);
REG_WRITE(ah, AR_Q_TXE, 1 << q);
return true;
}
u32 ath9k_hw_numtxpending(struct ath_hal *ah, u32 q)
{
u32 npend;
npend = REG_READ(ah, AR_QSTS(q)) & AR_Q_STS_PEND_FR_CNT;
if (npend == 0) {
if (REG_READ(ah, AR_Q_TXE) & (1 << q))
npend = 1;
}
return npend;
}
bool ath9k_hw_updatetxtriglevel(struct ath_hal *ah, bool bIncTrigLevel)
{
struct ath_hal_5416 *ahp = AH5416(ah);
u32 txcfg, curLevel, newLevel;
enum ath9k_int omask;
if (ah->ah_txTrigLevel >= MAX_TX_FIFO_THRESHOLD)
return false;
omask = ath9k_hw_set_interrupts(ah, ahp->ah_maskReg & ~ATH9K_INT_GLOBAL);
txcfg = REG_READ(ah, AR_TXCFG);
curLevel = MS(txcfg, AR_FTRIG);
newLevel = curLevel;
if (bIncTrigLevel) {
if (curLevel < MAX_TX_FIFO_THRESHOLD)
newLevel++;
} else if (curLevel > MIN_TX_FIFO_THRESHOLD)
newLevel--;
if (newLevel != curLevel)
REG_WRITE(ah, AR_TXCFG,
(txcfg & ~AR_FTRIG) | SM(newLevel, AR_FTRIG));
ath9k_hw_set_interrupts(ah, omask);
ah->ah_txTrigLevel = newLevel;
return newLevel != curLevel;
}
bool ath9k_hw_stoptxdma(struct ath_hal *ah, u32 q)
{
u32 tsfLow, j, wait;
REG_WRITE(ah, AR_Q_TXD, 1 << q);
for (wait = 1000; wait != 0; wait--) {
if (ath9k_hw_numtxpending(ah, q) == 0)
break;
udelay(100);
}
if (ath9k_hw_numtxpending(ah, q)) {
DPRINTF(ah->ah_sc, ATH_DBG_QUEUE,
"%s: Num of pending TX Frames %d on Q %d\n",
__func__, ath9k_hw_numtxpending(ah, q), q);
for (j = 0; j < 2; j++) {
tsfLow = REG_READ(ah, AR_TSF_L32);
REG_WRITE(ah, AR_QUIET2,
SM(10, AR_QUIET2_QUIET_DUR));
REG_WRITE(ah, AR_QUIET_PERIOD, 100);
REG_WRITE(ah, AR_NEXT_QUIET_TIMER, tsfLow >> 10);
REG_SET_BIT(ah, AR_TIMER_MODE,
AR_QUIET_TIMER_EN);
if ((REG_READ(ah, AR_TSF_L32) >> 10) == (tsfLow >> 10))
break;
DPRINTF(ah->ah_sc, ATH_DBG_QUEUE,
"%s: TSF have moved while trying to set "
"quiet time TSF: 0x%08x\n",
__func__, tsfLow);
}
REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_FORCE_CH_IDLE_HIGH);
udelay(200);
REG_CLR_BIT(ah, AR_TIMER_MODE, AR_QUIET_TIMER_EN);
wait = 1000;
while (ath9k_hw_numtxpending(ah, q)) {
if ((--wait) == 0) {
DPRINTF(ah->ah_sc, ATH_DBG_XMIT,
"%s: Failed to stop Tx DMA in 100 "
"msec after killing last frame\n",
__func__);
break;
}
udelay(100);
}
REG_CLR_BIT(ah, AR_DIAG_SW, AR_DIAG_FORCE_CH_IDLE_HIGH);
}
REG_WRITE(ah, AR_Q_TXD, 0);
return wait != 0;
}
bool ath9k_hw_filltxdesc(struct ath_hal *ah, struct ath_desc *ds,
u32 segLen, bool firstSeg,
bool lastSeg, const struct ath_desc *ds0)
{
struct ar5416_desc *ads = AR5416DESC(ds);
if (firstSeg) {
ads->ds_ctl1 |= segLen | (lastSeg ? 0 : AR_TxMore);
} else if (lastSeg) {
ads->ds_ctl0 = 0;
ads->ds_ctl1 = segLen;
ads->ds_ctl2 = AR5416DESC_CONST(ds0)->ds_ctl2;
ads->ds_ctl3 = AR5416DESC_CONST(ds0)->ds_ctl3;
} else {
ads->ds_ctl0 = 0;
ads->ds_ctl1 = segLen | AR_TxMore;
ads->ds_ctl2 = 0;
ads->ds_ctl3 = 0;
}
ads->ds_txstatus0 = ads->ds_txstatus1 = 0;
ads->ds_txstatus2 = ads->ds_txstatus3 = 0;
ads->ds_txstatus4 = ads->ds_txstatus5 = 0;
ads->ds_txstatus6 = ads->ds_txstatus7 = 0;
ads->ds_txstatus8 = ads->ds_txstatus9 = 0;
