1892 lines
58 KiB
C
1892 lines
58 KiB
C
/*
|
|
Copyright (C) 2004 - 2007 rt2x00 SourceForge Project
|
|
<http://rt2x00.serialmonkey.com>
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the
|
|
Free Software Foundation, Inc.,
|
|
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|
*/
|
|
|
|
/*
|
|
Module: rt2500usb
|
|
Abstract: rt2500usb device specific routines.
|
|
Supported chipsets: RT2570.
|
|
*/
|
|
|
|
#include <linux/delay.h>
|
|
#include <linux/etherdevice.h>
|
|
#include <linux/init.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/usb.h>
|
|
|
|
#include "rt2x00.h"
|
|
#include "rt2x00usb.h"
|
|
#include "rt2500usb.h"
|
|
|
|
/*
|
|
* Register access.
|
|
* All access to the CSR registers will go through the methods
|
|
* rt2500usb_register_read and rt2500usb_register_write.
|
|
* BBP and RF register require indirect register access,
|
|
* and use the CSR registers BBPCSR and RFCSR to achieve this.
|
|
* These indirect registers work with busy bits,
|
|
* and we will try maximal REGISTER_BUSY_COUNT times to access
|
|
* the register while taking a REGISTER_BUSY_DELAY us delay
|
|
* between each attampt. When the busy bit is still set at that time,
|
|
* the access attempt is considered to have failed,
|
|
* and we will print an error.
|
|
* If the usb_cache_mutex is already held then the _lock variants must
|
|
* be used instead.
|
|
*/
|
|
static inline void rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
|
|
const unsigned int offset,
|
|
u16 *value)
|
|
{
|
|
__le16 reg;
|
|
rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
|
|
USB_VENDOR_REQUEST_IN, offset,
|
|
®, sizeof(u16), REGISTER_TIMEOUT);
|
|
*value = le16_to_cpu(reg);
|
|
}
|
|
|
|
static inline void rt2500usb_register_read_lock(struct rt2x00_dev *rt2x00dev,
|
|
const unsigned int offset,
|
|
u16 *value)
|
|
{
|
|
__le16 reg;
|
|
rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_READ,
|
|
USB_VENDOR_REQUEST_IN, offset,
|
|
®, sizeof(u16), REGISTER_TIMEOUT);
|
|
*value = le16_to_cpu(reg);
|
|
}
|
|
|
|
static inline void rt2500usb_register_multiread(struct rt2x00_dev *rt2x00dev,
|
|
const unsigned int offset,
|
|
void *value, const u16 length)
|
|
{
|
|
int timeout = REGISTER_TIMEOUT * (length / sizeof(u16));
|
|
rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
|
|
USB_VENDOR_REQUEST_IN, offset,
|
|
value, length, timeout);
|
|
}
|
|
|
|
static inline void rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
|
|
const unsigned int offset,
|
|
u16 value)
|
|
{
|
|
__le16 reg = cpu_to_le16(value);
|
|
rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
|
|
USB_VENDOR_REQUEST_OUT, offset,
|
|
®, sizeof(u16), REGISTER_TIMEOUT);
|
|
}
|
|
|
|
static inline void rt2500usb_register_write_lock(struct rt2x00_dev *rt2x00dev,
|
|
const unsigned int offset,
|
|
u16 value)
|
|
{
|
|
__le16 reg = cpu_to_le16(value);
|
|
rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_WRITE,
|
|
USB_VENDOR_REQUEST_OUT, offset,
|
|
®, sizeof(u16), REGISTER_TIMEOUT);
|
|
}
|
|
|
|
static inline void rt2500usb_register_multiwrite(struct rt2x00_dev *rt2x00dev,
|
|
const unsigned int offset,
|
|
void *value, const u16 length)
|
|
{
|
|
int timeout = REGISTER_TIMEOUT * (length / sizeof(u16));
|
|
rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
|
|
USB_VENDOR_REQUEST_OUT, offset,
|
|
value, length, timeout);
|
|
}
|
|
|
|
static u16 rt2500usb_bbp_check(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
u16 reg;
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
|
|
rt2500usb_register_read_lock(rt2x00dev, PHY_CSR8, ®);
|
|
if (!rt2x00_get_field16(reg, PHY_CSR8_BUSY))
|
|
break;
|
|
udelay(REGISTER_BUSY_DELAY);
|
|
}
|
|
|
|
return reg;
|
|
}
|
|
|
|
static void rt2500usb_bbp_write(struct rt2x00_dev *rt2x00dev,
|
|
const unsigned int word, const u8 value)
|
|
{
|
|
u16 reg;
|
|
|
|
mutex_lock(&rt2x00dev->usb_cache_mutex);
|
|
|
|
/*
|
|
* Wait until the BBP becomes ready.
|
|
*/
|
|
reg = rt2500usb_bbp_check(rt2x00dev);
|
|
if (rt2x00_get_field16(reg, PHY_CSR8_BUSY)) {
|
|
ERROR(rt2x00dev, "PHY_CSR8 register busy. Write failed.\n");
|
|
mutex_unlock(&rt2x00dev->usb_cache_mutex);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Write the data into the BBP.
|
|
*/
|
|
reg = 0;
|
|
rt2x00_set_field16(®, PHY_CSR7_DATA, value);
|
|
rt2x00_set_field16(®, PHY_CSR7_REG_ID, word);
|
|
rt2x00_set_field16(®, PHY_CSR7_READ_CONTROL, 0);
|
|
|
|
rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
|
|
|
|
mutex_unlock(&rt2x00dev->usb_cache_mutex);
|
|
}
|
|
|
|
static void rt2500usb_bbp_read(struct rt2x00_dev *rt2x00dev,
|
|
const unsigned int word, u8 *value)
|
|
{
|
|
u16 reg;
|
|
|
|
mutex_lock(&rt2x00dev->usb_cache_mutex);
|
|
|
|
/*
|
|
* Wait until the BBP becomes ready.
|
|
*/
|
|
reg = rt2500usb_bbp_check(rt2x00dev);
|
|
if (rt2x00_get_field16(reg, PHY_CSR8_BUSY)) {
|
|
ERROR(rt2x00dev, "PHY_CSR8 register busy. Read failed.\n");
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Write the request into the BBP.
|
|
*/
|
|
reg = 0;
|
|
rt2x00_set_field16(®, PHY_CSR7_REG_ID, word);
|
|
rt2x00_set_field16(®, PHY_CSR7_READ_CONTROL, 1);
|
|
|
|
rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
|
|
|
|
/*
|
|
* Wait until the BBP becomes ready.
|
|
*/
|
|
reg = rt2500usb_bbp_check(rt2x00dev);
|
|
if (rt2x00_get_field16(reg, PHY_CSR8_BUSY)) {
|
|
ERROR(rt2x00dev, "PHY_CSR8 register busy. Read failed.\n");
|
|
*value = 0xff;
|
|
mutex_unlock(&rt2x00dev->usb_cache_mutex);
|
|
return;
|
|
}
|
|
|
|
rt2500usb_register_read_lock(rt2x00dev, PHY_CSR7, ®);
|
|
*value = rt2x00_get_field16(reg, PHY_CSR7_DATA);
|
|
|
|
mutex_unlock(&rt2x00dev->usb_cache_mutex);
|
|
}
|
|
|
|
static void rt2500usb_rf_write(struct rt2x00_dev *rt2x00dev,
|
|
const unsigned int word, const u32 value)
|
|
{
|
|
u16 reg;
|
|
unsigned int i;
|
|
|
|
if (!word)
|
|
return;
|
|
|
|
mutex_lock(&rt2x00dev->usb_cache_mutex);
|
|
|
|
for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
|
|
rt2500usb_register_read_lock(rt2x00dev, PHY_CSR10, ®);
|
|
if (!rt2x00_get_field16(reg, PHY_CSR10_RF_BUSY))
|
|
goto rf_write;
|
|
udelay(REGISTER_BUSY_DELAY);
|
|
}
|
|
|
|
mutex_unlock(&rt2x00dev->usb_cache_mutex);
|
|
ERROR(rt2x00dev, "PHY_CSR10 register busy. Write failed.\n");
|
|
return;
|
|
|
|
rf_write:
|
|
reg = 0;
|
|
rt2x00_set_field16(®, PHY_CSR9_RF_VALUE, value);
|
|
rt2500usb_register_write_lock(rt2x00dev, PHY_CSR9, reg);
|
|
|
|
reg = 0;
|
|
rt2x00_set_field16(®, PHY_CSR10_RF_VALUE, value >> 16);
|
|
rt2x00_set_field16(®, PHY_CSR10_RF_NUMBER_OF_BITS, 20);
|
|
rt2x00_set_field16(®, PHY_CSR10_RF_IF_SELECT, 0);
|
|
rt2x00_set_field16(®, PHY_CSR10_RF_BUSY, 1);
|
|
|
|
rt2500usb_register_write_lock(rt2x00dev, PHY_CSR10, reg);
|
|
rt2x00_rf_write(rt2x00dev, word, value);
|
|
|
|
mutex_unlock(&rt2x00dev->usb_cache_mutex);
|
|
}
|
|
|
|
#ifdef CONFIG_RT2X00_LIB_DEBUGFS
|
|
#define CSR_OFFSET(__word) ( CSR_REG_BASE + ((__word) * sizeof(u16)) )
|
|
|
|
static void rt2500usb_read_csr(struct rt2x00_dev *rt2x00dev,
|
|
const unsigned int word, u32 *data)
|
|
{
|
|
rt2500usb_register_read(rt2x00dev, CSR_OFFSET(word), (u16 *) data);
|
|
}
|
|
|
|
static void rt2500usb_write_csr(struct rt2x00_dev *rt2x00dev,
|
|
const unsigned int word, u32 data)
|
|
{
|
|
rt2500usb_register_write(rt2x00dev, CSR_OFFSET(word), data);
|
|
}
|
|
|
|
static const struct rt2x00debug rt2500usb_rt2x00debug = {
|
|
.owner = THIS_MODULE,
|
|
.csr = {
|
|
.read = rt2500usb_read_csr,
|
|
.write = rt2500usb_write_csr,
|
|
.word_size = sizeof(u16),
|
|
.word_count = CSR_REG_SIZE / sizeof(u16),
|
|
},
|
|
.eeprom = {
|
|
.read = rt2x00_eeprom_read,
|
|
.write = rt2x00_eeprom_write,
|
|
.word_size = sizeof(u16),
|
|
.word_count = EEPROM_SIZE / sizeof(u16),
|
|
},
|
|
.bbp = {
|
|
.read = rt2500usb_bbp_read,
|
|
.write = rt2500usb_bbp_write,
|
|
.word_size = sizeof(u8),
|
|
.word_count = BBP_SIZE / sizeof(u8),
|
|
},
|
|
.rf = {
|
|
.read = rt2x00_rf_read,
|
|
.write = rt2500usb_rf_write,
|
|
.word_size = sizeof(u32),
|
|
.word_count = RF_SIZE / sizeof(u32),
|
|
},
|
|
};
|
|
#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
|
|
|
|
/*
|
|
* Configuration handlers.
