linux_old1/drivers/iio/light/isl29018.c

883 lines
22 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* A iio driver for the light sensor ISL 29018/29023/29035.
*
* IIO driver for monitoring ambient light intensity in luxi, proximity
* sensing and infrared sensing.
*
* Copyright (c) 2010, NVIDIA Corporation.
*/
#include <linux/module.h>
#include <linux/i2c.h>
#include <linux/err.h>
#include <linux/mutex.h>
#include <linux/delay.h>
#include <linux/regmap.h>
#include <linux/regulator/consumer.h>
#include <linux/slab.h>
#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>
#include <linux/acpi.h>
#define ISL29018_CONV_TIME_MS 100
#define ISL29018_REG_ADD_COMMAND1 0x00
#define ISL29018_CMD1_OPMODE_SHIFT 5
#define ISL29018_CMD1_OPMODE_MASK (7 << ISL29018_CMD1_OPMODE_SHIFT)
#define ISL29018_CMD1_OPMODE_POWER_DOWN 0
#define ISL29018_CMD1_OPMODE_ALS_ONCE 1
#define ISL29018_CMD1_OPMODE_IR_ONCE 2
#define ISL29018_CMD1_OPMODE_PROX_ONCE 3
#define ISL29018_REG_ADD_COMMAND2 0x01
#define ISL29018_CMD2_RESOLUTION_SHIFT 2
#define ISL29018_CMD2_RESOLUTION_MASK (0x3 << ISL29018_CMD2_RESOLUTION_SHIFT)
#define ISL29018_CMD2_RANGE_SHIFT 0
#define ISL29018_CMD2_RANGE_MASK (0x3 << ISL29018_CMD2_RANGE_SHIFT)
#define ISL29018_CMD2_SCHEME_SHIFT 7
#define ISL29018_CMD2_SCHEME_MASK (0x1 << ISL29018_CMD2_SCHEME_SHIFT)
#define ISL29018_REG_ADD_DATA_LSB 0x02
#define ISL29018_REG_ADD_DATA_MSB 0x03
#define ISL29018_REG_TEST 0x08
#define ISL29018_TEST_SHIFT 0
#define ISL29018_TEST_MASK (0xFF << ISL29018_TEST_SHIFT)
#define ISL29035_REG_DEVICE_ID 0x0F
#define ISL29035_DEVICE_ID_SHIFT 0x03
#define ISL29035_DEVICE_ID_MASK (0x7 << ISL29035_DEVICE_ID_SHIFT)
#define ISL29035_DEVICE_ID 0x5
#define ISL29035_BOUT_SHIFT 0x07
#define ISL29035_BOUT_MASK (0x01 << ISL29035_BOUT_SHIFT)
enum isl29018_int_time {
ISL29018_INT_TIME_16,
ISL29018_INT_TIME_12,
ISL29018_INT_TIME_8,
ISL29018_INT_TIME_4,
};
static const unsigned int isl29018_int_utimes[3][4] = {
{90000, 5630, 351, 21},
{90000, 5600, 352, 22},
{105000, 6500, 410, 25},
};
static const struct isl29018_scale {
unsigned int scale;
unsigned int uscale;
} isl29018_scales[4][4] = {
{ {0, 15258}, {0, 61035}, {0, 244140}, {0, 976562} },
{ {0, 244140}, {0, 976562}, {3, 906250}, {15, 625000} },
{ {3, 906250}, {15, 625000}, {62, 500000}, {250, 0} },
{ {62, 500000}, {250, 0}, {1000, 0}, {4000, 0} }
};
struct isl29018_chip {
struct regmap *regmap;
struct mutex lock;
int type;
unsigned int calibscale;
unsigned int ucalibscale;
unsigned int int_time;
struct isl29018_scale scale;
int prox_scheme;
bool suspended;
struct regulator *vcc_reg;
};
static int isl29018_set_integration_time(struct isl29018_chip *chip,
unsigned int utime)
{