return true;
}
void ath9k_hw_cleartxdesc(struct ath_hal *ah, struct ath_desc *ds)
{
struct ar5416_desc *ads = AR5416DESC(ds);
ads->ds_txstatus0 = ads->ds_txstatus1 = 0;
ads->ds_txstatus2 = ads->ds_txstatus3 = 0;
ads->ds_txstatus4 = ads->ds_txstatus5 = 0;
ads->ds_txstatus6 = ads->ds_txstatus7 = 0;
ads->ds_txstatus8 = ads->ds_txstatus9 = 0;
}
int ath9k_hw_txprocdesc(struct ath_hal *ah, struct ath_desc *ds)
{
struct ar5416_desc *ads = AR5416DESC(ds);
if ((ads->ds_txstatus9 & AR_TxDone) == 0)
return -EINPROGRESS;
ds->ds_txstat.ts_seqnum = MS(ads->ds_txstatus9, AR_SeqNum);
ds->ds_txstat.ts_tstamp = ads->AR_SendTimestamp;
ds->ds_txstat.ts_status = 0;
ds->ds_txstat.ts_flags = 0;
if (ads->ds_txstatus1 & AR_ExcessiveRetries)
ds->ds_txstat.ts_status |= ATH9K_TXERR_XRETRY;
if (ads->ds_txstatus1 & AR_Filtered)
ds->ds_txstat.ts_status |= ATH9K_TXERR_FILT;
if (ads->ds_txstatus1 & AR_FIFOUnderrun)
ds->ds_txstat.ts_status |= ATH9K_TXERR_FIFO;
if (ads->ds_txstatus9 & AR_TxOpExceeded)
ds->ds_txstat.ts_status |= ATH9K_TXERR_XTXOP;
if (ads->ds_txstatus1 & AR_TxTimerExpired)
ds->ds_txstat.ts_status |= ATH9K_TXERR_TIMER_EXPIRED;
if (ads->ds_txstatus1 & AR_DescCfgErr)
ds->ds_txstat.ts_flags |= ATH9K_TX_DESC_CFG_ERR;
if (ads->ds_txstatus1 & AR_TxDataUnderrun) {
ds->ds_txstat.ts_flags |= ATH9K_TX_DATA_UNDERRUN;
ath9k_hw_updatetxtriglevel(ah, true);
}
if (ads->ds_txstatus1 & AR_TxDelimUnderrun) {
ds->ds_txstat.ts_flags |= ATH9K_TX_DELIM_UNDERRUN;
ath9k_hw_updatetxtriglevel(ah, true);
}
if (ads->ds_txstatus0 & AR_TxBaStatus) {
ds->ds_txstat.ts_flags |= ATH9K_TX_BA;
ds->ds_txstat.ba_low = ads->AR_BaBitmapLow;
ds->ds_txstat.ba_high = ads->AR_BaBitmapHigh;
}
ds->ds_txstat.ts_rateindex = MS(ads->ds_txstatus9, AR_FinalTxIdx);
switch (ds->ds_txstat.ts_rateindex) {
case 0:
ds->ds_txstat.ts_ratecode = MS(ads->ds_ctl3, AR_XmitRate0);
break;
case 1:
ds->ds_txstat.ts_ratecode = MS(ads->ds_ctl3, AR_XmitRate1);
break;
case 2:
ds->ds_txstat.ts_ratecode = MS(ads->ds_ctl3, AR_XmitRate2);
break;
case 3:
ds->ds_txstat.ts_ratecode = MS(ads->ds_ctl3, AR_XmitRate3);
break;
}
ds->ds_txstat.ts_rssi = MS(ads->ds_txstatus5, AR_TxRSSICombined);
ds->ds_txstat.ts_rssi_ctl0 = MS(ads->ds_txstatus0, AR_TxRSSIAnt00);
ds->ds_txstat.ts_rssi_ctl1 = MS(ads->ds_txstatus0, AR_TxRSSIAnt01);
ds->ds_txstat.ts_rssi_ctl2 = MS(ads->ds_txstatus0, AR_TxRSSIAnt02);
ds->ds_txstat.ts_rssi_ext0 = MS(ads->ds_txstatus5, AR_TxRSSIAnt10);
ds->ds_txstat.ts_rssi_ext1 = MS(ads->ds_txstatus5, AR_TxRSSIAnt11);
ds->ds_txstat.ts_rssi_ext2 = MS(ads->ds_txstatus5, AR_TxRSSIAnt12);
ds->ds_txstat.evm0 = ads->AR_TxEVM0;
ds->ds_txstat.evm1 = ads->AR_TxEVM1;
ds->ds_txstat.evm2 = ads->AR_TxEVM2;
ds->ds_txstat.ts_shortretry = MS(ads->ds_txstatus1, AR_RTSFailCnt);
ds->ds_txstat.ts_longretry = MS(ads->ds_txstatus1, AR_DataFailCnt);
ds->ds_txstat.ts_virtcol = MS(ads->ds_txstatus1, AR_VirtRetryCnt);
ds->ds_txstat.ts_antenna = 1;
return 0;
}
void ath9k_hw_set11n_txdesc(struct ath_hal *ah, struct ath_desc *ds,
