linux_old1/drivers/irqchip/irq-gic.c

1670 lines
41 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2002 ARM Limited, All Rights Reserved.
*
* Interrupt architecture for the GIC:
*
* o There is one Interrupt Distributor, which receives interrupts
* from system devices and sends them to the Interrupt Controllers.
*
* o There is one CPU Interface per CPU, which sends interrupts sent
* by the Distributor, and interrupts generated locally, to the
* associated CPU. The base address of the CPU interface is usually
* aliased so that the same address points to different chips depending
* on the CPU it is accessed from.
*
* Note that IRQs 0-31 are special - they are local to each CPU.
* As such, the enable set/clear, pending set/clear and active bit
* registers are banked per-cpu for these sources.
*/
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/err.h>
#include <linux/module.h>
#include <linux/list.h>
#include <linux/smp.h>
#include <linux/cpu.h>
#include <linux/cpu_pm.h>
#include <linux/cpumask.h>
#include <linux/io.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/acpi.h>
#include <linux/irqdomain.h>
#include <linux/interrupt.h>
#include <linux/percpu.h>
#include <linux/slab.h>
#include <linux/irqchip.h>
#include <linux/irqchip/chained_irq.h>
#include <linux/irqchip/arm-gic.h>
#include <asm/cputype.h>
#include <asm/irq.h>
#include <asm/exception.h>
#include <asm/smp_plat.h>
#include <asm/virt.h>
#include "irq-gic-common.h"
#ifdef CONFIG_ARM64
#include <asm/cpufeature.h>
static void gic_check_cpu_features(void)
{
WARN_TAINT_ONCE(this_cpu_has_cap(ARM64_HAS_SYSREG_GIC_CPUIF),
TAINT_CPU_OUT_OF_SPEC,
"GICv3 system registers enabled, broken firmware!\n");
}
#else
#define gic_check_cpu_features() do { } while(0)
#endif
union gic_base {
void __iomem *common_base;
void __percpu * __iomem *percpu_base;
};
struct gic_chip_data {
struct irq_chip chip;
union gic_base dist_base;
union gic_base cpu_base;
void __iomem *raw_dist_base;
void __iomem *raw_cpu_base;
u32 percpu_offset;
#if defined(CONFIG_CPU_PM) || defined(CONFIG_ARM_GIC_PM)
u32 saved_spi_enable[DIV_ROUND_UP(1020, 32)];
u32 saved_spi_active[DIV_ROUND_UP(1020, 32)];
u32 saved_spi_conf[DIV_ROUND_UP(1020, 16)];
u32 saved_spi_target[DIV_ROUND_UP(1020, 4)];
u32 __percpu *saved_ppi_enable;
u32 __percpu *saved_ppi_active;
u32 __percpu *saved_ppi_conf;
#endif
struct irq_domain *domain;
unsigned int gic_irqs;
#ifdef CONFIG_GIC_NON_BANKED
void __iomem *(*get_base)(union gic_base *);
#endif
};
#ifdef CONFIG_BL_SWITCHER
static DEFINE_RAW_SPINLOCK(cpu_map_lock);
#define gic_lock_irqsave(f) \
raw_spin_lock_irqsave(&cpu_map_lock, (f))
#define gic_unlock_irqrestore(f) \
raw_spin_unlock_irqrestore(&cpu_map_lock, (f))
#define gic_lock() raw_spin_lock(&cpu_map_lock)
#define gic_unlock() raw_spin_unlock(&cpu_map_lock)
#else
#define gic_lock_irqsave(f) do { (void)(f); } while(0)
#define gic_unlock_irqrestore(f) do { (void)(f); } while(0)
#define gic_lock() do { } while(0)
#define gic_unlock() do { } while(0)
#endif
/*
* The GIC mapping of CPU interfaces does not necessarily match
* the logical CPU numbering. Let's use a mapping as returned
* by the GIC itself.
*/
#define NR_GIC_CPU_IF 8
static u8 gic_cpu_map[NR_GIC_CPU_IF] __read_mostly;
static DEFINE_STATIC_KEY_TRUE(supports_deactivate_key);
static struct gic_chip_data gic_data[CONFIG_ARM_GIC_MAX_NR] __read_mostly;
static struct gic_kvm_info gic_v2_kvm_info;
#ifdef CONFIG_GIC_NON_BANKED
static void __iomem *gic_get_percpu_base(union gic_base *base)
{
return raw_cpu_read(*base->percpu_base);
}
static void __iomem *gic_get_common_base(union gic_base *base)
{
return base->common_base;
}
static inline void __iomem *gic_data_dist_base(struct gic_chip_data *data)
{
return data->get_base(&data->dist_base);
}
static inline void __iomem *gic_data_cpu_base(struct gic_chip_data *data)
{
return data->get_base(&data->cpu_base);
}
static inline void gic_set_base_accessor(struct gic_chip_data *data,
void __iomem *(*f)(union gic_base *))
{
data->get_base = f;
}
#else
#define gic_data_dist_base(d) ((d)->dist_base.common_base)
#define gic_data_cpu_base(d) ((d)->cpu_base.common_base)
#define gic_set_base_accessor(d, f)
#endif
static inline void __iomem *gic_dist_base(struct irq_data *d)
{
struct gic_chip_data *gic_data = irq_data_get_irq_chip_data(d);
return gic_data_dist_base(gic_data);
}
static inline void __iomem *gic_cpu_base(struct irq_data *d)
{
struct gic_chip_data *gic_data = irq_data_get_irq_chip_data(d);
return gic_data_cpu_base(gic_data);
}
static inline unsigned int gic_irq(struct irq_data *d)
{
return d->hwirq;
}
static inline bool cascading_gic_irq(struct irq_data *d)
{
void *data = irq_data_get_irq_handler_data(d);
/*
* If handler_data is set, this is a cascading interrupt, and
* it cannot possibly be forwarded.
*/
return data != NULL;
}
/*
* Routines to acknowledge, disable and enable interrupts
*/
static void gic_poke_irq(struct irq_data *d, u32 offset)
{
u32 mask = 1 << (gic_irq(d) % 32);
writel_relaxed(mask, gic_dist_base(d) + offset + (gic_irq(d) / 32) * 4);
}
static int gic_peek_irq(struct irq_data *d, u32 offset)
{
u32 mask = 1 << (gic_irq(d) % 32);
return !!(readl_relaxed(gic_dist_base(d) + offset + (gic_irq(d) / 32) * 4) & mask);
}
static void gic_mask_irq(struct irq_data *d)
{
gic_poke_irq(d, GIC_DIST_ENABLE_CLEAR);
}
static void gic_eoimode1_mask_irq(struct irq_data *d)
{
gic_mask_irq(d);
/*
* When masking a forwarded interrupt, make sure it is
* deactivated as well.