unsigned int i;
int ret;
unsigned int int_time, new_int_time;
for (i = 0; i < ARRAY_SIZE(isl29018_int_utimes[chip->type]); ++i) {
if (utime == isl29018_int_utimes[chip->type][i]) {
new_int_time = i;
break;
}
}
if (i >= ARRAY_SIZE(isl29018_int_utimes[chip->type]))
return -EINVAL;
ret = regmap_update_bits(chip->regmap, ISL29018_REG_ADD_COMMAND2,
ISL29018_CMD2_RESOLUTION_MASK,
i << ISL29018_CMD2_RESOLUTION_SHIFT);
if (ret < 0)
return ret;
/* Keep the same range when integration time changes */
int_time = chip->int_time;
for (i = 0; i < ARRAY_SIZE(isl29018_scales[int_time]); ++i) {
if (chip->scale.scale == isl29018_scales[int_time][i].scale &&
chip->scale.uscale == isl29018_scales[int_time][i].uscale) {
chip->scale = isl29018_scales[new_int_time][i];
break;
}
}
chip->int_time = new_int_time;
return 0;
}
static int isl29018_set_scale(struct isl29018_chip *chip, int scale, int uscale)
{
unsigned int i;
int ret;
struct isl29018_scale new_scale;
for (i = 0; i < ARRAY_SIZE(isl29018_scales[chip->int_time]); ++i) {
if (scale == isl29018_scales[chip->int_time][i].scale &&
uscale == isl29018_scales[chip->int_time][i].uscale) {
new_scale = isl29018_scales[chip->int_time][i];
break;
}
}
if (i >= ARRAY_SIZE(isl29018_scales[chip->int_time]))
return -EINVAL;
ret = regmap_update_bits(chip->regmap, ISL29018_REG_ADD_COMMAND2,
ISL29018_CMD2_RANGE_MASK,
i << ISL29018_CMD2_RANGE_SHIFT);
if (ret < 0)
return ret;
chip->scale = new_scale;
return 0;
}
static int isl29018_read_sensor_input(struct isl29018_chip *chip, int mode)
{
int status;
unsigned int lsb;
unsigned int msb;
struct device *dev = regmap_get_device(chip->regmap);
/* Set mode */
status = regmap_write(chip->regmap, ISL29018_REG_ADD_COMMAND1,
mode << ISL29018_CMD1_OPMODE_SHIFT);
if (status) {
dev_err(dev,
"Error in setting operating mode err %d\n", status);
return status;
}
msleep(ISL29018_CONV_TIME_MS);
status = regmap_read(chip->regmap, ISL29018_REG_ADD_DATA_LSB, &lsb);
if (status < 0) {
dev_err(dev,
"Error in reading LSB DATA with err %d\n", status);
return status;
}
status = regmap_read(chip->regmap, ISL29018_REG_ADD_DATA_MSB, &msb);
if (status < 0) {
dev_err(dev,
"Error in reading MSB DATA with error %d\n", status);
return status;
}
dev_vdbg(dev, "MSB 0x%x and LSB 0x%x\n", msb, lsb);
return (msb << 8) | lsb;
}
static int isl29018_read_lux(struct isl29018_chip *chip, int *lux)
{
int lux_data;
unsigned int data_x_range;
lux_data = isl29018_read_sensor_input(chip,
ISL29018_CMD1_OPMODE_ALS_ONCE);
if (lux_data < 0)
return lux_data;
data_x_range = lux_data * chip->scale.scale +
lux_data * chip->scale.uscale / 1000000;
*lux = data_x_range * chip->calibscale +
data_x_range * chip->ucalibscale / 1000000;
return 0;