|
|
*/
|
|
static void rt2500usb_config_mac_addr(struct rt2x00_dev *rt2x00dev,
|
|
__le32 *mac)
|
|
{
|
|
rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR2, mac,
|
|
(3 * sizeof(__le16)));
|
|
}
|
|
|
|
static void rt2500usb_config_bssid(struct rt2x00_dev *rt2x00dev,
|
|
__le32 *bssid)
|
|
{
|
|
rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR5, bssid,
|
|
(3 * sizeof(__le16)));
|
|
}
|
|
|
|
static void rt2500usb_config_type(struct rt2x00_dev *rt2x00dev, const int type,
|
|
const int tsf_sync)
|
|
{
|
|
u16 reg;
|
|
|
|
rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
|
|
|
|
/*
|
|
* Enable beacon config
|
|
*/
|
|
rt2500usb_register_read(rt2x00dev, TXRX_CSR20, ®);
|
|
rt2x00_set_field16(®, TXRX_CSR20_OFFSET,
|
|
(PREAMBLE + get_duration(IEEE80211_HEADER, 20)) >> 6);
|
|
if (type == IEEE80211_IF_TYPE_STA)
|
|
rt2x00_set_field16(®, TXRX_CSR20_BCN_EXPECT_WINDOW, 0);
|
|
else
|
|
rt2x00_set_field16(®, TXRX_CSR20_BCN_EXPECT_WINDOW, 2);
|
|
rt2500usb_register_write(rt2x00dev, TXRX_CSR20, reg);
|
|
|
|
/*
|
|
* Enable synchronisation.
|
|
*/
|
|
rt2500usb_register_read(rt2x00dev, TXRX_CSR18, ®);
|
|
rt2x00_set_field16(®, TXRX_CSR18_OFFSET, 0);
|
|
rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
|
|
|
|
rt2500usb_register_read(rt2x00dev, TXRX_CSR19, ®);
|
|
rt2x00_set_field16(®, TXRX_CSR19_TSF_COUNT, 1);
|
|
rt2x00_set_field16(®, TXRX_CSR19_TBCN, 1);
|
|
rt2x00_set_field16(®, TXRX_CSR19_BEACON_GEN, 0);
|
|
rt2x00_set_field16(®, TXRX_CSR19_TSF_SYNC, tsf_sync);
|
|
rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
|
|
}
|
|
|
|
static void rt2500usb_config_preamble(struct rt2x00_dev *rt2x00dev,
|
|
const int short_preamble,
|
|
const int ack_timeout,
|
|
const int ack_consume_time)
|
|
{
|
|
u16 reg;
|
|
|
|
/*
|
|
* When in atomic context, reschedule and let rt2x00lib
|
|
* call this function again.
|
|
*/
|
|
if (in_atomic()) {
|
|
queue_work(rt2x00dev->hw->workqueue, &rt2x00dev->config_work);
|
|
return;
|
|
}
|
|
|
|
rt2500usb_register_read(rt2x00dev, TXRX_CSR1, ®);
|
|
rt2x00_set_field16(®, TXRX_CSR1_ACK_TIMEOUT, ack_timeout);
|
|
rt2500usb_register_write(rt2x00dev, TXRX_CSR1, reg);
|
|
|
|
rt2500usb_register_read(rt2x00dev, TXRX_CSR10, ®);
|
|
rt2x00_set_field16(®, TXRX_CSR10_AUTORESPOND_PREAMBLE,
|
|
!!short_preamble);
|
|
rt2500usb_register_write(rt2x00dev, TXRX_CSR10, reg);
|
|
}
|
|
|
|
static void rt2500usb_config_phymode(struct rt2x00_dev *rt2x00dev,
|
|
const int phymode,
|
|
const int basic_rate_mask)
|
|
{
|
|
rt2500usb_register_write(rt2x00dev, TXRX_CSR11, basic_rate_mask);
|
|
|
|
if (phymode == HWMODE_B) {
|
|
rt2500usb_register_write(rt2x00dev, MAC_CSR11, 0x000b);
|
|
rt2500usb_register_write(rt2x00dev, MAC_CSR12, 0x0040);
|
|
} else {
|
|
rt2500usb_register_write(rt2x00dev, MAC_CSR11, 0x0005);
|
|
rt2500usb_register_write(rt2x00dev, MAC_CSR12, 0x016c);
|
|
}
|
|
}
|
|
|
|
static void rt2500usb_config_channel(struct rt2x00_dev *rt2x00dev,
|
|
struct rf_channel *rf, const int txpower)
|
|
{
|
|
/*
|
|
* Set TXpower.
|
|
*/
|
|
rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
|
|
|
|
/*
|
|
* For RT2525E we should first set the channel to half band higher.
|
|
*/
|
|
if (rt2x00_rf(&rt2x00dev->chip, RF2525E)) {
|
|
static const u32 vals[] = {
|
|
0x000008aa, 0x000008ae, 0x000008ae, 0x000008b2,
|
|
0x000008b2, 0x000008b6, 0x000008b6, 0x000008ba,
|
|
0x000008ba, 0x000008be, 0x000008b7, 0x00000902,
|
|
0x00000902, 0x00000906
|
|
};
|
|
|
|
rt2500usb_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
|
|
if (rf->rf4)
|
|
rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
|
|
}
|
|
|
|
rt2500usb_rf_write(rt2x00dev, 1, rf->rf1);
|
|
rt2500usb_rf_write(rt2x00dev, 2, rf->rf2);
|
|
rt2500usb_rf_write(rt2x00dev, 3, rf->rf3);
|
|
if (rf->rf4)
|
|
rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
|
|
}
|
|
|
|
static void rt2500usb_config_txpower(struct rt2x00_dev *rt2x00dev,
|
|
const int txpower)
|
|
{
|
|
u32 rf3;
|
|
|
|
rt2x00_rf_read(rt2x00dev, 3, &rf3);
|
|
rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
|
|
rt2500usb_rf_write(rt2x00dev, 3, rf3);
|
|
}
|
|
|
|
static void rt2500usb_config_antenna(struct rt2x00_dev *rt2x00dev,
|
|
struct antenna_setup *ant)
|
|
{
|
|
u8 r2;
|
|
u8 r14;
|
|
u16 csr5;
|
|
u16 csr6;
|
|
|
|
rt2500usb_bbp_read(rt2x00dev, 2, &r2);
|
|
rt2500usb_bbp_read(rt2x00dev, 14, &r14);
|
|
rt2500usb_register_read(rt2x00dev, PHY_CSR5, &csr5);
|
|
rt2500usb_register_read(rt2x00dev, PHY_CSR6, &csr6);
|
|
|
|
/*
|
|
* Configure the TX antenna.
|
|
*/
|
|
switch (ant->tx) {
|
|
case ANTENNA_HW_DIVERSITY:
|
|
rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 1);
|
|
rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 1);
|
|
rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 1);
|
|
break;
|
|
case ANTENNA_A:
|
|
rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
|
|
rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 0);
|
|
rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 0);
|
|
break;
|
|
case ANTENNA_SW_DIVERSITY:
|
|
/*
|
|
* NOTE: We should never come here because rt2x00lib is
|
|
* supposed to catch this and send us the correct antenna
|
|
* explicitely. However we are nog going to bug about this.
|
|
* Instead, just default to antenna B.
|
|
*/
|
|
case ANTENNA_B:
|
|
rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
|
|
rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 2);
|
|
rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 2);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Configure the RX antenna.
|
|
*/
|
|
switch (ant->rx) {
|
|
case ANTENNA_HW_DIVERSITY:
|
|
rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 1);
|
|
break;
|
|
case ANTENNA_A:
|
|
rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
|
|
break;
|
|
case ANTENNA_SW_DIVERSITY:
|
|
/*
|
|
* NOTE: We should never come here because rt2x00lib is
|
|
* supposed to catch this and send us the correct antenna
|
|
* explicitely. However we are nog going to bug about this.
|
|
* Instead, just default to antenna B.
|
|
*/
|
|
case ANTENNA_B:
|
|
rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* RT2525E and RT5222 need to flip TX I/Q
|
|
*/
|
|
if (rt2x00_rf(&rt2x00dev->chip, RF2525E) ||
|
|
rt2x00_rf(&rt2x00dev->chip, RF5222)) {
|
|
rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
|
|
rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 1);
|
|
rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 1);
|
|
|
|
/*
|
|
* RT2525E does not need RX I/Q Flip.