*
* This ensures that an interrupt that is getting
* disabled/masked will not get "stuck", because there is
* noone to deactivate it (guest is being terminated).
*/
if (irqd_is_forwarded_to_vcpu(d))
gic_poke_irq(d, GIC_DIST_ACTIVE_CLEAR);
}
static void gic_unmask_irq(struct irq_data *d)
{
gic_poke_irq(d, GIC_DIST_ENABLE_SET);
}
static void gic_eoi_irq(struct irq_data *d)
{
writel_relaxed(gic_irq(d), gic_cpu_base(d) + GIC_CPU_EOI);
}
static void gic_eoimode1_eoi_irq(struct irq_data *d)
{
/* Do not deactivate an IRQ forwarded to a vcpu. */
if (irqd_is_forwarded_to_vcpu(d))
return;
writel_relaxed(gic_irq(d), gic_cpu_base(d) + GIC_CPU_DEACTIVATE);
}
static int gic_irq_set_irqchip_state(struct irq_data *d,
enum irqchip_irq_state which, bool val)
{
u32 reg;
switch (which) {
case IRQCHIP_STATE_PENDING:
reg = val ? GIC_DIST_PENDING_SET : GIC_DIST_PENDING_CLEAR;
break;
case IRQCHIP_STATE_ACTIVE:
reg = val ? GIC_DIST_ACTIVE_SET : GIC_DIST_ACTIVE_CLEAR;
break;
case IRQCHIP_STATE_MASKED:
reg = val ? GIC_DIST_ENABLE_CLEAR : GIC_DIST_ENABLE_SET;
break;
default:
return -EINVAL;
}
gic_poke_irq(d, reg);
return 0;
}
static int gic_irq_get_irqchip_state(struct irq_data *d,
enum irqchip_irq_state which, bool *val)
{
switch (which) {
case IRQCHIP_STATE_PENDING:
*val = gic_peek_irq(d, GIC_DIST_PENDING_SET);
break;
case IRQCHIP_STATE_ACTIVE:
*val = gic_peek_irq(d, GIC_DIST_ACTIVE_SET);
break;
case IRQCHIP_STATE_MASKED:
*val = !gic_peek_irq(d, GIC_DIST_ENABLE_SET);
break;
default:
return -EINVAL;
}
return 0;
}
static int gic_set_type(struct irq_data *d, unsigned int type)
{
void __iomem *base = gic_dist_base(d);
unsigned int gicirq = gic_irq(d);
int ret;
/* Interrupt configuration for SGIs can't be changed */
if (gicirq < 16)
return -EINVAL;
/* SPIs have restrictions on the supported types */
if (gicirq >= 32 && type != IRQ_TYPE_LEVEL_HIGH &&
type != IRQ_TYPE_EDGE_RISING)
return -EINVAL;
ret = gic_configure_irq(gicirq, type, base + GIC_DIST_CONFIG, NULL);
if (ret && gicirq < 32) {
/* Misconfigured PPIs are usually not fatal */
pr_warn("GIC: PPI%d is secure or misconfigured\n", gicirq - 16);
ret = 0;
}
return ret;
}
static int gic_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu)
{
/* Only interrupts on the primary GIC can be forwarded to a vcpu. */
if (cascading_gic_irq(d))
return -EINVAL;
if (vcpu)
irqd_set_forwarded_to_vcpu(d);
else
irqd_clr_forwarded_to_vcpu(d);
return 0;
}
#ifdef CONFIG_SMP
static int gic_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
bool force)
{
void __iomem *reg = gic_dist_base(d) + GIC_DIST_TARGET + (gic_irq(d) & ~3);
unsigned int cpu, shift = (gic_irq(d) % 4) * 8;
u32 val, mask, bit;
unsigned long flags;
if (!force)
cpu = cpumask_any_and(mask_val, cpu_online_mask);
else
cpu = cpumask_first(mask_val);
if (cpu >= NR_GIC_CPU_IF || cpu >= nr_cpu_ids)
return -EINVAL;
gic_lock_irqsave(flags);
mask = 0xff << shift;
bit = gic_cpu_map[cpu] << shift;
val = readl_relaxed(reg) & ~mask;
writel_relaxed(val | bit, reg);
gic_unlock_irqrestore(flags);
irq_data_update_effective_affinity(d, cpumask_of(cpu));
return IRQ_SET_MASK_OK_DONE;
}
#endif
static void __exception_irq_entry gic_handle_irq(struct pt_regs *regs)
{
u32 irqstat, irqnr;
struct gic_chip_data *gic = &gic_data[0];
void __iomem *cpu_base = gic_data_cpu_base(gic);
do {
irqstat = readl_relaxed(cpu_base + GIC_CPU_INTACK);
irqnr = irqstat & GICC_IAR_INT_ID_MASK;
if (likely(irqnr > 15 && irqnr < 1020)) {
if (static_branch_likely(&supports_deactivate_key))
writel_relaxed(irqstat, cpu_base + GIC_CPU_EOI);
isb();
handle_domain_irq(gic->domain, irqnr, regs);
continue;
}
if (irqnr < 16) {
writel_relaxed(irqstat, cpu_base + GIC_CPU_EOI);
if (static_branch_likely(&supports_deactivate_key))
writel_relaxed(irqstat, cpu_base + GIC_CPU_DEACTIVATE);
#ifdef CONFIG_SMP
/*
* Ensure any shared data written by the CPU sending
* the IPI is read after we've read the ACK register
* on the GIC.
