linux_old1/net/mac80211/cfg.c

3261 lines
85 KiB
C

/*
* mac80211 configuration hooks for cfg80211
*
* Copyright 2006-2010 Johannes Berg <johannes@sipsolutions.net>
*
* This file is GPLv2 as found in COPYING.
*/
#include <linux/ieee80211.h>
#include <linux/nl80211.h>
#include <linux/rtnetlink.h>
#include <linux/slab.h>
#include <net/net_namespace.h>
#include <linux/rcupdate.h>
#include <linux/if_ether.h>
#include <net/cfg80211.h>
#include "ieee80211_i.h"
#include "driver-ops.h"
#include "cfg.h"
#include "rate.h"
#include "mesh.h"
static struct wireless_dev *ieee80211_add_iface(struct wiphy *wiphy,
const char *name,
enum nl80211_iftype type,
u32 *flags,
struct vif_params *params)
{
struct ieee80211_local *local = wiphy_priv(wiphy);
struct wireless_dev *wdev;
struct ieee80211_sub_if_data *sdata;
int err;
err = ieee80211_if_add(local, name, &wdev, type, params);
if (err)
return ERR_PTR(err);
if (type == NL80211_IFTYPE_MONITOR && flags) {
sdata = IEEE80211_WDEV_TO_SUB_IF(wdev);
sdata->u.mntr_flags = *flags;
}
return wdev;
}
static int ieee80211_del_iface(struct wiphy *wiphy, struct wireless_dev *wdev)
{
ieee80211_if_remove(IEEE80211_WDEV_TO_SUB_IF(wdev));
return 0;
}
static int ieee80211_change_iface(struct wiphy *wiphy,
struct net_device *dev,
enum nl80211_iftype type, u32 *flags,
struct vif_params *params)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
int ret;
ret = ieee80211_if_change_type(sdata, type);
if (ret)
return ret;
if (type == NL80211_IFTYPE_AP_VLAN &&
params && params->use_4addr == 0)
RCU_INIT_POINTER(sdata->u.vlan.sta, NULL);
else if (type == NL80211_IFTYPE_STATION &&
params && params->use_4addr >= 0)
sdata->u.mgd.use_4addr = params->use_4addr;
if (sdata->vif.type == NL80211_IFTYPE_MONITOR && flags) {
struct ieee80211_local *local = sdata->local;
if (ieee80211_sdata_running(sdata)) {
/*
* Prohibit MONITOR_FLAG_COOK_FRAMES to be
* changed while the interface is up.
* Else we would need to add a lot of cruft
* to update everything:
* cooked_mntrs, monitor and all fif_* counters
* reconfigure hardware
*/
if ((*flags & MONITOR_FLAG_COOK_FRAMES) !=
(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES))
return -EBUSY;
ieee80211_adjust_monitor_flags(sdata, -1);
sdata->u.mntr_flags = *flags;
ieee80211_adjust_monitor_flags(sdata, 1);
ieee80211_configure_filter(local);
} else {
/*
* Because the interface is down, ieee80211_do_stop
* and ieee80211_do_open take care of "everything"
* mentioned in the comment above.
*/
sdata->u.mntr_flags = *flags;
}
}
return 0;
}
static int ieee80211_start_p2p_device(struct wiphy *wiphy,
struct wireless_dev *wdev)
{
return ieee80211_do_open(wdev, true);
}
static void ieee80211_stop_p2p_device(struct wiphy *wiphy,
struct wireless_dev *wdev)
{
ieee80211_sdata_stop(IEEE80211_WDEV_TO_SUB_IF(wdev));
}
static int ieee80211_set_noack_map(struct wiphy *wiphy,
struct net_device *dev,
u16 noack_map)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
sdata->noack_map = noack_map;
return 0;
}
static int ieee80211_add_key(struct wiphy *wiphy, struct net_device *dev,
u8 key_idx, bool pairwise, const u8 *mac_addr,
struct key_params *params)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
struct sta_info *sta = NULL;
struct ieee80211_key *key;
int err;
if (!ieee80211_sdata_running(sdata))
return -ENETDOWN;
/* reject WEP and TKIP keys if WEP failed to initialize */
switch (params->cipher) {
case WLAN_CIPHER_SUITE_WEP40:
case WLAN_CIPHER_SUITE_TKIP:
case WLAN_CIPHER_SUITE_WEP104:
if (IS_ERR(sdata->local->wep_tx_tfm))
return -EINVAL;
break;
default:
break;
}
key = ieee80211_key_alloc(params->cipher, key_idx, params->key_len,
params->key, params->seq_len, params->seq);
if (IS_ERR(key))
return PTR_ERR(key);
if (pairwise)
key->conf.flags |= IEEE80211_KEY_FLAG_PAIRWISE;
mutex_lock(&sdata->local->sta_mtx);
if (mac_addr) {
if (ieee80211_vif_is_mesh(&sdata->vif))
sta = sta_info_get(sdata, mac_addr);
else
sta = sta_info_get_bss(sdata, mac_addr);
if (!sta) {
ieee80211_key_free(sdata->local, key);
err = -ENOENT;
goto out_unlock;
}
}
switch (sdata->vif.type) {
case NL80211_IFTYPE_STATION:
if (sdata->u.mgd.mfp != IEEE80211_MFP_DISABLED)
key->conf.flags |= IEEE80211_KEY_FLAG_RX_MGMT;
break;
case NL80211_IFTYPE_AP:
case NL80211_IFTYPE_AP_VLAN:
/* Keys without a station are used for TX only */
if (key->sta && test_sta_flag(key->sta, WLAN_STA_MFP))
key->conf.flags |= IEEE80211_KEY_FLAG_RX_MGMT;
break;
case NL80211_IFTYPE_ADHOC:
/* no MFP (yet) */
break;
case NL80211_IFTYPE_MESH_POINT:
#ifdef CONFIG_MAC80211_MESH
if (sdata->u.mesh.security != IEEE80211_MESH_SEC_NONE)
key->conf.flags |= IEEE80211_KEY_FLAG_RX_MGMT;
break;
#endif
case NL80211_IFTYPE_WDS:
case NL80211_IFTYPE_MONITOR:
case NL80211_IFTYPE_P2P_DEVICE:
case NL80211_IFTYPE_UNSPECIFIED:
case NUM_NL80211_IFTYPES:
case NL80211_IFTYPE_P2P_CLIENT:
case NL80211_IFTYPE_P2P_GO:
/* shouldn't happen */
WARN_ON_ONCE(1);
break;
}
err = ieee80211_key_link(key, sdata, sta);
if (err)
ieee80211_key_free(sdata->local, key);
out_unlock:
mutex_unlock(&sdata->local->sta_mtx);
return err;
}
static int ieee80211_del_key(struct wiphy *wiphy, struct net_device *dev,
u8 key_idx, bool pairwise, const u8 *mac_addr)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
struct ieee80211_local *local = sdata->local;
struct sta_info *sta;
struct ieee80211_key *key = NULL;
int ret;
mutex_lock(&local->sta_mtx);
mutex_lock(&local->key_mtx);
if (mac_addr) {
ret = -ENOENT;
sta = sta_info_get_bss(sdata, mac_addr);
if (!sta)
goto out_unlock;
if (pairwise)
key = key_mtx_dereference(local, sta->ptk);
else
key = key_mtx_dereference(local, sta->gtk[key_idx]);
} else
key = key_mtx_dereference(local, sdata->keys[key_idx]);
if (!key) {
ret = -ENOENT;
goto out_unlock;
}
__ieee80211_key_free(key);
ret = 0;
out_unlock:
mutex_unlock(&local->key_mtx);
mutex_unlock(&local->sta_mtx);
return ret;
}
static int ieee80211_get_key(struct wiphy *wiphy, struct net_device *dev,
u8 key_idx, bool pairwise, const u8 *mac_addr,
void *cookie,
void (*callback)(void *cookie,
struct key_params *params))
{
struct ieee80211_sub_if_data *sdata;
struct sta_info *sta = NULL;
u8 seq[6] = {0};
struct key_params params;
struct ieee80211_key *key = NULL;
u64 pn64;
u32 iv32;
u16 iv16;
int err = -ENOENT;
sdata = IEEE80211_DEV_TO_SUB_IF(dev);
rcu_read_lock();
if (mac_addr) {
sta = sta_info_get_bss(sdata, mac_addr);
if (!sta)
goto out;
if (pairwise)
key = rcu_dereference(sta->ptk);
else if (key_idx < NUM_DEFAULT_KEYS)
key = rcu_dereference(sta->gtk[key_idx]);
} else
key = rcu_dereference(sdata->keys[key_idx]);
if (!key)
goto out;
memset(&params, 0, sizeof(params));
params.cipher = key->conf.cipher;