u32 pktLen, enum ath9k_pkt_type type, u32 txPower,
u32 keyIx, enum ath9k_key_type keyType, u32 flags)
{
struct ar5416_desc *ads = AR5416DESC(ds);
struct ath_hal_5416 *ahp = AH5416(ah);
txPower += ahp->ah_txPowerIndexOffset;
if (txPower > 63)
txPower = 63;
ads->ds_ctl0 = (pktLen & AR_FrameLen)
| (flags & ATH9K_TXDESC_VMF ? AR_VirtMoreFrag : 0)
| SM(txPower, AR_XmitPower)
| (flags & ATH9K_TXDESC_VEOL ? AR_VEOL : 0)
| (flags & ATH9K_TXDESC_CLRDMASK ? AR_ClrDestMask : 0)
| (flags & ATH9K_TXDESC_INTREQ ? AR_TxIntrReq : 0)
| (keyIx != ATH9K_TXKEYIX_INVALID ? AR_DestIdxValid : 0);
ads->ds_ctl1 =
(keyIx != ATH9K_TXKEYIX_INVALID ? SM(keyIx, AR_DestIdx) : 0)
| SM(type, AR_FrameType)
| (flags & ATH9K_TXDESC_NOACK ? AR_NoAck : 0)
| (flags & ATH9K_TXDESC_EXT_ONLY ? AR_ExtOnly : 0)
| (flags & ATH9K_TXDESC_EXT_AND_CTL ? AR_ExtAndCtl : 0);
ads->ds_ctl6 = SM(keyType, AR_EncrType);
if (AR_SREV_9285(ah)) {
ads->ds_ctl8 = 0;
ads->ds_ctl9 = 0;
ads->ds_ctl10 = 0;
ads->ds_ctl11 = 0;
}
}
void ath9k_hw_set11n_ratescenario(struct ath_hal *ah, struct ath_desc *ds,
struct ath_desc *lastds,
u32 durUpdateEn, u32 rtsctsRate,
u32 rtsctsDuration,
struct ath9k_11n_rate_series series[],
u32 nseries, u32 flags)
{
struct ar5416_desc *ads = AR5416DESC(ds);
struct ar5416_desc *last_ads = AR5416DESC(lastds);
u32 ds_ctl0;
(void) nseries;
(void) rtsctsDuration;
if (flags & (ATH9K_TXDESC_RTSENA | ATH9K_TXDESC_CTSENA)) {
ds_ctl0 = ads->ds_ctl0;
if (flags & ATH9K_TXDESC_RTSENA) {
ds_ctl0 &= ~AR_CTSEnable;
ds_ctl0 |= AR_RTSEnable;
} else {
ds_ctl0 &= ~AR_RTSEnable;
ds_ctl0 |= AR_CTSEnable;
}
ads->ds_ctl0 = ds_ctl0;
} else {
ads->ds_ctl0 =
(ads->ds_ctl0 & ~(AR_RTSEnable | AR_CTSEnable));
}
ads->ds_ctl2 = set11nTries(series, 0)
| set11nTries(series, 1)
| set11nTries(series, 2)
| set11nTries(series, 3)
| (durUpdateEn ? AR_DurUpdateEna : 0)
| SM(0, AR_BurstDur);
ads->ds_ctl3 = set11nRate(series, 0)
| set11nRate(series, 1)
| set11nRate(series, 2)
| set11nRate(series, 3);
ads->ds_ctl4 = set11nPktDurRTSCTS(series, 0)
| set11nPktDurRTSCTS(series, 1);
ads->ds_ctl5 = set11nPktDurRTSCTS(series, 2)
| set11nPktDurRTSCTS(series, 3);
ads->ds_ctl7 = set11nRateFlags(series, 0)
| set11nRateFlags(series, 1)
| set11nRateFlags(series, 2)
| set11nRateFlags(series, 3)
| SM(rtsctsRate, AR_RTSCTSRate);
last_ads->ds_ctl2 = ads->ds_ctl2;
last_ads->ds_ctl3 = ads->ds_ctl3;
}
void ath9k_hw_set11n_aggr_first(struct ath_hal *ah, struct ath_desc *ds,
u32 aggrLen)
{
struct ar5416_desc *ads = AR5416DESC(ds);
ads->ds_ctl1 |= (AR_IsAggr | AR_MoreAggr);
ads->ds_ctl6 &= ~AR_AggrLen;
ads->ds_ctl6 |= SM(aggrLen, AR_AggrLen);
}
void ath9k_hw_set11n_aggr_middle(struct ath_hal *ah, struct ath_desc *ds,
u32 numDelims)
{
struct ar5416_desc *ads = AR5416DESC(ds);
unsigned int ctl6;
ads->ds_ctl1 |= (AR_IsAggr | AR_MoreAggr);
ctl6 = ads->ds_ctl6;
ctl6 &= ~AR_PadDelim;
ctl6 |= SM(numDelims, AR_PadDelim);
ads->ds_ctl6 = ctl6;
}
void ath9k_hw_set11n_aggr_last(struct ath_hal *ah, struct ath_desc *ds)
{