*
* Pairs with the write barrier in gic_raise_softirq
*/
smp_rmb();
handle_IPI(irqnr, regs);
#endif
continue;
}
break;
} while (1);
}
static void gic_handle_cascade_irq(struct irq_desc *desc)
{
struct gic_chip_data *chip_data = irq_desc_get_handler_data(desc);
struct irq_chip *chip = irq_desc_get_chip(desc);
unsigned int cascade_irq, gic_irq;
unsigned long status;
chained_irq_enter(chip, desc);
status = readl_relaxed(gic_data_cpu_base(chip_data) + GIC_CPU_INTACK);
gic_irq = (status & GICC_IAR_INT_ID_MASK);
if (gic_irq == GICC_INT_SPURIOUS)
goto out;
cascade_irq = irq_find_mapping(chip_data->domain, gic_irq);
if (unlikely(gic_irq < 32 || gic_irq > 1020)) {
handle_bad_irq(desc);
} else {
isb();
generic_handle_irq(cascade_irq);
}
out:
chained_irq_exit(chip, desc);
}
static const struct irq_chip gic_chip = {
.irq_mask = gic_mask_irq,
.irq_unmask = gic_unmask_irq,
.irq_eoi = gic_eoi_irq,
.irq_set_type = gic_set_type,
.irq_get_irqchip_state = gic_irq_get_irqchip_state,
.irq_set_irqchip_state = gic_irq_set_irqchip_state,
.flags = IRQCHIP_SET_TYPE_MASKED |
IRQCHIP_SKIP_SET_WAKE |
IRQCHIP_MASK_ON_SUSPEND,
};
void __init gic_cascade_irq(unsigned int gic_nr, unsigned int irq)
{
BUG_ON(gic_nr >= CONFIG_ARM_GIC_MAX_NR);
irq_set_chained_handler_and_data(irq, gic_handle_cascade_irq,
&gic_data[gic_nr]);
}
static u8 gic_get_cpumask(struct gic_chip_data *gic)
{
void __iomem *base = gic_data_dist_base(gic);
u32 mask, i;
for (i = mask = 0; i < 32; i += 4) {
mask = readl_relaxed(base + GIC_DIST_TARGET + i);
mask |= mask >> 16;
mask |= mask >> 8;
if (mask)
break;
}
if (!mask && num_possible_cpus() > 1)
pr_crit("GIC CPU mask not found - kernel will fail to boot.\n");
return mask;
}
static bool gic_check_gicv2(void __iomem *base)
{
u32 val = readl_relaxed(base + GIC_CPU_IDENT);
return (val & 0xff0fff) == 0x02043B;
}
static void gic_cpu_if_up(struct gic_chip_data *gic)
{
void __iomem *cpu_base = gic_data_cpu_base(gic);
u32 bypass = 0;
u32 mode = 0;
int i;
if (gic == &gic_data[0] && static_branch_likely(&supports_deactivate_key))
mode = GIC_CPU_CTRL_EOImodeNS;
if (gic_check_gicv2(cpu_base))
for (i = 0; i < 4; i++)
writel_relaxed(0, cpu_base + GIC_CPU_ACTIVEPRIO + i * 4);
/*
* Preserve bypass disable bits to be written back later
*/
bypass = readl(cpu_base + GIC_CPU_CTRL);
bypass &= GICC_DIS_BYPASS_MASK;
writel_relaxed(bypass | mode | GICC_ENABLE, cpu_base + GIC_CPU_CTRL);
}
static void gic_dist_init(struct gic_chip_data *gic)
{
unsigned int i;
u32 cpumask;
unsigned int gic_irqs = gic->gic_irqs;
void __iomem *base = gic_data_dist_base(gic);
writel_relaxed(GICD_DISABLE, base + GIC_DIST_CTRL);
/*
* Set all global interrupts to this CPU only.
*/
cpumask = gic_get_cpumask(gic);
cpumask |= cpumask << 8;
cpumask |= cpumask << 16;
for (i = 32; i < gic_irqs; i += 4)
writel_relaxed(cpumask, base + GIC_DIST_TARGET + i * 4 / 4);
gic_dist_config(base, gic_irqs, NULL);
writel_relaxed(GICD_ENABLE, base + GIC_DIST_CTRL);
}
static int gic_cpu_init(struct gic_chip_data *gic)
{
void __iomem *dist_base = gic_data_dist_base(gic);
void __iomem *base = gic_data_cpu_base(gic);
unsigned int cpu_mask, cpu = smp_processor_id();
int i;
/*
* Setting up the CPU map is only relevant for the primary GIC
* because any nested/secondary GICs do not directly interface
* with the CPU(s).
*/
if (gic == &gic_data[0]) {
/*
* Get what the GIC says our CPU mask is.
*/
if (WARN_ON(cpu >= NR_GIC_CPU_IF))
return -EINVAL;
gic_check_cpu_features();
cpu_mask = gic_get_cpumask(gic);
gic_cpu_map[cpu] = cpu_mask;
/*
* Clear our mask from the other map entries in case they're
* still undefined.
*/
for (i = 0; i < NR_GIC_CPU_IF; i++)
if (i != cpu)
gic_cpu_map[i] &= ~cpu_mask;
}
gic_cpu_config(dist_base, 32, NULL);
writel_relaxed(GICC_INT_PRI_THRESHOLD, base + GIC_CPU_PRIMASK);
gic_cpu_if_up(gic);
return 0;
}
int gic_cpu_if_down(unsigned int gic_nr)
{
void __iomem *cpu_base;
u32 val = 0;
if (gic_nr >= CONFIG_ARM_GIC_MAX_NR)
return -EINVAL;
cpu_base = gic_data_cpu_base(&gic_data[gic_nr]);
val = readl(cpu_base + GIC_CPU_CTRL);
val &= ~GICC_ENABLE;
writel_relaxed(val, cpu_base + GIC_CPU_CTRL);
return 0;
}
#if defined(CONFIG_CPU_PM) || defined(CONFIG_ARM_GIC_PM)
/*
* Saves the GIC distributor registers during suspend or idle. Must be called
* with interrupts disabled but before powering down the GIC. After calling
* this function, no interrupts will be delivered by the GIC, and another
* platform-specific wakeup source must be enabled.
*/
void gic_dist_save(struct gic_chip_data *gic)
{
unsigned int gic_irqs;
void __iomem *dist_base;
int i;
if (WARN_ON(!gic))
return;
gic_irqs = gic->gic_irqs;
dist_base = gic_data_dist_base(gic);
if (!dist_base)
return;
for (i = 0; i < DIV_ROUND_UP(gic_irqs, 16); i++)
gic->saved_spi_conf[i] =
readl_relaxed(dist_base + GIC_DIST_CONFIG + i * 4);
for (i = 0; i < DIV_ROUND_UP(gic_irqs, 4); i++)
gic->saved_spi_target[i] =
readl_relaxed(dist_base + GIC_DIST_TARGET + i * 4);
for (i = 0; i < DIV_ROUND_UP(gic_irqs, 32); i++)
gic->saved_spi_enable[i] =
readl_relaxed(dist_base + GIC_DIST_ENABLE_SET + i * 4);
for (i = 0; i < DIV_ROUND_UP(gic_irqs, 32); i++)
gic->saved_spi_active[i] =
readl_relaxed(dist_base + GIC_DIST_ACTIVE_SET + i * 4);
}
/*
* Restores the GIC distributor registers during resume or when coming out of
* idle. Must be called before enabling interrupts. If a level interrupt
* that occurred while the GIC was suspended is still present, it will be
* handled normally, but any edge interrupts that occurred will not be seen by
* the GIC and need to be handled by the platform-specific wakeup source.