switch (key->conf.cipher) {
case WLAN_CIPHER_SUITE_TKIP:
iv32 = key->u.tkip.tx.iv32;
iv16 = key->u.tkip.tx.iv16;
if (key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE)
drv_get_tkip_seq(sdata->local,
key->conf.hw_key_idx,
&iv32, &iv16);
seq[0] = iv16 & 0xff;
seq[1] = (iv16 >> 8) & 0xff;
seq[2] = iv32 & 0xff;
seq[3] = (iv32 >> 8) & 0xff;
seq[4] = (iv32 >> 16) & 0xff;
seq[5] = (iv32 >> 24) & 0xff;
params.seq = seq;
params.seq_len = 6;
break;
case WLAN_CIPHER_SUITE_CCMP:
pn64 = atomic64_read(&key->u.ccmp.tx_pn);
seq[0] = pn64;
seq[1] = pn64 >> 8;
seq[2] = pn64 >> 16;
seq[3] = pn64 >> 24;
seq[4] = pn64 >> 32;
seq[5] = pn64 >> 40;
params.seq = seq;
params.seq_len = 6;
break;
case WLAN_CIPHER_SUITE_AES_CMAC:
pn64 = atomic64_read(&key->u.aes_cmac.tx_pn);
seq[0] = pn64;
seq[1] = pn64 >> 8;
seq[2] = pn64 >> 16;
seq[3] = pn64 >> 24;
seq[4] = pn64 >> 32;
seq[5] = pn64 >> 40;
params.seq = seq;
params.seq_len = 6;
break;
}
params.key = key->conf.key;
params.key_len = key->conf.keylen;
callback(cookie, &params);
err = 0;
out:
rcu_read_unlock();
return err;
}
static int ieee80211_config_default_key(struct wiphy *wiphy,
struct net_device *dev,
u8 key_idx, bool uni,
bool multi)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
ieee80211_set_default_key(sdata, key_idx, uni, multi);
return 0;
}
static int ieee80211_config_default_mgmt_key(struct wiphy *wiphy,
struct net_device *dev,
u8 key_idx)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
ieee80211_set_default_mgmt_key(sdata, key_idx);
return 0;
}
void sta_set_rate_info_tx(struct sta_info *sta,
const struct ieee80211_tx_rate *rate,
struct rate_info *rinfo)
{
rinfo->flags = 0;
if (rate->flags & IEEE80211_TX_RC_MCS) {
rinfo->flags |= RATE_INFO_FLAGS_MCS;
rinfo->mcs = rate->idx;
} else if (rate->flags & IEEE80211_TX_RC_VHT_MCS) {
rinfo->flags |= RATE_INFO_FLAGS_VHT_MCS;
rinfo->mcs = ieee80211_rate_get_vht_mcs(rate);
rinfo->nss = ieee80211_rate_get_vht_nss(rate);
} else {
struct ieee80211_supported_band *sband;
sband = sta->local->hw.wiphy->bands[
ieee80211_get_sdata_band(sta->sdata)];
rinfo->legacy = sband->bitrates[rate->idx].bitrate;
}
if (rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
rinfo->flags |= RATE_INFO_FLAGS_40_MHZ_WIDTH;
if (rate->flags & IEEE80211_TX_RC_80_MHZ_WIDTH)
rinfo->flags |= RATE_INFO_FLAGS_80_MHZ_WIDTH;
if (rate->flags & IEEE80211_TX_RC_160_MHZ_WIDTH)
rinfo->flags |= RATE_INFO_FLAGS_160_MHZ_WIDTH;
if (rate->flags & IEEE80211_TX_RC_SHORT_GI)
rinfo->flags |= RATE_INFO_FLAGS_SHORT_GI;
}
void sta_set_rate_info_rx(struct sta_info *sta, struct rate_info *rinfo)
{
rinfo->flags = 0;
if (sta->last_rx_rate_flag & RX_FLAG_HT) {
rinfo->flags |= RATE_INFO_FLAGS_MCS;
rinfo->mcs = sta->last_rx_rate_idx;
} else if (sta->last_rx_rate_flag & RX_FLAG_VHT) {
rinfo->flags |= RATE_INFO_FLAGS_VHT_MCS;
rinfo->nss = sta->last_rx_rate_vht_nss;
rinfo->mcs = sta->last_rx_rate_idx;
} else {
struct ieee80211_supported_band *sband;
sband = sta->local->hw.wiphy->bands[
ieee80211_get_sdata_band(sta->sdata)];
rinfo->legacy =
sband->bitrates[sta->last_rx_rate_idx].bitrate;
}
if (sta->last_rx_rate_flag & RX_FLAG_40MHZ)
rinfo->flags |= RATE_INFO_FLAGS_40_MHZ_WIDTH;
if (sta->last_rx_rate_flag & RX_FLAG_SHORT_GI)
rinfo->flags |= RATE_INFO_FLAGS_SHORT_GI;
if (sta->last_rx_rate_flag & RX_FLAG_80MHZ)
rinfo->flags |= RATE_INFO_FLAGS_80_MHZ_WIDTH;
if (sta->last_rx_rate_flag & RX_FLAG_80P80MHZ)
rinfo->flags |= RATE_INFO_FLAGS_80P80_MHZ_WIDTH;
if (sta->last_rx_rate_flag & RX_FLAG_160MHZ)
rinfo->flags |= RATE_INFO_FLAGS_160_MHZ_WIDTH;
}
static void sta_set_sinfo(struct sta_info *sta, struct station_info *sinfo)
{
struct ieee80211_sub_if_data *sdata = sta->sdata;
struct ieee80211_local *local = sdata->local;
struct timespec uptime;
sinfo->generation = sdata->local->sta_generation;
sinfo->filled = STATION_INFO_INACTIVE_TIME |
STATION_INFO_RX_BYTES |
STATION_INFO_TX_BYTES |
STATION_INFO_RX_PACKETS |
STATION_INFO_TX_PACKETS |
STATION_INFO_TX_RETRIES |
STATION_INFO_TX_FAILED |
STATION_INFO_TX_BITRATE |
STATION_INFO_RX_BITRATE |
STATION_INFO_RX_DROP_MISC |
STATION_INFO_BSS_PARAM |
STATION_INFO_CONNECTED_TIME |
STATION_INFO_STA_FLAGS |
STATION_INFO_BEACON_LOSS_COUNT;
do_posix_clock_monotonic_gettime(&uptime);
sinfo->connected_time = uptime.tv_sec - sta->last_connected;
sinfo->inactive_time = jiffies_to_msecs(jiffies - sta->last_rx);
sinfo->rx_bytes = sta->rx_bytes;
sinfo->tx_bytes = sta->tx_bytes;
sinfo->rx_packets = sta->rx_packets;
sinfo->tx_packets = sta->tx_packets;
sinfo->tx_retries = sta->tx_retry_count;
sinfo->tx_failed = sta->tx_retry_failed;
sinfo->rx_dropped_misc = sta->rx_dropped;
sinfo->beacon_loss_count = sta->beacon_loss_count;
if ((sta->local->hw.flags & IEEE80211_HW_SIGNAL_DBM) ||
(sta->local->hw.flags & IEEE80211_HW_SIGNAL_UNSPEC)) {
sinfo->filled |= STATION_INFO_SIGNAL | STATION_INFO_SIGNAL_AVG;
if (!local->ops->get_rssi ||
drv_get_rssi(local, sdata, &sta->sta, &sinfo->signal))
sinfo->signal = (s8)sta->last_signal;
sinfo->signal_avg = (s8) -ewma_read(&sta->avg_signal);
}
sta_set_rate_info_tx(sta, &sta->last_tx_rate, &sinfo->txrate);
sta_set_rate_info_rx(sta, &sinfo->rxrate);
if (ieee80211_vif_is_mesh(&sdata->vif)) {
#ifdef CONFIG_MAC80211_MESH
sinfo->filled |= STATION_INFO_LLID |
STATION_INFO_PLID |
STATION_INFO_PLINK_STATE;
sinfo->llid = le16_to_cpu(sta->llid);
sinfo->plid = le16_to_cpu(sta->plid);
sinfo->plink_state = sta->plink_state;
if (test_sta_flag(sta, WLAN_STA_TOFFSET_KNOWN)) {
sinfo->filled |= STATION_INFO_T_OFFSET;
sinfo->t_offset = sta->t_offset;
}
#endif
}
sinfo->bss_param.flags = 0;
if (sdata->vif.bss_conf.use_cts_prot)
sinfo->bss_param.flags |= BSS_PARAM_FLAGS_CTS_PROT;
if (sdata->vif.bss_conf.use_short_preamble)
sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_PREAMBLE;
if (sdata->vif.bss_conf.use_short_slot)
sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_SLOT_TIME;
sinfo->bss_param.dtim_period = sdata->local->hw.conf.ps_dtim_period;
sinfo->bss_param.beacon_interval = sdata->vif.bss_conf.beacon_int;
sinfo->sta_flags.set = 0;
sinfo->sta_flags.mask = BIT(NL80211_STA_FLAG_AUTHORIZED) |
BIT(NL80211_STA_FLAG_SHORT_PREAMBLE) |
BIT(NL80211_STA_FLAG_WME) |
BIT(NL80211_STA_FLAG_MFP) |
BIT(NL80211_STA_FLAG_AUTHENTICATED) |
BIT(NL80211_STA_FLAG_TDLS_PEER);
if (test_sta_flag(sta, WLAN_STA_AUTHORIZED))
sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHORIZED);
if (test_sta_flag(sta, WLAN_STA_SHORT_PREAMBLE))
sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_SHORT_PREAMBLE);
if (test_sta_flag(sta, WLAN_STA_WME))
sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_WME);
if (test_sta_flag(sta, WLAN_STA_MFP))
sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_MFP);
if (test_sta_flag(sta, WLAN_STA_AUTH))
sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHENTICATED);
if (test_sta_flag(sta, WLAN_STA_TDLS_PEER))
sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_TDLS_PEER);
}
static const char ieee80211_gstrings_sta_stats[][ETH_GSTRING_LEN] = {
"rx_packets", "rx_bytes", "wep_weak_iv_count",
"rx_duplicates", "rx_fragments", "rx_dropped",
"tx_packets", "tx_bytes", "tx_fragments",
"tx_filtered", "tx_retry_failed", "tx_retries",
"beacon_loss", "sta_state", "txrate", "rxrate", "signal",
"channel", "noise", "ch_time", "ch_time_busy",
"ch_time_ext_busy", "ch_time_rx", "ch_time_tx"
};
#define STA_STATS_LEN ARRAY_SIZE(ieee80211_gstrings_sta_stats)
static int ieee80211_get_et_sset_count(struct wiphy *wiphy,
struct net_device *dev,
int sset)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
int rv = 0;
if (sset == ETH_SS_STATS)
rv += STA_STATS_LEN;
rv += drv_get_et_sset_count(sdata, sset);
if (rv == 0)
return -EOPNOTSUPP;
return rv;
}
static void ieee80211_get_et_stats(struct wiphy *wiphy,
struct net_device *dev,
struct ethtool_stats *stats,
u64 *data)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
struct ieee80211_chanctx_conf *chanctx_conf;
struct ieee80211_channel *channel;
struct sta_info *sta;
struct ieee80211_local *local = sdata->local;
struct station_info sinfo;
struct survey_info survey;
int i, q;
#define STA_STATS_SURVEY_LEN 7
memset(data, 0, sizeof(u64) * STA_STATS_LEN);
#define ADD_STA_STATS(sta) \
do { \
data[i++] += sta->rx_packets; \
data[i++] += sta->rx_bytes; \
data[i++] += sta->wep_weak_iv_count; \
data[i++] += sta->num_duplicates; \
data[i++] += sta->rx_fragments; \
data[i++] += sta->rx_dropped; \
\
data[i++] += sta->tx_packets; \
data[i++] += sta->tx_bytes; \
data[i++] += sta->tx_fragments; \
data[i++] += sta->tx_filtered_count; \
data[i++] += sta->tx_retry_failed; \
data[i++] += sta->tx_retry_count; \
data[i++] += sta->beacon_loss_count; \
} while (0)
/* For Managed stations, find the single station based on BSSID
* and use that. For interface types, iterate through all available
* stations and add stats for any station that is assigned to this
* network device.
*/
mutex_lock(&local->sta_mtx);
if (sdata->vif.type == NL80211_IFTYPE_STATION) {
sta = sta_info_get_bss(sdata, sdata->u.mgd.bssid);
if (!(sta && !WARN_ON(sta->sdata->dev != dev)))
goto do_survey;
i = 0;
ADD_STA_STATS(sta);
data[i++] = sta->sta_state;
sinfo.filled = 0;
sta_set_sinfo(sta, &sinfo);
if (sinfo.filled & STATION_INFO_TX_BITRATE)
data[i] = 100000 *
cfg80211_calculate_bitrate(&sinfo.txrate);
i++;
if (sinfo.filled & STATION_INFO_RX_BITRATE)
data[i] = 100000 *
cfg80211_calculate_bitrate(&sinfo.rxrate);
i++;
if (sinfo.filled & STATION_INFO_SIGNAL_AVG)
data[i] = (u8)sinfo.signal_avg;
i++;
} else {
list_for_each_entry(sta, &local->sta_list, list) {
/* Make sure this station belongs to the proper dev */
if (sta->sdata->dev != dev)
continue;
i = 0;
ADD_STA_STATS(sta);
}
}
do_survey:
i = STA_STATS_LEN - STA_STATS_SURVEY_LEN;
/* Get survey stats for current channel */
survey.filled = 0;
rcu_read_lock();
chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf);
if (chanctx_conf)
channel = chanctx_conf->def.chan;
else
channel = NULL;
rcu_read_unlock();
if (channel) {
q = 0;
do {
survey.filled = 0;
if (drv_get_survey(local, q, &survey) != 0) {
survey.filled = 0;
break;
}
q++;
} while (channel != survey.channel);
}
if (survey.filled)
data[i++] = survey.channel->center_freq;
else
data[i++] = 0;
if (survey.filled & SURVEY_INFO_NOISE_DBM)
data[i++] = (u8)survey.noise;
else
data[i++] = -1LL;
if (survey.filled & SURVEY_INFO_CHANNEL_TIME)
data[i++] = survey.channel_time;
else
data[i++] = -1LL;
if (survey.filled & SURVEY_INFO_CHANNEL_TIME_BUSY)
data[i++] = survey.channel_time_busy;
else
data[i++] = -1LL;
if (survey.filled & SURVEY_INFO_CHANNEL_TIME_EXT_BUSY)
data[i++] = survey.channel_time_ext_busy;
else
data[i++] = -1LL;
if (survey.filled & SURVEY_INFO_CHANNEL_TIME_RX)
data[i++] = survey.channel_time_rx;
else
data[i++] = -1LL;
if (survey.filled & SURVEY_INFO_CHANNEL_TIME_TX)
data[i++] = survey.channel_time_tx;
else
data[i++] = -1LL;
mutex_unlock(&local->sta_mtx);
if (WARN_ON(i != STA_STATS_LEN))
return;
drv_get_et_stats(sdata, stats, &(data[STA_STATS_LEN]));
}
static void ieee80211_get_et_strings(struct wiphy *wiphy,
struct net_device *dev,
u32 sset, u8 *data)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
int sz_sta_stats = 0;
if (sset == ETH_SS_STATS) {
sz_sta_stats = sizeof(ieee80211_gstrings_sta_stats);
memcpy(data, *ieee80211_gstrings_sta_stats, sz_sta_stats);
}
drv_get_et_strings(sdata, sset, &(data[sz_sta_stats]));
}
static int ieee80211_dump_station(struct wiphy *wiphy, struct net_device *dev,
int idx, u8 *mac, struct station_info *sinfo)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
struct ieee80211_local *local = sdata->local;
struct sta_info *sta;
int ret = -ENOENT;
mutex_lock(&local->sta_mtx);
sta = sta_info_get_by_idx(sdata, idx);
if (sta) {
ret = 0;
memcpy(mac, sta->sta.addr, ETH_ALEN);
sta_set_sinfo(sta, sinfo);
}
mutex_unlock(&local->sta_mtx);
return ret;
}
static int ieee80211_dump_survey(struct wiphy *wiphy, struct net_device *dev,
int idx, struct survey_info *survey)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
return drv_get_survey(local, idx, survey);
}
static int ieee80211_get_station(struct wiphy *wiphy, struct net_device *dev,
u8 *mac, struct station_info *sinfo)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
struct ieee80211_local *local = sdata->local;
struct sta_info *sta;
int ret = -ENOENT;
mutex_lock(&local->sta_mtx);
sta = sta_info_get_bss(sdata, mac);
if (sta) {
ret = 0;
sta_set_sinfo(sta, sinfo);
}
mutex_unlock(&local->sta_mtx);
return ret;
}
static int ieee80211_set_monitor_channel(struct wiphy *wiphy,
struct cfg80211_chan_def *chandef)
{
struct ieee80211_local *local = wiphy_priv(wiphy);
struct ieee80211_sub_if_data *sdata;
int ret = 0;
if (cfg80211_chandef_identical(&local->monitor_chandef, chandef))
return 0;
mutex_lock(&local->iflist_mtx);
if (local->use_chanctx) {
sdata = rcu_dereference_protected(
local->monitor_sdata,
lockdep_is_held(&local->iflist_mtx));
if (sdata) {
ieee80211_vif_release_channel(sdata);
ret = ieee80211_vif_use_channel(sdata, chandef,
IEEE80211_CHANCTX_EXCLUSIVE);
}
} else if (local->open_count == local->monitors) {
local->_oper_channel = chandef->chan;
local->_oper_channel_type = cfg80211_get_chandef_type(chandef);
ieee80211_hw_config(local, 0);
}
if (ret == 0)
local->monitor_chandef = *chandef;
mutex_unlock(&local->iflist_mtx);
return ret;
}