|
|
*/
|
|
if (rt2x00_rf(&rt2x00dev->chip, RF2525E))
|
|
rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
|
|
} else {
|
|
rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 0);
|
|
rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 0);
|
|
}
|
|
|
|
rt2500usb_bbp_write(rt2x00dev, 2, r2);
|
|
rt2500usb_bbp_write(rt2x00dev, 14, r14);
|
|
rt2500usb_register_write(rt2x00dev, PHY_CSR5, csr5);
|
|
rt2500usb_register_write(rt2x00dev, PHY_CSR6, csr6);
|
|
}
|
|
|
|
static void rt2500usb_config_duration(struct rt2x00_dev *rt2x00dev,
|
|
struct rt2x00lib_conf *libconf)
|
|
{
|
|
u16 reg;
|
|
|
|
rt2500usb_register_write(rt2x00dev, MAC_CSR10, libconf->slot_time);
|
|
|
|
rt2500usb_register_read(rt2x00dev, TXRX_CSR18, ®);
|
|
rt2x00_set_field16(®, TXRX_CSR18_INTERVAL,
|
|
libconf->conf->beacon_int * 4);
|
|
rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
|
|
}
|
|
|
|
static void rt2500usb_config(struct rt2x00_dev *rt2x00dev,
|
|
const unsigned int flags,
|
|
struct rt2x00lib_conf *libconf)
|
|
{
|
|
if (flags & CONFIG_UPDATE_PHYMODE)
|
|
rt2500usb_config_phymode(rt2x00dev, libconf->phymode,
|
|
libconf->basic_rates);
|
|
if (flags & CONFIG_UPDATE_CHANNEL)
|
|
rt2500usb_config_channel(rt2x00dev, &libconf->rf,
|
|
libconf->conf->power_level);
|
|
if ((flags & CONFIG_UPDATE_TXPOWER) && !(flags & CONFIG_UPDATE_CHANNEL))
|
|
rt2500usb_config_txpower(rt2x00dev,
|
|
libconf->conf->power_level);
|
|
if (flags & CONFIG_UPDATE_ANTENNA)
|
|
rt2500usb_config_antenna(rt2x00dev, &libconf->ant);
|
|
if (flags & (CONFIG_UPDATE_SLOT_TIME | CONFIG_UPDATE_BEACON_INT))
|
|
rt2500usb_config_duration(rt2x00dev, libconf);
|
|
}
|
|
|
|
/*
|
|
* LED functions.
|
|
*/
|
|
static void rt2500usb_enable_led(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
u16 reg;
|
|
|
|
rt2500usb_register_read(rt2x00dev, MAC_CSR21, ®);
|
|
rt2x00_set_field16(®, MAC_CSR21_ON_PERIOD, 70);
|
|
rt2x00_set_field16(®, MAC_CSR21_OFF_PERIOD, 30);
|
|
rt2500usb_register_write(rt2x00dev, MAC_CSR21, reg);
|
|
|
|
rt2500usb_register_read(rt2x00dev, MAC_CSR20, ®);
|
|
rt2x00_set_field16(®, MAC_CSR20_LINK,
|
|
(rt2x00dev->led_mode != LED_MODE_ASUS));
|
|
rt2x00_set_field16(®, MAC_CSR20_ACTIVITY,
|
|
(rt2x00dev->led_mode != LED_MODE_TXRX_ACTIVITY));
|
|
rt2500usb_register_write(rt2x00dev, MAC_CSR20, reg);
|
|
}
|
|
|
|
static void rt2500usb_disable_led(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
u16 reg;
|
|
|
|
rt2500usb_register_read(rt2x00dev, MAC_CSR20, ®);
|
|
rt2x00_set_field16(®, MAC_CSR20_LINK, 0);
|
|
rt2x00_set_field16(®, MAC_CSR20_ACTIVITY, 0);
|
|
rt2500usb_register_write(rt2x00dev, MAC_CSR20, reg);
|
|
}
|
|
|
|
/*
|
|
* Link tuning
|
|
*/
|
|
static void rt2500usb_link_stats(struct rt2x00_dev *rt2x00dev,
|
|
struct link_qual *qual)
|
|
{
|
|
u16 reg;
|
|
|
|
/*
|
|
* Update FCS error count from register.
|
|
*/
|
|
rt2500usb_register_read(rt2x00dev, STA_CSR0, ®);
|
|
qual->rx_failed = rt2x00_get_field16(reg, STA_CSR0_FCS_ERROR);
|
|
|
|
/*
|
|
* Update False CCA count from register.
|
|
*/
|
|
rt2500usb_register_read(rt2x00dev, STA_CSR3, ®);
|
|
qual->false_cca = rt2x00_get_field16(reg, STA_CSR3_FALSE_CCA_ERROR);
|
|
}
|
|
|
|
static void rt2500usb_reset_tuner(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
u16 eeprom;
|
|
u16 value;
|
|
|
|
rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &eeprom);
|
|
value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R24_LOW);
|
|
rt2500usb_bbp_write(rt2x00dev, 24, value);
|
|
|
|
rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &eeprom);
|
|
value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R25_LOW);
|
|
rt2500usb_bbp_write(rt2x00dev, 25, value);
|
|
|
|
rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &eeprom);
|
|
value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R61_LOW);
|
|
rt2500usb_bbp_write(rt2x00dev, 61, value);
|
|
|
|
rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &eeprom);
|
|
value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_VGCUPPER);
|
|
rt2500usb_bbp_write(rt2x00dev, 17, value);
|
|
|
|
rt2x00dev->link.vgc_level = value;
|
|
}
|
|
|
|
static void rt2500usb_link_tuner(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
int rssi = rt2x00_get_link_rssi(&rt2x00dev->link);
|
|
u16 bbp_thresh;
|
|
u16 vgc_bound;
|
|
u16 sens;
|
|
u16 r24;
|
|
u16 r25;
|
|
u16 r61;
|
|
u16 r17_sens;
|
|
u8 r17;
|
|
u8 up_bound;
|
|
u8 low_bound;
|
|
|
|
/*
|
|
* Determine the BBP tuning threshold and correctly
|
|
* set BBP 24, 25 and 61.
|
|
*/
|
|
rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE, &bbp_thresh);
|
|
bbp_thresh = rt2x00_get_field16(bbp_thresh, EEPROM_BBPTUNE_THRESHOLD);
|
|
|
|
rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &r24);
|
|
rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &r25);
|
|
rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &r61);
|
|
|
|
if ((rssi + bbp_thresh) > 0) {
|
|
r24 = rt2x00_get_field16(r24, EEPROM_BBPTUNE_R24_HIGH);
|
|
r25 = rt2x00_get_field16(r25, EEPROM_BBPTUNE_R25_HIGH);
|
|
r61 = rt2x00_get_field16(r61, EEPROM_BBPTUNE_R61_HIGH);
|
|
} else {
|
|
r24 = rt2x00_get_field16(r24, EEPROM_BBPTUNE_R24_LOW);
|
|
r25 = rt2x00_get_field16(r25, EEPROM_BBPTUNE_R25_LOW);
|
|
r61 = rt2x00_get_field16(r61, EEPROM_BBPTUNE_R61_LOW);
|
|
}
|
|
|
|
rt2500usb_bbp_write(rt2x00dev, 24, r24);
|
|
rt2500usb_bbp_write(rt2x00dev, 25, r25);
|
|
rt2500usb_bbp_write(rt2x00dev, 61, r61);
|
|
|
|
/*
|
|
* Read current r17 value, as well as the sensitivity values
|
|
* for the r17 register.
|
|
*/
|
|
rt2500usb_bbp_read(rt2x00dev, 17, &r17);
|
|
rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R17, &r17_sens);
|
|
|
|
/*
|
|
* A too low RSSI will cause too much false CCA which will
|
|
* then corrupt the R17 tuning. To remidy this the tuning should
|
|
* be stopped (While making sure the R17 value will not exceed limits)
|
|
*/
|
|
if (rssi >= -40) {
|
|
if (r17 != 0x60)
|
|
rt2500usb_bbp_write(rt2x00dev, 17, 0x60);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Special big-R17 for short distance
|
|
*/
|
|
if (rssi >= -58) {
|
|
sens = rt2x00_get_field16(r17_sens, EEPROM_BBPTUNE_R17_LOW);
|
|
if (r17 != sens)
|
|
rt2500usb_bbp_write(rt2x00dev, 17, sens);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Special mid-R17 for middle distance
|
|
*/
|
|
if (rssi >= -74) {
|
|
sens = rt2x00_get_field16(r17_sens, EEPROM_BBPTUNE_R17_HIGH);
|
|
if (r17 != sens)
|
|
rt2500usb_bbp_write(rt2x00dev, 17, sens);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Leave short or middle distance condition, restore r17
|
|
* to the dynamic tuning range.
|
|
*/
|
|
rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &vgc_bound);
|
|
vgc_bound = rt2x00_get_field16(vgc_bound, EEPROM_BBPTUNE_VGCUPPER);
|
|
|
|
low_bound = 0x32;
|
|
if (rssi >= -77)
|
|
up_bound = vgc_bound;
|
|
else
|
|
up_bound = vgc_bound - (-77 - rssi);
|
|
|
|
if (up_bound < low_bound)
|
|
up_bound = low_bound;
|
|
|
|
if (r17 > up_bound) {
|
|
rt2500usb_bbp_write(rt2x00dev, 17, up_bound);
|
|
rt2x00dev->link.vgc_level = up_bound;
|
|
} else if (rt2x00dev->link.qual.false_cca > 512 && r17 < up_bound) {
|
|
rt2500usb_bbp_write(rt2x00dev, 17, ++r17);
|
|
rt2x00dev->link.vgc_level = r17;
|
|
} else if (rt2x00dev->link.qual.false_cca < 100 && r17 > low_bound) {
|
|
rt2500usb_bbp_write(rt2x00dev, 17, --r17);
|
|
rt2x00dev->link.vgc_level = r17;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Initialization functions.
