869 lines
27 KiB
C
869 lines
27 KiB
C
/*
|
|
* Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
|
|
*
|
|
* This software is available to you under a choice of one of two
|
|
* licenses. You may choose to be licensed under the terms of the GNU
|
|
* General Public License (GPL) Version 2, available from the file
|
|
* COPYING in the main directory of this source tree, or the BSD-type
|
|
* license below:
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
*
|
|
* Redistributions in binary form must reproduce the above
|
|
* copyright notice, this list of conditions and the following
|
|
* disclaimer in the documentation and/or other materials provided
|
|
* with the distribution.
|
|
*
|
|
* Neither the name of the Network Appliance, Inc. nor the names of
|
|
* its contributors may be used to endorse or promote products
|
|
* derived from this software without specific prior written
|
|
* permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* rpc_rdma.c
|
|
*
|
|
* This file contains the guts of the RPC RDMA protocol, and
|
|
* does marshaling/unmarshaling, etc. It is also where interfacing
|
|
* to the Linux RPC framework lives.
|
|
*/
|
|
|
|
#include "xprt_rdma.h"
|
|
|
|
#include <linux/highmem.h>
|
|
|
|
#ifdef RPC_DEBUG
|
|
# define RPCDBG_FACILITY RPCDBG_TRANS
|
|
#endif
|
|
|
|
enum rpcrdma_chunktype {
|
|
rpcrdma_noch = 0,
|
|
rpcrdma_readch,
|
|
rpcrdma_areadch,
|
|
rpcrdma_writech,
|
|
rpcrdma_replych
|
|
};
|
|
|
|
#ifdef RPC_DEBUG
|
|
static const char transfertypes[][12] = {
|
|
"pure inline", /* no chunks */
|
|
" read chunk", /* some argument via rdma read */
|
|
"*read chunk", /* entire request via rdma read */
|
|
"write chunk", /* some result via rdma write */
|
|
"reply chunk" /* entire reply via rdma write */
|
|
};
|
|
#endif
|
|
|
|
/*
|
|
* Chunk assembly from upper layer xdr_buf.
|
|
*
|
|
* Prepare the passed-in xdr_buf into representation as RPC/RDMA chunk
|
|
* elements. Segments are then coalesced when registered, if possible
|
|
* within the selected memreg mode.
|
|
*
|
|
* Note, this routine is never called if the connection's memory
|
|
* registration strategy is 0 (bounce buffers).
|
|
*/
|
|
|
|
static int
|
|
rpcrdma_convert_iovs(struct xdr_buf *xdrbuf, int pos,
|
|
enum rpcrdma_chunktype type, struct rpcrdma_mr_seg *seg, int nsegs)
|
|
{
|
|
int len, n = 0, p;
|
|
|
|
if (pos == 0 && xdrbuf->head[0].iov_len) {
|
|
seg[n].mr_page = NULL;
|
|
seg[n].mr_offset = xdrbuf->head[0].iov_base;
|
|
seg[n].mr_len = xdrbuf->head[0].iov_len;
|
|
pos += xdrbuf->head[0].iov_len;
|
|
++n;
|
|
}
|
|
|
|
if (xdrbuf->page_len && (xdrbuf->pages[0] != NULL)) {
|
|
if (n == nsegs)
|
|
return 0;
|
|
seg[n].mr_page = xdrbuf->pages[0];
|
|
seg[n].mr_offset = (void *)(unsigned long) xdrbuf->page_base;
|
|
seg[n].mr_len = min_t(u32,
|
|
PAGE_SIZE - xdrbuf->page_base, xdrbuf->page_len);
|
|
len = xdrbuf->page_len - seg[n].mr_len;
|
|
pos += len;
|
|
++n;
|
|
p = 1;
|
|
while (len > 0) {
|
|
if (n == nsegs)
|
|
return 0;
|
|
seg[n].mr_page = xdrbuf->pages[p];
|
|
seg[n].mr_offset = NULL;
|
|
seg[n].mr_len = min_t(u32, PAGE_SIZE, len);
|
|
len -= seg[n].mr_len;
|
|
++n;
|
|
++p;
|
|
}
|
|
}
|
|
|
|
if (pos < xdrbuf->len && xdrbuf->tail[0].iov_len) {
|
|
if (n == nsegs)
|
|
return 0;
|
|
seg[n].mr_page = NULL;
|
|
seg[n].mr_offset = xdrbuf->tail[0].iov_base;
|
|
seg[n].mr_len = xdrbuf->tail[0].iov_len;
|
|
pos += xdrbuf->tail[0].iov_len;
|
|
++n;
|
|
}
|
|
|
|
if (pos < xdrbuf->len)
|
|
dprintk("RPC: %s: marshaled only %d of %d\n",
|
|
__func__, pos, xdrbuf->len);
|
|
|
|
return n;
|
|
}
|
|
|
|
/*
|
|
* Create read/write chunk lists, and reply chunks, for RDMA
|
|
*
|
|
* Assume check against THRESHOLD has been done, and chunks are required.