static int ieee80211_set_probe_resp(struct ieee80211_sub_if_data *sdata,
const u8 *resp, size_t resp_len)
{
struct probe_resp *new, *old;
if (!resp || !resp_len)
return 1;
old = rtnl_dereference(sdata->u.ap.probe_resp);
new = kzalloc(sizeof(struct probe_resp) + resp_len, GFP_KERNEL);
if (!new)
return -ENOMEM;
new->len = resp_len;
memcpy(new->data, resp, resp_len);
rcu_assign_pointer(sdata->u.ap.probe_resp, new);
if (old)
kfree_rcu(old, rcu_head);
return 0;
}
static int ieee80211_assign_beacon(struct ieee80211_sub_if_data *sdata,
struct cfg80211_beacon_data *params)
{
struct beacon_data *new, *old;
int new_head_len, new_tail_len;
int size, err;
u32 changed = BSS_CHANGED_BEACON;
old = rtnl_dereference(sdata->u.ap.beacon);
/* Need to have a beacon head if we don't have one yet */
if (!params->head && !old)
return -EINVAL;
/* new or old head? */
if (params->head)
new_head_len = params->head_len;
else
new_head_len = old->head_len;
/* new or old tail? */
if (params->tail || !old)
/* params->tail_len will be zero for !params->tail */
new_tail_len = params->tail_len;
else
new_tail_len = old->tail_len;
size = sizeof(*new) + new_head_len + new_tail_len;
new = kzalloc(size, GFP_KERNEL);
if (!new)
return -ENOMEM;
/* start filling the new info now */
/*
* pointers go into the block we allocated,
* memory is | beacon_data | head | tail |
*/
new->head = ((u8 *) new) + sizeof(*new);
new->tail = new->head + new_head_len;
new->head_len = new_head_len;
new->tail_len = new_tail_len;
/* copy in head */
if (params->head)
memcpy(new->head, params->head, new_head_len);
else
memcpy(new->head, old->head, new_head_len);
/* copy in optional tail */
if (params->tail)
memcpy(new->tail, params->tail, new_tail_len);
else
if (old)
memcpy(new->tail, old->tail, new_tail_len);
err = ieee80211_set_probe_resp(sdata, params->probe_resp,
params->probe_resp_len);
if (err < 0)
return err;
if (err == 0)
changed |= BSS_CHANGED_AP_PROBE_RESP;
rcu_assign_pointer(sdata->u.ap.beacon, new);
if (old)
kfree_rcu(old, rcu_head);
return changed;
}
static int ieee80211_start_ap(struct wiphy *wiphy, struct net_device *dev,
struct cfg80211_ap_settings *params)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
struct beacon_data *old;
struct ieee80211_sub_if_data *vlan;
u32 changed = BSS_CHANGED_BEACON_INT |
BSS_CHANGED_BEACON_ENABLED |
BSS_CHANGED_BEACON |
BSS_CHANGED_SSID |
BSS_CHANGED_P2P_PS;
int err;
old = rtnl_dereference(sdata->u.ap.beacon);
if (old)
return -EALREADY;
/* TODO: make hostapd tell us what it wants */
sdata->smps_mode = IEEE80211_SMPS_OFF;
sdata->needed_rx_chains = sdata->local->rx_chains;
err = ieee80211_vif_use_channel(sdata, &params->chandef,
IEEE80211_CHANCTX_SHARED);
if (err)
return err;
/*
* Apply control port protocol, this allows us to
* not encrypt dynamic WEP control frames.
*/
sdata->control_port_protocol = params->crypto.control_port_ethertype;
sdata->control_port_no_encrypt = params->crypto.control_port_no_encrypt;
list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list) {
vlan->control_port_protocol =
params->crypto.control_port_ethertype;
vlan->control_port_no_encrypt =
params->crypto.control_port_no_encrypt;
}
sdata->vif.bss_conf.beacon_int = params->beacon_interval;
sdata->vif.bss_conf.dtim_period = params->dtim_period;
sdata->vif.bss_conf.ssid_len = params->ssid_len;
if (params->ssid_len)
memcpy(sdata->vif.bss_conf.ssid, params->ssid,
params->ssid_len);
sdata->vif.bss_conf.hidden_ssid =
(params->hidden_ssid != NL80211_HIDDEN_SSID_NOT_IN_USE);
sdata->vif.bss_conf.p2p_ctwindow = params->p2p_ctwindow;
sdata->vif.bss_conf.p2p_oppps = params->p2p_opp_ps;
err = ieee80211_assign_beacon(sdata, &params->beacon);
if (err < 0)
return err;
changed |= err;
err = drv_start_ap(sdata->local, sdata);
if (err) {
old = rtnl_dereference(sdata->u.ap.beacon);
if (old)
kfree_rcu(old, rcu_head);
RCU_INIT_POINTER(sdata->u.ap.beacon, NULL);
return err;
}
ieee80211_bss_info_change_notify(sdata, changed);
netif_carrier_on(dev);
list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list)
netif_carrier_on(vlan->dev);
return 0;
}
static int ieee80211_change_beacon(struct wiphy *wiphy, struct net_device *dev,
struct cfg80211_beacon_data *params)
{
struct ieee80211_sub_if_data *sdata;
struct beacon_data *old;
int err;
sdata = IEEE80211_DEV_TO_SUB_IF(dev);
old = rtnl_dereference(sdata->u.ap.beacon);
if (!old)
return -ENOENT;
err = ieee80211_assign_beacon(sdata, params);
if (err < 0)
return err;
ieee80211_bss_info_change_notify(sdata, err);
return 0;
}
static int ieee80211_stop_ap(struct wiphy *wiphy, struct net_device *dev)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
struct ieee80211_sub_if_data *vlan;
struct ieee80211_local *local = sdata->local;
struct beacon_data *old_beacon;
struct probe_resp *old_probe_resp;
old_beacon = rtnl_dereference(sdata->u.ap.beacon);
if (!old_beacon)
return -ENOENT;
old_probe_resp = rtnl_dereference(sdata->u.ap.probe_resp);
/* turn off carrier for this interface and dependent VLANs */
list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list)
netif_carrier_off(vlan->dev);
netif_carrier_off(dev);
/* remove beacon and probe response */
RCU_INIT_POINTER(sdata->u.ap.beacon, NULL);
RCU_INIT_POINTER(sdata->u.ap.probe_resp, NULL);
kfree_rcu(old_beacon, rcu_head);
if (old_probe_resp)
kfree_rcu(old_probe_resp, rcu_head);
list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list)
sta_info_flush(local, vlan);
sta_info_flush(local, sdata);
ieee80211_bss_info_change_notify(sdata, BSS_CHANGED_BEACON_ENABLED);
drv_stop_ap(sdata->local, sdata);
/* free all potentially still buffered bcast frames */
local->total_ps_buffered -= skb_queue_len(&sdata->u.ap.ps.bc_buf);
skb_queue_purge(&sdata->u.ap.ps.bc_buf);
ieee80211_vif_release_channel(sdata);
return 0;
}
/* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */
struct iapp_layer2_update {
u8 da[ETH_ALEN]; /* broadcast */
u8 sa[ETH_ALEN]; /* STA addr */
__be16 len; /* 6 */
u8 dsap; /* 0 */
u8 ssap; /* 0 */
u8 control;
u8 xid_info[3];
} __packed;
static void ieee80211_send_layer2_update(struct sta_info *sta)
{
struct iapp_layer2_update *msg;
struct sk_buff *skb;
/* Send Level 2 Update Frame to update forwarding tables in layer 2
* bridge devices */
skb = dev_alloc_skb(sizeof(*msg));
if (!skb)
return;
msg = (struct iapp_layer2_update *)skb_put(skb, sizeof(*msg));
/* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID)
* Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */
eth_broadcast_addr(msg->da);
memcpy(msg->sa, sta->sta.addr, ETH_ALEN);
msg->len = htons(6);
msg->dsap = 0;
msg->ssap = 0x01; /* NULL LSAP, CR Bit: Response */
msg->control = 0xaf; /* XID response lsb.1111F101.
