linux_old1/arch/mips/cavium-octeon/octeon-irq.c

874 lines
23 KiB
C

/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Copyright (C) 2004-2008, 2009, 2010 Cavium Networks
*/
#include <linux/irq.h>
#include <linux/interrupt.h>
#include <linux/smp.h>
#include <asm/octeon/octeon.h>
static DEFINE_RAW_SPINLOCK(octeon_irq_ciu0_lock);
static DEFINE_RAW_SPINLOCK(octeon_irq_ciu1_lock);
static int octeon_coreid_for_cpu(int cpu)
{
#ifdef CONFIG_SMP
return cpu_logical_map(cpu);
#else
return cvmx_get_core_num();
#endif
}
static void octeon_irq_core_ack(unsigned int irq)
{
unsigned int bit = irq - OCTEON_IRQ_SW0;
/*
* We don't need to disable IRQs to make these atomic since
* they are already disabled earlier in the low level
* interrupt code.
*/
clear_c0_status(0x100 << bit);
/* The two user interrupts must be cleared manually. */
if (bit < 2)
clear_c0_cause(0x100 << bit);
}
static void octeon_irq_core_eoi(unsigned int irq)
{
struct irq_desc *desc = irq_to_desc(irq);
unsigned int bit = irq - OCTEON_IRQ_SW0;
/*
* If an IRQ is being processed while we are disabling it the
* handler will attempt to unmask the interrupt after it has
* been disabled.
*/
if ((unlikely(desc->status & IRQ_DISABLED)))
return;
/*
* We don't need to disable IRQs to make these atomic since
* they are already disabled earlier in the low level
* interrupt code.
*/
set_c0_status(0x100 << bit);
}
static void octeon_irq_core_enable(unsigned int irq)
{
unsigned long flags;
unsigned int bit = irq - OCTEON_IRQ_SW0;
/*
* We need to disable interrupts to make sure our updates are
* atomic.
*/
local_irq_save(flags);
set_c0_status(0x100 << bit);
local_irq_restore(flags);
}
static void octeon_irq_core_disable_local(unsigned int irq)
{
unsigned long flags;
unsigned int bit = irq - OCTEON_IRQ_SW0;
/*
* We need to disable interrupts to make sure our updates are
* atomic.
*/
local_irq_save(flags);
clear_c0_status(0x100 << bit);
local_irq_restore(flags);
}
static void octeon_irq_core_disable(unsigned int irq)
{
#ifdef CONFIG_SMP
on_each_cpu((void (*)(void *)) octeon_irq_core_disable_local,
(void *) (long) irq, 1);
#else
octeon_irq_core_disable_local(irq);
#endif
}
static struct irq_chip octeon_irq_chip_core = {
.name = "Core",
.enable = octeon_irq_core_enable,
.disable = octeon_irq_core_disable,
.ack = octeon_irq_core_ack,
.eoi = octeon_irq_core_eoi,
};
static void octeon_irq_ciu0_ack(unsigned int irq)
{
switch (irq) {
case OCTEON_IRQ_GMX_DRP0:
case OCTEON_IRQ_GMX_DRP1:
case OCTEON_IRQ_IPD_DRP:
case OCTEON_IRQ_KEY_ZERO:
case OCTEON_IRQ_TIMER0:
case OCTEON_IRQ_TIMER1:
case OCTEON_IRQ_TIMER2:
case OCTEON_IRQ_TIMER3:
{
int index = cvmx_get_core_num() * 2;
u64 mask = 1ull << (irq - OCTEON_IRQ_WORKQ0);
/*
* CIU timer type interrupts must be acknoleged by
* writing a '1' bit to their sum0 bit.
*/
cvmx_write_csr(CVMX_CIU_INTX_SUM0(index), mask);
break;
}
default:
break;
}
/*
* In order to avoid any locking accessing the CIU, we
* acknowledge CIU interrupts by disabling all of them. This
* way we can use a per core register and avoid any out of
* core locking requirements. This has the side affect that
* CIU interrupts can't be processed recursively.