|
|
*/
|
|
static int rt2500usb_init_registers(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
u16 reg;
|
|
|
|
rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0x0001,
|
|
USB_MODE_TEST, REGISTER_TIMEOUT);
|
|
rt2x00usb_vendor_request_sw(rt2x00dev, USB_SINGLE_WRITE, 0x0308,
|
|
0x00f0, REGISTER_TIMEOUT);
|
|
|
|
rt2500usb_register_read(rt2x00dev, TXRX_CSR2, ®);
|
|
rt2x00_set_field16(®, TXRX_CSR2_DISABLE_RX, 1);
|
|
rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
|
|
|
|
rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x1111);
|
|
rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x1e11);
|
|
|
|
rt2500usb_register_read(rt2x00dev, MAC_CSR1, ®);
|
|
rt2x00_set_field16(®, MAC_CSR1_SOFT_RESET, 1);
|
|
rt2x00_set_field16(®, MAC_CSR1_BBP_RESET, 1);
|
|
rt2x00_set_field16(®, MAC_CSR1_HOST_READY, 0);
|
|
rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
|
|
|
|
rt2500usb_register_read(rt2x00dev, MAC_CSR1, ®);
|
|
rt2x00_set_field16(®, MAC_CSR1_SOFT_RESET, 0);
|
|
rt2x00_set_field16(®, MAC_CSR1_BBP_RESET, 0);
|
|
rt2x00_set_field16(®, MAC_CSR1_HOST_READY, 0);
|
|
rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
|
|
|
|
rt2500usb_register_read(rt2x00dev, TXRX_CSR5, ®);
|
|
rt2x00_set_field16(®, TXRX_CSR5_BBP_ID0, 13);
|
|
rt2x00_set_field16(®, TXRX_CSR5_BBP_ID0_VALID, 1);
|
|
rt2x00_set_field16(®, TXRX_CSR5_BBP_ID1, 12);
|
|
rt2x00_set_field16(®, TXRX_CSR5_BBP_ID1_VALID, 1);
|
|
rt2500usb_register_write(rt2x00dev, TXRX_CSR5, reg);
|
|
|
|
rt2500usb_register_read(rt2x00dev, TXRX_CSR6, ®);
|
|
rt2x00_set_field16(®, TXRX_CSR6_BBP_ID0, 10);
|
|
rt2x00_set_field16(®, TXRX_CSR6_BBP_ID0_VALID, 1);
|
|
rt2x00_set_field16(®, TXRX_CSR6_BBP_ID1, 11);
|
|
rt2x00_set_field16(®, TXRX_CSR6_BBP_ID1_VALID, 1);
|
|
rt2500usb_register_write(rt2x00dev, TXRX_CSR6, reg);
|
|
|
|
rt2500usb_register_read(rt2x00dev, TXRX_CSR7, ®);
|
|
rt2x00_set_field16(®, TXRX_CSR7_BBP_ID0, 7);
|
|
rt2x00_set_field16(®, TXRX_CSR7_BBP_ID0_VALID, 1);
|
|
rt2x00_set_field16(®, TXRX_CSR7_BBP_ID1, 6);
|
|
rt2x00_set_field16(®, TXRX_CSR7_BBP_ID1_VALID, 1);
|
|
rt2500usb_register_write(rt2x00dev, TXRX_CSR7, reg);
|
|
|
|
rt2500usb_register_read(rt2x00dev, TXRX_CSR8, ®);
|
|
rt2x00_set_field16(®, TXRX_CSR8_BBP_ID0, 5);
|
|
rt2x00_set_field16(®, TXRX_CSR8_BBP_ID0_VALID, 1);
|
|
rt2x00_set_field16(®, TXRX_CSR8_BBP_ID1, 0);
|
|
rt2x00_set_field16(®, TXRX_CSR8_BBP_ID1_VALID, 0);
|
|
rt2500usb_register_write(rt2x00dev, TXRX_CSR8, reg);
|
|
|
|
rt2500usb_register_write(rt2x00dev, TXRX_CSR21, 0xe78f);
|
|
rt2500usb_register_write(rt2x00dev, MAC_CSR9, 0xff1d);
|
|
|
|
if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
|
|
return -EBUSY;
|
|
|
|
rt2500usb_register_read(rt2x00dev, MAC_CSR1, ®);
|
|
rt2x00_set_field16(®, MAC_CSR1_SOFT_RESET, 0);
|
|
rt2x00_set_field16(®, MAC_CSR1_BBP_RESET, 0);
|
|
rt2x00_set_field16(®, MAC_CSR1_HOST_READY, 1);
|
|
rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
|
|
|
|
if (rt2x00_rev(&rt2x00dev->chip) >= RT2570_VERSION_C) {
|
|
rt2500usb_register_read(rt2x00dev, PHY_CSR2, ®);
|
|
rt2x00_set_field16(®, PHY_CSR2_LNA, 0);
|
|
} else {
|
|
reg = 0;
|
|
rt2x00_set_field16(®, PHY_CSR2_LNA, 1);
|
|
rt2x00_set_field16(®, PHY_CSR2_LNA_MODE, 3);
|
|
}
|
|
rt2500usb_register_write(rt2x00dev, PHY_CSR2, reg);
|
|
|
|
rt2500usb_register_write(rt2x00dev, MAC_CSR11, 0x0002);
|
|
rt2500usb_register_write(rt2x00dev, MAC_CSR22, 0x0053);
|
|
rt2500usb_register_write(rt2x00dev, MAC_CSR15, 0x01ee);
|
|
rt2500usb_register_write(rt2x00dev, MAC_CSR16, 0x0000);
|
|
|
|
rt2500usb_register_read(rt2x00dev, MAC_CSR8, ®);
|
|
rt2x00_set_field16(®, MAC_CSR8_MAX_FRAME_UNIT,
|
|
rt2x00dev->rx->data_size);
|
|
rt2500usb_register_write(rt2x00dev, MAC_CSR8, reg);
|
|
|
|
rt2500usb_register_read(rt2x00dev, TXRX_CSR0, ®);
|
|
rt2x00_set_field16(®, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
|
|
rt2x00_set_field16(®, TXRX_CSR0_KEY_ID, 0xff);
|
|
rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
|
|
|
|
rt2500usb_register_read(rt2x00dev, MAC_CSR18, ®);
|
|
rt2x00_set_field16(®, MAC_CSR18_DELAY_AFTER_BEACON, 90);
|
|
rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
|
|
|
|
rt2500usb_register_read(rt2x00dev, PHY_CSR4, ®);
|
|
rt2x00_set_field16(®, PHY_CSR4_LOW_RF_LE, 1);
|
|
rt2500usb_register_write(rt2x00dev, PHY_CSR4, reg);
|
|
|
|
rt2500usb_register_read(rt2x00dev, TXRX_CSR1, ®);
|
|
rt2x00_set_field16(®, TXRX_CSR1_AUTO_SEQUENCE, 1);
|
|
rt2500usb_register_write(rt2x00dev, TXRX_CSR1, reg);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int rt2500usb_init_bbp(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
unsigned int i;
|
|
u16 eeprom;
|
|
u8 value;
|
|
u8 reg_id;
|
|
|
|
for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
|
|
rt2500usb_bbp_read(rt2x00dev, 0, &value);
|
|
if ((value != 0xff) && (value != 0x00))
|
|
goto continue_csr_init;
|
|
NOTICE(rt2x00dev, "Waiting for BBP register.\n");
|
|
udelay(REGISTER_BUSY_DELAY);
|
|
}
|
|
|
|
ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
|
|
return -EACCES;
|
|
|
|
continue_csr_init:
|
|
rt2500usb_bbp_write(rt2x00dev, 3, 0x02);
|
|
rt2500usb_bbp_write(rt2x00dev, 4, 0x19);
|
|
rt2500usb_bbp_write(rt2x00dev, 14, 0x1c);
|
|
rt2500usb_bbp_write(rt2x00dev, 15, 0x30);
|
|
rt2500usb_bbp_write(rt2x00dev, 16, 0xac);
|
|
rt2500usb_bbp_write(rt2x00dev, 18, 0x18);
|
|
rt2500usb_bbp_write(rt2x00dev, 19, 0xff);
|
|
rt2500usb_bbp_write(rt2x00dev, 20, 0x1e);
|
|
rt2500usb_bbp_write(rt2x00dev, 21, 0x08);
|
|
rt2500usb_bbp_write(rt2x00dev, 22, 0x08);
|
|
rt2500usb_bbp_write(rt2x00dev, 23, 0x08);
|
|
rt2500usb_bbp_write(rt2x00dev, 24, 0x80);
|
|
rt2500usb_bbp_write(rt2x00dev, 25, 0x50);
|
|
rt2500usb_bbp_write(rt2x00dev, 26, 0x08);
|
|
rt2500usb_bbp_write(rt2x00dev, 27, 0x23);
|
|
rt2500usb_bbp_write(rt2x00dev, 30, 0x10);
|
|
rt2500usb_bbp_write(rt2x00dev, 31, 0x2b);
|
|
rt2500usb_bbp_write(rt2x00dev, 32, 0xb9);
|
|
rt2500usb_bbp_write(rt2x00dev, 34, 0x12);
|
|
rt2500usb_bbp_write(rt2x00dev, 35, 0x50);
|
|
rt2500usb_bbp_write(rt2x00dev, 39, 0xc4);
|
|
rt2500usb_bbp_write(rt2x00dev, 40, 0x02);
|
|
rt2500usb_bbp_write(rt2x00dev, 41, 0x60);
|
|
rt2500usb_bbp_write(rt2x00dev, 53, 0x10);
|
|
rt2500usb_bbp_write(rt2x00dev, 54, 0x18);
|
|
rt2500usb_bbp_write(rt2x00dev, 56, 0x08);
|
|
rt2500usb_bbp_write(rt2x00dev, 57, 0x10);
|
|
rt2500usb_bbp_write(rt2x00dev, 58, 0x08);
|
|
rt2500usb_bbp_write(rt2x00dev, 61, 0x60);
|
|
rt2500usb_bbp_write(rt2x00dev, 62, 0x10);
|
|
rt2500usb_bbp_write(rt2x00dev, 75, 0xff);
|
|
|
|
DEBUG(rt2x00dev, "Start initialization from EEPROM...\n");
|
|
for (i = 0; i < EEPROM_BBP_SIZE; i++) {
|
|
rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
|
|
|
|
if (eeprom != 0xffff && eeprom != 0x0000) {
|
|
reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
|
|
value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
|
|
DEBUG(rt2x00dev, "BBP: 0x%02x, value: 0x%02x.\n",
|
|
reg_id, value);
|
|
rt2500usb_bbp_write(rt2x00dev, reg_id, value);
|
|
}
|
|
}
|
|
DEBUG(rt2x00dev, "...End initialization from EEPROM.\n");
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Device state switch handlers.