* F=0 (no poll command; unsolicited frame) */
msg->xid_info[0] = 0x81; /* XID format identifier */
msg->xid_info[1] = 1; /* LLC types/classes: Type 1 LLC */
msg->xid_info[2] = 0; /* XID sender's receive window size (RW) */
skb->dev = sta->sdata->dev;
skb->protocol = eth_type_trans(skb, sta->sdata->dev);
memset(skb->cb, 0, sizeof(skb->cb));
netif_rx_ni(skb);
}
static int sta_apply_parameters(struct ieee80211_local *local,
struct sta_info *sta,
struct station_parameters *params)
{
int ret = 0;
u32 rates;
int i, j;
struct ieee80211_supported_band *sband;
struct ieee80211_sub_if_data *sdata = sta->sdata;
enum ieee80211_band band = ieee80211_get_sdata_band(sdata);
u32 mask, set;
sband = local->hw.wiphy->bands[band];
mask = params->sta_flags_mask;
set = params->sta_flags_set;
/*
* In mesh mode, we can clear AUTHENTICATED flag but must
* also make ASSOCIATED follow appropriately for the driver
* API. See also below, after AUTHORIZED changes.
*/
if (mask & BIT(NL80211_STA_FLAG_AUTHENTICATED)) {
/* cfg80211 should not allow this in non-mesh modes */
if (WARN_ON(!ieee80211_vif_is_mesh(&sdata->vif)))
return -EINVAL;
if (set & BIT(NL80211_STA_FLAG_AUTHENTICATED) &&
!test_sta_flag(sta, WLAN_STA_AUTH)) {
ret = sta_info_move_state(sta, IEEE80211_STA_AUTH);
if (ret)
return ret;
ret = sta_info_move_state(sta, IEEE80211_STA_ASSOC);
if (ret)
return ret;
}
}
if (mask & BIT(NL80211_STA_FLAG_AUTHORIZED)) {
if (set & BIT(NL80211_STA_FLAG_AUTHORIZED))
ret = sta_info_move_state(sta, IEEE80211_STA_AUTHORIZED);
else if (test_sta_flag(sta, WLAN_STA_AUTHORIZED))
ret = sta_info_move_state(sta, IEEE80211_STA_ASSOC);
if (ret)
return ret;
}
if (mask & BIT(NL80211_STA_FLAG_AUTHENTICATED)) {
/* cfg80211 should not allow this in non-mesh modes */
if (WARN_ON(!ieee80211_vif_is_mesh(&sdata->vif)))
return -EINVAL;
if (!(set & BIT(NL80211_STA_FLAG_AUTHENTICATED)) &&
test_sta_flag(sta, WLAN_STA_AUTH)) {
ret = sta_info_move_state(sta, IEEE80211_STA_AUTH);
if (ret)
return ret;
ret = sta_info_move_state(sta, IEEE80211_STA_NONE);
if (ret)
return ret;
}
}
if (mask & BIT(NL80211_STA_FLAG_SHORT_PREAMBLE)) {
if (set & BIT(NL80211_STA_FLAG_SHORT_PREAMBLE))
set_sta_flag(sta, WLAN_STA_SHORT_PREAMBLE);
else
clear_sta_flag(sta, WLAN_STA_SHORT_PREAMBLE);
}
if (mask & BIT(NL80211_STA_FLAG_WME)) {
if (set & BIT(NL80211_STA_FLAG_WME)) {
set_sta_flag(sta, WLAN_STA_WME);
sta->sta.wme = true;
} else {
clear_sta_flag(sta, WLAN_STA_WME);
sta->sta.wme = false;
}
}
if (mask & BIT(NL80211_STA_FLAG_MFP)) {
if (set & BIT(NL80211_STA_FLAG_MFP))
set_sta_flag(sta, WLAN_STA_MFP);
else
clear_sta_flag(sta, WLAN_STA_MFP);
}
if (mask & BIT(NL80211_STA_FLAG_TDLS_PEER)) {
if (set & BIT(NL80211_STA_FLAG_TDLS_PEER))
set_sta_flag(sta, WLAN_STA_TDLS_PEER);
else
clear_sta_flag(sta, WLAN_STA_TDLS_PEER);
}
if (params->sta_modify_mask & STATION_PARAM_APPLY_UAPSD) {
sta->sta.uapsd_queues = params->uapsd_queues;
sta->sta.max_sp = params->max_sp;
}
/*
* cfg80211 validates this (1-2007) and allows setting the AID
* only when creating a new station entry
*/
if (params->aid)
sta->sta.aid = params->aid;
/*
* FIXME: updating the following information is racy when this
* function is called from ieee80211_change_station().
* However, all this information should be static so
* maybe we should just reject attemps to change it.
*/
if (params->listen_interval >= 0)
sta->listen_interval = params->listen_interval;
if (params->supported_rates) {
rates = 0;
for (i = 0; i < params->supported_rates_len; i++) {
int rate = (params->supported_rates[i] & 0x7f) * 5;
for (j = 0; j < sband->n_bitrates; j++) {
if (sband->bitrates[j].bitrate == rate)
rates |= BIT(j);
}
}
sta->sta.supp_rates[band] = rates;
}
if (params->ht_capa)
ieee80211_ht_cap_ie_to_sta_ht_cap(sdata, sband,
params->ht_capa,
&sta->sta.ht_cap);
if (params->vht_capa)
ieee80211_vht_cap_ie_to_sta_vht_cap(sdata, sband,
params->vht_capa,
&sta->sta.vht_cap);
if (ieee80211_vif_is_mesh(&sdata->vif)) {
#ifdef CONFIG_MAC80211_MESH
if (sdata->u.mesh.security & IEEE80211_MESH_SEC_SECURED)
switch (params->plink_state) {
case NL80211_PLINK_LISTEN:
case NL80211_PLINK_ESTAB:
case NL80211_PLINK_BLOCKED:
sta->plink_state = params->plink_state;
break;
default:
/* nothing */
break;
}
else
switch (params->plink_action) {
case PLINK_ACTION_OPEN:
mesh_plink_open(sta);
break;
case PLINK_ACTION_BLOCK:
mesh_plink_block(sta);
break;
}
#endif
}
return 0;
}
static int ieee80211_add_station(struct wiphy *wiphy, struct net_device *dev,
u8 *mac, struct station_parameters *params)
{
struct ieee80211_local *local = wiphy_priv(wiphy);
struct sta_info *sta;
struct ieee80211_sub_if_data *sdata;
int err;
int layer2_update;
if (params->vlan) {
sdata = IEEE80211_DEV_TO_SUB_IF(params->vlan);
if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
sdata->vif.type != NL80211_IFTYPE_AP)
return -EINVAL;
} else
sdata = IEEE80211_DEV_TO_SUB_IF(dev);
if (ether_addr_equal(mac, sdata->vif.addr))
return -EINVAL;
if (is_multicast_ether_addr(mac))
return -EINVAL;
sta = sta_info_alloc(sdata, mac, GFP_KERNEL);
if (!sta)
return -ENOMEM;
sta_info_pre_move_state(sta, IEEE80211_STA_AUTH);
sta_info_pre_move_state(sta, IEEE80211_STA_ASSOC);
err = sta_apply_parameters(local, sta, params);
if (err) {
sta_info_free(local, sta);
return err;
}
/*
* for TDLS, rate control should be initialized only when supported
* rates are known.