}
static int isl29018_read_ir(struct isl29018_chip *chip, int *ir)
{
int ir_data;
ir_data = isl29018_read_sensor_input(chip,
ISL29018_CMD1_OPMODE_IR_ONCE);
if (ir_data < 0)
return ir_data;
*ir = ir_data;
return 0;
}
static int isl29018_read_proximity_ir(struct isl29018_chip *chip, int scheme,
int *near_ir)
{
int status;
int prox_data = -1;
int ir_data = -1;
struct device *dev = regmap_get_device(chip->regmap);
/* Do proximity sensing with required scheme */
status = regmap_update_bits(chip->regmap, ISL29018_REG_ADD_COMMAND2,
ISL29018_CMD2_SCHEME_MASK,
scheme << ISL29018_CMD2_SCHEME_SHIFT);
if (status) {
dev_err(dev, "Error in setting operating mode\n");
return status;
}
prox_data = isl29018_read_sensor_input(chip,
ISL29018_CMD1_OPMODE_PROX_ONCE);
if (prox_data < 0)
return prox_data;
if (scheme == 1) {
*near_ir = prox_data;
return 0;
}
ir_data = isl29018_read_sensor_input(chip,
ISL29018_CMD1_OPMODE_IR_ONCE);
if (ir_data < 0)
return ir_data;
if (prox_data >= ir_data)
*near_ir = prox_data - ir_data;
else
*near_ir = 0;
return 0;
}
static ssize_t in_illuminance_scale_available_show
(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct iio_dev *indio_dev = dev_to_iio_dev(dev);
struct isl29018_chip *chip = iio_priv(indio_dev);
unsigned int i;
int len = 0;
mutex_lock(&chip->lock);
for (i = 0; i < ARRAY_SIZE(isl29018_scales[chip->int_time]); ++i)
len += sprintf(buf + len, "%d.%06d ",
isl29018_scales[chip->int_time][i].scale,
isl29018_scales[chip->int_time][i].uscale);
mutex_unlock(&chip->lock);
buf[len - 1] = '\n';
return len;
}
static ssize_t in_illuminance_integration_time_available_show
(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct iio_dev *indio_dev = dev_to_iio_dev(dev);
struct isl29018_chip *chip = iio_priv(indio_dev);
unsigned int i;
int len = 0;
for (i = 0; i < ARRAY_SIZE(isl29018_int_utimes[chip->type]); ++i)
len += sprintf(buf + len, "0.%06d ",
isl29018_int_utimes[chip->type][i]);
buf[len - 1] = '\n';
return len;
}
/*
* From ISL29018 Data Sheet (FN6619.4, Oct 8, 2012) regarding the
* infrared suppression:
*
* Proximity Sensing Scheme: Bit 7. This bit programs the function
* of the proximity detection. Logic 0 of this bit, Scheme 0, makes
* full n (4, 8, 12, 16) bits (unsigned) proximity detection. The range
* of Scheme 0 proximity count is from 0 to 2^n. Logic 1 of this bit,
* Scheme 1, makes n-1 (3, 7, 11, 15) bits (2's complementary)
* proximity_less_ambient detection. The range of Scheme 1
* proximity count is from -2^(n-1) to 2^(n-1) . The sign bit is extended
* for resolutions less than 16. While Scheme 0 has wider dynamic
* range, Scheme 1 proximity detection is less affected by the
* ambient IR noise variation.
