linux_old1/arch/x86/crypto/aesni-intel_glue.c

1546 lines
44 KiB
C

/*
* Support for Intel AES-NI instructions. This file contains glue
* code, the real AES implementation is in intel-aes_asm.S.
*
* Copyright (C) 2008, Intel Corp.
* Author: Huang Ying <ying.huang@intel.com>
*
* Added RFC4106 AES-GCM support for 128-bit keys under the AEAD
* interface for 64-bit kernels.
* Authors: Adrian Hoban <adrian.hoban@intel.com>
* Gabriele Paoloni <gabriele.paoloni@intel.com>
* Tadeusz Struk (tadeusz.struk@intel.com)
* Aidan O'Mahony (aidan.o.mahony@intel.com)
* Copyright (c) 2010, Intel Corporation.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/
#include <linux/hardirq.h>
#include <linux/types.h>
#include <linux/module.h>
#include <linux/err.h>
#include <crypto/algapi.h>
#include <crypto/aes.h>
#include <crypto/cryptd.h>
#include <crypto/ctr.h>
#include <crypto/b128ops.h>
#include <crypto/gcm.h>
#include <crypto/xts.h>
#include <asm/cpu_device_id.h>
#include <asm/fpu/api.h>
#include <asm/crypto/aes.h>
#include <crypto/scatterwalk.h>
#include <crypto/internal/aead.h>
#include <crypto/internal/simd.h>
#include <crypto/internal/skcipher.h>
#include <linux/workqueue.h>
#include <linux/spinlock.h>
#ifdef CONFIG_X86_64
#include <asm/crypto/glue_helper.h>
#endif
#define AESNI_ALIGN 16
#define AESNI_ALIGN_ATTR __attribute__ ((__aligned__(AESNI_ALIGN)))
#define AES_BLOCK_MASK (~(AES_BLOCK_SIZE - 1))
#define RFC4106_HASH_SUBKEY_SIZE 16
#define AESNI_ALIGN_EXTRA ((AESNI_ALIGN - 1) & ~(CRYPTO_MINALIGN - 1))
#define CRYPTO_AES_CTX_SIZE (sizeof(struct crypto_aes_ctx) + AESNI_ALIGN_EXTRA)
#define XTS_AES_CTX_SIZE (sizeof(struct aesni_xts_ctx) + AESNI_ALIGN_EXTRA)
/* This data is stored at the end of the crypto_tfm struct.
* It's a type of per "session" data storage location.
* This needs to be 16 byte aligned.
*/
struct aesni_rfc4106_gcm_ctx {
u8 hash_subkey[16] AESNI_ALIGN_ATTR;
struct crypto_aes_ctx aes_key_expanded AESNI_ALIGN_ATTR;
u8 nonce[4];
};
struct generic_gcmaes_ctx {
u8 hash_subkey[16] AESNI_ALIGN_ATTR;
struct crypto_aes_ctx aes_key_expanded AESNI_ALIGN_ATTR;
};
struct aesni_xts_ctx {
u8 raw_tweak_ctx[sizeof(struct crypto_aes_ctx)] AESNI_ALIGN_ATTR;
u8 raw_crypt_ctx[sizeof(struct crypto_aes_ctx)] AESNI_ALIGN_ATTR;
};
#define GCM_BLOCK_LEN 16
struct gcm_context_data {
/* init, update and finalize context data */
u8 aad_hash[GCM_BLOCK_LEN];
u64 aad_length;
u64 in_length;
u8 partial_block_enc_key[GCM_BLOCK_LEN];
u8 orig_IV[GCM_BLOCK_LEN];
u8 current_counter[GCM_BLOCK_LEN];
u64 partial_block_len;
u64 unused;
u8 hash_keys[GCM_BLOCK_LEN * 8];
};
asmlinkage int aesni_set_key(struct crypto_aes_ctx *ctx, const u8 *in_key,
unsigned int key_len);
asmlinkage void aesni_enc(struct crypto_aes_ctx *ctx, u8 *out,
const u8 *in);
asmlinkage void aesni_dec(struct crypto_aes_ctx *ctx, u8 *out,
const u8 *in);
asmlinkage void aesni_ecb_enc(struct crypto_aes_ctx *ctx, u8 *out,
const u8 *in, unsigned int len);
asmlinkage void aesni_ecb_dec(struct crypto_aes_ctx *ctx, u8 *out,
const u8 *in, unsigned int len);
asmlinkage void aesni_cbc_enc(struct crypto_aes_ctx *ctx, u8 *out,
const u8 *in, unsigned int len, u8 *iv);
asmlinkage void aesni_cbc_dec(struct crypto_aes_ctx *ctx, u8 *out,
const u8 *in, unsigned int len, u8 *iv);
int crypto_fpu_init(void);
void crypto_fpu_exit(void);
#define AVX_GEN2_OPTSIZE 640
#define AVX_GEN4_OPTSIZE 4096
#ifdef CONFIG_X86_64
static void (*aesni_ctr_enc_tfm)(struct crypto_aes_ctx *ctx, u8 *out,
const u8 *in, unsigned int len, u8 *iv);
asmlinkage void aesni_ctr_enc(struct crypto_aes_ctx *ctx, u8 *out,
const u8 *in, unsigned int len, u8 *iv);
asmlinkage void aesni_xts_crypt8(struct crypto_aes_ctx *ctx, u8 *out,
const u8 *in, bool enc, u8 *iv);
/* asmlinkage void aesni_gcm_enc()
* void *ctx, AES Key schedule. Starts on a 16 byte boundary.
* struct gcm_context_data. May be uninitialized.
* u8 *out, Ciphertext output. Encrypt in-place is allowed.
* const u8 *in, Plaintext input
* unsigned long plaintext_len, Length of data in bytes for encryption.
* u8 *iv, Pre-counter block j0: 12 byte IV concatenated with 0x00000001.
* 16-byte aligned pointer.
* u8 *hash_subkey, the Hash sub key input. Data starts on a 16-byte boundary.
* const u8 *aad, Additional Authentication Data (AAD)
* unsigned long aad_len, Length of AAD in bytes.
* u8 *auth_tag, Authenticated Tag output.
* unsigned long auth_tag_len), Authenticated Tag Length in bytes.
* Valid values are 16 (most likely), 12 or 8.
*/
asmlinkage void aesni_gcm_enc(void *ctx,
struct gcm_context_data *gdata, u8 *out,
const u8 *in, unsigned long plaintext_len, u8 *iv,
u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
u8 *auth_tag, unsigned long auth_tag_len);
/* asmlinkage void aesni_gcm_dec()
* void *ctx, AES Key schedule. Starts on a 16 byte boundary.
* struct gcm_context_data. May be uninitialized.
* u8 *out, Plaintext output. Decrypt in-place is allowed.
* const u8 *in, Ciphertext input
* unsigned long ciphertext_len, Length of data in bytes for decryption.
* u8 *iv, Pre-counter block j0: 12 byte IV concatenated with 0x00000001.
* 16-byte aligned pointer.
* u8 *hash_subkey, the Hash sub key input. Data starts on a 16-byte boundary.