*/
void gic_dist_restore(struct gic_chip_data *gic)
{
unsigned int gic_irqs;
unsigned int i;
void __iomem *dist_base;
if (WARN_ON(!gic))
return;
gic_irqs = gic->gic_irqs;
dist_base = gic_data_dist_base(gic);
if (!dist_base)
return;
writel_relaxed(GICD_DISABLE, dist_base + GIC_DIST_CTRL);
for (i = 0; i < DIV_ROUND_UP(gic_irqs, 16); i++)
writel_relaxed(gic->saved_spi_conf[i],
dist_base + GIC_DIST_CONFIG + i * 4);
for (i = 0; i < DIV_ROUND_UP(gic_irqs, 4); i++)
writel_relaxed(GICD_INT_DEF_PRI_X4,
dist_base + GIC_DIST_PRI + i * 4);
for (i = 0; i < DIV_ROUND_UP(gic_irqs, 4); i++)
writel_relaxed(gic->saved_spi_target[i],
dist_base + GIC_DIST_TARGET + i * 4);
for (i = 0; i < DIV_ROUND_UP(gic_irqs, 32); i++) {
writel_relaxed(GICD_INT_EN_CLR_X32,
dist_base + GIC_DIST_ENABLE_CLEAR + i * 4);
writel_relaxed(gic->saved_spi_enable[i],
dist_base + GIC_DIST_ENABLE_SET + i * 4);
}
for (i = 0; i < DIV_ROUND_UP(gic_irqs, 32); i++) {
writel_relaxed(GICD_INT_EN_CLR_X32,
dist_base + GIC_DIST_ACTIVE_CLEAR + i * 4);
writel_relaxed(gic->saved_spi_active[i],
dist_base + GIC_DIST_ACTIVE_SET + i * 4);
}
writel_relaxed(GICD_ENABLE, dist_base + GIC_DIST_CTRL);
}
void gic_cpu_save(struct gic_chip_data *gic)
{
int i;
u32 *ptr;
void __iomem *dist_base;
void __iomem *cpu_base;
if (WARN_ON(!gic))
return;
dist_base = gic_data_dist_base(gic);
cpu_base = gic_data_cpu_base(gic);
if (!dist_base || !cpu_base)
return;
ptr = raw_cpu_ptr(gic->saved_ppi_enable);
for (i = 0; i < DIV_ROUND_UP(32, 32); i++)
ptr[i] = readl_relaxed(dist_base + GIC_DIST_ENABLE_SET + i * 4);
ptr = raw_cpu_ptr(gic->saved_ppi_active);
for (i = 0; i < DIV_ROUND_UP(32, 32); i++)
ptr[i] = readl_relaxed(dist_base + GIC_DIST_ACTIVE_SET + i * 4);
ptr = raw_cpu_ptr(gic->saved_ppi_conf);
for (i = 0; i < DIV_ROUND_UP(32, 16); i++)
ptr[i] = readl_relaxed(dist_base + GIC_DIST_CONFIG + i * 4);
}
void gic_cpu_restore(struct gic_chip_data *gic)
{
int i;
u32 *ptr;
void __iomem *dist_base;
void __iomem *cpu_base;
if (WARN_ON(!gic))
return;
dist_base = gic_data_dist_base(gic);
cpu_base = gic_data_cpu_base(gic);
if (!dist_base || !cpu_base)
return;
ptr = raw_cpu_ptr(gic->saved_ppi_enable);
for (i = 0; i < DIV_ROUND_UP(32, 32); i++) {
writel_relaxed(GICD_INT_EN_CLR_X32,
dist_base + GIC_DIST_ENABLE_CLEAR + i * 4);
writel_relaxed(ptr[i], dist_base + GIC_DIST_ENABLE_SET + i * 4);
}
ptr = raw_cpu_ptr(gic->saved_ppi_active);
for (i = 0; i < DIV_ROUND_UP(32, 32); i++) {
writel_relaxed(GICD_INT_EN_CLR_X32,
dist_base + GIC_DIST_ACTIVE_CLEAR + i * 4);
writel_relaxed(ptr[i], dist_base + GIC_DIST_ACTIVE_SET + i * 4);
}
ptr = raw_cpu_ptr(gic->saved_ppi_conf);
for (i = 0; i < DIV_ROUND_UP(32, 16); i++)
writel_relaxed(ptr[i], dist_base + GIC_DIST_CONFIG + i * 4);
for (i = 0; i < DIV_ROUND_UP(32, 4); i++)
writel_relaxed(GICD_INT_DEF_PRI_X4,
dist_base + GIC_DIST_PRI + i * 4);
writel_relaxed(GICC_INT_PRI_THRESHOLD, cpu_base + GIC_CPU_PRIMASK);
gic_cpu_if_up(gic);
}
static int gic_notifier(struct notifier_block *self, unsigned long cmd, void *v)
{
int i;
for (i = 0; i < CONFIG_ARM_GIC_MAX_NR; i++) {
#ifdef CONFIG_GIC_NON_BANKED
/* Skip over unused GICs */
if (!gic_data[i].get_base)
continue;
#endif
switch (cmd) {
case CPU_PM_ENTER:
gic_cpu_save(&gic_data[i]);
break;
case CPU_PM_ENTER_FAILED:
case CPU_PM_EXIT:
gic_cpu_restore(&gic_data[i]);
break;
case CPU_CLUSTER_PM_ENTER:
gic_dist_save(&gic_data[i]);
break;
case CPU_CLUSTER_PM_ENTER_FAILED:
case CPU_CLUSTER_PM_EXIT:
gic_dist_restore(&gic_data[i]);
break;
}
}
return NOTIFY_OK;
}
static struct notifier_block gic_notifier_block = {
.notifier_call = gic_notifier,
};
static int gic_pm_init(struct gic_chip_data *gic)
{
gic->saved_ppi_enable = __alloc_percpu(DIV_ROUND_UP(32, 32) * 4,
sizeof(u32));
if (WARN_ON(!gic->saved_ppi_enable))
return -ENOMEM;
gic->saved_ppi_active = __alloc_percpu(DIV_ROUND_UP(32, 32) * 4,
sizeof(u32));
if (WARN_ON(!gic->saved_ppi_active))
goto free_ppi_enable;
gic->saved_ppi_conf = __alloc_percpu(DIV_ROUND_UP(32, 16) * 4,
sizeof(u32));
if (WARN_ON(!gic->saved_ppi_conf))
goto free_ppi_active;
if (gic == &gic_data[0])
cpu_pm_register_notifier(&gic_notifier_block);
return 0;
free_ppi_active:
free_percpu(gic->saved_ppi_active);
free_ppi_enable:
free_percpu(gic->saved_ppi_enable);
return -ENOMEM;
}
#else
static int gic_pm_init(struct gic_chip_data *gic)
{
return 0;
}
#endif
#ifdef CONFIG_SMP
static void gic_raise_softirq(const struct cpumask *mask, unsigned int irq)
{
int cpu;
unsigned long flags, map = 0;
if (unlikely(nr_cpu_ids == 1)) {
/* Only one CPU? let's do a self-IPI... */
writel_relaxed(2 << 24 | irq,
gic_data_dist_base(&gic_data[0]) + GIC_DIST_SOFTINT);
return;
}
gic_lock_irqsave(flags);
/* Convert our logical CPU mask into a physical one. */
for_each_cpu(cpu, mask)
map |= gic_cpu_map[cpu];
/*
* Ensure that stores to Normal memory are visible to the
* other CPUs before they observe us issuing the IPI.