|
|
*/
|
|
static void rt2500usb_toggle_rx(struct rt2x00_dev *rt2x00dev,
|
|
enum dev_state state)
|
|
{
|
|
u16 reg;
|
|
|
|
rt2500usb_register_read(rt2x00dev, TXRX_CSR2, ®);
|
|
rt2x00_set_field16(®, TXRX_CSR2_DISABLE_RX,
|
|
state == STATE_RADIO_RX_OFF);
|
|
rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
|
|
}
|
|
|
|
static int rt2500usb_enable_radio(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
/*
|
|
* Initialize all registers.
|
|
*/
|
|
if (rt2500usb_init_registers(rt2x00dev) ||
|
|
rt2500usb_init_bbp(rt2x00dev)) {
|
|
ERROR(rt2x00dev, "Register initialization failed.\n");
|
|
return -EIO;
|
|
}
|
|
|
|
rt2x00usb_enable_radio(rt2x00dev);
|
|
|
|
/*
|
|
* Enable LED
|
|
*/
|
|
rt2500usb_enable_led(rt2x00dev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void rt2500usb_disable_radio(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
/*
|
|
* Disable LED
|
|
*/
|
|
rt2500usb_disable_led(rt2x00dev);
|
|
|
|
rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x2121);
|
|
rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x2121);
|
|
|
|
/*
|
|
* Disable synchronisation.
|
|
*/
|
|
rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
|
|
|
|
rt2x00usb_disable_radio(rt2x00dev);
|
|
}
|
|
|
|
static int rt2500usb_set_state(struct rt2x00_dev *rt2x00dev,
|
|
enum dev_state state)
|
|
{
|
|
u16 reg;
|
|
u16 reg2;
|
|
unsigned int i;
|
|
char put_to_sleep;
|
|
char bbp_state;
|
|
char rf_state;
|
|
|
|
put_to_sleep = (state != STATE_AWAKE);
|
|
|
|
reg = 0;
|
|
rt2x00_set_field16(®, MAC_CSR17_BBP_DESIRE_STATE, state);
|
|
rt2x00_set_field16(®, MAC_CSR17_RF_DESIRE_STATE, state);
|
|
rt2x00_set_field16(®, MAC_CSR17_PUT_TO_SLEEP, put_to_sleep);
|
|
rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
|
|
rt2x00_set_field16(®, MAC_CSR17_SET_STATE, 1);
|
|
rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
|
|
|
|
/*
|
|
* Device is not guaranteed to be in the requested state yet.
|
|
* We must wait until the register indicates that the
|
|
* device has entered the correct state.
|
|
*/
|
|
for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
|
|
rt2500usb_register_read(rt2x00dev, MAC_CSR17, ®2);
|
|
bbp_state = rt2x00_get_field16(reg2, MAC_CSR17_BBP_CURR_STATE);
|
|
rf_state = rt2x00_get_field16(reg2, MAC_CSR17_RF_CURR_STATE);
|
|
if (bbp_state == state && rf_state == state)
|
|
return 0;
|
|
rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
|
|
msleep(30);
|
|
}
|
|
|
|
NOTICE(rt2x00dev, "Device failed to enter state %d, "
|
|
"current device state: bbp %d and rf %d.\n",
|
|
state, bbp_state, rf_state);
|
|
|
|
return -EBUSY;
|
|
}
|
|
|
|
static int rt2500usb_set_device_state(struct rt2x00_dev *rt2x00dev,
|
|
enum dev_state state)
|
|
{
|
|
int retval = 0;
|
|
|
|
switch (state) {
|
|
case STATE_RADIO_ON:
|
|
retval = rt2500usb_enable_radio(rt2x00dev);
|
|
break;
|
|
case STATE_RADIO_OFF:
|
|
rt2500usb_disable_radio(rt2x00dev);
|
|
break;
|
|
case STATE_RADIO_RX_ON:
|
|
case STATE_RADIO_RX_OFF:
|
|
rt2500usb_toggle_rx(rt2x00dev, state);
|
|
break;
|
|
case STATE_DEEP_SLEEP:
|
|
case STATE_SLEEP:
|
|
case STATE_STANDBY:
|
|
case STATE_AWAKE:
|
|
retval = rt2500usb_set_state(rt2x00dev, state);
|
|
break;
|
|
default:
|
|
retval = -ENOTSUPP;
|
|
break;
|
|
}
|
|
|
|
return retval;
|
|
}
|
|
|
|
/*
|
|
* TX descriptor initialization
|
|
*/
|
|
static void rt2500usb_write_tx_desc(struct rt2x00_dev *rt2x00dev,
|
|
__le32 *txd,
|
|
struct txdata_entry_desc *desc,
|
|
struct ieee80211_hdr *ieee80211hdr,
|
|
unsigned int length,
|
|
struct ieee80211_tx_control *control)
|
|
{
|
|
u32 word;
|
|
|
|
/*
|
|
* Start writing the descriptor words.
|
|
*/
|
|
rt2x00_desc_read(txd, 1, &word);
|
|
rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, IEEE80211_HEADER);
|
|
rt2x00_set_field32(&word, TXD_W1_AIFS, desc->aifs);
|
|
rt2x00_set_field32(&word, TXD_W1_CWMIN, desc->cw_min);
|
|
rt2x00_set_field32(&word, TXD_W1_CWMAX, desc->cw_max);
|
|
rt2x00_desc_write(txd, 1, word);
|
|
|
|
rt2x00_desc_read(txd, 2, &word);
|
|
rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, desc->signal);
|
|
rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, desc->service);
|
|
rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, desc->length_low);
|
|
rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, desc->length_high);
|
|
rt2x00_desc_write(txd, 2, word);
|
|
|
|
rt2x00_desc_read(txd, 0, &word);
|
|
rt2x00_set_field32(&word, TXD_W0_RETRY_LIMIT, control->retry_limit);
|
|
rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
|
|
test_bit(ENTRY_TXD_MORE_FRAG, &desc->flags));
|
|
rt2x00_set_field32(&word, TXD_W0_ACK,
|
|
test_bit(ENTRY_TXD_ACK, &desc->flags));
|
|
rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
|
|
test_bit(ENTRY_TXD_REQ_TIMESTAMP, &desc->flags));
|
|
rt2x00_set_field32(&word, TXD_W0_OFDM,
|
|
test_bit(ENTRY_TXD_OFDM_RATE, &desc->flags));
|
|
rt2x00_set_field32(&word, TXD_W0_NEW_SEQ,
|
|
!!(control->flags & IEEE80211_TXCTL_FIRST_FRAGMENT));
|
|
rt2x00_set_field32(&word, TXD_W0_IFS, desc->ifs);
|
|
rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, length);
|
|
rt2x00_set_field32(&word, TXD_W0_CIPHER, CIPHER_NONE);
|
|
rt2x00_desc_write(txd, 0, word);
|
|
}
|
|
|
|
static int rt2500usb_get_tx_data_len(struct rt2x00_dev *rt2x00dev,
|
|
struct sk_buff *skb)
|
|
{
|
|
int length;
|
|
|
|
/*
|
|
* The length _must_ be a multiple of 2,
|
|
* but it must _not_ be a multiple of the USB packet size.
|
|
*/
|
|
length = roundup(skb->len, 2);
|
|
length += (2 * !(length % rt2x00dev->usb_maxpacket));
|
|
|
|
return length;
|
|
}
|
|
|
|
/*
|
|
* TX data initialization
|
|
*/
|
|
static void rt2500usb_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
|
|
unsigned int queue)
|
|
{
|
|
u16 reg;
|
|
|
|
if (queue != IEEE80211_TX_QUEUE_BEACON)
|
|
return;
|
|
|
|
rt2500usb_register_read(rt2x00dev, TXRX_CSR19, ®);
|
|
if (!rt2x00_get_field16(reg, TXRX_CSR19_BEACON_GEN)) {
|
|
rt2x00_set_field16(®, TXRX_CSR19_BEACON_GEN, 1);
|
|
/*
|
|
* Beacon generation will fail initially.
|
|
* To prevent this we need to register the TXRX_CSR19
|
|
* register several times.
|
|
*/
|
|
rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
|
|
rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
|
|
rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
|
|
rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
|
|
rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* RX control handlers
|
|
*/
|
|
static void rt2500usb_fill_rxdone(struct data_entry *entry,
|
|
struct rxdata_entry_desc *desc)
|
|
{
|
|
struct urb *urb = entry->priv;
|
|
__le32 *rxd = (__le32 *)(entry->skb->data +
|
|
(urb->actual_length - entry->ring->desc_size));
|
|
u32 word0;
|
|
u32 word1;
|
|
|
|
rt2x00_desc_read(rxd, 0, &word0);
|
|
rt2x00_desc_read(rxd, 1, &word1);
|
|
|
|
desc->flags = 0;
|
|
if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
|
|
desc->flags |= RX_FLAG_FAILED_FCS_CRC;
|
|
if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
|
|
desc->flags |= RX_FLAG_FAILED_PLCP_CRC;
|
|
|
|
/*
|
|
* Obtain the status about this packet.
|
|
*/
|
|
desc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
|
|
desc->rssi = rt2x00_get_field32(word1, RXD_W1_RSSI) -
|
|
entry->ring->rt2x00dev->rssi_offset;
|
|
desc->ofdm = rt2x00_get_field32(word0, RXD_W0_OFDM);
|
|
desc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Interrupt functions.
|
|
*/
|
|
static void rt2500usb_beacondone(struct urb *urb)
|
|
{
|
|
struct data_entry *entry = (struct data_entry *)urb->context;
|
|
struct data_ring *ring = entry->ring;
|
|
|
|
if (!test_bit(DEVICE_ENABLED_RADIO, &ring->rt2x00dev->flags))
|
|
return;
|
|
|
|
/*
|
|
* Check if this was the guardian beacon,
|
|
* if that was the case we need to send the real beacon now.
|
|
* Otherwise we should free the sk_buffer, the device
|
|
* should be doing the rest of the work now.