*
* 0 Sensing IR from LED and ambient
* 1 Sensing IR from LED with ambient IR rejection
*/
static ssize_t proximity_on_chip_ambient_infrared_suppression_show
(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct iio_dev *indio_dev = dev_to_iio_dev(dev);
struct isl29018_chip *chip = iio_priv(indio_dev);
/*
* Return the "proximity scheme" i.e. if the chip does on chip
* infrared suppression (1 means perform on chip suppression)
*/
return sprintf(buf, "%d\n", chip->prox_scheme);
}
static ssize_t proximity_on_chip_ambient_infrared_suppression_store
(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct iio_dev *indio_dev = dev_to_iio_dev(dev);
struct isl29018_chip *chip = iio_priv(indio_dev);
int val;
if (kstrtoint(buf, 10, &val))
return -EINVAL;
if (!(val == 0 || val == 1))
return -EINVAL;
/*
* Get the "proximity scheme" i.e. if the chip does on chip
* infrared suppression (1 means perform on chip suppression)
*/
mutex_lock(&chip->lock);
chip->prox_scheme = val;
mutex_unlock(&chip->lock);
return count;
}
static int isl29018_write_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int val,
int val2,
long mask)
{
struct isl29018_chip *chip = iio_priv(indio_dev);
int ret = -EINVAL;
mutex_lock(&chip->lock);
if (chip->suspended) {
ret = -EBUSY;
goto write_done;
}
switch (mask) {
case IIO_CHAN_INFO_CALIBSCALE:
if (chan->type == IIO_LIGHT) {
chip->calibscale = val;
chip->ucalibscale = val2;
ret = 0;
}
break;
case IIO_CHAN_INFO_INT_TIME:
if (chan->type == IIO_LIGHT && !val)
ret = isl29018_set_integration_time(chip, val2);
break;
case IIO_CHAN_INFO_SCALE:
if (chan->type == IIO_LIGHT)
ret = isl29018_set_scale(chip, val, val2);
break;
default:
break;
}
write_done:
mutex_unlock(&chip->lock);
return ret;
}
static int isl29018_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int *val,
int *val2,
long mask)
{
int ret = -EINVAL;
struct isl29018_chip *chip = iio_priv(indio_dev);
mutex_lock(&chip->lock);
if (chip->suspended) {
ret = -EBUSY;
goto read_done;
}
switch (mask) {
case IIO_CHAN_INFO_RAW:
case IIO_CHAN_INFO_PROCESSED:
switch (chan->type) {
case IIO_LIGHT:
ret = isl29018_read_lux(chip, val);
break;
case IIO_INTENSITY:
ret = isl29018_read_ir(chip, val);
break;
case IIO_PROXIMITY:
ret = isl29018_read_proximity_ir(chip,
chip->prox_scheme,
val);
break;
default:
break;
}
if (!ret)
ret = IIO_VAL_INT;
break;
case IIO_CHAN_INFO_INT_TIME:
if (chan->type == IIO_LIGHT) {
*val = 0;
*val2 = isl29018_int_utimes[chip->type][chip->int_time];
ret = IIO_VAL_INT_PLUS_MICRO;
}
break;
case IIO_CHAN_INFO_SCALE:
if (chan->type == IIO_LIGHT) {
*val = chip->scale.scale;
*val2 = chip->scale.uscale;
ret = IIO_VAL_INT_PLUS_MICRO;
}
break;
case IIO_CHAN_INFO_CALIBSCALE:
if (chan->type == IIO_LIGHT) {
*val = chip->calibscale;
*val2 = chip->ucalibscale;
ret = IIO_VAL_INT_PLUS_MICRO;
}
break;
default:
break;
}
read_done:
mutex_unlock(&chip->lock);
return ret;
}
#define ISL29018_LIGHT_CHANNEL { \
.type = IIO_LIGHT, \
.indexed = 1, \
.channel = 0, \
.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) | \
BIT(IIO_CHAN_INFO_CALIBSCALE) | \
BIT(IIO_CHAN_INFO_SCALE) | \
BIT(IIO_CHAN_INFO_INT_TIME), \
}
#define ISL29018_IR_CHANNEL { \
.type = IIO_INTENSITY, \