struct ar5416_desc *ads = AR5416DESC(ds);
ads->ds_ctl1 |= AR_IsAggr;
ads->ds_ctl1 &= ~AR_MoreAggr;
ads->ds_ctl6 &= ~AR_PadDelim;
}
void ath9k_hw_clr11n_aggr(struct ath_hal *ah, struct ath_desc *ds)
{
struct ar5416_desc *ads = AR5416DESC(ds);
ads->ds_ctl1 &= (~AR_IsAggr & ~AR_MoreAggr);
}
void ath9k_hw_set11n_burstduration(struct ath_hal *ah, struct ath_desc *ds,
u32 burstDuration)
{
struct ar5416_desc *ads = AR5416DESC(ds);
ads->ds_ctl2 &= ~AR_BurstDur;
ads->ds_ctl2 |= SM(burstDuration, AR_BurstDur);
}
void ath9k_hw_set11n_virtualmorefrag(struct ath_hal *ah, struct ath_desc *ds,
u32 vmf)
{
struct ar5416_desc *ads = AR5416DESC(ds);
if (vmf)
ads->ds_ctl0 |= AR_VirtMoreFrag;
else
ads->ds_ctl0 &= ~AR_VirtMoreFrag;
}
void ath9k_hw_gettxintrtxqs(struct ath_hal *ah, u32 *txqs)
{
struct ath_hal_5416 *ahp = AH5416(ah);
*txqs &= ahp->ah_intrTxqs;
ahp->ah_intrTxqs &= ~(*txqs);
}
bool ath9k_hw_set_txq_props(struct ath_hal *ah, int q,
const struct ath9k_tx_queue_info *qinfo)
{
u32 cw;
struct ath_hal_5416 *ahp = AH5416(ah);
struct ath9k_hw_capabilities *pCap = &ah->ah_caps;
struct ath9k_tx_queue_info *qi;
if (q >= pCap->total_queues) {
DPRINTF(ah->ah_sc, ATH_DBG_QUEUE, "%s: invalid queue num %u\n",
__func__, q);
return false;
}
qi = &ahp->ah_txq[q];
if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) {
DPRINTF(ah->ah_sc, ATH_DBG_QUEUE, "%s: inactive queue\n",
__func__);
return false;
}
DPRINTF(ah->ah_sc, ATH_DBG_QUEUE, "%s: queue %p\n", __func__, qi);
qi->tqi_ver = qinfo->tqi_ver;
qi->tqi_subtype = qinfo->tqi_subtype;
qi->tqi_qflags = qinfo->tqi_qflags;
qi->tqi_priority = qinfo->tqi_priority;
if (qinfo->tqi_aifs != ATH9K_TXQ_USEDEFAULT)
qi->tqi_aifs = min(qinfo->tqi_aifs, 255U);
else
qi->tqi_aifs = INIT_AIFS;
if (qinfo->tqi_cwmin != ATH9K_TXQ_USEDEFAULT) {
cw = min(qinfo->tqi_cwmin, 1024U);
qi->tqi_cwmin = 1;
while (qi->tqi_cwmin < cw)
qi->tqi_cwmin = (qi->tqi_cwmin << 1) | 1;
} else
qi->tqi_cwmin = qinfo->tqi_cwmin;
if (qinfo->tqi_cwmax != ATH9K_TXQ_USEDEFAULT) {
cw = min(qinfo->tqi_cwmax, 1024U);
qi->tqi_cwmax = 1;
while (qi->tqi_cwmax < cw)
qi->tqi_cwmax = (qi->tqi_cwmax << 1) | 1;
} else
qi->tqi_cwmax = INIT_CWMAX;
if (qinfo->tqi_shretry != 0)
qi->tqi_shretry = min((u32) qinfo->tqi_shretry, 15U);
else
qi->tqi_shretry = INIT_SH_RETRY;
if (qinfo->tqi_lgretry != 0)
qi->tqi_lgretry = min((u32) qinfo->tqi_lgretry, 15U);
else
qi->tqi_lgretry = INIT_LG_RETRY;
qi->tqi_cbrPeriod = qinfo->tqi_cbrPeriod;
qi->tqi_cbrOverflowLimit = qinfo->tqi_cbrOverflowLimit;
qi->tqi_burstTime = qinfo->tqi_burstTime;
qi->tqi_readyTime = qinfo->tqi_readyTime;
switch (qinfo->tqi_subtype) {
case ATH9K_WME_UPSD:
if (qi->tqi_type == ATH9K_TX_QUEUE_DATA)
qi->tqi_intFlags = ATH9K_TXQ_USE_LOCKOUT_BKOFF_DIS;
break;
default:
break;
}
return true;
}
bool ath9k_hw_get_txq_props(struct ath_hal *ah, int q,
struct ath9k_tx_queue_info *qinfo)
{
struct ath_hal_5416 *ahp = AH5416(ah);
struct ath9k_hw_capabilities *pCap = &ah->ah_caps;
struct ath9k_tx_queue_info *qi;