*/
dmb(ishst);
/* this always happens on GIC0 */
writel_relaxed(map << 16 | irq, gic_data_dist_base(&gic_data[0]) + GIC_DIST_SOFTINT);
gic_unlock_irqrestore(flags);
}
#endif
#ifdef CONFIG_BL_SWITCHER
/*
* gic_send_sgi - send a SGI directly to given CPU interface number
*
* cpu_id: the ID for the destination CPU interface
* irq: the IPI number to send a SGI for
*/
void gic_send_sgi(unsigned int cpu_id, unsigned int irq)
{
BUG_ON(cpu_id >= NR_GIC_CPU_IF);
cpu_id = 1 << cpu_id;
/* this always happens on GIC0 */
writel_relaxed((cpu_id << 16) | irq, gic_data_dist_base(&gic_data[0]) + GIC_DIST_SOFTINT);
}
/*
* gic_get_cpu_id - get the CPU interface ID for the specified CPU
*
* @cpu: the logical CPU number to get the GIC ID for.
*
* Return the CPU interface ID for the given logical CPU number,
* or -1 if the CPU number is too large or the interface ID is
* unknown (more than one bit set).
*/
int gic_get_cpu_id(unsigned int cpu)
{
unsigned int cpu_bit;
if (cpu >= NR_GIC_CPU_IF)
return -1;
cpu_bit = gic_cpu_map[cpu];
if (cpu_bit & (cpu_bit - 1))
return -1;
return __ffs(cpu_bit);
}
/*
* gic_migrate_target - migrate IRQs to another CPU interface
*
* @new_cpu_id: the CPU target ID to migrate IRQs to
*
* Migrate all peripheral interrupts with a target matching the current CPU
* to the interface corresponding to @new_cpu_id. The CPU interface mapping
* is also updated. Targets to other CPU interfaces are unchanged.
* This must be called with IRQs locally disabled.
*/
void gic_migrate_target(unsigned int new_cpu_id)
{
unsigned int cur_cpu_id, gic_irqs, gic_nr = 0;
void __iomem *dist_base;
int i, ror_val, cpu = smp_processor_id();
u32 val, cur_target_mask, active_mask;
BUG_ON(gic_nr >= CONFIG_ARM_GIC_MAX_NR);
dist_base = gic_data_dist_base(&gic_data[gic_nr]);
if (!dist_base)
return;
gic_irqs = gic_data[gic_nr].gic_irqs;
cur_cpu_id = __ffs(gic_cpu_map[cpu]);
cur_target_mask = 0x01010101 << cur_cpu_id;
ror_val = (cur_cpu_id - new_cpu_id) & 31;
gic_lock();
/* Update the target interface for this logical CPU */
gic_cpu_map[cpu] = 1 << new_cpu_id;
/*
* Find all the peripheral interrupts targeting the current
* CPU interface and migrate them to the new CPU interface.
* We skip DIST_TARGET 0 to 7 as they are read-only.
*/
for (i = 8; i < DIV_ROUND_UP(gic_irqs, 4); i++) {
val = readl_relaxed(dist_base + GIC_DIST_TARGET + i * 4);
active_mask = val & cur_target_mask;
if (active_mask) {
val &= ~active_mask;
val |= ror32(active_mask, ror_val);
writel_relaxed(val, dist_base + GIC_DIST_TARGET + i*4);
}
}
gic_unlock();
/*
* Now let's migrate and clear any potential SGIs that might be
* pending for us (cur_cpu_id). Since GIC_DIST_SGI_PENDING_SET
* is a banked register, we can only forward the SGI using
* GIC_DIST_SOFTINT. The original SGI source is lost but Linux
* doesn't use that information anyway.
*
* For the same reason we do not adjust SGI source information
* for previously sent SGIs by us to other CPUs either.
*/
for (i = 0; i < 16; i += 4) {
int j;
val = readl_relaxed(dist_base + GIC_DIST_SGI_PENDING_SET + i);
if (!val)
continue;
writel_relaxed(val, dist_base + GIC_DIST_SGI_PENDING_CLEAR + i);
for (j = i; j < i + 4; j++) {
if (val & 0xff)
writel_relaxed((1 << (new_cpu_id + 16)) | j,
dist_base + GIC_DIST_SOFTINT);
val >>= 8;
}
}
}
/*
* gic_get_sgir_physaddr - get the physical address for the SGI register
*
* REturn the physical address of the SGI register to be used
* by some early assembly code when the kernel is not yet available.
*/
static unsigned long gic_dist_physaddr;
unsigned long gic_get_sgir_physaddr(void)
{
if (!gic_dist_physaddr)
return 0;
return gic_dist_physaddr + GIC_DIST_SOFTINT;
}
static void __init gic_init_physaddr(struct device_node *node)
{
struct resource res;
if (of_address_to_resource(node, 0, &res) == 0) {
gic_dist_physaddr = res.start;
pr_info("GIC physical location is %#lx\n", gic_dist_physaddr);
}
}
#else
#define gic_init_physaddr(node) do { } while (0)
#endif
static int gic_irq_domain_map(struct irq_domain *d, unsigned int irq,
irq_hw_number_t hw)
{
struct gic_chip_data *gic = d->host_data;
if (hw < 32) {
irq_set_percpu_devid(irq);
irq_domain_set_info(d, irq, hw, &gic->chip, d->host_data,
handle_percpu_devid_irq, NULL, NULL);
irq_set_status_flags(irq, IRQ_NOAUTOEN);
} else {
irq_domain_set_info(d, irq, hw, &gic->chip, d->host_data,
handle_fasteoi_irq, NULL, NULL);
irq_set_probe(irq);
irqd_set_single_target(irq_desc_get_irq_data(irq_to_desc(irq)));
}
return 0;
}
static void gic_irq_domain_unmap(struct irq_domain *d, unsigned int irq)
{
}
static int gic_irq_domain_translate(struct irq_domain *d,
struct irq_fwspec *fwspec,
unsigned long *hwirq,
unsigned int *type)
{
if (is_of_node(fwspec->fwnode)) {
if (fwspec->param_count < 3)
return -EINVAL;
/* Get the interrupt number and add 16 to skip over SGIs */
*hwirq = fwspec->param[1] + 16;
/*
* For SPIs, we need to add 16 more to get the GIC irq
* ID number
*/
if (!fwspec->param[0])
*hwirq += 16;
*type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK;
/* Make it clear that broken DTs are... broken */