* const u8 *aad, Additional Authentication Data (AAD)
* unsigned long aad_len, Length of AAD in bytes. With RFC4106 this is going
* to be 8 or 12 bytes
* u8 *auth_tag, Authenticated Tag output.
* unsigned long auth_tag_len) Authenticated Tag Length in bytes.
* Valid values are 16 (most likely), 12 or 8.
*/
asmlinkage void aesni_gcm_dec(void *ctx,
struct gcm_context_data *gdata, u8 *out,
const u8 *in, unsigned long ciphertext_len, u8 *iv,
u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
u8 *auth_tag, unsigned long auth_tag_len);
/* Scatter / Gather routines, with args similar to above */
asmlinkage void aesni_gcm_init(void *ctx,
struct gcm_context_data *gdata,
u8 *iv,
u8 *hash_subkey, const u8 *aad,
unsigned long aad_len);
asmlinkage void aesni_gcm_enc_update(void *ctx,
struct gcm_context_data *gdata, u8 *out,
const u8 *in, unsigned long plaintext_len);
asmlinkage void aesni_gcm_dec_update(void *ctx,
struct gcm_context_data *gdata, u8 *out,
const u8 *in,
unsigned long ciphertext_len);
asmlinkage void aesni_gcm_finalize(void *ctx,
struct gcm_context_data *gdata,
u8 *auth_tag, unsigned long auth_tag_len);
#ifdef CONFIG_AS_AVX
asmlinkage void aes_ctr_enc_128_avx_by8(const u8 *in, u8 *iv,
void *keys, u8 *out, unsigned int num_bytes);
asmlinkage void aes_ctr_enc_192_avx_by8(const u8 *in, u8 *iv,
void *keys, u8 *out, unsigned int num_bytes);
asmlinkage void aes_ctr_enc_256_avx_by8(const u8 *in, u8 *iv,
void *keys, u8 *out, unsigned int num_bytes);
/*
* asmlinkage void aesni_gcm_precomp_avx_gen2()
* gcm_data *my_ctx_data, context data
* u8 *hash_subkey, the Hash sub key input. Data starts on a 16-byte boundary.
*/
asmlinkage void aesni_gcm_precomp_avx_gen2(void *my_ctx_data, u8 *hash_subkey);
asmlinkage void aesni_gcm_enc_avx_gen2(void *ctx, u8 *out,
const u8 *in, unsigned long plaintext_len, u8 *iv,
const u8 *aad, unsigned long aad_len,
u8 *auth_tag, unsigned long auth_tag_len);
asmlinkage void aesni_gcm_dec_avx_gen2(void *ctx, u8 *out,
const u8 *in, unsigned long ciphertext_len, u8 *iv,
const u8 *aad, unsigned long aad_len,
u8 *auth_tag, unsigned long auth_tag_len);
static void aesni_gcm_enc_avx(void *ctx,
struct gcm_context_data *data, u8 *out,
const u8 *in, unsigned long plaintext_len, u8 *iv,
u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
u8 *auth_tag, unsigned long auth_tag_len)
{
struct crypto_aes_ctx *aes_ctx = (struct crypto_aes_ctx*)ctx;
if ((plaintext_len < AVX_GEN2_OPTSIZE) || (aes_ctx-> key_length != AES_KEYSIZE_128)){
aesni_gcm_enc(ctx, data, out, in,
plaintext_len, iv, hash_subkey, aad,
aad_len, auth_tag, auth_tag_len);
} else {
aesni_gcm_precomp_avx_gen2(ctx, hash_subkey);
aesni_gcm_enc_avx_gen2(ctx, out, in, plaintext_len, iv, aad,
aad_len, auth_tag, auth_tag_len);
}
}
static void aesni_gcm_dec_avx(void *ctx,
struct gcm_context_data *data, u8 *out,
const u8 *in, unsigned long ciphertext_len, u8 *iv,
u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
u8 *auth_tag, unsigned long auth_tag_len)
{
struct crypto_aes_ctx *aes_ctx = (struct crypto_aes_ctx*)ctx;
if ((ciphertext_len < AVX_GEN2_OPTSIZE) || (aes_ctx-> key_length != AES_KEYSIZE_128)) {
aesni_gcm_dec(ctx, data, out, in,
ciphertext_len, iv, hash_subkey, aad,
aad_len, auth_tag, auth_tag_len);
} else {
aesni_gcm_precomp_avx_gen2(ctx, hash_subkey);
aesni_gcm_dec_avx_gen2(ctx, out, in, ciphertext_len, iv, aad,
aad_len, auth_tag, auth_tag_len);
}
}
#endif
#ifdef CONFIG_AS_AVX2
/*
* asmlinkage void aesni_gcm_precomp_avx_gen4()
* gcm_data *my_ctx_data, context data
* u8 *hash_subkey, the Hash sub key input. Data starts on a 16-byte boundary.
*/
asmlinkage void aesni_gcm_precomp_avx_gen4(void *my_ctx_data, u8 *hash_subkey);
asmlinkage void aesni_gcm_enc_avx_gen4(void *ctx, u8 *out,
const u8 *in, unsigned long plaintext_len, u8 *iv,
const u8 *aad, unsigned long aad_len,
u8 *auth_tag, unsigned long auth_tag_len);
asmlinkage void aesni_gcm_dec_avx_gen4(void *ctx, u8 *out,
const u8 *in, unsigned long ciphertext_len, u8 *iv,
const u8 *aad, unsigned long aad_len,
u8 *auth_tag, unsigned long auth_tag_len);
static void aesni_gcm_enc_avx2(void *ctx,
struct gcm_context_data *data, u8 *out,
const u8 *in, unsigned long plaintext_len, u8 *iv,
u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
u8 *auth_tag, unsigned long auth_tag_len)
{
struct crypto_aes_ctx *aes_ctx = (struct crypto_aes_ctx*)ctx;
if ((plaintext_len < AVX_GEN2_OPTSIZE) || (aes_ctx-> key_length != AES_KEYSIZE_128)) {
aesni_gcm_enc(ctx, data, out, in,
plaintext_len, iv, hash_subkey, aad,
aad_len, auth_tag, auth_tag_len);
} else if (plaintext_len < AVX_GEN4_OPTSIZE) {
aesni_gcm_precomp_avx_gen2(ctx, hash_subkey);
aesni_gcm_enc_avx_gen2(ctx, out, in, plaintext_len, iv, aad,
aad_len, auth_tag, auth_tag_len);
} else {
aesni_gcm_precomp_avx_gen4(ctx, hash_subkey);
aesni_gcm_enc_avx_gen4(ctx, out, in, plaintext_len, iv, aad,
aad_len, auth_tag, auth_tag_len);
}
}
static void aesni_gcm_dec_avx2(void *ctx,
struct gcm_context_data *data, u8 *out,