.modified = 1, \
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
.channel2 = IIO_MOD_LIGHT_IR, \
}
#define ISL29018_PROXIMITY_CHANNEL { \
.type = IIO_PROXIMITY, \
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
}
static const struct iio_chan_spec isl29018_channels[] = {
ISL29018_LIGHT_CHANNEL,
ISL29018_IR_CHANNEL,
ISL29018_PROXIMITY_CHANNEL,
};
static const struct iio_chan_spec isl29023_channels[] = {
ISL29018_LIGHT_CHANNEL,
ISL29018_IR_CHANNEL,
};
static IIO_DEVICE_ATTR_RO(in_illuminance_integration_time_available, 0);
static IIO_DEVICE_ATTR_RO(in_illuminance_scale_available, 0);
static IIO_DEVICE_ATTR_RW(proximity_on_chip_ambient_infrared_suppression, 0);
#define ISL29018_DEV_ATTR(name) (&iio_dev_attr_##name.dev_attr.attr)
static struct attribute *isl29018_attributes[] = {
ISL29018_DEV_ATTR(in_illuminance_scale_available),
ISL29018_DEV_ATTR(in_illuminance_integration_time_available),
ISL29018_DEV_ATTR(proximity_on_chip_ambient_infrared_suppression),
NULL
};
static struct attribute *isl29023_attributes[] = {
ISL29018_DEV_ATTR(in_illuminance_scale_available),
ISL29018_DEV_ATTR(in_illuminance_integration_time_available),
NULL
};
static const struct attribute_group isl29018_group = {
.attrs = isl29018_attributes,
};
static const struct attribute_group isl29023_group = {
.attrs = isl29023_attributes,
};
enum {
isl29018,
isl29023,
isl29035,
};
static int isl29018_chip_init(struct isl29018_chip *chip)
{
int status;
struct device *dev = regmap_get_device(chip->regmap);
if (chip->type == isl29035) {
unsigned int id;
status = regmap_read(chip->regmap, ISL29035_REG_DEVICE_ID, &id);
if (status < 0) {
dev_err(dev,
"Error reading ID register with error %d\n",
status);
return status;
}
id = (id & ISL29035_DEVICE_ID_MASK) >> ISL29035_DEVICE_ID_SHIFT;
if (id != ISL29035_DEVICE_ID)
return -ENODEV;
/* Clear brownout bit */
status = regmap_update_bits(chip->regmap,
ISL29035_REG_DEVICE_ID,
ISL29035_BOUT_MASK, 0);
if (status < 0)
return status;
}
/*
* Code added per Intersil Application Note 1534:
* When VDD sinks to approximately 1.8V or below, some of
* the part's registers may change their state. When VDD
* recovers to 2.25V (or greater), the part may thus be in an
* unknown mode of operation. The user can return the part to
* a known mode of operation either by (a) setting VDD = 0V for
* 1 second or more and then powering back up with a slew rate
* of 0.5V/ms or greater, or (b) via I2C disable all ALS/PROX
* conversions, clear the test registers, and then rewrite all
* registers to the desired values.
* ...
* For ISL29011, ISL29018, ISL29021, ISL29023
* 1. Write 0x00 to register 0x08 (TEST)
* 2. Write 0x00 to register 0x00 (CMD1)
* 3. Rewrite all registers to the desired values
*
* ISL29018 Data Sheet (FN6619.1, Feb 11, 2010) essentially says
* the same thing EXCEPT the data sheet asks for a 1ms delay after
* writing the CMD1 register.
*/
status = regmap_write(chip->regmap, ISL29018_REG_TEST, 0x0);
if (status < 0) {
dev_err(dev, "Failed to clear isl29018 TEST reg.(%d)\n",
status);
return status;
}
/*
* See Intersil AN1534 comments above.
* "Operating Mode" (COMMAND1) register is reprogrammed when
* data is read from the device.