|
|
*/
|
|
if (ring->index == 1) {
|
|
rt2x00_ring_index_done_inc(ring);
|
|
entry = rt2x00_get_data_entry(ring);
|
|
usb_submit_urb(entry->priv, GFP_ATOMIC);
|
|
rt2x00_ring_index_inc(ring);
|
|
} else if (ring->index_done == 1) {
|
|
entry = rt2x00_get_data_entry_done(ring);
|
|
if (entry->skb) {
|
|
dev_kfree_skb(entry->skb);
|
|
entry->skb = NULL;
|
|
}
|
|
rt2x00_ring_index_done_inc(ring);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Device probe functions.
|
|
*/
|
|
static int rt2500usb_validate_eeprom(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
u16 word;
|
|
u8 *mac;
|
|
|
|
rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE);
|
|
|
|
/*
|
|
* Start validation of the data that has been read.
|
|
*/
|
|
mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
|
|
if (!is_valid_ether_addr(mac)) {
|
|
DECLARE_MAC_BUF(macbuf);
|
|
|
|
random_ether_addr(mac);
|
|
EEPROM(rt2x00dev, "MAC: %s\n", print_mac(macbuf, mac));
|
|
}
|
|
|
|
rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
|
|
if (word == 0xffff) {
|
|
rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
|
|
rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
|
|
ANTENNA_SW_DIVERSITY);
|
|
rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
|
|
ANTENNA_SW_DIVERSITY);
|
|
rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
|
|
LED_MODE_DEFAULT);
|
|
rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
|
|
rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
|
|
rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
|
|
rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
|
|
EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
|
|
}
|
|
|
|
rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
|
|
if (word == 0xffff) {
|
|
rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
|
|
rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
|
|
rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
|
|
rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
|
|
EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
|
|
}
|
|
|
|
rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
|
|
if (word == 0xffff) {
|
|
rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
|
|
DEFAULT_RSSI_OFFSET);
|
|
rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
|
|
EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word);
|
|
}
|
|
|
|
rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE, &word);
|
|
if (word == 0xffff) {
|
|
rt2x00_set_field16(&word, EEPROM_BBPTUNE_THRESHOLD, 45);
|
|
rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE, word);
|
|
EEPROM(rt2x00dev, "BBPtune: 0x%04x\n", word);
|
|
}
|
|
|
|
rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &word);
|
|
if (word == 0xffff) {
|
|
rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCUPPER, 0x40);
|
|
rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
|
|
EEPROM(rt2x00dev, "BBPtune vgc: 0x%04x\n", word);
|
|
}
|
|
|
|
rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R17, &word);
|
|
if (word == 0xffff) {
|
|
rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_LOW, 0x48);
|
|
rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_HIGH, 0x41);
|
|
rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R17, word);
|
|
EEPROM(rt2x00dev, "BBPtune r17: 0x%04x\n", word);
|
|
}
|
|
|
|
rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &word);
|
|
if (word == 0xffff) {
|
|
rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_LOW, 0x40);
|
|
rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_HIGH, 0x80);
|
|
rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R24, word);
|
|
EEPROM(rt2x00dev, "BBPtune r24: 0x%04x\n", word);
|
|
}
|
|
|
|
rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &word);
|
|
if (word == 0xffff) {
|
|
rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_LOW, 0x40);
|
|
rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_HIGH, 0x50);
|
|
rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R25, word);
|
|
EEPROM(rt2x00dev, "BBPtune r25: 0x%04x\n", word);
|
|
}
|
|
|
|
rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &word);
|
|
if (word == 0xffff) {
|
|
rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_LOW, 0x60);
|
|
rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_HIGH, 0x6d);
|
|
rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R61, word);
|
|
EEPROM(rt2x00dev, "BBPtune r61: 0x%04x\n", word);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int rt2500usb_init_eeprom(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
u16 reg;
|
|
u16 value;
|
|
u16 eeprom;
|
|
|
|
/*
|
|
* Read EEPROM word for configuration.
|
|
*/
|
|
rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
|
|
|
|
/*
|
|
* Identify RF chipset.
|
|
*/
|
|
value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
|
|
rt2500usb_register_read(rt2x00dev, MAC_CSR0, ®);
|
|
rt2x00_set_chip(rt2x00dev, RT2570, value, reg);
|
|
|
|
if (!rt2x00_check_rev(&rt2x00dev->chip, 0)) {
|
|
ERROR(rt2x00dev, "Invalid RT chipset detected.\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
if (!rt2x00_rf(&rt2x00dev->chip, RF2522) &&
|
|
!rt2x00_rf(&rt2x00dev->chip, RF2523) &&
|
|
!rt2x00_rf(&rt2x00dev->chip, RF2524) &&
|
|
!rt2x00_rf(&rt2x00dev->chip, RF2525) &&
|
|
!rt2x00_rf(&rt2x00dev->chip, RF2525E) &&
|
|
!rt2x00_rf(&rt2x00dev->chip, RF5222)) {
|
|
ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
/*
|
|
* Identify default antenna configuration.
|
|
*/
|
|
rt2x00dev->default_ant.tx =
|
|
rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
|
|
rt2x00dev->default_ant.rx =
|
|
rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
|
|
|
|
/*
|
|
* When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
|
|
* I am not 100% sure about this, but the legacy drivers do not
|
|
* indicate antenna swapping in software is required when
|
|
* diversity is enabled.
|
|
*/
|
|
if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
|
|
rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
|
|
if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
|
|
rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
|
|
|
|
/*
|
|
* Store led mode, for correct led behaviour.
|
|
*/
|
|
rt2x00dev->led_mode =
|
|
rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
|
|
|
|
/*
|
|
* Check if the BBP tuning should be disabled.
|
|
*/
|
|
rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
|
|
if (rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
|
|
__set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
|
|
|
|
/*
|
|
* Read the RSSI <-> dBm offset information.
|
|
*/
|
|
rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
|
|
rt2x00dev->rssi_offset =
|
|
rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* RF value list for RF2522
|
|
* Supports: 2.4 GHz
|
|
*/
|
|
static const struct rf_channel rf_vals_bg_2522[] = {
|
|
{ 1, 0x00002050, 0x000c1fda, 0x00000101, 0 },
|
|
{ 2, 0x00002050, 0x000c1fee, 0x00000101, 0 },
|
|
{ 3, 0x00002050, 0x000c2002, 0x00000101, 0 },
|
|
{ 4, 0x00002050, 0x000c2016, 0x00000101, 0 },
|
|
{ 5, 0x00002050, 0x000c202a, 0x00000101, 0 },
|
|
{ 6, 0x00002050, 0x000c203e, 0x00000101, 0 },
|
|
{ 7, 0x00002050, 0x000c2052, 0x00000101, 0 },
|
|
{ 8, 0x00002050, 0x000c2066, 0x00000101, 0 },
|
|
{ 9, 0x00002050, 0x000c207a, 0x00000101, 0 },
|
|
{ 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
|
|
{ 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
|
|
{ 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
|
|
{ 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
|
|
{ 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
|
|
};
|
|
|
|
/*
|
|
* RF value list for RF2523
|
|
* Supports: 2.4 GHz
|
|
*/
|
|
static const struct rf_channel rf_vals_bg_2523[] = {
|
|
{ 1, 0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
|
|
{ 2, 0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
|
|
{ 3, 0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
|
|
{ 4, 0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
|
|
{ 5, 0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
|
|
{ 6, 0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
|
|
{ 7, 0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
|
|
{ 8, 0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
|
|
{ 9, 0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
|
|
{ 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
|
|
{ 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
|
|
{ 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
|
|
{ 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
|
|
{ 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
|
|
};
|
|
|
|
/*
|
|
* RF value list for RF2524
|
|
* Supports: 2.4 GHz
|
|
*/
|
|
static const struct rf_channel rf_vals_bg_2524[] = {
|
|
{ 1, 0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
|
|
{ 2, 0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
|
|
{ 3, 0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
|
|
{ 4, 0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
|
|
{ 5, 0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
|
|
{ 6, 0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
|
|
{ 7, 0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
|
|
{ 8, 0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
|
|
{ 9, 0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
|
|
{ 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
|
|
{ 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
|
|
{ 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
|
|
{ 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
|
|
{ 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
|
|
};
|
|
|
|
/*
|
|
* RF value list for RF2525
|
|
* Supports: 2.4 GHz
|
|
*/
|
|
static const struct rf_channel rf_vals_bg_2525[] = {
|
|
{ 1, 0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
|
|
{ 2, 0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
|
|
{ 3, 0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
|
|
{ 4, 0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
|
|
{ 5, 0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
|
|
{ 6, 0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
|
|
{ 7, 0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
|
|
{ 8, 0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
|
|
{ 9, 0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
|
|
{ 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
|
|
{ 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
|
|
{ 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
|
|
{ 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
|
|
{ 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
|
|
};
|
|
|
|
/*
|
|
* RF value list for RF2525e
|
|
* Supports: 2.4 GHz
|
|
*/
|
|
static const struct rf_channel rf_vals_bg_2525e[] = {
|
|
{ 1, 0x00022010, 0x0000089a, 0x00060111, 0x00000e1b },
|
|
{ 2, 0x00022010, 0x0000089e, 0x00060111, 0x00000e07 },
|
|
{ 3, 0x00022010, 0x0000089e, 0x00060111, 0x00000e1b },
|
|
{ 4, 0x00022010, 0x000008a2, 0x00060111, 0x00000e07 },
|
|
{ 5, 0x00022010, 0x000008a2, 0x00060111, 0x00000e1b },
|
|
{ 6, 0x00022010, 0x000008a6, 0x00060111, 0x00000e07 },
|
|
{ 7, 0x00022010, 0x000008a6, 0x00060111, 0x00000e1b },
|
|
{ 8, 0x00022010, 0x000008aa, 0x00060111, 0x00000e07 },
|
|
{ 9, 0x00022010, 0x000008aa, 0x00060111, 0x00000e1b },
|
|
{ 10, 0x00022010, 0x000008ae, 0x00060111, 0x00000e07 },
|
|
{ 11, 0x00022010, 0x000008ae, 0x00060111, 0x00000e1b },
|
|
{ 12, 0x00022010, 0x000008b2, 0x00060111, 0x00000e07 },
|
|
{ 13, 0x00022010, 0x000008b2, 0x00060111, 0x00000e1b },
|
|
{ 14, 0x00022010, 0x000008b6, 0x00060111, 0x00000e23 },
|
|
};
|
|
|
|
/*
|
|
* RF value list for RF5222
|
|
* Supports: 2.4 GHz & 5.2 GHz
|
|
*/
|
|
static const struct rf_channel rf_vals_5222[] = {
|
|
{ 1, 0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
|
|
{ 2, 0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
|
|
{ 3, 0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
|
|
{ 4, 0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
|
|
{ 5, 0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
|
|
{ 6, 0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
|
|
{ 7, 0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
|
|
{ 8, 0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
|
|
{ 9, 0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
|
|
{ 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
|
|
{ 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
|
|
{ 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
|
|
{ 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
|
|
{ 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
|
|
|
|
/* 802.11 UNI / HyperLan 2 */
|
|
{ 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
|
|
{ 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
|
|
{ 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
|
|
{ 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
|
|
{ 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
|
|
{ 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
|
|
{ 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
|
|
{ 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
|
|
|
|
/* 802.11 HyperLan 2 */
|
|
{ 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
|
|
{ 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
|
|
{ 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
|
|
{ 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
|
|
{ 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
|
|
{ 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
|
|
{ 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
|
|
{ 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
|
|
{ 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
|
|
{ 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
|
|
|
|
/* 802.11 UNII */
|
|
{ 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
|
|
{ 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
|
|
{ 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
|
|
{ 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
|
|
{ 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
|
|
};
|
|
|
|
static void rt2500usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
struct hw_mode_spec *spec = &rt2x00dev->spec;
|
|
u8 *txpower;
|
|
unsigned int i;
|
|
|
|
/*
|
|
* Initialize all hw fields.