const u8 *in, unsigned long ciphertext_len, u8 *iv,
u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
u8 *auth_tag, unsigned long auth_tag_len)
{
struct crypto_aes_ctx *aes_ctx = (struct crypto_aes_ctx*)ctx;
if ((ciphertext_len < AVX_GEN2_OPTSIZE) || (aes_ctx-> key_length != AES_KEYSIZE_128)) {
aesni_gcm_dec(ctx, data, out, in,
ciphertext_len, iv, hash_subkey,
aad, aad_len, auth_tag, auth_tag_len);
} else if (ciphertext_len < AVX_GEN4_OPTSIZE) {
aesni_gcm_precomp_avx_gen2(ctx, hash_subkey);
aesni_gcm_dec_avx_gen2(ctx, out, in, ciphertext_len, iv, aad,
aad_len, auth_tag, auth_tag_len);
} else {
aesni_gcm_precomp_avx_gen4(ctx, hash_subkey);
aesni_gcm_dec_avx_gen4(ctx, out, in, ciphertext_len, iv, aad,
aad_len, auth_tag, auth_tag_len);
}
}
#endif
static void (*aesni_gcm_enc_tfm)(void *ctx,
struct gcm_context_data *data, u8 *out,
const u8 *in, unsigned long plaintext_len,
u8 *iv, u8 *hash_subkey, const u8 *aad,
unsigned long aad_len, u8 *auth_tag,
unsigned long auth_tag_len);
static void (*aesni_gcm_dec_tfm)(void *ctx,
struct gcm_context_data *data, u8 *out,
const u8 *in, unsigned long ciphertext_len,
u8 *iv, u8 *hash_subkey, const u8 *aad,
unsigned long aad_len, u8 *auth_tag,
unsigned long auth_tag_len);
static inline struct
aesni_rfc4106_gcm_ctx *aesni_rfc4106_gcm_ctx_get(struct crypto_aead *tfm)
{
unsigned long align = AESNI_ALIGN;
if (align <= crypto_tfm_ctx_alignment())
align = 1;
return PTR_ALIGN(crypto_aead_ctx(tfm), align);
}
static inline struct
generic_gcmaes_ctx *generic_gcmaes_ctx_get(struct crypto_aead *tfm)
{
unsigned long align = AESNI_ALIGN;
if (align <= crypto_tfm_ctx_alignment())
align = 1;
return PTR_ALIGN(crypto_aead_ctx(tfm), align);
}
#endif
static inline struct crypto_aes_ctx *aes_ctx(void *raw_ctx)
{
unsigned long addr = (unsigned long)raw_ctx;
unsigned long align = AESNI_ALIGN;
if (align <= crypto_tfm_ctx_alignment())
align = 1;
return (struct crypto_aes_ctx *)ALIGN(addr, align);
}
static int aes_set_key_common(struct crypto_tfm *tfm, void *raw_ctx,
const u8 *in_key, unsigned int key_len)
{
struct crypto_aes_ctx *ctx = aes_ctx(raw_ctx);
u32 *flags = &tfm->crt_flags;
int err;
if (key_len != AES_KEYSIZE_128 && key_len != AES_KEYSIZE_192 &&
key_len != AES_KEYSIZE_256) {
*flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
return -EINVAL;
}
if (!irq_fpu_usable())
err = crypto_aes_expand_key(ctx, in_key, key_len);
else {
kernel_fpu_begin();
err = aesni_set_key(ctx, in_key, key_len);
kernel_fpu_end();
}
return err;
}
static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
unsigned int key_len)
{
return aes_set_key_common(tfm, crypto_tfm_ctx(tfm), in_key, key_len);
}
static void aes_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
{
struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm));
if (!irq_fpu_usable())
crypto_aes_encrypt_x86(ctx, dst, src);
else {
kernel_fpu_begin();
aesni_enc(ctx, dst, src);
kernel_fpu_end();
}
}
static void aes_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
{
struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm));
if (!irq_fpu_usable())
crypto_aes_decrypt_x86(ctx, dst, src);
else {
kernel_fpu_begin();
aesni_dec(ctx, dst, src);
kernel_fpu_end();
}
}
static void __aes_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
{
struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm));
aesni_enc(ctx, dst, src);
}
static void __aes_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
{
struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm));
aesni_dec(ctx, dst, src);
}
static int aesni_skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key,
unsigned int len)
{
return aes_set_key_common(crypto_skcipher_tfm(tfm),
crypto_skcipher_ctx(tfm), key, len);
}
static int ecb_encrypt(struct skcipher_request *req)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
struct skcipher_walk walk;
unsigned int nbytes;
int err;
err = skcipher_walk_virt(&walk, req, true);
kernel_fpu_begin();
while ((nbytes = walk.nbytes)) {
aesni_ecb_enc(ctx, walk.dst.virt.addr, walk.src.virt.addr,
nbytes & AES_BLOCK_MASK);
nbytes &= AES_BLOCK_SIZE - 1;
err = skcipher_walk_done(&walk, nbytes);
}
kernel_fpu_end();
return err;
}
static int ecb_decrypt(struct skcipher_request *req)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
struct skcipher_walk walk;
unsigned int nbytes;
int err;
err = skcipher_walk_virt(&walk, req, true);
kernel_fpu_begin();
while ((nbytes = walk.nbytes)) {
aesni_ecb_dec(ctx, walk.dst.virt.addr, walk.src.virt.addr,
nbytes & AES_BLOCK_MASK);
nbytes &= AES_BLOCK_SIZE - 1;
err = skcipher_walk_done(&walk, nbytes);
}
kernel_fpu_end();
return err;
}
static int cbc_encrypt(struct skcipher_request *req)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
struct skcipher_walk walk;
unsigned int nbytes;
int err;
err = skcipher_walk_virt(&walk, req, true);
kernel_fpu_begin();
while ((nbytes = walk.nbytes)) {
aesni_cbc_enc(ctx, walk.dst.virt.addr, walk.src.virt.addr,
nbytes & AES_BLOCK_MASK, walk.iv);
nbytes &= AES_BLOCK_SIZE - 1;