|
|
* Assume only encoding one list entry for read|write chunks. The NFSv3
|
|
* protocol is simple enough to allow this as it only has a single "bulk
|
|
* result" in each procedure - complicated NFSv4 COMPOUNDs are not. (The
|
|
* RDMA/Sessions NFSv4 proposal addresses this for future v4 revs.)
|
|
*
|
|
* When used for a single reply chunk (which is a special write
|
|
* chunk used for the entire reply, rather than just the data), it
|
|
* is used primarily for READDIR and READLINK which would otherwise
|
|
* be severely size-limited by a small rdma inline read max. The server
|
|
* response will come back as an RDMA Write, followed by a message
|
|
* of type RDMA_NOMSG carrying the xid and length. As a result, reply
|
|
* chunks do not provide data alignment, however they do not require
|
|
* "fixup" (moving the response to the upper layer buffer) either.
|
|
*
|
|
* Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64):
|
|
*
|
|
* Read chunklist (a linked list):
|
|
* N elements, position P (same P for all chunks of same arg!):
|
|
* 1 - PHLOO - 1 - PHLOO - ... - 1 - PHLOO - 0
|
|
*
|
|
* Write chunklist (a list of (one) counted array):
|
|
* N elements:
|
|
* 1 - N - HLOO - HLOO - ... - HLOO - 0
|
|
*
|
|
* Reply chunk (a counted array):
|
|
* N elements:
|
|
* 1 - N - HLOO - HLOO - ... - HLOO
|
|
*/
|
|
|
|
static unsigned int
|
|
rpcrdma_create_chunks(struct rpc_rqst *rqst, struct xdr_buf *target,
|
|
struct rpcrdma_msg *headerp, enum rpcrdma_chunktype type)
|
|
{
|
|
struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
|
|
struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(rqst->rq_task->tk_xprt);
|
|
int nsegs, nchunks = 0;
|
|
int pos;
|
|
struct rpcrdma_mr_seg *seg = req->rl_segments;
|
|
struct rpcrdma_read_chunk *cur_rchunk = NULL;
|
|
struct rpcrdma_write_array *warray = NULL;
|
|
struct rpcrdma_write_chunk *cur_wchunk = NULL;
|
|
__be32 *iptr = headerp->rm_body.rm_chunks;
|
|
|
|
if (type == rpcrdma_readch || type == rpcrdma_areadch) {
|
|
/* a read chunk - server will RDMA Read our memory */
|
|
cur_rchunk = (struct rpcrdma_read_chunk *) iptr;
|
|
} else {
|
|
/* a write or reply chunk - server will RDMA Write our memory */
|
|
*iptr++ = xdr_zero; /* encode a NULL read chunk list */
|
|
if (type == rpcrdma_replych)
|
|
*iptr++ = xdr_zero; /* a NULL write chunk list */
|
|
warray = (struct rpcrdma_write_array *) iptr;
|
|
cur_wchunk = (struct rpcrdma_write_chunk *) (warray + 1);
|
|
}
|
|
|
|
if (type == rpcrdma_replych || type == rpcrdma_areadch)
|
|
pos = 0;
|
|
else
|
|
pos = target->head[0].iov_len;
|
|
|
|
nsegs = rpcrdma_convert_iovs(target, pos, type, seg, RPCRDMA_MAX_SEGS);
|
|
if (nsegs == 0)
|
|
return 0;
|
|
|
|
do {
|
|
/* bind/register the memory, then build chunk from result. */
|
|
int n = rpcrdma_register_external(seg, nsegs,
|
|
cur_wchunk != NULL, r_xprt);
|
|
if (n <= 0)
|
|
goto out;
|
|
if (cur_rchunk) { /* read */
|
|
cur_rchunk->rc_discrim = xdr_one;
|
|
/* all read chunks have the same "position" */
|
|
cur_rchunk->rc_position = htonl(pos);
|
|
cur_rchunk->rc_target.rs_handle = htonl(seg->mr_rkey);
|
|
cur_rchunk->rc_target.rs_length = htonl(seg->mr_len);
|
|
xdr_encode_hyper(
|
|
(__be32 *)&cur_rchunk->rc_target.rs_offset,
|
|
seg->mr_base);
|
|
dprintk("RPC: %s: read chunk "
|
|
"elem %d@0x%llx:0x%x pos %d (%s)\n", __func__,
|
|
seg->mr_len, (unsigned long long)seg->mr_base,
|
|
seg->mr_rkey, pos, n < nsegs ? "more" : "last");
|
|
cur_rchunk++;
|
|
r_xprt->rx_stats.read_chunk_count++;
|
|
} else { /* write/reply */
|
|
cur_wchunk->wc_target.rs_handle = htonl(seg->mr_rkey);
|
|
cur_wchunk->wc_target.rs_length = htonl(seg->mr_len);
|
|
xdr_encode_hyper(
|
|
(__be32 *)&cur_wchunk->wc_target.rs_offset,
|
|
seg->mr_base);
|
|
dprintk("RPC: %s: %s chunk "
|
|
"elem %d@0x%llx:0x%x (%s)\n", __func__,
|
|
(type == rpcrdma_replych) ? "reply" : "write",
|
|
seg->mr_len, (unsigned long long)seg->mr_base,
|
|
seg->mr_rkey, n < nsegs ? "more" : "last");
|
|
cur_wchunk++;
|
|
if (type == rpcrdma_replych)
|
|
r_xprt->rx_stats.reply_chunk_count++;
|
|
else
|
|
r_xprt->rx_stats.write_chunk_count++;
|
|
r_xprt->rx_stats.total_rdma_request += seg->mr_len;
|
|
}
|
|
nchunks++;
|
|
seg += n;
|
|
nsegs -= n;
|
|
} while (nsegs);
|
|
|
|
/* success. all failures return above */
|
|
req->rl_nchunks = nchunks;
|
|
|
|
BUG_ON(nchunks == 0);
|
|
|
|
/*
|
|
* finish off header. If write, marshal discrim and nchunks.