*/
status = regmap_write(chip->regmap, ISL29018_REG_ADD_COMMAND1, 0);
if (status < 0) {
dev_err(dev, "Failed to clear isl29018 CMD1 reg.(%d)\n",
status);
return status;
}
usleep_range(1000, 2000); /* per data sheet, page 10 */
/* Set defaults */
status = isl29018_set_scale(chip, chip->scale.scale,
chip->scale.uscale);
if (status < 0) {
dev_err(dev, "Init of isl29018 fails\n");
return status;
}
status = isl29018_set_integration_time(chip,
isl29018_int_utimes[chip->type][chip->int_time]);
if (status < 0)
dev_err(dev, "Init of isl29018 fails\n");
return status;
}
static const struct iio_info isl29018_info = {
.attrs = &isl29018_group,
.read_raw = isl29018_read_raw,
.write_raw = isl29018_write_raw,
};
static const struct iio_info isl29023_info = {
.attrs = &isl29023_group,
.read_raw = isl29018_read_raw,
.write_raw = isl29018_write_raw,
};
static bool isl29018_is_volatile_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case ISL29018_REG_ADD_DATA_LSB:
case ISL29018_REG_ADD_DATA_MSB:
case ISL29018_REG_ADD_COMMAND1:
case ISL29018_REG_TEST:
case ISL29035_REG_DEVICE_ID:
return true;
default:
return false;
}
}
static const struct regmap_config isl29018_regmap_config = {
.reg_bits = 8,
.val_bits = 8,
.volatile_reg = isl29018_is_volatile_reg,
.max_register = ISL29018_REG_TEST,
.num_reg_defaults_raw = ISL29018_REG_TEST + 1,
.cache_type = REGCACHE_RBTREE,
};
static const struct regmap_config isl29035_regmap_config = {
.reg_bits = 8,
.val_bits = 8,
.volatile_reg = isl29018_is_volatile_reg,
.max_register = ISL29035_REG_DEVICE_ID,
.num_reg_defaults_raw = ISL29035_REG_DEVICE_ID + 1,
.cache_type = REGCACHE_RBTREE,
};
struct isl29018_chip_info {
const struct iio_chan_spec *channels;
int num_channels;
const struct iio_info *indio_info;
const struct regmap_config *regmap_cfg;
};
static const struct isl29018_chip_info isl29018_chip_info_tbl[] = {
[isl29018] = {
.channels = isl29018_channels,
.num_channels = ARRAY_SIZE(isl29018_channels),
.indio_info = &isl29018_info,
.regmap_cfg = &isl29018_regmap_config,
},
[isl29023] = {
.channels = isl29023_channels,
.num_channels = ARRAY_SIZE(isl29023_channels),
.indio_info = &isl29023_info,
.regmap_cfg = &isl29018_regmap_config,
},
[isl29035] = {
.channels = isl29023_channels,
.num_channels = ARRAY_SIZE(isl29023_channels),
.indio_info = &isl29023_info,
.regmap_cfg = &isl29035_regmap_config,
},
};
static const char *isl29018_match_acpi_device(struct device *dev, int *data)
{
const struct acpi_device_id *id;
id = acpi_match_device(dev->driver->acpi_match_table, dev);
if (!id)
return NULL;
*data = (int)id->driver_data;
return dev_name(dev);
}
static void isl29018_disable_regulator_action(void *_data)
{
struct isl29018_chip *chip = _data;
int err;
err = regulator_disable(chip->vcc_reg);
if (err)
pr_err("failed to disable isl29018's VCC regulator!\n");
}
static int isl29018_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct isl29018_chip *chip;
struct iio_dev *indio_dev;
int err;
const char *name = NULL;
int dev_id = 0;
indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*chip));
if (!indio_dev)
return -ENOMEM;
chip = iio_priv(indio_dev);
i2c_set_clientdata(client, indio_dev);
if (id) {
name = id->name;
dev_id = id->driver_data;
}
if (ACPI_HANDLE(&client->dev))
name = isl29018_match_acpi_device(&client->dev, &dev_id);
mutex_init(&chip->lock);