if (q >= pCap->total_queues) {
DPRINTF(ah->ah_sc, ATH_DBG_QUEUE, "%s: invalid queue num %u\n",
__func__, q);
return false;
}
qi = &ahp->ah_txq[q];
if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) {
DPRINTF(ah->ah_sc, ATH_DBG_QUEUE, "%s: inactive queue\n",
__func__);
return false;
}
qinfo->tqi_qflags = qi->tqi_qflags;
qinfo->tqi_ver = qi->tqi_ver;
qinfo->tqi_subtype = qi->tqi_subtype;
qinfo->tqi_qflags = qi->tqi_qflags;
qinfo->tqi_priority = qi->tqi_priority;
qinfo->tqi_aifs = qi->tqi_aifs;
qinfo->tqi_cwmin = qi->tqi_cwmin;
qinfo->tqi_cwmax = qi->tqi_cwmax;
qinfo->tqi_shretry = qi->tqi_shretry;
qinfo->tqi_lgretry = qi->tqi_lgretry;
qinfo->tqi_cbrPeriod = qi->tqi_cbrPeriod;
qinfo->tqi_cbrOverflowLimit = qi->tqi_cbrOverflowLimit;
qinfo->tqi_burstTime = qi->tqi_burstTime;
qinfo->tqi_readyTime = qi->tqi_readyTime;
return true;
}
int ath9k_hw_setuptxqueue(struct ath_hal *ah, enum ath9k_tx_queue type,
const struct ath9k_tx_queue_info *qinfo)
{
struct ath_hal_5416 *ahp = AH5416(ah);
struct ath9k_tx_queue_info *qi;
struct ath9k_hw_capabilities *pCap = &ah->ah_caps;
int q;
switch (type) {
case ATH9K_TX_QUEUE_BEACON:
q = pCap->total_queues - 1;
break;
case ATH9K_TX_QUEUE_CAB:
q = pCap->total_queues - 2;
break;
case ATH9K_TX_QUEUE_PSPOLL:
q = 1;
break;
case ATH9K_TX_QUEUE_UAPSD:
q = pCap->total_queues - 3;
break;
case ATH9K_TX_QUEUE_DATA:
for (q = 0; q < pCap->total_queues; q++)
if (ahp->ah_txq[q].tqi_type ==
ATH9K_TX_QUEUE_INACTIVE)
break;
if (q == pCap->total_queues) {
DPRINTF(ah->ah_sc, ATH_DBG_QUEUE,
"%s: no available tx queue\n", __func__);
return -1;
}
break;
default:
DPRINTF(ah->ah_sc, ATH_DBG_QUEUE, "%s: bad tx queue type %u\n",
__func__, type);
return -1;
}
DPRINTF(ah->ah_sc, ATH_DBG_QUEUE, "%s: queue %u\n", __func__, q);
qi = &ahp->ah_txq[q];
if (qi->tqi_type != ATH9K_TX_QUEUE_INACTIVE) {
DPRINTF(ah->ah_sc, ATH_DBG_QUEUE,
"%s: tx queue %u already active\n", __func__, q);
return -1;
}
memset(qi, 0, sizeof(struct ath9k_tx_queue_info));
qi->tqi_type = type;
if (qinfo == NULL) {
qi->tqi_qflags =
TXQ_FLAG_TXOKINT_ENABLE
| TXQ_FLAG_TXERRINT_ENABLE
| TXQ_FLAG_TXDESCINT_ENABLE | TXQ_FLAG_TXURNINT_ENABLE;
qi->tqi_aifs = INIT_AIFS;
qi->tqi_cwmin = ATH9K_TXQ_USEDEFAULT;
qi->tqi_cwmax = INIT_CWMAX;
qi->tqi_shretry = INIT_SH_RETRY;
qi->tqi_lgretry = INIT_LG_RETRY;
qi->tqi_physCompBuf = 0;
} else {
qi->tqi_physCompBuf = qinfo->tqi_physCompBuf;
(void) ath9k_hw_set_txq_props(ah, q, qinfo);
}
return q;
}
bool ath9k_hw_releasetxqueue(struct ath_hal *ah, u32 q)
{
struct ath_hal_5416 *ahp = AH5416(ah);
struct ath9k_hw_capabilities *pCap = &ah->ah_caps;
struct ath9k_tx_queue_info *qi;
if (q >= pCap->total_queues) {
DPRINTF(ah->ah_sc, ATH_DBG_QUEUE, "%s: invalid queue num %u\n",
__func__, q);
return false;
}
qi = &ahp->ah_txq[q];
if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) {
DPRINTF(ah->ah_sc, ATH_DBG_QUEUE, "%s: inactive queue %u\n",
__func__, q);
return false;
}
DPRINTF(ah->ah_sc, ATH_DBG_QUEUE, "%s: release queue %u\n",