*
* We don't need to disable IRQs to make these atomic since
* they are already disabled earlier in the low level
* interrupt code.
*/
clear_c0_status(0x100 << 2);
}
static void octeon_irq_ciu0_eoi(unsigned int irq)
{
/*
* Enable all CIU interrupts again. We don't need to disable
* IRQs to make these atomic since they are already disabled
* earlier in the low level interrupt code.
*/
set_c0_status(0x100 << 2);
}
static int next_coreid_for_irq(struct irq_desc *desc)
{
#ifdef CONFIG_SMP
int coreid;
int weight = cpumask_weight(desc->affinity);
if (weight > 1) {
int cpu = smp_processor_id();
for (;;) {
cpu = cpumask_next(cpu, desc->affinity);
if (cpu >= nr_cpu_ids) {
cpu = -1;
continue;
} else if (cpumask_test_cpu(cpu, cpu_online_mask)) {
break;
}
}
coreid = octeon_coreid_for_cpu(cpu);
} else if (weight == 1) {
coreid = octeon_coreid_for_cpu(cpumask_first(desc->affinity));
} else {
coreid = cvmx_get_core_num();
}
return coreid;
#else
return cvmx_get_core_num();
#endif
}
static void octeon_irq_ciu0_enable(unsigned int irq)
{
struct irq_desc *desc = irq_to_desc(irq);
int coreid = next_coreid_for_irq(desc);
unsigned long flags;
uint64_t en0;
int bit = irq - OCTEON_IRQ_WORKQ0; /* Bit 0-63 of EN0 */
raw_spin_lock_irqsave(&octeon_irq_ciu0_lock, flags);
en0 = cvmx_read_csr(CVMX_CIU_INTX_EN0(coreid * 2));
en0 |= 1ull << bit;
cvmx_write_csr(CVMX_CIU_INTX_EN0(coreid * 2), en0);
cvmx_read_csr(CVMX_CIU_INTX_EN0(coreid * 2));
raw_spin_unlock_irqrestore(&octeon_irq_ciu0_lock, flags);
}
static void octeon_irq_ciu0_enable_mbox(unsigned int irq)
{
int coreid = cvmx_get_core_num();
unsigned long flags;
uint64_t en0;
int bit = irq - OCTEON_IRQ_WORKQ0; /* Bit 0-63 of EN0 */
raw_spin_lock_irqsave(&octeon_irq_ciu0_lock, flags);
en0 = cvmx_read_csr(CVMX_CIU_INTX_EN0(coreid * 2));
en0 |= 1ull << bit;
cvmx_write_csr(CVMX_CIU_INTX_EN0(coreid * 2), en0);
cvmx_read_csr(CVMX_CIU_INTX_EN0(coreid * 2));
raw_spin_unlock_irqrestore(&octeon_irq_ciu0_lock, flags);
}
static void octeon_irq_ciu0_disable(unsigned int irq)
{
int bit = irq - OCTEON_IRQ_WORKQ0; /* Bit 0-63 of EN0 */
unsigned long flags;
uint64_t en0;
int cpu;
raw_spin_lock_irqsave(&octeon_irq_ciu0_lock, flags);
for_each_online_cpu(cpu) {
int coreid = octeon_coreid_for_cpu(cpu);
en0 = cvmx_read_csr(CVMX_CIU_INTX_EN0(coreid * 2));
en0 &= ~(1ull << bit);
cvmx_write_csr(CVMX_CIU_INTX_EN0(coreid * 2), en0);
}
/*
* We need to do a read after the last update to make sure all
* of them are done.
*/
cvmx_read_csr(CVMX_CIU_INTX_EN0(cvmx_get_core_num() * 2));
raw_spin_unlock_irqrestore(&octeon_irq_ciu0_lock, flags);
}
/*
* Enable the irq on the next core in the affinity set for chips that
* have the EN*_W1{S,C} registers.