WARN_ON(*type == IRQ_TYPE_NONE);
return 0;
}
if (is_fwnode_irqchip(fwspec->fwnode)) {
if(fwspec->param_count != 2)
return -EINVAL;
*hwirq = fwspec->param[0];
*type = fwspec->param[1];
WARN_ON(*type == IRQ_TYPE_NONE);
return 0;
}
return -EINVAL;
}
static int gic_starting_cpu(unsigned int cpu)
{
gic_cpu_init(&gic_data[0]);
return 0;
}
static int gic_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
unsigned int nr_irqs, void *arg)
{
int i, ret;
irq_hw_number_t hwirq;
unsigned int type = IRQ_TYPE_NONE;
struct irq_fwspec *fwspec = arg;
ret = gic_irq_domain_translate(domain, fwspec, &hwirq, &type);
if (ret)
return ret;
for (i = 0; i < nr_irqs; i++) {
ret = gic_irq_domain_map(domain, virq + i, hwirq + i);
if (ret)
return ret;
}
return 0;
}
static const struct irq_domain_ops gic_irq_domain_hierarchy_ops = {
.translate = gic_irq_domain_translate,
.alloc = gic_irq_domain_alloc,
.free = irq_domain_free_irqs_top,
};
static const struct irq_domain_ops gic_irq_domain_ops = {
.map = gic_irq_domain_map,
.unmap = gic_irq_domain_unmap,
};
static void gic_init_chip(struct gic_chip_data *gic, struct device *dev,
const char *name, bool use_eoimode1)
{
/* Initialize irq_chip */
gic->chip = gic_chip;
gic->chip.name = name;
gic->chip.parent_device = dev;
if (use_eoimode1) {
gic->chip.irq_mask = gic_eoimode1_mask_irq;
gic->chip.irq_eoi = gic_eoimode1_eoi_irq;
gic->chip.irq_set_vcpu_affinity = gic_irq_set_vcpu_affinity;
}
#ifdef CONFIG_SMP
if (gic == &gic_data[0])
gic->chip.irq_set_affinity = gic_set_affinity;
#endif
}
static int gic_init_bases(struct gic_chip_data *gic,
struct fwnode_handle *handle)
{
int gic_irqs, ret;
if (IS_ENABLED(CONFIG_GIC_NON_BANKED) && gic->percpu_offset) {
/* Frankein-GIC without banked registers... */
unsigned int cpu;
gic->dist_base.percpu_base = alloc_percpu(void __iomem *);
gic->cpu_base.percpu_base = alloc_percpu(void __iomem *);
if (WARN_ON(!gic->dist_base.percpu_base ||
!gic->cpu_base.percpu_base)) {
ret = -ENOMEM;
goto error;
}
for_each_possible_cpu(cpu) {
u32 mpidr = cpu_logical_map(cpu);
u32 core_id = MPIDR_AFFINITY_LEVEL(mpidr, 0);
unsigned long offset = gic->percpu_offset * core_id;
*per_cpu_ptr(gic->dist_base.percpu_base, cpu) =
gic->raw_dist_base + offset;
*per_cpu_ptr(gic->cpu_base.percpu_base, cpu) =
gic->raw_cpu_base + offset;
}
gic_set_base_accessor(gic, gic_get_percpu_base);
} else {
/* Normal, sane GIC... */
WARN(gic->percpu_offset,
"GIC_NON_BANKED not enabled, ignoring %08x offset!",
gic->percpu_offset);
gic->dist_base.common_base = gic->raw_dist_base;
gic->cpu_base.common_base = gic->raw_cpu_base;
gic_set_base_accessor(gic, gic_get_common_base);
}
/*
* Find out how many interrupts are supported.
* The GIC only supports up to 1020 interrupt sources.
*/
gic_irqs = readl_relaxed(gic_data_dist_base(gic) + GIC_DIST_CTR) & 0x1f;
gic_irqs = (gic_irqs + 1) * 32;
if (gic_irqs > 1020)
gic_irqs = 1020;
gic->gic_irqs = gic_irqs;
if (handle) { /* DT/ACPI */
gic->domain = irq_domain_create_linear(handle, gic_irqs,
&gic_irq_domain_hierarchy_ops,
gic);
} else { /* Legacy support */
/*
* For primary GICs, skip over SGIs.
* No secondary GIC support whatsoever.
*/
int irq_base;
gic_irqs -= 16; /* calculate # of irqs to allocate */
irq_base = irq_alloc_descs(16, 16, gic_irqs,
numa_node_id());
if (irq_base < 0) {
WARN(1, "Cannot allocate irq_descs @ IRQ16, assuming pre-allocated\n");
irq_base = 16;
}
gic->domain = irq_domain_add_legacy(NULL, gic_irqs, irq_base,
16, &gic_irq_domain_ops, gic);
}
if (WARN_ON(!gic->domain)) {
ret = -ENODEV;
goto error;
}
gic_dist_init(gic);
ret = gic_cpu_init(gic);
if (ret)
goto error;
ret = gic_pm_init(gic);
if (ret)
goto error;
return 0;
error:
if (IS_ENABLED(CONFIG_GIC_NON_BANKED) && gic->percpu_offset) {
free_percpu(gic->dist_base.percpu_base);
free_percpu(gic->cpu_base.percpu_base);
}
return ret;
}
static int __init __gic_init_bases(struct gic_chip_data *gic,
struct fwnode_handle *handle)
{
char *name;
int i, ret;
if (WARN_ON(!gic || gic->domain))
return -EINVAL;
if (gic == &gic_data[0]) {
/*
* Initialize the CPU interface map to all CPUs.
* It will be refined as each CPU probes its ID.
* This is only necessary for the primary GIC.
*/
for (i = 0; i < NR_GIC_CPU_IF; i++)
gic_cpu_map[i] = 0xff;
#ifdef CONFIG_SMP
set_smp_cross_call(gic_raise_softirq);
#endif
cpuhp_setup_state_nocalls(CPUHP_AP_IRQ_GIC_STARTING,
"irqchip/arm/gic:starting",
gic_starting_cpu, NULL);
set_handle_irq(gic_handle_irq);
if (static_branch_likely(&supports_deactivate_key))
pr_info("GIC: Using split EOI/Deactivate mode\n");
}
if (static_branch_likely(&supports_deactivate_key) && gic == &gic_data[0]) {
name = kasprintf(GFP_KERNEL, "GICv2");
gic_init_chip(gic, NULL, name, true);
} else {
name = kasprintf(GFP_KERNEL, "GIC-%d", (int)(gic-&gic_data[0]));
gic_init_chip(gic, NULL, name, false);
}
ret = gic_init_bases(gic, handle);
if (ret)
kfree(name);
return ret;
}
void __init gic_init(void __iomem *dist_base, void __iomem *cpu_base)
{
struct gic_chip_data *gic;
/*
* Non-DT/ACPI systems won't run a hypervisor, so let's not
* bother with these...