__func__, q);
qi->tqi_type = ATH9K_TX_QUEUE_INACTIVE;
ahp->ah_txOkInterruptMask &= ~(1 << q);
ahp->ah_txErrInterruptMask &= ~(1 << q);
ahp->ah_txDescInterruptMask &= ~(1 << q);
ahp->ah_txEolInterruptMask &= ~(1 << q);
ahp->ah_txUrnInterruptMask &= ~(1 << q);
ath9k_hw_set_txq_interrupts(ah, qi);
return true;
}
bool ath9k_hw_resettxqueue(struct ath_hal *ah, u32 q)
{
struct ath_hal_5416 *ahp = AH5416(ah);
struct ath9k_hw_capabilities *pCap = &ah->ah_caps;
struct ath9k_channel *chan = ah->ah_curchan;
struct ath9k_tx_queue_info *qi;
u32 cwMin, chanCwMin, value;
if (q >= pCap->total_queues) {
DPRINTF(ah->ah_sc, ATH_DBG_QUEUE, "%s: invalid queue num %u\n",
__func__, q);
return false;
}
qi = &ahp->ah_txq[q];
if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) {
DPRINTF(ah->ah_sc, ATH_DBG_QUEUE, "%s: inactive queue %u\n",
__func__, q);
return true;
}
DPRINTF(ah->ah_sc, ATH_DBG_QUEUE, "%s: reset queue %u\n", __func__, q);
if (qi->tqi_cwmin == ATH9K_TXQ_USEDEFAULT) {
if (chan && IS_CHAN_B(chan))
chanCwMin = INIT_CWMIN_11B;
else
chanCwMin = INIT_CWMIN;
for (cwMin = 1; cwMin < chanCwMin; cwMin = (cwMin << 1) | 1);
} else
cwMin = qi->tqi_cwmin;
REG_WRITE(ah, AR_DLCL_IFS(q),
SM(cwMin, AR_D_LCL_IFS_CWMIN) |
SM(qi->tqi_cwmax, AR_D_LCL_IFS_CWMAX) |
SM(qi->tqi_aifs, AR_D_LCL_IFS_AIFS));
REG_WRITE(ah, AR_DRETRY_LIMIT(q),
SM(INIT_SSH_RETRY, AR_D_RETRY_LIMIT_STA_SH) |
SM(INIT_SLG_RETRY, AR_D_RETRY_LIMIT_STA_LG) |
SM(qi->tqi_shretry, AR_D_RETRY_LIMIT_FR_SH));
REG_WRITE(ah, AR_QMISC(q), AR_Q_MISC_DCU_EARLY_TERM_REQ);
REG_WRITE(ah, AR_DMISC(q),
AR_D_MISC_CW_BKOFF_EN | AR_D_MISC_FRAG_WAIT_EN | 0x2);
if (qi->tqi_cbrPeriod) {
REG_WRITE(ah, AR_QCBRCFG(q),
SM(qi->tqi_cbrPeriod, AR_Q_CBRCFG_INTERVAL) |
SM(qi->tqi_cbrOverflowLimit, AR_Q_CBRCFG_OVF_THRESH));
REG_WRITE(ah, AR_QMISC(q),
REG_READ(ah, AR_QMISC(q)) | AR_Q_MISC_FSP_CBR |
(qi->tqi_cbrOverflowLimit ?
AR_Q_MISC_CBR_EXP_CNTR_LIMIT_EN : 0));
}
if (qi->tqi_readyTime && (qi->tqi_type != ATH9K_TX_QUEUE_CAB)) {
REG_WRITE(ah, AR_QRDYTIMECFG(q),
SM(qi->tqi_readyTime, AR_Q_RDYTIMECFG_DURATION) |
AR_Q_RDYTIMECFG_EN);
}
REG_WRITE(ah, AR_DCHNTIME(q),
SM(qi->tqi_burstTime, AR_D_CHNTIME_DUR) |
(qi->tqi_burstTime ? AR_D_CHNTIME_EN : 0));
if (qi->tqi_burstTime
&& (qi->tqi_qflags & TXQ_FLAG_RDYTIME_EXP_POLICY_ENABLE)) {
REG_WRITE(ah, AR_QMISC(q),
REG_READ(ah, AR_QMISC(q)) |
AR_Q_MISC_RDYTIME_EXP_POLICY);
}
if (qi->tqi_qflags & TXQ_FLAG_BACKOFF_DISABLE) {
REG_WRITE(ah, AR_DMISC(q),
REG_READ(ah, AR_DMISC(q)) |
AR_D_MISC_POST_FR_BKOFF_DIS);
}
if (qi->tqi_qflags & TXQ_FLAG_FRAG_BURST_BACKOFF_ENABLE) {
REG_WRITE(ah, AR_DMISC(q),
REG_READ(ah, AR_DMISC(q)) |
AR_D_MISC_FRAG_BKOFF_EN);
}
switch (qi->tqi_type) {
case ATH9K_TX_QUEUE_BEACON:
REG_WRITE(ah, AR_QMISC(q), REG_READ(ah, AR_QMISC(q))
| AR_Q_MISC_FSP_DBA_GATED
| AR_Q_MISC_BEACON_USE
| AR_Q_MISC_CBR_INCR_DIS1);
REG_WRITE(ah, AR_DMISC(q), REG_READ(ah, AR_DMISC(q))
| (AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL <<