|
|
*/
|
|
if (cur_rchunk) {
|
|
iptr = (__be32 *) cur_rchunk;
|
|
*iptr++ = xdr_zero; /* finish the read chunk list */
|
|
*iptr++ = xdr_zero; /* encode a NULL write chunk list */
|
|
*iptr++ = xdr_zero; /* encode a NULL reply chunk */
|
|
} else {
|
|
warray->wc_discrim = xdr_one;
|
|
warray->wc_nchunks = htonl(nchunks);
|
|
iptr = (__be32 *) cur_wchunk;
|
|
if (type == rpcrdma_writech) {
|
|
*iptr++ = xdr_zero; /* finish the write chunk list */
|
|
*iptr++ = xdr_zero; /* encode a NULL reply chunk */
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Return header size.
|
|
*/
|
|
return (unsigned char *)iptr - (unsigned char *)headerp;
|
|
|
|
out:
|
|
for (pos = 0; nchunks--;)
|
|
pos += rpcrdma_deregister_external(
|
|
&req->rl_segments[pos], r_xprt, NULL);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Copy write data inline.
|
|
* This function is used for "small" requests. Data which is passed
|
|
* to RPC via iovecs (or page list) is copied directly into the
|
|
* pre-registered memory buffer for this request. For small amounts
|
|
* of data, this is efficient. The cutoff value is tunable.
|
|
*/
|
|
static int
|
|
rpcrdma_inline_pullup(struct rpc_rqst *rqst, int pad)
|
|
{
|
|
int i, npages, curlen;
|
|
int copy_len;
|
|
unsigned char *srcp, *destp;
|
|
struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(rqst->rq_xprt);
|
|
|
|
destp = rqst->rq_svec[0].iov_base;
|
|
curlen = rqst->rq_svec[0].iov_len;
|
|
destp += curlen;
|
|
/*
|
|
* Do optional padding where it makes sense. Alignment of write
|
|
* payload can help the server, if our setting is accurate.
|
|
*/
|
|
pad -= (curlen + 36/*sizeof(struct rpcrdma_msg_padded)*/);
|
|
if (pad < 0 || rqst->rq_slen - curlen < RPCRDMA_INLINE_PAD_THRESH)
|
|
pad = 0; /* don't pad this request */
|
|
|
|
dprintk("RPC: %s: pad %d destp 0x%p len %d hdrlen %d\n",
|
|
__func__, pad, destp, rqst->rq_slen, curlen);
|
|
|
|
copy_len = rqst->rq_snd_buf.page_len;
|
|
r_xprt->rx_stats.pullup_copy_count += copy_len;
|
|
npages = PAGE_ALIGN(rqst->rq_snd_buf.page_base+copy_len) >> PAGE_SHIFT;
|
|
for (i = 0; copy_len && i < npages; i++) {
|
|
if (i == 0)
|
|
curlen = PAGE_SIZE - rqst->rq_snd_buf.page_base;
|
|
else
|
|
curlen = PAGE_SIZE;
|
|
if (curlen > copy_len)
|
|
curlen = copy_len;
|
|
dprintk("RPC: %s: page %d destp 0x%p len %d curlen %d\n",
|
|
__func__, i, destp, copy_len, curlen);
|
|
srcp = kmap_atomic(rqst->rq_snd_buf.pages[i],
|
|
KM_SKB_SUNRPC_DATA);
|
|
if (i == 0)
|
|
memcpy(destp, srcp+rqst->rq_snd_buf.page_base, curlen);
|
|
else
|
|
memcpy(destp, srcp, curlen);
|
|
kunmap_atomic(srcp, KM_SKB_SUNRPC_DATA);
|
|
rqst->rq_svec[0].iov_len += curlen;
|
|
destp += curlen;
|
|
copy_len -= curlen;
|
|
}
|
|
if (rqst->rq_snd_buf.tail[0].iov_len) {
|
|
curlen = rqst->rq_snd_buf.tail[0].iov_len;
|
|
if (destp != rqst->rq_snd_buf.tail[0].iov_base) {
|
|
memcpy(destp,
|
|
rqst->rq_snd_buf.tail[0].iov_base, curlen);
|
|
r_xprt->rx_stats.pullup_copy_count += curlen;
|
|
}
|
|
dprintk("RPC: %s: tail destp 0x%p len %d curlen %d\n",
|
|
__func__, destp, copy_len, curlen);
|
|
rqst->rq_svec[0].iov_len += curlen;
|
|
}
|
|
/* header now contains entire send message */
|
|
return pad;
|
|
}
|
|
|
|
/*
|
|
* Marshal a request: the primary job of this routine is to choose
|
|
* the transfer modes. See comments below.