*/
if (!test_sta_flag(sta, WLAN_STA_TDLS_PEER))
rate_control_rate_init(sta);
layer2_update = sdata->vif.type == NL80211_IFTYPE_AP_VLAN ||
sdata->vif.type == NL80211_IFTYPE_AP;
err = sta_info_insert_rcu(sta);
if (err) {
rcu_read_unlock();
return err;
}
if (layer2_update)
ieee80211_send_layer2_update(sta);
rcu_read_unlock();
return 0;
}
static int ieee80211_del_station(struct wiphy *wiphy, struct net_device *dev,
u8 *mac)
{
struct ieee80211_local *local = wiphy_priv(wiphy);
struct ieee80211_sub_if_data *sdata;
sdata = IEEE80211_DEV_TO_SUB_IF(dev);
if (mac)
return sta_info_destroy_addr_bss(sdata, mac);
sta_info_flush(local, sdata);
return 0;
}
static int ieee80211_change_station(struct wiphy *wiphy,
struct net_device *dev,
u8 *mac,
struct station_parameters *params)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
struct ieee80211_local *local = wiphy_priv(wiphy);
struct sta_info *sta;
struct ieee80211_sub_if_data *vlansdata;
int err;
mutex_lock(&local->sta_mtx);
sta = sta_info_get_bss(sdata, mac);
if (!sta) {
mutex_unlock(&local->sta_mtx);
return -ENOENT;
}
/* in station mode, supported rates are only valid with TDLS */
if (sdata->vif.type == NL80211_IFTYPE_STATION &&
params->supported_rates &&
!test_sta_flag(sta, WLAN_STA_TDLS_PEER)) {
mutex_unlock(&local->sta_mtx);
return -EINVAL;
}
if (params->vlan && params->vlan != sta->sdata->dev) {
bool prev_4addr = false;
bool new_4addr = false;
vlansdata = IEEE80211_DEV_TO_SUB_IF(params->vlan);
if (vlansdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
vlansdata->vif.type != NL80211_IFTYPE_AP) {
mutex_unlock(&local->sta_mtx);
return -EINVAL;
}
if (params->vlan->ieee80211_ptr->use_4addr) {
if (vlansdata->u.vlan.sta) {
mutex_unlock(&local->sta_mtx);
return -EBUSY;
}
rcu_assign_pointer(vlansdata->u.vlan.sta, sta);
new_4addr = true;
}
if (sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
sta->sdata->u.vlan.sta) {
rcu_assign_pointer(sta->sdata->u.vlan.sta, NULL);
prev_4addr = true;
}
sta->sdata = vlansdata;
if (sta->sta_state == IEEE80211_STA_AUTHORIZED &&
prev_4addr != new_4addr) {
if (new_4addr)
atomic_dec(&sta->sdata->bss->num_mcast_sta);
else
atomic_inc(&sta->sdata->bss->num_mcast_sta);
}
ieee80211_send_layer2_update(sta);
}
err = sta_apply_parameters(local, sta, params);
if (err) {
mutex_unlock(&local->sta_mtx);
return err;
}
if (test_sta_flag(sta, WLAN_STA_TDLS_PEER) && params->supported_rates)
rate_control_rate_init(sta);
mutex_unlock(&local->sta_mtx);
if (sdata->vif.type == NL80211_IFTYPE_STATION &&
params->sta_flags_mask & BIT(NL80211_STA_FLAG_AUTHORIZED)) {
ieee80211_recalc_ps(local, -1);
ieee80211_recalc_ps_vif(sdata);
}
return 0;
}
#ifdef CONFIG_MAC80211_MESH
static int ieee80211_add_mpath(struct wiphy *wiphy, struct net_device *dev,
u8 *dst, u8 *next_hop)
{
struct ieee80211_sub_if_data *sdata;
struct mesh_path *mpath;
struct sta_info *sta;
int err;
sdata = IEEE80211_DEV_TO_SUB_IF(dev);
rcu_read_lock();
sta = sta_info_get(sdata, next_hop);
if (!sta) {
rcu_read_unlock();
return -ENOENT;
}
err = mesh_path_add(dst, sdata);
if (err) {
rcu_read_unlock();
return err;
}
mpath = mesh_path_lookup(dst, sdata);
if (!mpath) {
rcu_read_unlock();
return -ENXIO;
}
mesh_path_fix_nexthop(mpath, sta);
rcu_read_unlock();
return 0;
}
static int ieee80211_del_mpath(struct wiphy *wiphy, struct net_device *dev,
u8 *dst)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
if (dst)
return mesh_path_del(dst, sdata);
mesh_path_flush_by_iface(sdata);
return 0;
}
static int ieee80211_change_mpath(struct wiphy *wiphy,
struct net_device *dev,
u8 *dst, u8 *next_hop)
{
struct ieee80211_sub_if_data *sdata;
struct mesh_path *mpath;
struct sta_info *sta;
sdata = IEEE80211_DEV_TO_SUB_IF(dev);
rcu_read_lock();
sta = sta_info_get(sdata, next_hop);
if (!sta) {
rcu_read_unlock();
return -ENOENT;
}
mpath = mesh_path_lookup(dst, sdata);
if (!mpath) {
rcu_read_unlock();
return -ENOENT;
}
mesh_path_fix_nexthop(mpath, sta);
rcu_read_unlock();
return 0;
}
static void mpath_set_pinfo(struct mesh_path *mpath, u8 *next_hop,
struct mpath_info *pinfo)
{
struct sta_info *next_hop_sta = rcu_dereference(mpath->next_hop);
if (next_hop_sta)
memcpy(next_hop, next_hop_sta->sta.addr, ETH_ALEN);
else
memset(next_hop, 0, ETH_ALEN);
memset(pinfo, 0, sizeof(*pinfo));
pinfo->generation = mesh_paths_generation;
pinfo->filled = MPATH_INFO_FRAME_QLEN |
MPATH_INFO_SN |
MPATH_INFO_METRIC |
MPATH_INFO_EXPTIME |
MPATH_INFO_DISCOVERY_TIMEOUT |
MPATH_INFO_DISCOVERY_RETRIES |
MPATH_INFO_FLAGS;
pinfo->frame_qlen = mpath->frame_queue.qlen;
pinfo->sn = mpath->sn;
pinfo->metric = mpath->metric;
if (time_before(jiffies, mpath->exp_time))
pinfo->exptime = jiffies_to_msecs(mpath->exp_time - jiffies);
pinfo->discovery_timeout =
jiffies_to_msecs(mpath->discovery_timeout);
pinfo->discovery_retries = mpath->discovery_retries;
if (mpath->flags & MESH_PATH_ACTIVE)
pinfo->flags |= NL80211_MPATH_FLAG_ACTIVE;
if (mpath->flags & MESH_PATH_RESOLVING)
pinfo->flags |= NL80211_MPATH_FLAG_RESOLVING;
if (mpath->flags & MESH_PATH_SN_VALID)
pinfo->flags |= NL80211_MPATH_FLAG_SN_VALID;
if (mpath->flags & MESH_PATH_FIXED)
pinfo->flags |= NL80211_MPATH_FLAG_FIXED;
if (mpath->flags & MESH_PATH_RESOLVED)
pinfo->flags |= NL80211_MPATH_FLAG_RESOLVED;
}
static int ieee80211_get_mpath(struct wiphy *wiphy, struct net_device *dev,
u8 *dst, u8 *next_hop, struct mpath_info *pinfo)
{
struct ieee80211_sub_if_data *sdata;
struct mesh_path *mpath;
sdata = IEEE80211_DEV_TO_SUB_IF(dev);
rcu_read_lock();
mpath = mesh_path_lookup(dst, sdata);
if (!mpath) {
rcu_read_unlock();
return -ENOENT;
}
memcpy(dst, mpath->dst, ETH_ALEN);
mpath_set_pinfo(mpath, next_hop, pinfo);
rcu_read_unlock();
return 0;
}
static int ieee80211_dump_mpath(struct wiphy *wiphy, struct net_device *dev,
int idx, u8 *dst, u8 *next_hop,
struct mpath_info *pinfo)
{
struct ieee80211_sub_if_data *sdata;
struct mesh_path *mpath;
sdata = IEEE80211_DEV_TO_SUB_IF(dev);
rcu_read_lock();
mpath = mesh_path_lookup_by_idx(idx, sdata);
if (!mpath) {
rcu_read_unlock();
return -ENOENT;
}
memcpy(dst, mpath->dst, ETH_ALEN);
mpath_set_pinfo(mpath, next_hop, pinfo);
rcu_read_unlock();
return 0;
}
static int ieee80211_get_mesh_config(struct wiphy *wiphy,
struct net_device *dev,
struct mesh_config *conf)
{
struct ieee80211_sub_if_data *sdata;
sdata = IEEE80211_DEV_TO_SUB_IF(dev);
memcpy(conf, &(sdata->u.mesh.mshcfg), sizeof(struct mesh_config));
return 0;
}
static inline bool _chg_mesh_attr(enum nl80211_meshconf_params parm, u32 mask)
{
return (mask >> (parm-1)) & 0x1;
}
static int copy_mesh_setup(struct ieee80211_if_mesh *ifmsh,
const struct mesh_setup *setup)
{
u8 *new_ie;
const u8 *old_ie;
struct ieee80211_sub_if_data *sdata = container_of(ifmsh,
struct ieee80211_sub_if_data, u.mesh);
/* allocate information elements */
new_ie = NULL;
old_ie = ifmsh->ie;
if (setup->ie_len) {
new_ie = kmemdup(setup->ie, setup->ie_len,
GFP_KERNEL);
if (!new_ie)
return -ENOMEM;
}
ifmsh->ie_len = setup->ie_len;
ifmsh->ie = new_ie;
kfree(old_ie);
/* now copy the rest of the setup parameters */
ifmsh->mesh_id_len = setup->mesh_id_len;
memcpy(ifmsh->mesh_id, setup->mesh_id, ifmsh->mesh_id_len);
ifmsh->mesh_sp_id = setup->sync_method;
ifmsh->mesh_pp_id = setup->path_sel_proto;
ifmsh->mesh_pm_id = setup->path_metric;
ifmsh->security = IEEE80211_MESH_SEC_NONE;
if (setup->is_authenticated)
ifmsh->security |= IEEE80211_MESH_SEC_AUTHED;
if (setup->is_secure)
ifmsh->security |= IEEE80211_MESH_SEC_SECURED;
/* mcast rate setting in Mesh Node */
memcpy(sdata->vif.bss_conf.mcast_rate, setup->mcast_rate,