AR_D_MISC_ARB_LOCKOUT_CNTRL_S)
| AR_D_MISC_BEACON_USE
| AR_D_MISC_POST_FR_BKOFF_DIS);
break;
case ATH9K_TX_QUEUE_CAB:
REG_WRITE(ah, AR_QMISC(q), REG_READ(ah, AR_QMISC(q))
| AR_Q_MISC_FSP_DBA_GATED
| AR_Q_MISC_CBR_INCR_DIS1
| AR_Q_MISC_CBR_INCR_DIS0);
value = (qi->tqi_readyTime -
(ah->ah_config.sw_beacon_response_time -
ah->ah_config.dma_beacon_response_time) -
ah->ah_config.additional_swba_backoff) * 1024;
REG_WRITE(ah, AR_QRDYTIMECFG(q),
value | AR_Q_RDYTIMECFG_EN);
REG_WRITE(ah, AR_DMISC(q), REG_READ(ah, AR_DMISC(q))
| (AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL <<
AR_D_MISC_ARB_LOCKOUT_CNTRL_S));
break;
case ATH9K_TX_QUEUE_PSPOLL:
REG_WRITE(ah, AR_QMISC(q),
REG_READ(ah, AR_QMISC(q)) | AR_Q_MISC_CBR_INCR_DIS1);
break;
case ATH9K_TX_QUEUE_UAPSD:
REG_WRITE(ah, AR_DMISC(q), REG_READ(ah, AR_DMISC(q)) |
AR_D_MISC_POST_FR_BKOFF_DIS);
break;
default:
break;
}
if (qi->tqi_intFlags & ATH9K_TXQ_USE_LOCKOUT_BKOFF_DIS) {
REG_WRITE(ah, AR_DMISC(q),
REG_READ(ah, AR_DMISC(q)) |
SM(AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL,
AR_D_MISC_ARB_LOCKOUT_CNTRL) |
AR_D_MISC_POST_FR_BKOFF_DIS);
}
if (qi->tqi_qflags & TXQ_FLAG_TXOKINT_ENABLE)
ahp->ah_txOkInterruptMask |= 1 << q;
else
ahp->ah_txOkInterruptMask &= ~(1 << q);
if (qi->tqi_qflags & TXQ_FLAG_TXERRINT_ENABLE)
ahp->ah_txErrInterruptMask |= 1 << q;
else
ahp->ah_txErrInterruptMask &= ~(1 << q);
if (qi->tqi_qflags & TXQ_FLAG_TXDESCINT_ENABLE)
ahp->ah_txDescInterruptMask |= 1 << q;
else
ahp->ah_txDescInterruptMask &= ~(1 << q);
if (qi->tqi_qflags & TXQ_FLAG_TXEOLINT_ENABLE)
ahp->ah_txEolInterruptMask |= 1 << q;
else
ahp->ah_txEolInterruptMask &= ~(1 << q);
if (qi->tqi_qflags & TXQ_FLAG_TXURNINT_ENABLE)
ahp->ah_txUrnInterruptMask |= 1 << q;
else
ahp->ah_txUrnInterruptMask &= ~(1 << q);
ath9k_hw_set_txq_interrupts(ah, qi);
return true;
}
int ath9k_hw_rxprocdesc(struct ath_hal *ah, struct ath_desc *ds,
u32 pa, struct ath_desc *nds, u64 tsf)
{
struct ar5416_desc ads;
struct ar5416_desc *adsp = AR5416DESC(ds);
u32 phyerr;
if ((adsp->ds_rxstatus8 & AR_RxDone) == 0)
return -EINPROGRESS;
ads.u.rx = adsp->u.rx;
ds->ds_rxstat.rs_status = 0;
ds->ds_rxstat.rs_flags = 0;
ds->ds_rxstat.rs_datalen = ads.ds_rxstatus1 & AR_DataLen;
ds->ds_rxstat.rs_tstamp = ads.AR_RcvTimestamp;
ds->ds_rxstat.rs_rssi = MS(ads.ds_rxstatus4, AR_RxRSSICombined);
ds->ds_rxstat.rs_rssi_ctl0 = MS(ads.ds_rxstatus0, AR_RxRSSIAnt00);
ds->ds_rxstat.rs_rssi_ctl1 = MS(ads.ds_rxstatus0, AR_RxRSSIAnt01);
ds->ds_rxstat.rs_rssi_ctl2 = MS(ads.ds_rxstatus0, AR_RxRSSIAnt02);
ds->ds_rxstat.rs_rssi_ext0 = MS(ads.ds_rxstatus4, AR_RxRSSIAnt10);
ds->ds_rxstat.rs_rssi_ext1 = MS(ads.ds_rxstatus4, AR_RxRSSIAnt11);
ds->ds_rxstat.rs_rssi_ext2 = MS(ads.ds_rxstatus4, AR_RxRSSIAnt12);
if (ads.ds_rxstatus8 & AR_RxKeyIdxValid)
ds->ds_rxstat.rs_keyix = MS(ads.ds_rxstatus8, AR_KeyIdx);
else
ds->ds_rxstat.rs_keyix = ATH9K_RXKEYIX_INVALID;
ds->ds_rxstat.rs_rate = RXSTATUS_RATE(ah, (&ads));
ds->ds_rxstat.rs_more = (ads.ds_rxstatus1 & AR_RxMore) ? 1 : 0;