|
|
*
|
|
* Uses multiple RDMA IOVs for a request:
|
|
* [0] -- RPC RDMA header, which uses memory from the *start* of the
|
|
* preregistered buffer that already holds the RPC data in
|
|
* its middle.
|
|
* [1] -- the RPC header/data, marshaled by RPC and the NFS protocol.
|
|
* [2] -- optional padding.
|
|
* [3] -- if padded, header only in [1] and data here.
|
|
*/
|
|
|
|
int
|
|
rpcrdma_marshal_req(struct rpc_rqst *rqst)
|
|
{
|
|
struct rpc_xprt *xprt = rqst->rq_task->tk_xprt;
|
|
struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
|
|
struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
|
|
char *base;
|
|
size_t hdrlen, rpclen, padlen;
|
|
enum rpcrdma_chunktype rtype, wtype;
|
|
struct rpcrdma_msg *headerp;
|
|
|
|
/*
|
|
* rpclen gets amount of data in first buffer, which is the
|
|
* pre-registered buffer.
|
|
*/
|
|
base = rqst->rq_svec[0].iov_base;
|
|
rpclen = rqst->rq_svec[0].iov_len;
|
|
|
|
/* build RDMA header in private area at front */
|
|
headerp = (struct rpcrdma_msg *) req->rl_base;
|
|
/* don't htonl XID, it's already done in request */
|
|
headerp->rm_xid = rqst->rq_xid;
|
|
headerp->rm_vers = xdr_one;
|
|
headerp->rm_credit = htonl(r_xprt->rx_buf.rb_max_requests);
|
|
headerp->rm_type = __constant_htonl(RDMA_MSG);
|
|
|
|
/*
|
|
* Chunks needed for results?
|
|
*
|
|
* o If the expected result is under the inline threshold, all ops
|
|
* return as inline (but see later).
|
|
* o Large non-read ops return as a single reply chunk.
|
|
* o Large read ops return data as write chunk(s), header as inline.
|
|
*
|
|
* Note: the NFS code sending down multiple result segments implies
|
|
* the op is one of read, readdir[plus], readlink or NFSv4 getacl.
|
|
*/
|
|
|
|
/*
|
|
* This code can handle read chunks, write chunks OR reply
|
|
* chunks -- only one type. If the request is too big to fit
|
|
* inline, then we will choose read chunks. If the request is
|
|
* a READ, then use write chunks to separate the file data
|
|
* into pages; otherwise use reply chunks.
|
|
*/
|
|
if (rqst->rq_rcv_buf.buflen <= RPCRDMA_INLINE_READ_THRESHOLD(rqst))
|
|
wtype = rpcrdma_noch;
|
|
else if (rqst->rq_rcv_buf.page_len == 0)
|
|
wtype = rpcrdma_replych;
|
|
else if (rqst->rq_rcv_buf.flags & XDRBUF_READ)
|
|
wtype = rpcrdma_writech;
|
|
else
|
|
wtype = rpcrdma_replych;
|
|
|
|
/*
|
|
* Chunks needed for arguments?
|
|
*
|
|
* o If the total request is under the inline threshold, all ops
|
|
* are sent as inline.
|
|
* o Large non-write ops are sent with the entire message as a
|
|
* single read chunk (protocol 0-position special case).
|
|
* o Large write ops transmit data as read chunk(s), header as
|
|
* inline.
|
|
*
|
|
* Note: the NFS code sending down multiple argument segments
|
|
* implies the op is a write.
|
|
* TBD check NFSv4 setacl
|
|
*/
|
|
if (rqst->rq_snd_buf.len <= RPCRDMA_INLINE_WRITE_THRESHOLD(rqst))
|
|
rtype = rpcrdma_noch;
|
|
else if (rqst->rq_snd_buf.page_len == 0)
|
|
rtype = rpcrdma_areadch;
|
|
else
|
|
rtype = rpcrdma_readch;
|
|
|
|
/* The following simplification is not true forever */
|
|
if (rtype != rpcrdma_noch && wtype == rpcrdma_replych)
|
|
wtype = rpcrdma_noch;
|
|
BUG_ON(rtype != rpcrdma_noch && wtype != rpcrdma_noch);
|
|
|
|
if (r_xprt->rx_ia.ri_memreg_strategy == RPCRDMA_BOUNCEBUFFERS &&
|
|
(rtype != rpcrdma_noch || wtype != rpcrdma_noch)) {
|
|
/* forced to "pure inline"? */
|
|
dprintk("RPC: %s: too much data (%d/%d) for inline\n",
|
|
__func__, rqst->rq_rcv_buf.len, rqst->rq_snd_buf.len);
|
|
return -1;
|
|
}
|
|
|
|
hdrlen = 28; /*sizeof *headerp;*/
|
|
padlen = 0;
|
|
|
|
/*
|
|
* Pull up any extra send data into the preregistered buffer.