*/
static_branch_disable(&supports_deactivate_key);
gic = &gic_data[0];
gic->raw_dist_base = dist_base;
gic->raw_cpu_base = cpu_base;
__gic_init_bases(gic, NULL);
}
static void gic_teardown(struct gic_chip_data *gic)
{
if (WARN_ON(!gic))
return;
if (gic->raw_dist_base)
iounmap(gic->raw_dist_base);
if (gic->raw_cpu_base)
iounmap(gic->raw_cpu_base);
}
#ifdef CONFIG_OF
static int gic_cnt __initdata;
static bool gicv2_force_probe;
static int __init gicv2_force_probe_cfg(char *buf)
{
return strtobool(buf, &gicv2_force_probe);
}
early_param("irqchip.gicv2_force_probe", gicv2_force_probe_cfg);
static bool gic_check_eoimode(struct device_node *node, void __iomem **base)
{
struct resource cpuif_res;
of_address_to_resource(node, 1, &cpuif_res);
if (!is_hyp_mode_available())
return false;
if (resource_size(&cpuif_res) < SZ_8K) {
void __iomem *alt;
/*
* Check for a stupid firmware that only exposes the
* first page of a GICv2.
*/
if (!gic_check_gicv2(*base))
return false;
if (!gicv2_force_probe) {
pr_warn("GIC: GICv2 detected, but range too small and irqchip.gicv2_force_probe not set\n");
return false;
}
alt = ioremap(cpuif_res.start, SZ_8K);
if (!alt)
return false;
if (!gic_check_gicv2(alt + SZ_4K)) {
/*
* The first page was that of a GICv2, and
* the second was *something*. Let's trust it
* to be a GICv2, and update the mapping.
*/
pr_warn("GIC: GICv2 at %pa, but range is too small (broken DT?), assuming 8kB\n",
&cpuif_res.start);
iounmap(*base);
*base = alt;
return true;
}
/*
* We detected *two* initial GICv2 pages in a
* row. Could be a GICv2 aliased over two 64kB
* pages. Update the resource, map the iospace, and
* pray.
*/
iounmap(alt);
alt = ioremap(cpuif_res.start, SZ_128K);
if (!alt)
return false;
pr_warn("GIC: Aliased GICv2 at %pa, trying to find the canonical range over 128kB\n",
&cpuif_res.start);
cpuif_res.end = cpuif_res.start + SZ_128K -1;
iounmap(*base);
*base = alt;
}
if (resource_size(&cpuif_res) == SZ_128K) {
/*
* Verify that we have the first 4kB of a GICv2
* aliased over the first 64kB by checking the
* GICC_IIDR register on both ends.
*/
if (!gic_check_gicv2(*base) ||
!gic_check_gicv2(*base + 0xf000))
return false;
/*
* Move the base up by 60kB, so that we have a 8kB
* contiguous region, which allows us to use GICC_DIR
* at its normal offset. Please pass me that bucket.
*/
*base += 0xf000;
cpuif_res.start += 0xf000;
pr_warn("GIC: Adjusting CPU interface base to %pa\n",
&cpuif_res.start);
}
return true;
}
static int gic_of_setup(struct gic_chip_data *gic, struct device_node *node)
{
if (!gic || !node)
return -EINVAL;
gic->raw_dist_base = of_iomap(node, 0);
if (WARN(!gic->raw_dist_base, "unable to map gic dist registers\n"))
goto error;
gic->raw_cpu_base = of_iomap(node, 1);
if (WARN(!gic->raw_cpu_base, "unable to map gic cpu registers\n"))
goto error;
if (of_property_read_u32(node, "cpu-offset", &gic->percpu_offset))
gic->percpu_offset = 0;
return 0;
error:
gic_teardown(gic);
return -ENOMEM;
}
int gic_of_init_child(struct device *dev, struct gic_chip_data **gic, int irq)
{
int ret;
if (!dev || !dev->of_node || !gic || !irq)
return -EINVAL;
*gic = devm_kzalloc(dev, sizeof(**gic), GFP_KERNEL);
if (!*gic)
return -ENOMEM;
gic_init_chip(*gic, dev, dev->of_node->name, false);
ret = gic_of_setup(*gic, dev->of_node);
if (ret)
return ret;
ret = gic_init_bases(*gic, &dev->of_node->fwnode);
if (ret) {
gic_teardown(*gic);
return ret;
}
irq_set_chained_handler_and_data(irq, gic_handle_cascade_irq, *gic);
return 0;
}
static void __init gic_of_setup_kvm_info(struct device_node *node)
{
int ret;
struct resource *vctrl_res = &gic_v2_kvm_info.vctrl;
struct resource *vcpu_res = &gic_v2_kvm_info.vcpu;
gic_v2_kvm_info.type = GIC_V2;
gic_v2_kvm_info.maint_irq = irq_of_parse_and_map(node, 0);
if (!gic_v2_kvm_info.maint_irq)
return;
ret = of_address_to_resource(node, 2, vctrl_res);
if (ret)
return;
ret = of_address_to_resource(node, 3, vcpu_res);
if (ret)
return;
if (static_branch_likely(&supports_deactivate_key))
gic_set_kvm_info(&gic_v2_kvm_info);
}
int __init
gic_of_init(struct device_node *node, struct device_node *parent)
{
struct gic_chip_data *gic;
int irq, ret;
if (WARN_ON(!node))
return -ENODEV;
if (WARN_ON(gic_cnt >= CONFIG_ARM_GIC_MAX_NR))
return -EINVAL;
gic = &gic_data[gic_cnt];
ret = gic_of_setup(gic, node);
if (ret)
return ret;
/*
* Disable split EOI/Deactivate if either HYP is not available
* or the CPU interface is too small.