|
|
*/
|
|
rt2x00dev->hw->flags =
|
|
IEEE80211_HW_HOST_GEN_BEACON_TEMPLATE |
|
|
IEEE80211_HW_RX_INCLUDES_FCS |
|
|
IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING;
|
|
rt2x00dev->hw->extra_tx_headroom = TXD_DESC_SIZE;
|
|
rt2x00dev->hw->max_signal = MAX_SIGNAL;
|
|
rt2x00dev->hw->max_rssi = MAX_RX_SSI;
|
|
rt2x00dev->hw->queues = 2;
|
|
|
|
SET_IEEE80211_DEV(rt2x00dev->hw, &rt2x00dev_usb(rt2x00dev)->dev);
|
|
SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
|
|
rt2x00_eeprom_addr(rt2x00dev,
|
|
EEPROM_MAC_ADDR_0));
|
|
|
|
/*
|
|
* Convert tx_power array in eeprom.
|
|
*/
|
|
txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
|
|
for (i = 0; i < 14; i++)
|
|
txpower[i] = TXPOWER_FROM_DEV(txpower[i]);
|
|
|
|
/*
|
|
* Initialize hw_mode information.
|
|
*/
|
|
spec->num_modes = 2;
|
|
spec->num_rates = 12;
|
|
spec->tx_power_a = NULL;
|
|
spec->tx_power_bg = txpower;
|
|
spec->tx_power_default = DEFAULT_TXPOWER;
|
|
|
|
if (rt2x00_rf(&rt2x00dev->chip, RF2522)) {
|
|
spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
|
|
spec->channels = rf_vals_bg_2522;
|
|
} else if (rt2x00_rf(&rt2x00dev->chip, RF2523)) {
|
|
spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
|
|
spec->channels = rf_vals_bg_2523;
|
|
} else if (rt2x00_rf(&rt2x00dev->chip, RF2524)) {
|
|
spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
|
|
spec->channels = rf_vals_bg_2524;
|
|
} else if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
|
|
spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
|
|
spec->channels = rf_vals_bg_2525;
|
|
} else if (rt2x00_rf(&rt2x00dev->chip, RF2525E)) {
|
|
spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
|
|
spec->channels = rf_vals_bg_2525e;
|
|
} else if (rt2x00_rf(&rt2x00dev->chip, RF5222)) {
|
|
spec->num_channels = ARRAY_SIZE(rf_vals_5222);
|
|
spec->channels = rf_vals_5222;
|
|
spec->num_modes = 3;
|
|
}
|
|
}
|
|
|
|
static int rt2500usb_probe_hw(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
int retval;
|
|
|
|
/*
|
|
* Allocate eeprom data.
|
|
*/
|
|
retval = rt2500usb_validate_eeprom(rt2x00dev);
|
|
if (retval)
|
|
return retval;
|
|
|
|
retval = rt2500usb_init_eeprom(rt2x00dev);
|
|
if (retval)
|
|
return retval;
|
|
|
|
/*
|
|
* Initialize hw specifications.
|
|
*/
|
|
rt2500usb_probe_hw_mode(rt2x00dev);
|
|
|
|
/*
|
|
* This device requires the beacon ring
|
|
*/
|
|
__set_bit(DRIVER_REQUIRE_BEACON_RING, &rt2x00dev->flags);
|
|
|
|
/*
|
|
* Set the rssi offset.
|
|
*/
|
|
rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* IEEE80211 stack callback functions.
|
|
*/
|
|
static void rt2500usb_configure_filter(struct ieee80211_hw *hw,
|
|
unsigned int changed_flags,
|
|
unsigned int *total_flags,
|
|
int mc_count,
|
|
struct dev_addr_list *mc_list)
|
|
{
|
|
struct rt2x00_dev *rt2x00dev = hw->priv;
|
|
struct interface *intf = &rt2x00dev->interface;
|
|
u16 reg;
|
|
|
|
/*
|
|
* Mask off any flags we are going to ignore from
|
|
* the total_flags field.
|
|
*/
|
|
*total_flags &=
|
|
FIF_ALLMULTI |
|
|
FIF_FCSFAIL |
|
|
FIF_PLCPFAIL |
|
|
FIF_CONTROL |
|
|
FIF_OTHER_BSS |
|
|
FIF_PROMISC_IN_BSS;
|
|
|
|
/*
|
|
* Apply some rules to the filters:
|
|
* - Some filters imply different filters to be set.
|
|
* - Some things we can't filter out at all.
|
|
* - Some filters are set based on interface type.
|
|
*/
|
|
if (mc_count)
|
|
*total_flags |= FIF_ALLMULTI;
|
|
if (*total_flags & FIF_OTHER_BSS ||
|
|
*total_flags & FIF_PROMISC_IN_BSS)
|
|
*total_flags |= FIF_PROMISC_IN_BSS | FIF_OTHER_BSS;
|
|
if (is_interface_type(intf, IEEE80211_IF_TYPE_AP))
|
|
*total_flags |= FIF_PROMISC_IN_BSS;
|
|
|
|
/*
|
|
* Check if there is any work left for us.
|
|
*/
|
|
if (intf->filter == *total_flags)
|
|
return;
|
|
intf->filter = *total_flags;
|
|
|
|
/*
|
|
* When in atomic context, reschedule and let rt2x00lib
|
|
* call this function again.
|
|
*/
|
|
if (in_atomic()) {
|
|
queue_work(rt2x00dev->hw->workqueue, &rt2x00dev->filter_work);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Start configuration steps.
|
|
* Note that the version error will always be dropped
|
|
* and broadcast frames will always be accepted since
|
|
* there is no filter for it at this time.
|
|
*/
|
|
rt2500usb_register_read(rt2x00dev, TXRX_CSR2, ®);
|
|
rt2x00_set_field16(®, TXRX_CSR2_DROP_CRC,
|
|
!(*total_flags & FIF_FCSFAIL));
|
|
rt2x00_set_field16(®, TXRX_CSR2_DROP_PHYSICAL,
|
|
!(*total_flags & FIF_PLCPFAIL));
|
|
rt2x00_set_field16(®, TXRX_CSR2_DROP_CONTROL,
|
|
!(*total_flags & FIF_CONTROL));
|
|
rt2x00_set_field16(®, TXRX_CSR2_DROP_NOT_TO_ME,
|
|
!(*total_flags & FIF_PROMISC_IN_BSS));
|
|
rt2x00_set_field16(®, TXRX_CSR2_DROP_TODS,
|
|
!(*total_flags & FIF_PROMISC_IN_BSS));
|
|
rt2x00_set_field16(®, TXRX_CSR2_DROP_VERSION_ERROR, 1);
|
|
rt2x00_set_field16(®, TXRX_CSR2_DROP_MULTICAST,
|
|
!(*total_flags & FIF_ALLMULTI));
|
|
rt2x00_set_field16(®, TXRX_CSR2_DROP_BROADCAST, 0);
|
|
rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
|
|
}
|
|
|
|
static int rt2500usb_beacon_update(struct ieee80211_hw *hw,
|
|
struct sk_buff *skb,
|
|
struct ieee80211_tx_control *control)
|
|
{
|
|
struct rt2x00_dev *rt2x00dev = hw->priv;
|
|
struct usb_device *usb_dev =
|
|
interface_to_usbdev(rt2x00dev_usb(rt2x00dev));
|
|
struct skb_desc *desc;
|
|
struct data_ring *ring;
|
|
struct data_entry *beacon;
|
|
struct data_entry *guardian;
|
|
int pipe = usb_sndbulkpipe(usb_dev, 1);
|
|
int length;
|
|
|
|
/*
|
|
* Just in case the ieee80211 doesn't set this,
|
|
* but we need this queue set for the descriptor
|
|
* initialization.
|
|
*/
|
|
control->queue = IEEE80211_TX_QUEUE_BEACON;
|
|
ring = rt2x00lib_get_ring(rt2x00dev, control->queue);
|
|
|
|
/*
|
|
* Obtain 2 entries, one for the guardian byte,
|
|
* the second for the actual beacon.
|
|
*/
|
|
guardian = rt2x00_get_data_entry(ring);
|
|
rt2x00_ring_index_inc(ring);
|
|
beacon = rt2x00_get_data_entry(ring);
|
|
|
|
/*
|
|
* Add the descriptor in front of the skb.