ds->ds_rxstat.rs_isaggr = (ads.ds_rxstatus8 & AR_RxAggr) ? 1 : 0;
ds->ds_rxstat.rs_moreaggr =
(ads.ds_rxstatus8 & AR_RxMoreAggr) ? 1 : 0;
ds->ds_rxstat.rs_antenna = MS(ads.ds_rxstatus3, AR_RxAntenna);
ds->ds_rxstat.rs_flags =
(ads.ds_rxstatus3 & AR_GI) ? ATH9K_RX_GI : 0;
ds->ds_rxstat.rs_flags |=
(ads.ds_rxstatus3 & AR_2040) ? ATH9K_RX_2040 : 0;
if (ads.ds_rxstatus8 & AR_PreDelimCRCErr)
ds->ds_rxstat.rs_flags |= ATH9K_RX_DELIM_CRC_PRE;
if (ads.ds_rxstatus8 & AR_PostDelimCRCErr)
ds->ds_rxstat.rs_flags |= ATH9K_RX_DELIM_CRC_POST;
if (ads.ds_rxstatus8 & AR_DecryptBusyErr)
ds->ds_rxstat.rs_flags |= ATH9K_RX_DECRYPT_BUSY;
if ((ads.ds_rxstatus8 & AR_RxFrameOK) == 0) {
if (ads.ds_rxstatus8 & AR_CRCErr)
ds->ds_rxstat.rs_status |= ATH9K_RXERR_CRC;
else if (ads.ds_rxstatus8 & AR_PHYErr) {
ds->ds_rxstat.rs_status |= ATH9K_RXERR_PHY;
phyerr = MS(ads.ds_rxstatus8, AR_PHYErrCode);
ds->ds_rxstat.rs_phyerr = phyerr;
} else if (ads.ds_rxstatus8 & AR_DecryptCRCErr)
ds->ds_rxstat.rs_status |= ATH9K_RXERR_DECRYPT;
else if (ads.ds_rxstatus8 & AR_MichaelErr)
ds->ds_rxstat.rs_status |= ATH9K_RXERR_MIC;
}
return 0;
}
bool ath9k_hw_setuprxdesc(struct ath_hal *ah, struct ath_desc *ds,
u32 size, u32 flags)
{
struct ar5416_desc *ads = AR5416DESC(ds);
struct ath9k_hw_capabilities *pCap = &ah->ah_caps;
ads->ds_ctl1 = size & AR_BufLen;
if (flags & ATH9K_RXDESC_INTREQ)
ads->ds_ctl1 |= AR_RxIntrReq;
ads->ds_rxstatus8 &= ~AR_RxDone;
if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP))
memset(&(ads->u), 0, sizeof(ads->u));
return true;
}
bool ath9k_hw_setrxabort(struct ath_hal *ah, bool set)
{
u32 reg;
if (set) {
REG_SET_BIT(ah, AR_DIAG_SW,
(AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
if (!ath9k_hw_wait(ah, AR_OBS_BUS_1, AR_OBS_BUS_1_RX_STATE, 0)) {
REG_CLR_BIT(ah, AR_DIAG_SW,
(AR_DIAG_RX_DIS |
AR_DIAG_RX_ABORT));
reg = REG_READ(ah, AR_OBS_BUS_1);
DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
"%s: rx failed to go idle in 10 ms RXSM=0x%x\n",
__func__, reg);
return false;
}
} else {
REG_CLR_BIT(ah, AR_DIAG_SW,
(AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
}
return true;
}
void ath9k_hw_putrxbuf(struct ath_hal *ah, u32 rxdp)
{
REG_WRITE(ah, AR_RXDP, rxdp);
}
void ath9k_hw_rxena(struct ath_hal *ah)
{
REG_WRITE(ah, AR_CR, AR_CR_RXE);
}
void ath9k_hw_startpcureceive(struct ath_hal *ah)
{
REG_CLR_BIT(ah, AR_DIAG_SW,
(AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
ath9k_enable_mib_counters(ah);
ath9k_ani_reset(ah);
}
void ath9k_hw_stoppcurecv(struct ath_hal *ah)
{
REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_DIS);
ath9k_hw_disable_mib_counters(ah);
}
bool ath9k_hw_stopdmarecv(struct ath_hal *ah)
{
REG_WRITE(ah, AR_CR, AR_CR_RXD);
if (!ath9k_hw_wait(ah, AR_CR, AR_CR_RXE, 0)) {
DPRINTF(ah->ah_sc, ATH_DBG_QUEUE,
"%s: dma failed to stop in 10ms\n"
"AR_CR=0x%08x\nAR_DIAG_SW=0x%08x\n",
__func__,
REG_READ(ah, AR_CR), REG_READ(ah, AR_DIAG_SW));
return false;
} else {
return true;
}
}