err = skcipher_walk_done(&walk, nbytes);
}
kernel_fpu_end();
return err;
}
static int cbc_decrypt(struct skcipher_request *req)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
struct skcipher_walk walk;
unsigned int nbytes;
int err;
err = skcipher_walk_virt(&walk, req, true);
kernel_fpu_begin();
while ((nbytes = walk.nbytes)) {
aesni_cbc_dec(ctx, walk.dst.virt.addr, walk.src.virt.addr,
nbytes & AES_BLOCK_MASK, walk.iv);
nbytes &= AES_BLOCK_SIZE - 1;
err = skcipher_walk_done(&walk, nbytes);
}
kernel_fpu_end();
return err;
}
#ifdef CONFIG_X86_64
static void ctr_crypt_final(struct crypto_aes_ctx *ctx,
struct skcipher_walk *walk)
{
u8 *ctrblk = walk->iv;
u8 keystream[AES_BLOCK_SIZE];
u8 *src = walk->src.virt.addr;
u8 *dst = walk->dst.virt.addr;
unsigned int nbytes = walk->nbytes;
aesni_enc(ctx, keystream, ctrblk);
crypto_xor_cpy(dst, keystream, src, nbytes);
crypto_inc(ctrblk, AES_BLOCK_SIZE);
}
#ifdef CONFIG_AS_AVX
static void aesni_ctr_enc_avx_tfm(struct crypto_aes_ctx *ctx, u8 *out,
const u8 *in, unsigned int len, u8 *iv)
{
/*
* based on key length, override with the by8 version
* of ctr mode encryption/decryption for improved performance
* aes_set_key_common() ensures that key length is one of
* {128,192,256}
*/
if (ctx->key_length == AES_KEYSIZE_128)
aes_ctr_enc_128_avx_by8(in, iv, (void *)ctx, out, len);
else if (ctx->key_length == AES_KEYSIZE_192)
aes_ctr_enc_192_avx_by8(in, iv, (void *)ctx, out, len);
else
aes_ctr_enc_256_avx_by8(in, iv, (void *)ctx, out, len);
}
#endif
static int ctr_crypt(struct skcipher_request *req)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
struct skcipher_walk walk;
unsigned int nbytes;
int err;
err = skcipher_walk_virt(&walk, req, true);
kernel_fpu_begin();
while ((nbytes = walk.nbytes) >= AES_BLOCK_SIZE) {
aesni_ctr_enc_tfm(ctx, walk.dst.virt.addr, walk.src.virt.addr,
nbytes & AES_BLOCK_MASK, walk.iv);
nbytes &= AES_BLOCK_SIZE - 1;
err = skcipher_walk_done(&walk, nbytes);
}
if (walk.nbytes) {
ctr_crypt_final(ctx, &walk);
err = skcipher_walk_done(&walk, 0);
}
kernel_fpu_end();
return err;
}
static int xts_aesni_setkey(struct crypto_skcipher *tfm, const u8 *key,
unsigned int keylen)
{
struct aesni_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
int err;
err = xts_verify_key(tfm, key, keylen);
if (err)
return err;
keylen /= 2;
/* first half of xts-key is for crypt */
err = aes_set_key_common(crypto_skcipher_tfm(tfm), ctx->raw_crypt_ctx,
key, keylen);
if (err)
return err;
/* second half of xts-key is for tweak */
return aes_set_key_common(crypto_skcipher_tfm(tfm), ctx->raw_tweak_ctx,
key + keylen, keylen);
}
static void aesni_xts_tweak(void *ctx, u8 *out, const u8 *in)
{
aesni_enc(ctx, out, in);
}
static void aesni_xts_enc(void *ctx, u128 *dst, const u128 *src, le128 *iv)
{
glue_xts_crypt_128bit_one(ctx, dst, src, iv, GLUE_FUNC_CAST(aesni_enc));
}
static void aesni_xts_dec(void *ctx, u128 *dst, const u128 *src, le128 *iv)
{
glue_xts_crypt_128bit_one(ctx, dst, src, iv, GLUE_FUNC_CAST(aesni_dec));
}
static void aesni_xts_enc8(void *ctx, u128 *dst, const u128 *src, le128 *iv)
{
aesni_xts_crypt8(ctx, (u8 *)dst, (const u8 *)src, true, (u8 *)iv);
}
static void aesni_xts_dec8(void *ctx, u128 *dst, const u128 *src, le128 *iv)
{
aesni_xts_crypt8(ctx, (u8 *)dst, (const u8 *)src, false, (u8 *)iv);
}
static const struct common_glue_ctx aesni_enc_xts = {
.num_funcs = 2,
.fpu_blocks_limit = 1,
.funcs = { {
.num_blocks = 8,
.fn_u = { .xts = GLUE_XTS_FUNC_CAST(aesni_xts_enc8) }
}, {
.num_blocks = 1,
.fn_u = { .xts = GLUE_XTS_FUNC_CAST(aesni_xts_enc) }
} }
};
static const struct common_glue_ctx aesni_dec_xts = {
.num_funcs = 2,
.fpu_blocks_limit = 1,
.funcs = { {
.num_blocks = 8,
.fn_u = { .xts = GLUE_XTS_FUNC_CAST(aesni_xts_dec8) }
}, {
.num_blocks = 1,
.fn_u = { .xts = GLUE_XTS_FUNC_CAST(aesni_xts_dec) }
} }
};
static int xts_encrypt(struct skcipher_request *req)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
struct aesni_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
return glue_xts_req_128bit(&aesni_enc_xts, req,
XTS_TWEAK_CAST(aesni_xts_tweak),
aes_ctx(ctx->raw_tweak_ctx),
aes_ctx(ctx->raw_crypt_ctx));
}
static int xts_decrypt(struct skcipher_request *req)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
struct aesni_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
return glue_xts_req_128bit(&aesni_dec_xts, req,
XTS_TWEAK_CAST(aesni_xts_tweak),
aes_ctx(ctx->raw_tweak_ctx),
aes_ctx(ctx->raw_crypt_ctx));
}
static int rfc4106_init(struct crypto_aead *aead)
{
struct cryptd_aead *cryptd_tfm;
struct cryptd_aead **ctx = crypto_aead_ctx(aead);
cryptd_tfm = cryptd_alloc_aead("__driver-gcm-aes-aesni",
CRYPTO_ALG_INTERNAL,
CRYPTO_ALG_INTERNAL);
if (IS_ERR(cryptd_tfm))
return PTR_ERR(cryptd_tfm);
*ctx = cryptd_tfm;
crypto_aead_set_reqsize(aead, crypto_aead_reqsize(&cryptd_tfm->base));
return 0;
}
static void rfc4106_exit(struct crypto_aead *aead)
{
struct cryptd_aead **ctx = crypto_aead_ctx(aead);
cryptd_free_aead(*ctx);
}
static int