sizeof(setup->mcast_rate));
return 0;
}
static int ieee80211_update_mesh_config(struct wiphy *wiphy,
struct net_device *dev, u32 mask,
const struct mesh_config *nconf)
{
struct mesh_config *conf;
struct ieee80211_sub_if_data *sdata;
struct ieee80211_if_mesh *ifmsh;
sdata = IEEE80211_DEV_TO_SUB_IF(dev);
ifmsh = &sdata->u.mesh;
/* Set the config options which we are interested in setting */
conf = &(sdata->u.mesh.mshcfg);
if (_chg_mesh_attr(NL80211_MESHCONF_RETRY_TIMEOUT, mask))
conf->dot11MeshRetryTimeout = nconf->dot11MeshRetryTimeout;
if (_chg_mesh_attr(NL80211_MESHCONF_CONFIRM_TIMEOUT, mask))
conf->dot11MeshConfirmTimeout = nconf->dot11MeshConfirmTimeout;
if (_chg_mesh_attr(NL80211_MESHCONF_HOLDING_TIMEOUT, mask))
conf->dot11MeshHoldingTimeout = nconf->dot11MeshHoldingTimeout;
if (_chg_mesh_attr(NL80211_MESHCONF_MAX_PEER_LINKS, mask))
conf->dot11MeshMaxPeerLinks = nconf->dot11MeshMaxPeerLinks;
if (_chg_mesh_attr(NL80211_MESHCONF_MAX_RETRIES, mask))
conf->dot11MeshMaxRetries = nconf->dot11MeshMaxRetries;
if (_chg_mesh_attr(NL80211_MESHCONF_TTL, mask))
conf->dot11MeshTTL = nconf->dot11MeshTTL;
if (_chg_mesh_attr(NL80211_MESHCONF_ELEMENT_TTL, mask))
conf->element_ttl = nconf->element_ttl;
if (_chg_mesh_attr(NL80211_MESHCONF_AUTO_OPEN_PLINKS, mask))
conf->auto_open_plinks = nconf->auto_open_plinks;
if (_chg_mesh_attr(NL80211_MESHCONF_SYNC_OFFSET_MAX_NEIGHBOR, mask))
conf->dot11MeshNbrOffsetMaxNeighbor =
nconf->dot11MeshNbrOffsetMaxNeighbor;
if (_chg_mesh_attr(NL80211_MESHCONF_HWMP_MAX_PREQ_RETRIES, mask))
conf->dot11MeshHWMPmaxPREQretries =
nconf->dot11MeshHWMPmaxPREQretries;
if (_chg_mesh_attr(NL80211_MESHCONF_PATH_REFRESH_TIME, mask))
conf->path_refresh_time = nconf->path_refresh_time;
if (_chg_mesh_attr(NL80211_MESHCONF_MIN_DISCOVERY_TIMEOUT, mask))
conf->min_discovery_timeout = nconf->min_discovery_timeout;
if (_chg_mesh_attr(NL80211_MESHCONF_HWMP_ACTIVE_PATH_TIMEOUT, mask))
conf->dot11MeshHWMPactivePathTimeout =
nconf->dot11MeshHWMPactivePathTimeout;
if (_chg_mesh_attr(NL80211_MESHCONF_HWMP_PREQ_MIN_INTERVAL, mask))
conf->dot11MeshHWMPpreqMinInterval =
nconf->dot11MeshHWMPpreqMinInterval;
if (_chg_mesh_attr(NL80211_MESHCONF_HWMP_PERR_MIN_INTERVAL, mask))
conf->dot11MeshHWMPperrMinInterval =
nconf->dot11MeshHWMPperrMinInterval;
if (_chg_mesh_attr(NL80211_MESHCONF_HWMP_NET_DIAM_TRVS_TIME,
mask))
conf->dot11MeshHWMPnetDiameterTraversalTime =
nconf->dot11MeshHWMPnetDiameterTraversalTime;
if (_chg_mesh_attr(NL80211_MESHCONF_HWMP_ROOTMODE, mask)) {
conf->dot11MeshHWMPRootMode = nconf->dot11MeshHWMPRootMode;
ieee80211_mesh_root_setup(ifmsh);
}
if (_chg_mesh_attr(NL80211_MESHCONF_GATE_ANNOUNCEMENTS, mask)) {
/* our current gate announcement implementation rides on root
* announcements, so require this ifmsh to also be a root node
* */
if (nconf->dot11MeshGateAnnouncementProtocol &&
!(conf->dot11MeshHWMPRootMode > IEEE80211_ROOTMODE_ROOT)) {
conf->dot11MeshHWMPRootMode = IEEE80211_PROACTIVE_RANN;
ieee80211_mesh_root_setup(ifmsh);
}
conf->dot11MeshGateAnnouncementProtocol =
nconf->dot11MeshGateAnnouncementProtocol;
}
if (_chg_mesh_attr(NL80211_MESHCONF_HWMP_RANN_INTERVAL, mask))
conf->dot11MeshHWMPRannInterval =
nconf->dot11MeshHWMPRannInterval;
if (_chg_mesh_attr(NL80211_MESHCONF_FORWARDING, mask))
conf->dot11MeshForwarding = nconf->dot11MeshForwarding;
if (_chg_mesh_attr(NL80211_MESHCONF_RSSI_THRESHOLD, mask)) {
/* our RSSI threshold implementation is supported only for
* devices that report signal in dBm.
*/
if (!(sdata->local->hw.flags & IEEE80211_HW_SIGNAL_DBM))
return -ENOTSUPP;
conf->rssi_threshold = nconf->rssi_threshold;
}
if (_chg_mesh_attr(NL80211_MESHCONF_HT_OPMODE, mask)) {
conf->ht_opmode = nconf->ht_opmode;
sdata->vif.bss_conf.ht_operation_mode = nconf->ht_opmode;
ieee80211_bss_info_change_notify(sdata, BSS_CHANGED_HT);
}
if (_chg_mesh_attr(NL80211_MESHCONF_HWMP_PATH_TO_ROOT_TIMEOUT, mask))
conf->dot11MeshHWMPactivePathToRootTimeout =
nconf->dot11MeshHWMPactivePathToRootTimeout;
if (_chg_mesh_attr(NL80211_MESHCONF_HWMP_ROOT_INTERVAL, mask))
conf->dot11MeshHWMProotInterval =
nconf->dot11MeshHWMProotInterval;
if (_chg_mesh_attr(NL80211_MESHCONF_HWMP_CONFIRMATION_INTERVAL, mask))
conf->dot11MeshHWMPconfirmationInterval =
nconf->dot11MeshHWMPconfirmationInterval;
return 0;
}
static int ieee80211_join_mesh(struct wiphy *wiphy, struct net_device *dev,
const struct mesh_config *conf,
const struct mesh_setup *setup)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
int err;
memcpy(&ifmsh->mshcfg, conf, sizeof(struct mesh_config));
err = copy_mesh_setup(ifmsh, setup);
if (err)
return err;
/* can mesh use other SMPS modes? */
sdata->smps_mode = IEEE80211_SMPS_OFF;
sdata->needed_rx_chains = sdata->local->rx_chains;
err = ieee80211_vif_use_channel(sdata, &setup->chandef,
IEEE80211_CHANCTX_SHARED);
if (err)
return err;
ieee80211_start_mesh(sdata);
return 0;
}
static int ieee80211_leave_mesh(struct wiphy *wiphy, struct net_device *dev)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
ieee80211_stop_mesh(sdata);
ieee80211_vif_release_channel(sdata);
return 0;
}
#endif
static int ieee80211_change_bss(struct wiphy *wiphy,
struct net_device *dev,
struct bss_parameters *params)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
enum ieee80211_band band;
u32 changed = 0;
if (!rtnl_dereference(sdata->u.ap.beacon))
return -ENOENT;
band = ieee80211_get_sdata_band(sdata);
if (params->use_cts_prot >= 0) {
sdata->vif.bss_conf.use_cts_prot = params->use_cts_prot;
changed |= BSS_CHANGED_ERP_CTS_PROT;
}
if (params->use_short_preamble >= 0) {
sdata->vif.bss_conf.use_short_preamble =
params->use_short_preamble;
changed |= BSS_CHANGED_ERP_PREAMBLE;
}
if (!sdata->vif.bss_conf.use_short_slot &&
band == IEEE80211_BAND_5GHZ) {
sdata->vif.bss_conf.use_short_slot = true;
changed |= BSS_CHANGED_ERP_SLOT;
}
if (params->use_short_slot_time >= 0) {
sdata->vif.bss_conf.use_short_slot =
params->use_short_slot_time;
changed |= BSS_CHANGED_ERP_SLOT;
}
if (params->basic_rates) {
int i, j;
u32 rates = 0;
struct ieee80211_supported_band *sband = wiphy->bands[band];
for (i = 0; i < params->basic_rates_len; i++) {
int rate = (params->basic_rates[i] & 0x7f) * 5;
for (j = 0; j < sband->n_bitrates; j++) {
if (sband->bitrates[j].bitrate == rate)
rates |= BIT(j);
}
}
sdata->vif.bss_conf.basic_rates = rates;
changed |= BSS_CHANGED_BASIC_RATES;
}
if (params->ap_isolate >= 0) {
if (params->ap_isolate)
sdata->flags |= IEEE80211_SDATA_DONT_BRIDGE_PACKETS;
else
sdata->flags &= ~IEEE80211_SDATA_DONT_BRIDGE_PACKETS;
}
if (params->ht_opmode >= 0) {
sdata->vif.bss_conf.ht_operation_mode =
(u16) params->ht_opmode;
changed |= BSS_CHANGED_HT;
}
if (params->p2p_ctwindow >= 0) {
sdata->vif.bss_conf.p2p_ctwindow = params->p2p_ctwindow;
changed |= BSS_CHANGED_P2P_PS;
}
if (params->p2p_opp_ps >= 0) {
sdata->vif.bss_conf.p2p_oppps = params->p2p_opp_ps;
changed |= BSS_CHANGED_P2P_PS;
}
ieee80211_bss_info_change_notify(sdata, changed);
return 0;
}
static int ieee80211_set_txq_params(struct wiphy *wiphy,
struct net_device *dev,
struct ieee80211_txq_params *params)
{
struct ieee80211_local *local = wiphy_priv(wiphy);
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
struct ieee80211_tx_queue_params p;
if (!local->ops->conf_tx)
return -EOPNOTSUPP;
if (local->hw.queues < IEEE80211_NUM_ACS)
return -EOPNOTSUPP;
memset(&p, 0, sizeof(p));
p.aifs = params->aifs;
p.cw_max = params->cwmax;
p.cw_min = params->cwmin;
p.txop = params->txop;
/*
* Setting tx queue params disables u-apsd because it's only
* called in master mode.