|
|
* When padding is in use and applies to the transfer, insert
|
|
* it and change the message type.
|
|
*/
|
|
if (rtype == rpcrdma_noch) {
|
|
|
|
padlen = rpcrdma_inline_pullup(rqst,
|
|
RPCRDMA_INLINE_PAD_VALUE(rqst));
|
|
|
|
if (padlen) {
|
|
headerp->rm_type = __constant_htonl(RDMA_MSGP);
|
|
headerp->rm_body.rm_padded.rm_align =
|
|
htonl(RPCRDMA_INLINE_PAD_VALUE(rqst));
|
|
headerp->rm_body.rm_padded.rm_thresh =
|
|
__constant_htonl(RPCRDMA_INLINE_PAD_THRESH);
|
|
headerp->rm_body.rm_padded.rm_pempty[0] = xdr_zero;
|
|
headerp->rm_body.rm_padded.rm_pempty[1] = xdr_zero;
|
|
headerp->rm_body.rm_padded.rm_pempty[2] = xdr_zero;
|
|
hdrlen += 2 * sizeof(u32); /* extra words in padhdr */
|
|
BUG_ON(wtype != rpcrdma_noch);
|
|
|
|
} else {
|
|
headerp->rm_body.rm_nochunks.rm_empty[0] = xdr_zero;
|
|
headerp->rm_body.rm_nochunks.rm_empty[1] = xdr_zero;
|
|
headerp->rm_body.rm_nochunks.rm_empty[2] = xdr_zero;
|
|
/* new length after pullup */
|
|
rpclen = rqst->rq_svec[0].iov_len;
|
|
/*
|
|
* Currently we try to not actually use read inline.
|
|
* Reply chunks have the desirable property that
|
|
* they land, packed, directly in the target buffers
|
|
* without headers, so they require no fixup. The
|
|
* additional RDMA Write op sends the same amount
|
|
* of data, streams on-the-wire and adds no overhead
|
|
* on receive. Therefore, we request a reply chunk
|
|
* for non-writes wherever feasible and efficient.
|
|
*/
|
|
if (wtype == rpcrdma_noch &&
|
|
r_xprt->rx_ia.ri_memreg_strategy > RPCRDMA_REGISTER)
|
|
wtype = rpcrdma_replych;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Marshal chunks. This routine will return the header length
|
|
* consumed by marshaling.
|
|
*/
|
|
if (rtype != rpcrdma_noch) {
|
|
hdrlen = rpcrdma_create_chunks(rqst,
|
|
&rqst->rq_snd_buf, headerp, rtype);
|
|
wtype = rtype; /* simplify dprintk */
|
|
|
|
} else if (wtype != rpcrdma_noch) {
|
|
hdrlen = rpcrdma_create_chunks(rqst,
|
|
&rqst->rq_rcv_buf, headerp, wtype);
|
|
}
|
|
|
|
if (hdrlen == 0)
|
|
return -1;
|
|
|
|
dprintk("RPC: %s: %s: hdrlen %zd rpclen %zd padlen %zd\n"
|
|
" headerp 0x%p base 0x%p lkey 0x%x\n",
|
|
__func__, transfertypes[wtype], hdrlen, rpclen, padlen,
|
|
headerp, base, req->rl_iov.lkey);
|
|
|
|
/*
|
|
* initialize send_iov's - normally only two: rdma chunk header and
|
|
* single preregistered RPC header buffer, but if padding is present,
|
|
* then use a preregistered (and zeroed) pad buffer between the RPC
|
|
* header and any write data. In all non-rdma cases, any following
|
|
* data has been copied into the RPC header buffer.