rfc4106_set_hash_subkey(u8 *hash_subkey, const u8 *key, unsigned int key_len)
{
struct crypto_cipher *tfm;
int ret;
tfm = crypto_alloc_cipher("aes", 0, 0);
if (IS_ERR(tfm))
return PTR_ERR(tfm);
ret = crypto_cipher_setkey(tfm, key, key_len);
if (ret)
goto out_free_cipher;
/* Clear the data in the hash sub key container to zero.*/
/* We want to cipher all zeros to create the hash sub key. */
memset(hash_subkey, 0, RFC4106_HASH_SUBKEY_SIZE);
crypto_cipher_encrypt_one(tfm, hash_subkey, hash_subkey);
out_free_cipher:
crypto_free_cipher(tfm);
return ret;
}
static int common_rfc4106_set_key(struct crypto_aead *aead, const u8 *key,
unsigned int key_len)
{
struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(aead);
if (key_len < 4) {
crypto_aead_set_flags(aead, CRYPTO_TFM_RES_BAD_KEY_LEN);
return -EINVAL;
}
/*Account for 4 byte nonce at the end.*/
key_len -= 4;
memcpy(ctx->nonce, key + key_len, sizeof(ctx->nonce));
return aes_set_key_common(crypto_aead_tfm(aead),
&ctx->aes_key_expanded, key, key_len) ?:
rfc4106_set_hash_subkey(ctx->hash_subkey, key, key_len);
}
static int gcmaes_wrapper_set_key(struct crypto_aead *parent, const u8 *key,
unsigned int key_len)
{
struct cryptd_aead **ctx = crypto_aead_ctx(parent);
struct cryptd_aead *cryptd_tfm = *ctx;
return crypto_aead_setkey(&cryptd_tfm->base, key, key_len);
}
static int common_rfc4106_set_authsize(struct crypto_aead *aead,
unsigned int authsize)
{
switch (authsize) {
case 8:
case 12:
case 16:
break;
default:
return -EINVAL;
}
return 0;
}
/* This is the Integrity Check Value (aka the authentication tag length and can
* be 8, 12 or 16 bytes long. */
static int gcmaes_wrapper_set_authsize(struct crypto_aead *parent,
unsigned int authsize)
{
struct cryptd_aead **ctx = crypto_aead_ctx(parent);
struct cryptd_aead *cryptd_tfm = *ctx;
return crypto_aead_setauthsize(&cryptd_tfm->base, authsize);
}
static int generic_gcmaes_set_authsize(struct crypto_aead *tfm,
unsigned int authsize)
{
switch (authsize) {
case 4:
case 8:
case 12:
case 13:
case 14:
case 15:
case 16:
break;
default:
return -EINVAL;
}
return 0;
}
static int gcmaes_crypt_by_sg(bool enc, struct aead_request *req,
unsigned int assoclen, u8 *hash_subkey,
u8 *iv, void *aes_ctx)
{
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
unsigned long auth_tag_len = crypto_aead_authsize(tfm);
struct gcm_context_data data AESNI_ALIGN_ATTR;
struct scatter_walk dst_sg_walk = {};
unsigned long left = req->cryptlen;
unsigned long len, srclen, dstlen;
struct scatter_walk assoc_sg_walk;
struct scatter_walk src_sg_walk;
struct scatterlist src_start[2];
struct scatterlist dst_start[2];
struct scatterlist *src_sg;
struct scatterlist *dst_sg;
u8 *src, *dst, *assoc;
u8 *assocmem = NULL;
u8 authTag[16];
if (!enc)
left -= auth_tag_len;
/* Linearize assoc, if not already linear */
if (req->src->length >= assoclen && req->src->length &&
(!PageHighMem(sg_page(req->src)) ||
req->src->offset + req->src->length < PAGE_SIZE)) {
scatterwalk_start(&assoc_sg_walk, req->src);
assoc = scatterwalk_map(&assoc_sg_walk);
} else {
/* assoc can be any length, so must be on heap */
assocmem = kmalloc(assoclen, GFP_ATOMIC);
if (unlikely(!assocmem))
return -ENOMEM;
assoc = assocmem;
scatterwalk_map_and_copy(assoc, req->src, 0, assoclen, 0);
}
src_sg = scatterwalk_ffwd(src_start, req->src, req->assoclen);
scatterwalk_start(&src_sg_walk, src_sg);
if (req->src != req->dst) {
dst_sg = scatterwalk_ffwd(dst_start, req->dst, req->assoclen);
scatterwalk_start(&dst_sg_walk, dst_sg);
}
kernel_fpu_begin();
aesni_gcm_init(aes_ctx, &data, iv,
hash_subkey, assoc, assoclen);
if (req->src != req->dst) {
while (left) {
src = scatterwalk_map(&src_sg_walk);
dst = scatterwalk_map(&dst_sg_walk);
srclen = scatterwalk_clamp(&src_sg_walk, left);
dstlen = scatterwalk_clamp(&dst_sg_walk, left);
len = min(srclen, dstlen);
if (len) {
if (enc)
aesni_gcm_enc_update(aes_ctx, &data,
dst, src, len);
else
aesni_gcm_dec_update(aes_ctx, &data,
dst, src, len);
}
left -= len;
scatterwalk_unmap(src);
scatterwalk_unmap(dst);
scatterwalk_advance(&src_sg_walk, len);
scatterwalk_advance(&dst_sg_walk, len);
scatterwalk_done(&src_sg_walk, 0, left);
scatterwalk_done(&dst_sg_walk, 1, left);
}
} else {
while (left) {
dst = src = scatterwalk_map(&src_sg_walk);
len = scatterwalk_clamp(&src_sg_walk, left);
if (len) {
if (enc)
aesni_gcm_enc_update(aes_ctx, &data,
src, src, len);
else
aesni_gcm_dec_update(aes_ctx, &data,
src, src, len);
}
left -= len;
scatterwalk_unmap(src);
scatterwalk_advance(&src_sg_walk, len);
scatterwalk_done(&src_sg_walk, 1, left);
}
}
aesni_gcm_finalize(aes_ctx, &data, authTag, auth_tag_len);
kernel_fpu_end();
if (!assocmem)
scatterwalk_unmap(assoc);
else
kfree(assocmem);
if (!enc) {
u8 authTagMsg[16];
/* Copy out original authTag */
scatterwalk_map_and_copy(authTagMsg, req->src,
req->assoclen + req->cryptlen -
auth_tag_len,
auth_tag_len, 0);
/* Compare generated tag with passed in tag. */
return crypto_memneq(authTagMsg, authTag, auth_tag_len) ?