chip->type = dev_id;
chip->calibscale = 1;
chip->ucalibscale = 0;
chip->int_time = ISL29018_INT_TIME_16;
chip->scale = isl29018_scales[chip->int_time][0];
chip->suspended = false;
chip->vcc_reg = devm_regulator_get(&client->dev, "vcc");
if (IS_ERR(chip->vcc_reg)) {
err = PTR_ERR(chip->vcc_reg);
if (err != -EPROBE_DEFER)
dev_err(&client->dev, "failed to get VCC regulator!\n");
return err;
}
err = regulator_enable(chip->vcc_reg);
if (err) {
dev_err(&client->dev, "failed to enable VCC regulator!\n");
return err;
}
err = devm_add_action_or_reset(&client->dev, isl29018_disable_regulator_action,
chip);
if (err) {
dev_err(&client->dev, "failed to setup regulator cleanup action!\n");
return err;
}
chip->regmap = devm_regmap_init_i2c(client,
isl29018_chip_info_tbl[dev_id].regmap_cfg);
if (IS_ERR(chip->regmap)) {
err = PTR_ERR(chip->regmap);
dev_err(&client->dev, "regmap initialization fails: %d\n", err);
return err;
}
err = isl29018_chip_init(chip);
if (err)
return err;
indio_dev->info = isl29018_chip_info_tbl[dev_id].indio_info;
indio_dev->channels = isl29018_chip_info_tbl[dev_id].channels;
indio_dev->num_channels = isl29018_chip_info_tbl[dev_id].num_channels;
indio_dev->name = name;
indio_dev->dev.parent = &client->dev;
indio_dev->modes = INDIO_DIRECT_MODE;
return devm_iio_device_register(&client->dev, indio_dev);
}
#ifdef CONFIG_PM_SLEEP
static int isl29018_suspend(struct device *dev)
{
struct isl29018_chip *chip = iio_priv(dev_get_drvdata(dev));
int ret;
mutex_lock(&chip->lock);
/*
* Since this driver uses only polling commands, we are by default in
* auto shutdown (ie, power-down) mode.
* So we do not have much to do here.
*/
chip->suspended = true;
ret = regulator_disable(chip->vcc_reg);
if (ret)
dev_err(dev, "failed to disable VCC regulator\n");
mutex_unlock(&chip->lock);
return ret;
}
static int isl29018_resume(struct device *dev)
{
struct isl29018_chip *chip = iio_priv(dev_get_drvdata(dev));
int err;
mutex_lock(&chip->lock);
err = regulator_enable(chip->vcc_reg);
if (err) {
dev_err(dev, "failed to enable VCC regulator\n");
mutex_unlock(&chip->lock);
return err;
}
err = isl29018_chip_init(chip);
if (!err)
chip->suspended = false;
mutex_unlock(&chip->lock);
return err;
}
static SIMPLE_DEV_PM_OPS(isl29018_pm_ops, isl29018_suspend, isl29018_resume);
#define ISL29018_PM_OPS (&isl29018_pm_ops)
#else
#define ISL29018_PM_OPS NULL
#endif
#ifdef CONFIG_ACPI
static const struct acpi_device_id isl29018_acpi_match[] = {
{"ISL29018", isl29018},
{"ISL29023", isl29023},
{"ISL29035", isl29035},
{},
};
MODULE_DEVICE_TABLE(acpi, isl29018_acpi_match);
#endif
static const struct i2c_device_id isl29018_id[] = {
{"isl29018", isl29018},
{"isl29023", isl29023},
{"isl29035", isl29035},
{}
};
MODULE_DEVICE_TABLE(i2c, isl29018_id);
static const struct of_device_id isl29018_of_match[] = {
{ .compatible = "isil,isl29018", },
{ .compatible = "isil,isl29023", },
{ .compatible = "isil,isl29035", },
{ },
};
MODULE_DEVICE_TABLE(of, isl29018_of_match);
static struct i2c_driver isl29018_driver = {
.driver = {
.name = "isl29018",
.acpi_match_table = ACPI_PTR(isl29018_acpi_match),
.pm = ISL29018_PM_OPS,
.of_match_table = isl29018_of_match,
},
.probe = isl29018_probe,
.id_table = isl29018_id,
};
module_i2c_driver(isl29018_driver);
MODULE_DESCRIPTION("ISL29018 Ambient Light Sensor driver");
MODULE_LICENSE("GPL");