|
|
*/
|
|
req->rl_send_iov[0].addr = req->rl_iov.addr;
|
|
req->rl_send_iov[0].length = hdrlen;
|
|
req->rl_send_iov[0].lkey = req->rl_iov.lkey;
|
|
|
|
req->rl_send_iov[1].addr = req->rl_iov.addr + (base - req->rl_base);
|
|
req->rl_send_iov[1].length = rpclen;
|
|
req->rl_send_iov[1].lkey = req->rl_iov.lkey;
|
|
|
|
req->rl_niovs = 2;
|
|
|
|
if (padlen) {
|
|
struct rpcrdma_ep *ep = &r_xprt->rx_ep;
|
|
|
|
req->rl_send_iov[2].addr = ep->rep_pad.addr;
|
|
req->rl_send_iov[2].length = padlen;
|
|
req->rl_send_iov[2].lkey = ep->rep_pad.lkey;
|
|
|
|
req->rl_send_iov[3].addr = req->rl_send_iov[1].addr + rpclen;
|
|
req->rl_send_iov[3].length = rqst->rq_slen - rpclen;
|
|
req->rl_send_iov[3].lkey = req->rl_iov.lkey;
|
|
|
|
req->rl_niovs = 4;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Chase down a received write or reply chunklist to get length
|
|
* RDMA'd by server. See map at rpcrdma_create_chunks()! :-)
|
|
*/
|
|
static int
|
|
rpcrdma_count_chunks(struct rpcrdma_rep *rep, int max, int wrchunk, __be32 **iptrp)
|
|
{
|
|
unsigned int i, total_len;
|
|
struct rpcrdma_write_chunk *cur_wchunk;
|
|
|
|
i = ntohl(**iptrp); /* get array count */
|
|
if (i > max)
|
|
return -1;
|
|
cur_wchunk = (struct rpcrdma_write_chunk *) (*iptrp + 1);
|
|
total_len = 0;
|
|
while (i--) {
|
|
struct rpcrdma_segment *seg = &cur_wchunk->wc_target;
|
|
ifdebug(FACILITY) {
|
|
u64 off;
|
|
xdr_decode_hyper((__be32 *)&seg->rs_offset, &off);
|
|
dprintk("RPC: %s: chunk %d@0x%llx:0x%x\n",
|
|
__func__,
|
|
ntohl(seg->rs_length),
|
|
(unsigned long long)off,
|
|
ntohl(seg->rs_handle));
|
|
}
|
|
total_len += ntohl(seg->rs_length);
|
|
++cur_wchunk;
|
|
}
|
|
/* check and adjust for properly terminated write chunk */
|
|
if (wrchunk) {
|
|
__be32 *w = (__be32 *) cur_wchunk;
|
|
if (*w++ != xdr_zero)
|
|
return -1;
|
|
cur_wchunk = (struct rpcrdma_write_chunk *) w;
|
|
}
|
|
if ((char *) cur_wchunk > rep->rr_base + rep->rr_len)
|
|
return -1;
|
|
|
|
*iptrp = (__be32 *) cur_wchunk;
|
|
return total_len;
|
|
}
|
|
|
|
/*
|
|
* Scatter inline received data back into provided iov's.
|
|
*/
|
|
static void
|
|
rpcrdma_inline_fixup(struct rpc_rqst *rqst, char *srcp, int copy_len)
|
|
{
|
|
int i, npages, curlen, olen;
|
|
char *destp;
|
|
|
|
curlen = rqst->rq_rcv_buf.head[0].iov_len;
|
|
if (curlen > copy_len) { /* write chunk header fixup */
|
|
curlen = copy_len;
|
|
rqst->rq_rcv_buf.head[0].iov_len = curlen;
|
|
}
|
|
|
|
dprintk("RPC: %s: srcp 0x%p len %d hdrlen %d\n",
|
|
__func__, srcp, copy_len, curlen);
|
|
|
|
/* Shift pointer for first receive segment only */
|
|
rqst->rq_rcv_buf.head[0].iov_base = srcp;
|
|
srcp += curlen;
|
|
copy_len -= curlen;
|
|
|
|
olen = copy_len;
|
|
i = 0;
|
|
rpcx_to_rdmax(rqst->rq_xprt)->rx_stats.fixup_copy_count += olen;
|
|
if (copy_len && rqst->rq_rcv_buf.page_len) {
|
|
npages = PAGE_ALIGN(rqst->rq_rcv_buf.page_base +
|
|
rqst->rq_rcv_buf.page_len) >> PAGE_SHIFT;
|
|
for (; i < npages; i++) {
|
|
if (i == 0)
|
|
curlen = PAGE_SIZE - rqst->rq_rcv_buf.page_base;
|
|
else
|
|
curlen = PAGE_SIZE;
|
|
if (curlen > copy_len)
|
|
curlen = copy_len;
|
|
dprintk("RPC: %s: page %d"
|
|
" srcp 0x%p len %d curlen %d\n",
|
|
__func__, i, srcp, copy_len, curlen);
|
|
destp = kmap_atomic(rqst->rq_rcv_buf.pages[i],
|
|
KM_SKB_SUNRPC_DATA);
|
|
if (i == 0)
|
|
memcpy(destp + rqst->rq_rcv_buf.page_base,
|
|
srcp, curlen);
|
|
else
|
|
memcpy(destp, srcp, curlen);
|
|
flush_dcache_page(rqst->rq_rcv_buf.pages[i]);
|
|
kunmap_atomic(destp, KM_SKB_SUNRPC_DATA);
|
|
srcp += curlen;
|
|
copy_len -= curlen;
|
|
if (copy_len == 0)
|
|
break;
|
|
}
|
|
rqst->rq_rcv_buf.page_len = olen - copy_len;
|
|
} else
|
|
rqst->rq_rcv_buf.page_len = 0;
|
|
|
|
if (copy_len && rqst->rq_rcv_buf.tail[0].iov_len) {
|
|
curlen = copy_len;
|
|
if (curlen > rqst->rq_rcv_buf.tail[0].iov_len)
|
|
curlen = rqst->rq_rcv_buf.tail[0].iov_len;
|
|
if (rqst->rq_rcv_buf.tail[0].iov_base != srcp)
|
|
memcpy(rqst->rq_rcv_buf.tail[0].iov_base, srcp, curlen);
|
|
dprintk("RPC: %s: tail srcp 0x%p len %d curlen %d\n",
|
|
__func__, srcp, copy_len, curlen);
|
|
rqst->rq_rcv_buf.tail[0].iov_len = curlen;
|
|
copy_len -= curlen; ++i;
|
|
} else
|
|
rqst->rq_rcv_buf.tail[0].iov_len = 0;
|
|
|
|
if (copy_len)
|
|
dprintk("RPC: %s: %d bytes in"
|
|
" %d extra segments (%d lost)\n",
|
|
__func__, olen, i, copy_len);
|
|
|
|
/* TBD avoid a warning from call_decode() */
|
|
rqst->rq_private_buf = rqst->rq_rcv_buf;
|
|
}
|
|
|
|
/*
|
|
* This function is called when an async event is posted to
|
|
* the connection which changes the connection state. All it
|
|
* does at this point is mark the connection up/down, the rpc
|
|
* timers do the rest.