-EBADMSG : 0;
}
/* Copy in the authTag */
scatterwalk_map_and_copy(authTag, req->dst,
req->assoclen + req->cryptlen,
auth_tag_len, 1);
return 0;
}
static int gcmaes_encrypt(struct aead_request *req, unsigned int assoclen,
u8 *hash_subkey, u8 *iv, void *aes_ctx)
{
u8 one_entry_in_sg = 0;
u8 *src, *dst, *assoc;
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
unsigned long auth_tag_len = crypto_aead_authsize(tfm);
struct scatter_walk src_sg_walk;
struct scatter_walk dst_sg_walk = {};
struct gcm_context_data data AESNI_ALIGN_ATTR;
if (((struct crypto_aes_ctx *)aes_ctx)->key_length != AES_KEYSIZE_128 ||
aesni_gcm_enc_tfm == aesni_gcm_enc ||
req->cryptlen < AVX_GEN2_OPTSIZE) {
return gcmaes_crypt_by_sg(true, req, assoclen, hash_subkey, iv,
aes_ctx);
}
if (sg_is_last(req->src) &&
(!PageHighMem(sg_page(req->src)) ||
req->src->offset + req->src->length <= PAGE_SIZE) &&
sg_is_last(req->dst) &&
(!PageHighMem(sg_page(req->dst)) ||
req->dst->offset + req->dst->length <= PAGE_SIZE)) {
one_entry_in_sg = 1;
scatterwalk_start(&src_sg_walk, req->src);
assoc = scatterwalk_map(&src_sg_walk);
src = assoc + req->assoclen;
dst = src;
if (unlikely(req->src != req->dst)) {
scatterwalk_start(&dst_sg_walk, req->dst);
dst = scatterwalk_map(&dst_sg_walk) + req->assoclen;
}
} else {
/* Allocate memory for src, dst, assoc */
assoc = kmalloc(req->cryptlen + auth_tag_len + req->assoclen,
GFP_ATOMIC);
if (unlikely(!assoc))
return -ENOMEM;
scatterwalk_map_and_copy(assoc, req->src, 0,
req->assoclen + req->cryptlen, 0);
src = assoc + req->assoclen;
dst = src;
}
kernel_fpu_begin();
aesni_gcm_enc_tfm(aes_ctx, &data, dst, src, req->cryptlen, iv,
hash_subkey, assoc, assoclen,
dst + req->cryptlen, auth_tag_len);
kernel_fpu_end();
/* The authTag (aka the Integrity Check Value) needs to be written
* back to the packet. */
if (one_entry_in_sg) {
if (unlikely(req->src != req->dst)) {
scatterwalk_unmap(dst - req->assoclen);
scatterwalk_advance(&dst_sg_walk, req->dst->length);
scatterwalk_done(&dst_sg_walk, 1, 0);
}
scatterwalk_unmap(assoc);
scatterwalk_advance(&src_sg_walk, req->src->length);
scatterwalk_done(&src_sg_walk, req->src == req->dst, 0);
} else {
scatterwalk_map_and_copy(dst, req->dst, req->assoclen,
req->cryptlen + auth_tag_len, 1);
kfree(assoc);
}
return 0;
}
static int gcmaes_decrypt(struct aead_request *req, unsigned int assoclen,
u8 *hash_subkey, u8 *iv, void *aes_ctx)
{
u8 one_entry_in_sg = 0;
u8 *src, *dst, *assoc;
unsigned long tempCipherLen = 0;
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
unsigned long auth_tag_len = crypto_aead_authsize(tfm);
u8 authTag[16];
struct scatter_walk src_sg_walk;
struct scatter_walk dst_sg_walk = {};
struct gcm_context_data data AESNI_ALIGN_ATTR;
int retval = 0;
if (((struct crypto_aes_ctx *)aes_ctx)->key_length != AES_KEYSIZE_128 ||
aesni_gcm_enc_tfm == aesni_gcm_enc ||
req->cryptlen < AVX_GEN2_OPTSIZE) {
return gcmaes_crypt_by_sg(false, req, assoclen, hash_subkey, iv,
aes_ctx);
}
tempCipherLen = (unsigned long)(req->cryptlen - auth_tag_len);
if (sg_is_last(req->src) &&
(!PageHighMem(sg_page(req->src)) ||
req->src->offset + req->src->length <= PAGE_SIZE) &&
sg_is_last(req->dst) && req->dst->length &&
(!PageHighMem(sg_page(req->dst)) ||
req->dst->offset + req->dst->length <= PAGE_SIZE)) {
one_entry_in_sg = 1;
scatterwalk_start(&src_sg_walk, req->src);
assoc = scatterwalk_map(&src_sg_walk);
src = assoc + req->assoclen;
dst = src;
if (unlikely(req->src != req->dst)) {
scatterwalk_start(&dst_sg_walk, req->dst);
dst = scatterwalk_map(&dst_sg_walk) + req->assoclen;
}
} else {
/* Allocate memory for src, dst, assoc */
assoc = kmalloc(req->cryptlen + req->assoclen, GFP_ATOMIC);
if (!assoc)
return -ENOMEM;
scatterwalk_map_and_copy(assoc, req->src, 0,
req->assoclen + req->cryptlen, 0);
src = assoc + req->assoclen;
dst = src;
}
kernel_fpu_begin();
aesni_gcm_dec_tfm(aes_ctx, &data, dst, src, tempCipherLen, iv,
hash_subkey, assoc, assoclen,
authTag, auth_tag_len);
kernel_fpu_end();
/* Compare generated tag with passed in tag. */
retval = crypto_memneq(src + tempCipherLen, authTag, auth_tag_len) ?
-EBADMSG : 0;
if (one_entry_in_sg) {
if (unlikely(req->src != req->dst)) {
scatterwalk_unmap(dst - req->assoclen);
scatterwalk_advance(&dst_sg_walk, req->dst->length);
scatterwalk_done(&dst_sg_walk, 1, 0);
}
scatterwalk_unmap(assoc);
scatterwalk_advance(&src_sg_walk, req->src->length);
scatterwalk_done(&src_sg_walk, req->src == req->dst, 0);
} else {
scatterwalk_map_and_copy(dst, req->dst, req->assoclen,
tempCipherLen, 1);
kfree(assoc);
}
return retval;
}
static int helper_rfc4106_encrypt(struct aead_request *req)
{
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(tfm);
void *aes_ctx = &(ctx->aes_key_expanded);
u8 iv[16] __attribute__ ((__aligned__(AESNI_ALIGN)));
unsigned int i;
__be32 counter = cpu_to_be32(1);
/* Assuming we are supporting rfc4106 64-bit extended */
/* sequence numbers We need to have the AAD length equal */
/* to 16 or 20 bytes */
if (unlikely(req->assoclen != 16 && req->assoclen != 20))
return -EINVAL;
/* IV below built */
for (i = 0; i < 4; i++)
*(iv+i) = ctx->nonce[i];
for (i = 0; i < 8; i++)
*(iv+4+i) = req->iv[i];
*((__be32 *)(iv+12)) = counter;
return gcmaes_encrypt(req, req->assoclen - 8, ctx->hash_subkey, iv,
aes_ctx);
}
static int helper_rfc4106_decrypt(struct aead_request *req)
{
__be32 counter = cpu_to_be32(1);
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(tfm);
void *aes_ctx = &(ctx->aes_key_expanded);
u8 iv[16] __attribute__ ((__aligned__(AESNI_ALIGN)));
unsigned int i;
if (unlikely(req->assoclen != 16 && req->assoclen != 20))
return -EINVAL;