|
|
*/
|
|
skb_push(skb, ring->desc_size);
|
|
memset(skb->data, 0, ring->desc_size);
|
|
|
|
/*
|
|
* Fill in skb descriptor
|
|
*/
|
|
desc = get_skb_desc(skb);
|
|
desc->desc_len = ring->desc_size;
|
|
desc->data_len = skb->len - ring->desc_size;
|
|
desc->desc = skb->data;
|
|
desc->data = skb->data + ring->desc_size;
|
|
desc->ring = ring;
|
|
desc->entry = beacon;
|
|
|
|
rt2x00lib_write_tx_desc(rt2x00dev, skb, control);
|
|
|
|
/*
|
|
* USB devices cannot blindly pass the skb->len as the
|
|
* length of the data to usb_fill_bulk_urb. Pass the skb
|
|
* to the driver to determine what the length should be.
|
|
*/
|
|
length = rt2500usb_get_tx_data_len(rt2x00dev, skb);
|
|
|
|
usb_fill_bulk_urb(beacon->priv, usb_dev, pipe,
|
|
skb->data, length, rt2500usb_beacondone, beacon);
|
|
|
|
/*
|
|
* Second we need to create the guardian byte.
|
|
* We only need a single byte, so lets recycle
|
|
* the 'flags' field we are not using for beacons.
|
|
*/
|
|
guardian->flags = 0;
|
|
usb_fill_bulk_urb(guardian->priv, usb_dev, pipe,
|
|
&guardian->flags, 1, rt2500usb_beacondone, guardian);
|
|
|
|
/*
|
|
* Send out the guardian byte.
|
|
*/
|
|
usb_submit_urb(guardian->priv, GFP_ATOMIC);
|
|
|
|
/*
|
|
* Enable beacon generation.
|
|
*/
|
|
rt2500usb_kick_tx_queue(rt2x00dev, IEEE80211_TX_QUEUE_BEACON);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct ieee80211_ops rt2500usb_mac80211_ops = {
|
|
.tx = rt2x00mac_tx,
|
|
.start = rt2x00mac_start,
|
|
.stop = rt2x00mac_stop,
|
|
.add_interface = rt2x00mac_add_interface,
|
|
.remove_interface = rt2x00mac_remove_interface,
|
|
.config = rt2x00mac_config,
|
|
.config_interface = rt2x00mac_config_interface,
|
|
.configure_filter = rt2500usb_configure_filter,
|
|
.get_stats = rt2x00mac_get_stats,
|
|
.erp_ie_changed = rt2x00mac_erp_ie_changed,
|
|
.conf_tx = rt2x00mac_conf_tx,
|
|
.get_tx_stats = rt2x00mac_get_tx_stats,
|
|
.beacon_update = rt2500usb_beacon_update,
|
|
};
|
|
|
|
static const struct rt2x00lib_ops rt2500usb_rt2x00_ops = {
|
|
.probe_hw = rt2500usb_probe_hw,
|
|
.initialize = rt2x00usb_initialize,
|
|
.uninitialize = rt2x00usb_uninitialize,
|
|
.set_device_state = rt2500usb_set_device_state,
|
|
.link_stats = rt2500usb_link_stats,
|
|
.reset_tuner = rt2500usb_reset_tuner,
|
|
.link_tuner = rt2500usb_link_tuner,
|
|
.write_tx_desc = rt2500usb_write_tx_desc,
|
|
.write_tx_data = rt2x00usb_write_tx_data,
|
|
.get_tx_data_len = rt2500usb_get_tx_data_len,
|
|
.kick_tx_queue = rt2500usb_kick_tx_queue,
|
|
.fill_rxdone = rt2500usb_fill_rxdone,
|
|
.config_mac_addr = rt2500usb_config_mac_addr,
|
|
.config_bssid = rt2500usb_config_bssid,
|
|
.config_type = rt2500usb_config_type,
|
|
.config_preamble = rt2500usb_config_preamble,
|
|
.config = rt2500usb_config,
|
|
};
|
|
|
|
static const struct rt2x00_ops rt2500usb_ops = {
|
|
.name = KBUILD_MODNAME,
|
|
.rxd_size = RXD_DESC_SIZE,
|
|
.txd_size = TXD_DESC_SIZE,
|
|
.eeprom_size = EEPROM_SIZE,
|
|
.rf_size = RF_SIZE,
|
|
.lib = &rt2500usb_rt2x00_ops,
|
|
.hw = &rt2500usb_mac80211_ops,
|
|
#ifdef CONFIG_RT2X00_LIB_DEBUGFS
|
|
.debugfs = &rt2500usb_rt2x00debug,
|
|
#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
|
|
};
|
|
|
|
/*
|
|
* rt2500usb module information.
|
|
*/
|
|
static struct usb_device_id rt2500usb_device_table[] = {
|
|
/* ASUS */
|
|
{ USB_DEVICE(0x0b05, 0x1706), USB_DEVICE_DATA(&rt2500usb_ops) },
|
|
{ USB_DEVICE(0x0b05, 0x1707), USB_DEVICE_DATA(&rt2500usb_ops) },
|
|
/* Belkin */
|
|
{ USB_DEVICE(0x050d, 0x7050), USB_DEVICE_DATA(&rt2500usb_ops) },
|
|
{ USB_DEVICE(0x050d, 0x7051), USB_DEVICE_DATA(&rt2500usb_ops) },
|
|
{ USB_DEVICE(0x050d, 0x705a), USB_DEVICE_DATA(&rt2500usb_ops) },
|
|
/* Cisco Systems */
|
|
{ USB_DEVICE(0x13b1, 0x000d), USB_DEVICE_DATA(&rt2500usb_ops) },
|
|
{ USB_DEVICE(0x13b1, 0x0011), USB_DEVICE_DATA(&rt2500usb_ops) },
|
|
{ USB_DEVICE(0x13b1, 0x001a), USB_DEVICE_DATA(&rt2500usb_ops) },
|
|
/* Conceptronic */
|
|
{ USB_DEVICE(0x14b2, 0x3c02), USB_DEVICE_DATA(&rt2500usb_ops) },
|
|
/* D-LINK */
|
|
{ USB_DEVICE(0x2001, 0x3c00), USB_DEVICE_DATA(&rt2500usb_ops) },
|
|
/* Gigabyte */
|
|
{ USB_DEVICE(0x1044, 0x8001), USB_DEVICE_DATA(&rt2500usb_ops) },
|
|
{ USB_DEVICE(0x1044, 0x8007), USB_DEVICE_DATA(&rt2500usb_ops) },
|
|
/* Hercules */
|
|
{ USB_DEVICE(0x06f8, 0xe000), USB_DEVICE_DATA(&rt2500usb_ops) },
|
|
/* Melco */
|
|
{ USB_DEVICE(0x0411, 0x0066), USB_DEVICE_DATA(&rt2500usb_ops) },
|
|
{ USB_DEVICE(0x0411, 0x0067), USB_DEVICE_DATA(&rt2500usb_ops) },
|
|
{ USB_DEVICE(0x0411, 0x008b), USB_DEVICE_DATA(&rt2500usb_ops) },
|
|
{ USB_DEVICE(0x0411, 0x0097), USB_DEVICE_DATA(&rt2500usb_ops) },
|
|
|
|
/* MSI */
|
|
{ USB_DEVICE(0x0db0, 0x6861), USB_DEVICE_DATA(&rt2500usb_ops) },
|
|
{ USB_DEVICE(0x0db0, 0x6865), USB_DEVICE_DATA(&rt2500usb_ops) },
|
|
{ USB_DEVICE(0x0db0, 0x6869), USB_DEVICE_DATA(&rt2500usb_ops) },
|
|
/* Ralink */
|
|
{ USB_DEVICE(0x148f, 0x1706), USB_DEVICE_DATA(&rt2500usb_ops) },
|
|
{ USB_DEVICE(0x148f, 0x2570), USB_DEVICE_DATA(&rt2500usb_ops) },
|
|
{ USB_DEVICE(0x148f, 0x2573), USB_DEVICE_DATA(&rt2500usb_ops) },
|
|
{ USB_DEVICE(0x148f, 0x9020), USB_DEVICE_DATA(&rt2500usb_ops) },
|
|
/* Siemens */
|
|
{ USB_DEVICE(0x0681, 0x3c06), USB_DEVICE_DATA(&rt2500usb_ops) },
|
|
/* SMC */
|
|
{ USB_DEVICE(0x0707, 0xee13), USB_DEVICE_DATA(&rt2500usb_ops) },
|
|
/* Spairon */
|
|
{ USB_DEVICE(0x114b, 0x0110), USB_DEVICE_DATA(&rt2500usb_ops) },
|
|
/* Trust */
|
|
{ USB_DEVICE(0x0eb0, 0x9020), USB_DEVICE_DATA(&rt2500usb_ops) },
|
|
/* Zinwell */
|
|
{ USB_DEVICE(0x5a57, 0x0260), USB_DEVICE_DATA(&rt2500usb_ops) },
|
|
{ 0, }
|
|
};
|
|
|
|
MODULE_AUTHOR(DRV_PROJECT);
|
|
MODULE_VERSION(DRV_VERSION);
|
|
MODULE_DESCRIPTION("Ralink RT2500 USB Wireless LAN driver.");
|
|
MODULE_SUPPORTED_DEVICE("Ralink RT2570 USB chipset based cards");
|
|
MODULE_DEVICE_TABLE(usb, rt2500usb_device_table);
|
|
MODULE_LICENSE("GPL");
|
|
|
|
static struct usb_driver rt2500usb_driver = {
|
|
.name = KBUILD_MODNAME,
|
|
.id_table = rt2500usb_device_table,
|
|
.probe = rt2x00usb_probe,
|
|
.disconnect = rt2x00usb_disconnect,
|
|
.suspend = rt2x00usb_suspend,
|
|
.resume = rt2x00usb_resume,
|
|
};
|
|
|
|
static int __init rt2500usb_init(void)
|
|
{
|
|
return usb_register(&rt2500usb_driver);
|
|
}
|
|
|
|
static void __exit rt2500usb_exit(void)
|
|
{
|
|
usb_deregister(&rt2500usb_driver);
|
|
}
|
|
|
|
module_init(rt2500usb_init);
|
|
module_exit(rt2500usb_exit);
|