|
|
*/
|
|
void
|
|
rpcrdma_conn_func(struct rpcrdma_ep *ep)
|
|
{
|
|
struct rpc_xprt *xprt = ep->rep_xprt;
|
|
|
|
spin_lock_bh(&xprt->transport_lock);
|
|
if (ep->rep_connected > 0) {
|
|
if (!xprt_test_and_set_connected(xprt))
|
|
xprt_wake_pending_tasks(xprt, 0);
|
|
} else {
|
|
if (xprt_test_and_clear_connected(xprt))
|
|
xprt_wake_pending_tasks(xprt, ep->rep_connected);
|
|
}
|
|
spin_unlock_bh(&xprt->transport_lock);
|
|
}
|
|
|
|
/*
|
|
* This function is called when memory window unbind which we are waiting
|
|
* for completes. Just use rr_func (zeroed by upcall) to signal completion.
|
|
*/
|
|
static void
|
|
rpcrdma_unbind_func(struct rpcrdma_rep *rep)
|
|
{
|
|
wake_up(&rep->rr_unbind);
|
|
}
|
|
|
|
/*
|
|
* Called as a tasklet to do req/reply match and complete a request
|
|
* Errors must result in the RPC task either being awakened, or
|
|
* allowed to timeout, to discover the errors at that time.
|
|
*/
|
|
void
|
|
rpcrdma_reply_handler(struct rpcrdma_rep *rep)
|
|
{
|
|
struct rpcrdma_msg *headerp;
|
|
struct rpcrdma_req *req;
|
|
struct rpc_rqst *rqst;
|
|
struct rpc_xprt *xprt = rep->rr_xprt;
|
|
struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
|
|
__be32 *iptr;
|
|
int i, rdmalen, status;
|
|
|
|
/* Check status. If bad, signal disconnect and return rep to pool */
|
|
if (rep->rr_len == ~0U) {
|
|
rpcrdma_recv_buffer_put(rep);
|
|
if (r_xprt->rx_ep.rep_connected == 1) {
|
|
r_xprt->rx_ep.rep_connected = -EIO;
|
|
rpcrdma_conn_func(&r_xprt->rx_ep);
|
|
}
|
|
return;
|
|
}
|
|
if (rep->rr_len < 28) {
|
|
dprintk("RPC: %s: short/invalid reply\n", __func__);
|
|
goto repost;
|
|
}
|
|
headerp = (struct rpcrdma_msg *) rep->rr_base;
|
|
if (headerp->rm_vers != xdr_one) {
|
|
dprintk("RPC: %s: invalid version %d\n",
|
|
__func__, ntohl(headerp->rm_vers));
|
|
goto repost;
|
|
}
|
|
|
|
/* Get XID and try for a match. */
|
|
spin_lock(&xprt->transport_lock);
|
|
rqst = xprt_lookup_rqst(xprt, headerp->rm_xid);
|
|
if (rqst == NULL) {
|
|
spin_unlock(&xprt->transport_lock);
|
|
dprintk("RPC: %s: reply 0x%p failed "
|
|
"to match any request xid 0x%08x len %d\n",
|
|
__func__, rep, headerp->rm_xid, rep->rr_len);
|
|
repost:
|
|
r_xprt->rx_stats.bad_reply_count++;
|
|
rep->rr_func = rpcrdma_reply_handler;
|
|
if (rpcrdma_ep_post_recv(&r_xprt->rx_ia, &r_xprt->rx_ep, rep))
|
|
rpcrdma_recv_buffer_put(rep);
|
|
|
|
return;
|
|
}
|
|
|
|
/* get request object */
|
|
req = rpcr_to_rdmar(rqst);
|
|
|
|
dprintk("RPC: %s: reply 0x%p completes request 0x%p\n"
|
|
" RPC request 0x%p xid 0x%08x\n",
|
|
__func__, rep, req, rqst, headerp->rm_xid);
|
|
|
|
BUG_ON(!req || req->rl_reply);
|
|
|
|
/* from here on, the reply is no longer an orphan */
|
|
req->rl_reply = rep;
|
|
|
|
/* check for expected message types */
|
|
/* The order of some of these tests is important. */
|
|
switch (headerp->rm_type) {
|
|
case __constant_htonl(RDMA_MSG):
|
|
/* never expect read chunks */
|
|
/* never expect reply chunks (two ways to check) */
|
|
/* never expect write chunks without having offered RDMA */