*/
if (gic_cnt == 0 && !gic_check_eoimode(node, &gic->raw_cpu_base))
static_branch_disable(&supports_deactivate_key);
ret = __gic_init_bases(gic, &node->fwnode);
if (ret) {
gic_teardown(gic);
return ret;
}
if (!gic_cnt) {
gic_init_physaddr(node);
gic_of_setup_kvm_info(node);
}
if (parent) {
irq = irq_of_parse_and_map(node, 0);
gic_cascade_irq(gic_cnt, irq);
}
if (IS_ENABLED(CONFIG_ARM_GIC_V2M))
gicv2m_init(&node->fwnode, gic_data[gic_cnt].domain);
gic_cnt++;
return 0;
}
IRQCHIP_DECLARE(gic_400, "arm,gic-400", gic_of_init);
IRQCHIP_DECLARE(arm11mp_gic, "arm,arm11mp-gic", gic_of_init);
IRQCHIP_DECLARE(arm1176jzf_dc_gic, "arm,arm1176jzf-devchip-gic", gic_of_init);
IRQCHIP_DECLARE(cortex_a15_gic, "arm,cortex-a15-gic", gic_of_init);
IRQCHIP_DECLARE(cortex_a9_gic, "arm,cortex-a9-gic", gic_of_init);
IRQCHIP_DECLARE(cortex_a7_gic, "arm,cortex-a7-gic", gic_of_init);
IRQCHIP_DECLARE(msm_8660_qgic, "qcom,msm-8660-qgic", gic_of_init);
IRQCHIP_DECLARE(msm_qgic2, "qcom,msm-qgic2", gic_of_init);
IRQCHIP_DECLARE(pl390, "arm,pl390", gic_of_init);
#else
int gic_of_init_child(struct device *dev, struct gic_chip_data **gic, int irq)
{
return -ENOTSUPP;
}
#endif
#ifdef CONFIG_ACPI
static struct
{
phys_addr_t cpu_phys_base;
u32 maint_irq;
int maint_irq_mode;
phys_addr_t vctrl_base;
phys_addr_t vcpu_base;
} acpi_data __initdata;
static int __init
gic_acpi_parse_madt_cpu(union acpi_subtable_headers *header,
const unsigned long end)
{
struct acpi_madt_generic_interrupt *processor;
phys_addr_t gic_cpu_base;
static int cpu_base_assigned;
processor = (struct acpi_madt_generic_interrupt *)header;
if (BAD_MADT_GICC_ENTRY(processor, end))
return -EINVAL;
/*
* There is no support for non-banked GICv1/2 register in ACPI spec.
* All CPU interface addresses have to be the same.
*/
gic_cpu_base = processor->base_address;
if (cpu_base_assigned && gic_cpu_base != acpi_data.cpu_phys_base)
return -EINVAL;
acpi_data.cpu_phys_base = gic_cpu_base;
acpi_data.maint_irq = processor->vgic_interrupt;
acpi_data.maint_irq_mode = (processor->flags & ACPI_MADT_VGIC_IRQ_MODE) ?
ACPI_EDGE_SENSITIVE : ACPI_LEVEL_SENSITIVE;
acpi_data.vctrl_base = processor->gich_base_address;
acpi_data.vcpu_base = processor->gicv_base_address;
cpu_base_assigned = 1;
return 0;
}
/* The things you have to do to just *count* something... */
static int __init acpi_dummy_func(union acpi_subtable_headers *header,
const unsigned long end)
{
return 0;
}
static bool __init acpi_gic_redist_is_present(void)
{
return acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR,
acpi_dummy_func, 0) > 0;
}
static bool __init gic_validate_dist(struct acpi_subtable_header *header,
struct acpi_probe_entry *ape)
{
struct acpi_madt_generic_distributor *dist;
dist = (struct acpi_madt_generic_distributor *)header;
return (dist->version == ape->driver_data &&
(dist->version != ACPI_MADT_GIC_VERSION_NONE ||
!acpi_gic_redist_is_present()));
}
#define ACPI_GICV2_DIST_MEM_SIZE (SZ_4K)
#define ACPI_GIC_CPU_IF_MEM_SIZE (SZ_8K)
#define ACPI_GICV2_VCTRL_MEM_SIZE (SZ_4K)
#define ACPI_GICV2_VCPU_MEM_SIZE (SZ_8K)
static void __init gic_acpi_setup_kvm_info(void)
{
int irq;
struct resource *vctrl_res = &gic_v2_kvm_info.vctrl;
struct resource *vcpu_res = &gic_v2_kvm_info.vcpu;
gic_v2_kvm_info.type = GIC_V2;
if (!acpi_data.vctrl_base)
return;
vctrl_res->flags = IORESOURCE_MEM;
vctrl_res->start = acpi_data.vctrl_base;
vctrl_res->end = vctrl_res->start + ACPI_GICV2_VCTRL_MEM_SIZE - 1;
if (!acpi_data.vcpu_base)
return;
vcpu_res->flags = IORESOURCE_MEM;
vcpu_res->start = acpi_data.vcpu_base;
vcpu_res->end = vcpu_res->start + ACPI_GICV2_VCPU_MEM_SIZE - 1;
irq = acpi_register_gsi(NULL, acpi_data.maint_irq,
acpi_data.maint_irq_mode,
ACPI_ACTIVE_HIGH);
if (irq <= 0)
return;
gic_v2_kvm_info.maint_irq = irq;
gic_set_kvm_info(&gic_v2_kvm_info);
}
static int __init gic_v2_acpi_init(struct acpi_subtable_header *header,
const unsigned long end)
{
struct acpi_madt_generic_distributor *dist;
struct fwnode_handle *domain_handle;
struct gic_chip_data *gic = &gic_data[0];
int count, ret;
/* Collect CPU base addresses */
count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
gic_acpi_parse_madt_cpu, 0);
if (count <= 0) {
pr_err("No valid GICC entries exist\n");
return -EINVAL;
}
gic->raw_cpu_base = ioremap(acpi_data.cpu_phys_base, ACPI_GIC_CPU_IF_MEM_SIZE);
if (!gic->raw_cpu_base) {
pr_err("Unable to map GICC registers\n");
return -ENOMEM;
}
dist = (struct acpi_madt_generic_distributor *)header;
gic->raw_dist_base = ioremap(dist->base_address,
ACPI_GICV2_DIST_MEM_SIZE);
if (!gic->raw_dist_base) {
pr_err("Unable to map GICD registers\n");
gic_teardown(gic);
return -ENOMEM;
}
/*
* Disable split EOI/Deactivate if HYP is not available. ACPI
* guarantees that we'll always have a GICv2, so the CPU
* interface will always be the right size.
*/
if (!is_hyp_mode_available())
static_branch_disable(&supports_deactivate_key);
/*
* Initialize GIC instance zero (no multi-GIC support).
*/
domain_handle = irq_domain_alloc_fwnode(&dist->base_address);
if (!domain_handle) {
pr_err("Unable to allocate domain handle\n");
gic_teardown(gic);
return -ENOMEM;
}
ret = __gic_init_bases(gic, domain_handle);
if (ret) {
pr_err("Failed to initialise GIC\n");
irq_domain_free_fwnode(domain_handle);
gic_teardown(gic);
return ret;
}
acpi_set_irq_model(ACPI_IRQ_MODEL_GIC, domain_handle);
if (IS_ENABLED(CONFIG_ARM_GIC_V2M))
gicv2m_init(NULL, gic_data[0].domain);
if (static_branch_likely(&supports_deactivate_key))
gic_acpi_setup_kvm_info();
return 0;
}
IRQCHIP_ACPI_DECLARE(gic_v2, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
gic_validate_dist, ACPI_MADT_GIC_VERSION_V2,
gic_v2_acpi_init);
IRQCHIP_ACPI_DECLARE(gic_v2_maybe, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
gic_validate_dist, ACPI_MADT_GIC_VERSION_NONE,
gic_v2_acpi_init);
#endif