*/
static void octeon_irq_ciu0_enable_v2(unsigned int irq)
{
int index;
u64 mask = 1ull << (irq - OCTEON_IRQ_WORKQ0);
struct irq_desc *desc = irq_to_desc(irq);
if ((desc->status & IRQ_DISABLED) == 0) {
index = next_coreid_for_irq(desc) * 2;
cvmx_write_csr(CVMX_CIU_INTX_EN0_W1S(index), mask);
}
}
/*
* Enable the irq on the current CPU for chips that
* have the EN*_W1{S,C} registers.
*/
static void octeon_irq_ciu0_enable_mbox_v2(unsigned int irq)
{
int index;
u64 mask = 1ull << (irq - OCTEON_IRQ_WORKQ0);
index = cvmx_get_core_num() * 2;
cvmx_write_csr(CVMX_CIU_INTX_EN0_W1S(index), mask);
}
/*
* Disable the irq on the current core for chips that have the EN*_W1{S,C}
* registers.
*/
static void octeon_irq_ciu0_ack_v2(unsigned int irq)
{
int index = cvmx_get_core_num() * 2;
u64 mask = 1ull << (irq - OCTEON_IRQ_WORKQ0);
switch (irq) {
case OCTEON_IRQ_GMX_DRP0:
case OCTEON_IRQ_GMX_DRP1:
case OCTEON_IRQ_IPD_DRP:
case OCTEON_IRQ_KEY_ZERO:
case OCTEON_IRQ_TIMER0:
case OCTEON_IRQ_TIMER1:
case OCTEON_IRQ_TIMER2:
case OCTEON_IRQ_TIMER3:
/*
* CIU timer type interrupts must be acknoleged by
* writing a '1' bit to their sum0 bit.
*/
cvmx_write_csr(CVMX_CIU_INTX_SUM0(index), mask);
break;
default:
break;
}
cvmx_write_csr(CVMX_CIU_INTX_EN0_W1C(index), mask);
}
/*
* Enable the irq on the current core for chips that have the EN*_W1{S,C}
* registers.
*/
static void octeon_irq_ciu0_eoi_mbox_v2(unsigned int irq)
{
struct irq_desc *desc = irq_to_desc(irq);
int index = cvmx_get_core_num() * 2;
u64 mask = 1ull << (irq - OCTEON_IRQ_WORKQ0);
if (likely((desc->status & IRQ_DISABLED) == 0))
cvmx_write_csr(CVMX_CIU_INTX_EN0_W1S(index), mask);
}
/*
* Disable the irq on the all cores for chips that have the EN*_W1{S,C}
* registers.
*/
static void octeon_irq_ciu0_disable_all_v2(unsigned int irq)
{
u64 mask = 1ull << (irq - OCTEON_IRQ_WORKQ0);
int index;
int cpu;
for_each_online_cpu(cpu) {
index = octeon_coreid_for_cpu(cpu) * 2;
cvmx_write_csr(CVMX_CIU_INTX_EN0_W1C(index), mask);
}
}
#ifdef CONFIG_SMP
static int octeon_irq_ciu0_set_affinity(unsigned int irq, const struct cpumask *dest)
{
int cpu;
struct irq_desc *desc = irq_to_desc(irq);
int enable_one = (desc->status & IRQ_DISABLED) == 0;
unsigned long flags;
int bit = irq - OCTEON_IRQ_WORKQ0; /* Bit 0-63 of EN0 */
/*
* For non-v2 CIU, we will allow only single CPU affinity.
* This removes the need to do locking in the .ack/.eoi
* functions.
*/
if (cpumask_weight(dest) != 1)
return -EINVAL;
raw_spin_lock_irqsave(&octeon_irq_ciu0_lock, flags);
for_each_online_cpu(cpu) {
int coreid = octeon_coreid_for_cpu(cpu);
uint64_t en0 =
cvmx_read_csr(CVMX_CIU_INTX_EN0(coreid * 2));
if (cpumask_test_cpu(cpu, dest) && enable_one) {
enable_one = 0;
en0 |= 1ull << bit;
} else {
en0 &= ~(1ull << bit);
}
cvmx_write_csr(CVMX_CIU_INTX_EN0(coreid * 2), en0);
}
/*
* We need to do a read after the last update to make sure all
* of them are done.