/* Assuming we are supporting rfc4106 64-bit extended */
/* sequence numbers We need to have the AAD length */
/* equal to 16 or 20 bytes */
/* IV below built */
for (i = 0; i < 4; i++)
*(iv+i) = ctx->nonce[i];
for (i = 0; i < 8; i++)
*(iv+4+i) = req->iv[i];
*((__be32 *)(iv+12)) = counter;
return gcmaes_decrypt(req, req->assoclen - 8, ctx->hash_subkey, iv,
aes_ctx);
}
static int gcmaes_wrapper_encrypt(struct aead_request *req)
{
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
struct cryptd_aead **ctx = crypto_aead_ctx(tfm);
struct cryptd_aead *cryptd_tfm = *ctx;
tfm = &cryptd_tfm->base;
if (irq_fpu_usable() && (!in_atomic() ||
!cryptd_aead_queued(cryptd_tfm)))
tfm = cryptd_aead_child(cryptd_tfm);
aead_request_set_tfm(req, tfm);
return crypto_aead_encrypt(req);
}
static int gcmaes_wrapper_decrypt(struct aead_request *req)
{
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
struct cryptd_aead **ctx = crypto_aead_ctx(tfm);
struct cryptd_aead *cryptd_tfm = *ctx;
tfm = &cryptd_tfm->base;
if (irq_fpu_usable() && (!in_atomic() ||
!cryptd_aead_queued(cryptd_tfm)))
tfm = cryptd_aead_child(cryptd_tfm);
aead_request_set_tfm(req, tfm);
return crypto_aead_decrypt(req);
}
#endif
static struct crypto_alg aesni_algs[] = { {
.cra_name = "aes",
.cra_driver_name = "aes-aesni",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_TYPE_CIPHER,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = CRYPTO_AES_CTX_SIZE,
.cra_module = THIS_MODULE,
.cra_u = {
.cipher = {
.cia_min_keysize = AES_MIN_KEY_SIZE,
.cia_max_keysize = AES_MAX_KEY_SIZE,
.cia_setkey = aes_set_key,
.cia_encrypt = aes_encrypt,
.cia_decrypt = aes_decrypt
}
}
}, {
.cra_name = "__aes",
.cra_driver_name = "__aes-aesni",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_TYPE_CIPHER | CRYPTO_ALG_INTERNAL,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = CRYPTO_AES_CTX_SIZE,
.cra_module = THIS_MODULE,
.cra_u = {
.cipher = {
.cia_min_keysize = AES_MIN_KEY_SIZE,
.cia_max_keysize = AES_MAX_KEY_SIZE,
.cia_setkey = aes_set_key,
.cia_encrypt = __aes_encrypt,
.cia_decrypt = __aes_decrypt
}
}
} };
static struct skcipher_alg aesni_skciphers[] = {
{
.base = {
.cra_name = "__ecb(aes)",
.cra_driver_name = "__ecb-aes-aesni",
.cra_priority = 400,
.cra_flags = CRYPTO_ALG_INTERNAL,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = CRYPTO_AES_CTX_SIZE,
.cra_module = THIS_MODULE,
},
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.setkey = aesni_skcipher_setkey,
.encrypt = ecb_encrypt,
.decrypt = ecb_decrypt,
}, {
.base = {
.cra_name = "__cbc(aes)",
.cra_driver_name = "__cbc-aes-aesni",
.cra_priority = 400,
.cra_flags = CRYPTO_ALG_INTERNAL,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = CRYPTO_AES_CTX_SIZE,
.cra_module = THIS_MODULE,
},
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.setkey = aesni_skcipher_setkey,
.encrypt = cbc_encrypt,
.decrypt = cbc_decrypt,
#ifdef CONFIG_X86_64
}, {
.base = {
.cra_name = "__ctr(aes)",
.cra_driver_name = "__ctr-aes-aesni",
.cra_priority = 400,
.cra_flags = CRYPTO_ALG_INTERNAL,
.cra_blocksize = 1,
.cra_ctxsize = CRYPTO_AES_CTX_SIZE,
.cra_module = THIS_MODULE,
},
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.chunksize = AES_BLOCK_SIZE,
.setkey = aesni_skcipher_setkey,
.encrypt = ctr_crypt,
.decrypt = ctr_crypt,
}, {
.base = {
.cra_name = "__xts(aes)",
.cra_driver_name = "__xts-aes-aesni",
.cra_priority = 401,
.cra_flags = CRYPTO_ALG_INTERNAL,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = XTS_AES_CTX_SIZE,
.cra_module = THIS_MODULE,
},
.min_keysize = 2 * AES_MIN_KEY_SIZE,
.max_keysize = 2 * AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.setkey = xts_aesni_setkey,
.encrypt = xts_encrypt,
.decrypt = xts_decrypt,
#endif
}
};
static
struct simd_skcipher_alg *aesni_simd_skciphers[ARRAY_SIZE(aesni_skciphers)];
static struct {
const char *algname;
const char *drvname;
const char *basename;
struct simd_skcipher_alg *simd;
} aesni_simd_skciphers2[] = {
#if (defined(MODULE) && IS_ENABLED(CONFIG_CRYPTO_PCBC)) || \
IS_BUILTIN(CONFIG_CRYPTO_PCBC)
{
.algname = "pcbc(aes)",
.drvname = "pcbc-aes-aesni",
.basename = "fpu(pcbc(__aes-aesni))",
},
#endif
};
#ifdef CONFIG_X86_64
static int generic_gcmaes_set_key(struct crypto_aead *aead, const u8 *key,
unsigned int key_len)
{
struct generic_gcmaes_ctx *ctx = generic_gcmaes_ctx_get(aead);
return aes_set_key_common(crypto_aead_tfm(aead),
&ctx->aes_key_expanded, key, key_len) ?:
rfc4106_set_hash_subkey(ctx->hash_subkey, key, key_len);
}
static int generic_gcmaes_encrypt(struct aead_request *req)
{
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
struct generic_gcmaes_ctx *ctx = generic_gcmaes_ctx_get(tfm);
void *aes_ctx = &(ctx->aes_key_expanded);
u8 iv[16] __attribute__ ((__aligned__(AESNI_ALIGN)));
__be32 counter = cpu_to_be32(1);
memcpy(iv, req->iv, 12);
*((__be32 *)(iv+12)) = counter;
return gcmaes_encrypt(req, req->assoclen, ctx->hash_subkey, iv,
aes_ctx);
}
static int generic_gcmaes_decrypt(struct aead_request *req)
{
__be32 counter = cpu_to_be32(1);
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
struct generic_gcmaes_ctx *ctx = generic_gcmaes_ctx_get(tfm);
void *aes_ctx = &(ctx->aes_key_expanded);
u8 iv[16] __attribute__ ((__aligned__(AESNI_ALIGN)));
memcpy(iv, req->iv, 12);
*((__be32 *)(iv+12)) = counter;
return gcmaes_decrypt(req, req->assoclen, ctx->hash_subkey, iv,
aes_ctx);
}
static int generic_gcmaes_init(struct crypto_aead *aead)
{
struct cryptd_aead *cryptd_tfm;
struct cryptd_aead **ctx = crypto_aead_ctx(aead);
cryptd_tfm = cryptd_alloc_aead("__driver-generic-gcm-aes-aesni",
CRYPTO_ALG_INTERNAL,
CRYPTO_ALG_INTERNAL);
if (IS_ERR(cryptd_tfm))