|
|
if (headerp->rm_body.rm_chunks[0] != xdr_zero ||
|
|
(headerp->rm_body.rm_chunks[1] == xdr_zero &&
|
|
headerp->rm_body.rm_chunks[2] != xdr_zero) ||
|
|
(headerp->rm_body.rm_chunks[1] != xdr_zero &&
|
|
req->rl_nchunks == 0))
|
|
goto badheader;
|
|
if (headerp->rm_body.rm_chunks[1] != xdr_zero) {
|
|
/* count any expected write chunks in read reply */
|
|
/* start at write chunk array count */
|
|
iptr = &headerp->rm_body.rm_chunks[2];
|
|
rdmalen = rpcrdma_count_chunks(rep,
|
|
req->rl_nchunks, 1, &iptr);
|
|
/* check for validity, and no reply chunk after */
|
|
if (rdmalen < 0 || *iptr++ != xdr_zero)
|
|
goto badheader;
|
|
rep->rr_len -=
|
|
((unsigned char *)iptr - (unsigned char *)headerp);
|
|
status = rep->rr_len + rdmalen;
|
|
r_xprt->rx_stats.total_rdma_reply += rdmalen;
|
|
} else {
|
|
/* else ordinary inline */
|
|
iptr = (__be32 *)((unsigned char *)headerp + 28);
|
|
rep->rr_len -= 28; /*sizeof *headerp;*/
|
|
status = rep->rr_len;
|
|
}
|
|
/* Fix up the rpc results for upper layer */
|
|
rpcrdma_inline_fixup(rqst, (char *)iptr, rep->rr_len);
|
|
break;
|
|
|
|
case __constant_htonl(RDMA_NOMSG):
|
|
/* never expect read or write chunks, always reply chunks */
|
|
if (headerp->rm_body.rm_chunks[0] != xdr_zero ||
|
|
headerp->rm_body.rm_chunks[1] != xdr_zero ||
|
|
headerp->rm_body.rm_chunks[2] != xdr_one ||
|
|
req->rl_nchunks == 0)
|
|
goto badheader;
|
|
iptr = (__be32 *)((unsigned char *)headerp + 28);
|
|
rdmalen = rpcrdma_count_chunks(rep, req->rl_nchunks, 0, &iptr);
|
|
if (rdmalen < 0)
|
|
goto badheader;
|
|
r_xprt->rx_stats.total_rdma_reply += rdmalen;
|
|
/* Reply chunk buffer already is the reply vector - no fixup. */
|
|
status = rdmalen;
|
|
break;
|
|
|
|
badheader:
|
|
default:
|
|
dprintk("%s: invalid rpcrdma reply header (type %d):"
|
|
" chunks[012] == %d %d %d"
|
|
" expected chunks <= %d\n",
|
|
__func__, ntohl(headerp->rm_type),
|
|
headerp->rm_body.rm_chunks[0],
|
|
headerp->rm_body.rm_chunks[1],
|
|
headerp->rm_body.rm_chunks[2],
|
|
req->rl_nchunks);
|
|
status = -EIO;
|
|
r_xprt->rx_stats.bad_reply_count++;
|
|
break;
|
|
}
|
|
|
|
/* If using mw bind, start the deregister process now. */
|
|
/* (Note: if mr_free(), cannot perform it here, in tasklet context) */
|
|
if (req->rl_nchunks) switch (r_xprt->rx_ia.ri_memreg_strategy) {
|
|
case RPCRDMA_MEMWINDOWS:
|
|
for (i = 0; req->rl_nchunks-- > 1;)
|
|
i += rpcrdma_deregister_external(
|
|
&req->rl_segments[i], r_xprt, NULL);
|
|
/* Optionally wait (not here) for unbinds to complete */
|
|
rep->rr_func = rpcrdma_unbind_func;
|
|
(void) rpcrdma_deregister_external(&req->rl_segments[i],
|
|
r_xprt, rep);
|
|
break;
|
|
case RPCRDMA_MEMWINDOWS_ASYNC:
|
|
for (i = 0; req->rl_nchunks--;)
|
|
i += rpcrdma_deregister_external(&req->rl_segments[i],
|
|
r_xprt, NULL);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
dprintk("RPC: %s: xprt_complete_rqst(0x%p, 0x%p, %d)\n",
|
|
__func__, xprt, rqst, status);
|
|
xprt_complete_rqst(rqst->rq_task, status);
|
|
spin_unlock(&xprt->transport_lock);
|
|
}
|