*/
cvmx_read_csr(CVMX_CIU_INTX_EN0(cvmx_get_core_num() * 2));
raw_spin_unlock_irqrestore(&octeon_irq_ciu0_lock, flags);
return 0;
}
/*
* Set affinity for the irq for chips that have the EN*_W1{S,C}
* registers.
*/
static int octeon_irq_ciu0_set_affinity_v2(unsigned int irq,
const struct cpumask *dest)
{
int cpu;
int index;
struct irq_desc *desc = irq_to_desc(irq);
int enable_one = (desc->status & IRQ_DISABLED) == 0;
u64 mask = 1ull << (irq - OCTEON_IRQ_WORKQ0);
for_each_online_cpu(cpu) {
index = octeon_coreid_for_cpu(cpu) * 2;
if (cpumask_test_cpu(cpu, dest) && enable_one) {
enable_one = 0;
cvmx_write_csr(CVMX_CIU_INTX_EN0_W1S(index), mask);
} else {
cvmx_write_csr(CVMX_CIU_INTX_EN0_W1C(index), mask);
}
}
return 0;
}
#endif
/*
* Newer octeon chips have support for lockless CIU operation.
*/
static struct irq_chip octeon_irq_chip_ciu0_v2 = {
.name = "CIU0",
.enable = octeon_irq_ciu0_enable_v2,
.disable = octeon_irq_ciu0_disable_all_v2,
.eoi = octeon_irq_ciu0_enable_v2,
#ifdef CONFIG_SMP
.set_affinity = octeon_irq_ciu0_set_affinity_v2,
#endif
};
static struct irq_chip octeon_irq_chip_ciu0 = {
.name = "CIU0",
.enable = octeon_irq_ciu0_enable,
.disable = octeon_irq_ciu0_disable,
.eoi = octeon_irq_ciu0_eoi,
#ifdef CONFIG_SMP
.set_affinity = octeon_irq_ciu0_set_affinity,
#endif
};
/* The mbox versions don't do any affinity or round-robin. */
static struct irq_chip octeon_irq_chip_ciu0_mbox_v2 = {
.name = "CIU0-M",
.enable = octeon_irq_ciu0_enable_mbox_v2,
.disable = octeon_irq_ciu0_disable,
.eoi = octeon_irq_ciu0_eoi_mbox_v2,
};
static struct irq_chip octeon_irq_chip_ciu0_mbox = {
.name = "CIU0-M",
.enable = octeon_irq_ciu0_enable_mbox,
.disable = octeon_irq_ciu0_disable,
.eoi = octeon_irq_ciu0_eoi,
};
static void octeon_irq_ciu1_ack(unsigned int irq)
{
/*
* In order to avoid any locking accessing the CIU, we
* acknowledge CIU interrupts by disabling all of them. This
* way we can use a per core register and avoid any out of
* core locking requirements. This has the side affect that
* CIU interrupts can't be processed recursively. We don't
* need to disable IRQs to make these atomic since they are
* already disabled earlier in the low level interrupt code.
*/
clear_c0_status(0x100 << 3);
}
static void octeon_irq_ciu1_eoi(unsigned int irq)
{
/*
* Enable all CIU interrupts again. We don't need to disable
* IRQs to make these atomic since they are already disabled
* earlier in the low level interrupt code.
*/
set_c0_status(0x100 << 3);
}
static void octeon_irq_ciu1_enable(unsigned int irq)
{
struct irq_desc *desc = irq_to_desc(irq);
int coreid = next_coreid_for_irq(desc);
unsigned long flags;
uint64_t en1;
int bit = irq - OCTEON_IRQ_WDOG0; /* Bit 0-63 of EN1 */
raw_spin_lock_irqsave(&octeon_irq_ciu1_lock, flags);
en1 = cvmx_read_csr(CVMX_CIU_INTX_EN1(coreid * 2 + 1));
en1 |= 1ull << bit;
cvmx_write_csr(CVMX_CIU_INTX_EN1(coreid * 2 + 1), en1);
cvmx_read_csr(CVMX_CIU_INTX_EN1(coreid * 2 + 1));
raw_spin_unlock_irqrestore(&octeon_irq_ciu1_lock, flags);
}
/*
* Watchdog interrupts are special. They are associated with a single
* core, so we hardwire the affinity to that core.