return PTR_ERR(cryptd_tfm);
*ctx = cryptd_tfm;
crypto_aead_set_reqsize(aead, crypto_aead_reqsize(&cryptd_tfm->base));
return 0;
}
static void generic_gcmaes_exit(struct crypto_aead *aead)
{
struct cryptd_aead **ctx = crypto_aead_ctx(aead);
cryptd_free_aead(*ctx);
}
static struct aead_alg aesni_aead_algs[] = { {
.setkey = common_rfc4106_set_key,
.setauthsize = common_rfc4106_set_authsize,
.encrypt = helper_rfc4106_encrypt,
.decrypt = helper_rfc4106_decrypt,
.ivsize = GCM_RFC4106_IV_SIZE,
.maxauthsize = 16,
.base = {
.cra_name = "__gcm-aes-aesni",
.cra_driver_name = "__driver-gcm-aes-aesni",
.cra_flags = CRYPTO_ALG_INTERNAL,
.cra_blocksize = 1,
.cra_ctxsize = sizeof(struct aesni_rfc4106_gcm_ctx),
.cra_alignmask = AESNI_ALIGN - 1,
.cra_module = THIS_MODULE,
},
}, {
.init = rfc4106_init,
.exit = rfc4106_exit,
.setkey = gcmaes_wrapper_set_key,
.setauthsize = gcmaes_wrapper_set_authsize,
.encrypt = gcmaes_wrapper_encrypt,
.decrypt = gcmaes_wrapper_decrypt,
.ivsize = GCM_RFC4106_IV_SIZE,
.maxauthsize = 16,
.base = {
.cra_name = "rfc4106(gcm(aes))",
.cra_driver_name = "rfc4106-gcm-aesni",
.cra_priority = 400,
.cra_flags = CRYPTO_ALG_ASYNC,
.cra_blocksize = 1,
.cra_ctxsize = sizeof(struct cryptd_aead *),
.cra_module = THIS_MODULE,
},
}, {
.setkey = generic_gcmaes_set_key,
.setauthsize = generic_gcmaes_set_authsize,
.encrypt = generic_gcmaes_encrypt,
.decrypt = generic_gcmaes_decrypt,
.ivsize = GCM_AES_IV_SIZE,
.maxauthsize = 16,
.base = {
.cra_name = "__generic-gcm-aes-aesni",
.cra_driver_name = "__driver-generic-gcm-aes-aesni",
.cra_priority = 0,
.cra_flags = CRYPTO_ALG_INTERNAL,
.cra_blocksize = 1,
.cra_ctxsize = sizeof(struct generic_gcmaes_ctx),
.cra_alignmask = AESNI_ALIGN - 1,
.cra_module = THIS_MODULE,
},
}, {
.init = generic_gcmaes_init,
.exit = generic_gcmaes_exit,
.setkey = gcmaes_wrapper_set_key,
.setauthsize = gcmaes_wrapper_set_authsize,
.encrypt = gcmaes_wrapper_encrypt,
.decrypt = gcmaes_wrapper_decrypt,
.ivsize = GCM_AES_IV_SIZE,
.maxauthsize = 16,
.base = {
.cra_name = "gcm(aes)",
.cra_driver_name = "generic-gcm-aesni",
.cra_priority = 400,
.cra_flags = CRYPTO_ALG_ASYNC,
.cra_blocksize = 1,
.cra_ctxsize = sizeof(struct cryptd_aead *),
.cra_module = THIS_MODULE,
},
} };
#else
static struct aead_alg aesni_aead_algs[0];
#endif
static const struct x86_cpu_id aesni_cpu_id[] = {
X86_FEATURE_MATCH(X86_FEATURE_AES),
{}
};
MODULE_DEVICE_TABLE(x86cpu, aesni_cpu_id);
static void aesni_free_simds(void)
{
int i;
for (i = 0; i < ARRAY_SIZE(aesni_simd_skciphers) &&
aesni_simd_skciphers[i]; i++)
simd_skcipher_free(aesni_simd_skciphers[i]);
for (i = 0; i < ARRAY_SIZE(aesni_simd_skciphers2); i++)
if (aesni_simd_skciphers2[i].simd)
simd_skcipher_free(aesni_simd_skciphers2[i].simd);
}
static int __init aesni_init(void)
{
struct simd_skcipher_alg *simd;
const char *basename;
const char *algname;
const char *drvname;
int err;
int i;
if (!x86_match_cpu(aesni_cpu_id))
return -ENODEV;
#ifdef CONFIG_X86_64
#ifdef CONFIG_AS_AVX2
if (boot_cpu_has(X86_FEATURE_AVX2)) {
pr_info("AVX2 version of gcm_enc/dec engaged.\n");
aesni_gcm_enc_tfm = aesni_gcm_enc_avx2;
aesni_gcm_dec_tfm = aesni_gcm_dec_avx2;
} else
#endif
#ifdef CONFIG_AS_AVX
if (boot_cpu_has(X86_FEATURE_AVX)) {
pr_info("AVX version of gcm_enc/dec engaged.\n");
aesni_gcm_enc_tfm = aesni_gcm_enc_avx;
aesni_gcm_dec_tfm = aesni_gcm_dec_avx;
} else
#endif
{
pr_info("SSE version of gcm_enc/dec engaged.\n");
aesni_gcm_enc_tfm = aesni_gcm_enc;
aesni_gcm_dec_tfm = aesni_gcm_dec;
}
aesni_ctr_enc_tfm = aesni_ctr_enc;
#ifdef CONFIG_AS_AVX
if (boot_cpu_has(X86_FEATURE_AVX)) {
/* optimize performance of ctr mode encryption transform */
aesni_ctr_enc_tfm = aesni_ctr_enc_avx_tfm;
pr_info("AES CTR mode by8 optimization enabled\n");
}
#endif
#endif
err = crypto_fpu_init();
if (err)
return err;
err = crypto_register_algs(aesni_algs, ARRAY_SIZE(aesni_algs));
if (err)
goto fpu_exit;
err = crypto_register_skciphers(aesni_skciphers,
ARRAY_SIZE(aesni_skciphers));
if (err)
goto unregister_algs;
err = crypto_register_aeads(aesni_aead_algs,
ARRAY_SIZE(aesni_aead_algs));
if (err)
goto unregister_skciphers;
for (i = 0; i < ARRAY_SIZE(aesni_skciphers); i++) {
algname = aesni_skciphers[i].base.cra_name + 2;
drvname = aesni_skciphers[i].base.cra_driver_name + 2;
basename = aesni_skciphers[i].base.cra_driver_name;
simd = simd_skcipher_create_compat(algname, drvname, basename);
err = PTR_ERR(simd);
if (IS_ERR(simd))
goto unregister_simds;
aesni_simd_skciphers[i] = simd;
}
for (i = 0; i < ARRAY_SIZE(aesni_simd_skciphers2); i++) {
algname = aesni_simd_skciphers2[i].algname;
drvname = aesni_simd_skciphers2[i].drvname;
basename = aesni_simd_skciphers2[i].basename;
simd = simd_skcipher_create_compat(algname, drvname, basename);
err = PTR_ERR(simd);
if (IS_ERR(simd))
continue;
aesni_simd_skciphers2[i].simd = simd;
}
return 0;
unregister_simds:
aesni_free_simds();
crypto_unregister_aeads(aesni_aead_algs, ARRAY_SIZE(aesni_aead_algs));
unregister_skciphers:
crypto_unregister_skciphers(aesni_skciphers,
ARRAY_SIZE(aesni_skciphers));
unregister_algs:
crypto_unregister_algs(aesni_algs, ARRAY_SIZE(aesni_algs));
fpu_exit:
crypto_fpu_exit();
return err;
}
static void __exit aesni_exit(void)
{
aesni_free_simds();
crypto_unregister_aeads(aesni_aead_algs, ARRAY_SIZE(aesni_aead_algs));
crypto_unregister_skciphers(aesni_skciphers,
ARRAY_SIZE(aesni_skciphers));
crypto_unregister_algs(aesni_algs, ARRAY_SIZE(aesni_algs));
crypto_fpu_exit();
}
late_initcall(aesni_init);
module_exit(aesni_exit);
MODULE_DESCRIPTION("Rijndael (AES) Cipher Algorithm, Intel AES-NI instructions optimized");
MODULE_LICENSE("GPL");
MODULE_ALIAS_CRYPTO("aes");