*/
static void octeon_irq_ciu1_wd_enable(unsigned int irq)
{
unsigned long flags;
uint64_t en1;
int bit = irq - OCTEON_IRQ_WDOG0; /* Bit 0-63 of EN1 */
int coreid = bit;
raw_spin_lock_irqsave(&octeon_irq_ciu1_lock, flags);
en1 = cvmx_read_csr(CVMX_CIU_INTX_EN1(coreid * 2 + 1));
en1 |= 1ull << bit;
cvmx_write_csr(CVMX_CIU_INTX_EN1(coreid * 2 + 1), en1);
cvmx_read_csr(CVMX_CIU_INTX_EN1(coreid * 2 + 1));
raw_spin_unlock_irqrestore(&octeon_irq_ciu1_lock, flags);
}
static void octeon_irq_ciu1_disable(unsigned int irq)
{
int bit = irq - OCTEON_IRQ_WDOG0; /* Bit 0-63 of EN1 */
unsigned long flags;
uint64_t en1;
int cpu;
raw_spin_lock_irqsave(&octeon_irq_ciu1_lock, flags);
for_each_online_cpu(cpu) {
int coreid = octeon_coreid_for_cpu(cpu);
en1 = cvmx_read_csr(CVMX_CIU_INTX_EN1(coreid * 2 + 1));
en1 &= ~(1ull << bit);
cvmx_write_csr(CVMX_CIU_INTX_EN1(coreid * 2 + 1), en1);
}
/*
* We need to do a read after the last update to make sure all
* of them are done.
*/
cvmx_read_csr(CVMX_CIU_INTX_EN1(cvmx_get_core_num() * 2 + 1));
raw_spin_unlock_irqrestore(&octeon_irq_ciu1_lock, flags);
}
/*
* Enable the irq on the current core for chips that have the EN*_W1{S,C}
* registers.
*/
static void octeon_irq_ciu1_enable_v2(unsigned int irq)
{
int index;
u64 mask = 1ull << (irq - OCTEON_IRQ_WDOG0);
struct irq_desc *desc = irq_to_desc(irq);
if ((desc->status & IRQ_DISABLED) == 0) {
index = next_coreid_for_irq(desc) * 2 + 1;
cvmx_write_csr(CVMX_CIU_INTX_EN1_W1S(index), mask);
}
}
/*
* Watchdog interrupts are special. They are associated with a single
* core, so we hardwire the affinity to that core.
*/
static void octeon_irq_ciu1_wd_enable_v2(unsigned int irq)
{
int index;
int coreid = irq - OCTEON_IRQ_WDOG0;
u64 mask = 1ull << (irq - OCTEON_IRQ_WDOG0);
struct irq_desc *desc = irq_to_desc(irq);
if ((desc->status & IRQ_DISABLED) == 0) {
index = coreid * 2 + 1;
cvmx_write_csr(CVMX_CIU_INTX_EN1_W1S(index), mask);
}
}
/*
* Disable the irq on the current core for chips that have the EN*_W1{S,C}
* registers.
*/
static void octeon_irq_ciu1_ack_v2(unsigned int irq)
{
int index = cvmx_get_core_num() * 2 + 1;
u64 mask = 1ull << (irq - OCTEON_IRQ_WDOG0);
cvmx_write_csr(CVMX_CIU_INTX_EN1_W1C(index), mask);
}
/*
* Disable the irq on the all cores for chips that have the EN*_W1{S,C}
* registers.
*/
static void octeon_irq_ciu1_disable_all_v2(unsigned int irq)
{
u64 mask = 1ull << (irq - OCTEON_IRQ_WDOG0);
int index;
int cpu;
for_each_online_cpu(cpu) {
index = octeon_coreid_for_cpu(cpu) * 2 + 1;
cvmx_write_csr(CVMX_CIU_INTX_EN1_W1C(index), mask);
}
}
#ifdef CONFIG_SMP
static int octeon_irq_ciu1_set_affinity(unsigned int irq,
const struct cpumask *dest)
{
int cpu;
struct irq_desc *desc = irq_to_desc(irq);
int enable_one = (desc->status & IRQ_DISABLED) == 0;
unsigned long flags;
int bit = irq - OCTEON_IRQ_WDOG0; /* Bit 0-63 of EN1 */
/*
* For non-v2 CIU, we will allow only single CPU affinity.
* This removes the need to do locking in the .ack/.eoi
* functions.
*/
if (cpumask_weight(dest) != 1)
return -EINVAL;
raw_spin_lock_irqsave(&octeon_irq_ciu1_lock, flags);
for_each_online_cpu(cpu) {
int coreid = octeon_coreid_for_cpu(cpu);
uint64_t en1 =
cvmx_read_csr(CVMX_CIU_INTX_EN1(coreid * 2 + 1));
if (cpumask_test_cpu(cpu, dest) && enable_one) {
enable_one = 0;
en1 |= 1ull << bit;
} else {
en1 &= ~(1ull << bit);
}
cvmx_write_csr(CVMX_CIU_INTX_EN1(coreid * 2 + 1), en1);
}
/*
* We need to do a read after the last update to make sure all
* of them are done.
*/
cvmx_read_csr(CVMX_CIU_INTX_EN1(cvmx_get_core_num() * 2 + 1));
raw_spin_unlock_irqrestore(&octeon_irq_ciu1_lock, flags);
return 0;
}
/*
* Set affinity for the irq for chips that have the EN*_W1{S,C}
* registers.
*/
static int octeon_irq_ciu1_set_affinity_v2(unsigned int irq,
const struct cpumask *dest)
{
int cpu;
int index;
struct irq_desc *desc = irq_to_desc(irq);
int enable_one = (desc->status & IRQ_DISABLED) == 0;
u64 mask = 1ull << (irq - OCTEON_IRQ_WDOG0);
for_each_online_cpu(cpu) {
index = octeon_coreid_for_cpu(cpu) * 2 + 1;
if (cpumask_test_cpu(cpu, dest) && enable_one) {
enable_one = 0;
cvmx_write_csr(CVMX_CIU_INTX_EN1_W1S(index), mask);
} else {
cvmx_write_csr(CVMX_CIU_INTX_EN1_W1C(index), mask);
}
}
return 0;
}
#endif
/*
* Newer octeon chips have support for lockless CIU operation.
*/
static struct irq_chip octeon_irq_chip_ciu1_v2 = {
.name = "CIU1",
.enable = octeon_irq_ciu1_enable_v2,
.disable = octeon_irq_ciu1_disable_all_v2,
.eoi = octeon_irq_ciu1_enable_v2,
#ifdef CONFIG_SMP
.set_affinity = octeon_irq_ciu1_set_affinity_v2,
#endif
};
static struct irq_chip octeon_irq_chip_ciu1 = {
.name = "CIU1",
.enable = octeon_irq_ciu1_enable,
.disable = octeon_irq_ciu1_disable,
.eoi = octeon_irq_ciu1_eoi,
#ifdef CONFIG_SMP
.set_affinity = octeon_irq_ciu1_set_affinity,
#endif
};
static struct irq_chip octeon_irq_chip_ciu1_wd_v2 = {
.name = "CIU1-W",
.enable = octeon_irq_ciu1_wd_enable_v2,
.disable = octeon_irq_ciu1_disable_all_v2,
.eoi = octeon_irq_ciu1_wd_enable_v2,
};
static struct irq_chip octeon_irq_chip_ciu1_wd = {
.name = "CIU1-W",
.enable = octeon_irq_ciu1_wd_enable,
.disable = octeon_irq_ciu1_disable,
.eoi = octeon_irq_ciu1_eoi,
};
static void (*octeon_ciu0_ack)(unsigned int);
static void (*octeon_ciu1_ack)(unsigned int);
void __init arch_init_irq(void)
{
unsigned int irq;
struct irq_chip *chip0;
struct irq_chip *chip0_mbox;
struct irq_chip *chip1;
struct irq_chip *chip1_wd;
#ifdef CONFIG_SMP
/* Set the default affinity to the boot cpu. */
cpumask_clear(irq_default_affinity);
cpumask_set_cpu(smp_processor_id(), irq_default_affinity);
#endif
if (NR_IRQS < OCTEON_IRQ_LAST)
pr_err("octeon_irq_init: NR_IRQS is set too low\n");
if (OCTEON_IS_MODEL(OCTEON_CN58XX_PASS2_X) ||
OCTEON_IS_MODEL(OCTEON_CN56XX_PASS2_X) ||
OCTEON_IS_MODEL(OCTEON_CN52XX_PASS2_X)) {
octeon_ciu0_ack = octeon_irq_ciu0_ack_v2;
octeon_ciu1_ack = octeon_irq_ciu1_ack_v2;
chip0 = &octeon_irq_chip_ciu0_v2;
chip0_mbox = &octeon_irq_chip_ciu0_mbox_v2;
chip1 = &octeon_irq_chip_ciu1_v2;
chip1_wd = &octeon_irq_chip_ciu1_wd_v2;
} else {
octeon_ciu0_ack = octeon_irq_ciu0_ack;
octeon_ciu1_ack = octeon_irq_ciu1_ack;
chip0 = &octeon_irq_chip_ciu0;
chip0_mbox = &octeon_irq_chip_ciu0_mbox;
chip1 = &octeon_irq_chip_ciu1;
chip1_wd = &octeon_irq_chip_ciu1_wd;
}
/* 0 - 15 reserved for i8259 master and slave controller. */
/* 17 - 23 Mips internal */
for (irq = OCTEON_IRQ_SW0; irq <= OCTEON_IRQ_TIMER; irq++) {
set_irq_chip_and_handler(irq, &octeon_irq_chip_core,
handle_percpu_irq);
}
/* 24 - 87 CIU_INT_SUM0 */
for (irq = OCTEON_IRQ_WORKQ0; irq <= OCTEON_IRQ_BOOTDMA; irq++) {
switch (irq) {
case OCTEON_IRQ_MBOX0:
case OCTEON_IRQ_MBOX1:
set_irq_chip_and_handler(irq, chip0_mbox, handle_percpu_irq);
break;
default:
set_irq_chip_and_handler(irq, chip0, handle_fasteoi_irq);
break;
}
}
/* 88 - 151 CIU_INT_SUM1 */
for (irq = OCTEON_IRQ_WDOG0; irq <= OCTEON_IRQ_WDOG15; irq++)
set_irq_chip_and_handler(irq, chip1_wd, handle_fasteoi_irq);
for (irq = OCTEON_IRQ_UART2; irq <= OCTEON_IRQ_RESERVED151; irq++)
set_irq_chip_and_handler(irq, chip1, handle_fasteoi_irq);
set_c0_status(0x300 << 2);
}
asmlinkage void plat_irq_dispatch(void)
{
const unsigned long core_id = cvmx_get_core_num();
const uint64_t ciu_sum0_address = CVMX_CIU_INTX_SUM0(core_id * 2);
const uint64_t ciu_en0_address = CVMX_CIU_INTX_EN0(core_id * 2);
const uint64_t ciu_sum1_address = CVMX_CIU_INT_SUM1;
const uint64_t ciu_en1_address = CVMX_CIU_INTX_EN1(core_id * 2 + 1);
unsigned long cop0_cause;
unsigned long cop0_status;
uint64_t ciu_en;
uint64_t ciu_sum;
unsigned int irq;
while (1) {
cop0_cause = read_c0_cause();
cop0_status = read_c0_status();
cop0_cause &= cop0_status;
cop0_cause &= ST0_IM;
if (unlikely(cop0_cause & STATUSF_IP2)) {
ciu_sum = cvmx_read_csr(ciu_sum0_address);
ciu_en = cvmx_read_csr(ciu_en0_address);
ciu_sum &= ciu_en;
if (likely(ciu_sum)) {
irq = fls64(ciu_sum) + OCTEON_IRQ_WORKQ0 - 1;
octeon_ciu0_ack(irq);
do_IRQ(irq);
} else {
spurious_interrupt();
}
} else if (unlikely(cop0_cause & STATUSF_IP3)) {
ciu_sum = cvmx_read_csr(ciu_sum1_address);
ciu_en = cvmx_read_csr(ciu_en1_address);
ciu_sum &= ciu_en;
if (likely(ciu_sum)) {
irq = fls64(ciu_sum) + OCTEON_IRQ_WDOG0 - 1;
octeon_ciu1_ack(irq);
do_IRQ(irq);
} else {
spurious_interrupt();
}
} else if (likely(cop0_cause)) {
do_IRQ(fls(cop0_cause) - 9 + MIPS_CPU_IRQ_BASE);
} else {
break;
}
}
}
#ifdef CONFIG_HOTPLUG_CPU
void fixup_irqs(void)
{
int irq;
struct irq_desc *desc;
cpumask_t new_affinity;
unsigned long flags;
int do_set_affinity;
int cpu;
cpu = smp_processor_id();
for (irq = OCTEON_IRQ_SW0; irq <= OCTEON_IRQ_TIMER; irq++)
octeon_irq_core_disable_local(irq);
for (irq = OCTEON_IRQ_WORKQ0; irq < OCTEON_IRQ_LAST; irq++) {
desc = irq_to_desc(irq);
switch (irq) {
case OCTEON_IRQ_MBOX0:
case OCTEON_IRQ_MBOX1:
/* The eoi function will disable them on this CPU. */
desc->chip->eoi(irq);
break;
case OCTEON_IRQ_WDOG0:
case OCTEON_IRQ_WDOG1:
case OCTEON_IRQ_WDOG2:
case OCTEON_IRQ_WDOG3:
case OCTEON_IRQ_WDOG4:
case OCTEON_IRQ_WDOG5:
case OCTEON_IRQ_WDOG6:
case OCTEON_IRQ_WDOG7:
case OCTEON_IRQ_WDOG8:
case OCTEON_IRQ_WDOG9:
case OCTEON_IRQ_WDOG10:
case OCTEON_IRQ_WDOG11:
case OCTEON_IRQ_WDOG12:
case OCTEON_IRQ_WDOG13:
case OCTEON_IRQ_WDOG14:
case OCTEON_IRQ_WDOG15:
/*
* These have special per CPU semantics and
* are handled in the watchdog driver.
*/
break;
default:
raw_spin_lock_irqsave(&desc->lock, flags);
/*
* If this irq has an action, it is in use and
* must be migrated if it has affinity to this
* cpu.
*/
if (desc->action && cpumask_test_cpu(cpu, desc->affinity)) {
if (cpumask_weight(desc->affinity) > 1) {
/*
* It has multi CPU affinity,
* just remove this CPU from
* the affinity set.
*/
cpumask_copy(&new_affinity, desc->affinity);
cpumask_clear_cpu(cpu, &new_affinity);
} else {
/*
* Otherwise, put it on lowest
* numbered online CPU.
*/
cpumask_clear(&new_affinity);
cpumask_set_cpu(cpumask_first(cpu_online_mask), &new_affinity);
}
do_set_affinity = 1;
} else {
do_set_affinity = 0;
}
raw_spin_unlock_irqrestore(&desc->lock, flags);
if (do_set_affinity)
irq_set_affinity(irq, &new_affinity);
break;
}
}
}
#endif /* CONFIG_HOTPLUG_CPU */