*/
p.uapsd = false;
sdata->tx_conf[params->ac] = p;
if (drv_conf_tx(local, sdata, params->ac, &p)) {
wiphy_debug(local->hw.wiphy,
"failed to set TX queue parameters for AC %d\n",
params->ac);
return -EINVAL;
}
ieee80211_bss_info_change_notify(sdata, BSS_CHANGED_QOS);
return 0;
}
#ifdef CONFIG_PM
static int ieee80211_suspend(struct wiphy *wiphy,
struct cfg80211_wowlan *wowlan)
{
return __ieee80211_suspend(wiphy_priv(wiphy), wowlan);
}
static int ieee80211_resume(struct wiphy *wiphy)
{
return __ieee80211_resume(wiphy_priv(wiphy));
}
#else
#define ieee80211_suspend NULL
#define ieee80211_resume NULL
#endif
static int ieee80211_scan(struct wiphy *wiphy,
struct cfg80211_scan_request *req)
{
struct ieee80211_sub_if_data *sdata;
sdata = IEEE80211_WDEV_TO_SUB_IF(req->wdev);
switch (ieee80211_vif_type_p2p(&sdata->vif)) {
case NL80211_IFTYPE_STATION:
case NL80211_IFTYPE_ADHOC:
case NL80211_IFTYPE_MESH_POINT:
case NL80211_IFTYPE_P2P_CLIENT:
case NL80211_IFTYPE_P2P_DEVICE:
break;
case NL80211_IFTYPE_P2P_GO:
if (sdata->local->ops->hw_scan)
break;
/*
* FIXME: implement NoA while scanning in software,
* for now fall through to allow scanning only when
* beaconing hasn't been configured yet
*/
case NL80211_IFTYPE_AP:
/*
* If the scan has been forced (and the driver supports
* forcing), don't care about being beaconing already.
* This will create problems to the attached stations (e.g. all
* the frames sent while scanning on other channel will be
* lost)
*/
if (sdata->u.ap.beacon &&
(!(wiphy->features & NL80211_FEATURE_AP_SCAN) ||
!(req->flags & NL80211_SCAN_FLAG_AP)))
return -EOPNOTSUPP;
break;
default:
return -EOPNOTSUPP;
}
return ieee80211_request_scan(sdata, req);
}
static int
ieee80211_sched_scan_start(struct wiphy *wiphy,
struct net_device *dev,
struct cfg80211_sched_scan_request *req)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
if (!sdata->local->ops->sched_scan_start)
return -EOPNOTSUPP;
return ieee80211_request_sched_scan_start(sdata, req);
}
static int
ieee80211_sched_scan_stop(struct wiphy *wiphy, struct net_device *dev)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
if (!sdata->local->ops->sched_scan_stop)
return -EOPNOTSUPP;
return ieee80211_request_sched_scan_stop(sdata);
}
static int ieee80211_auth(struct wiphy *wiphy, struct net_device *dev,
struct cfg80211_auth_request *req)
{
return ieee80211_mgd_auth(IEEE80211_DEV_TO_SUB_IF(dev), req);
}
static int ieee80211_assoc(struct wiphy *wiphy, struct net_device *dev,
struct cfg80211_assoc_request *req)
{
return ieee80211_mgd_assoc(IEEE80211_DEV_TO_SUB_IF(dev), req);
}
static int ieee80211_deauth(struct wiphy *wiphy, struct net_device *dev,
struct cfg80211_deauth_request *req)
{
return ieee80211_mgd_deauth(IEEE80211_DEV_TO_SUB_IF(dev), req);
}
static int ieee80211_disassoc(struct wiphy *wiphy, struct net_device *dev,
struct cfg80211_disassoc_request *req)
{
return ieee80211_mgd_disassoc(IEEE80211_DEV_TO_SUB_IF(dev), req);
}
static int ieee80211_join_ibss(struct wiphy *wiphy, struct net_device *dev,
struct cfg80211_ibss_params *params)
{
return ieee80211_ibss_join(IEEE80211_DEV_TO_SUB_IF(dev), params);
}
static int ieee80211_leave_ibss(struct wiphy *wiphy, struct net_device *dev)
{
return ieee80211_ibss_leave(IEEE80211_DEV_TO_SUB_IF(dev));
}
static int ieee80211_set_mcast_rate(struct wiphy *wiphy, struct net_device *dev,
int rate[IEEE80211_NUM_BANDS])
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
memcpy(sdata->vif.bss_conf.mcast_rate, rate, sizeof(rate));
return 0;
}
static int ieee80211_set_wiphy_params(struct wiphy *wiphy, u32 changed)
{
struct ieee80211_local *local = wiphy_priv(wiphy);
int err;
if (changed & WIPHY_PARAM_FRAG_THRESHOLD) {
err = drv_set_frag_threshold(local, wiphy->frag_threshold);
if (err)
return err;
}
if (changed & WIPHY_PARAM_COVERAGE_CLASS) {
err = drv_set_coverage_class(local, wiphy->coverage_class);
if (err)
return err;
}
if (changed & WIPHY_PARAM_RTS_THRESHOLD) {
err = drv_set_rts_threshold(local, wiphy->rts_threshold);
if (err)
return err;
}
if (changed & WIPHY_PARAM_RETRY_SHORT) {
if (wiphy->retry_short > IEEE80211_MAX_TX_RETRY)
return -EINVAL;
local->hw.conf.short_frame_max_tx_count = wiphy->retry_short;
}
if (changed & WIPHY_PARAM_RETRY_LONG) {
if (wiphy->retry_long > IEEE80211_MAX_TX_RETRY)
return -EINVAL;
local->hw.conf.long_frame_max_tx_count = wiphy->retry_long;
}
if (changed &
(WIPHY_PARAM_RETRY_SHORT | WIPHY_PARAM_RETRY_LONG))
ieee80211_hw_config(local, IEEE80211_CONF_CHANGE_RETRY_LIMITS);
return 0;
}
static int ieee80211_set_tx_power(struct wiphy *wiphy,
struct wireless_dev *wdev,
enum nl80211_tx_power_setting type, int mbm)
{
struct ieee80211_local *local = wiphy_priv(wiphy);
struct ieee80211_sub_if_data *sdata;
if (wdev) {
sdata = IEEE80211_WDEV_TO_SUB_IF(wdev);
switch (type) {
case NL80211_TX_POWER_AUTOMATIC:
sdata->user_power_level = IEEE80211_UNSET_POWER_LEVEL;
break;
case NL80211_TX_POWER_LIMITED:
case NL80211_TX_POWER_FIXED:
if (mbm < 0 || (mbm % 100))
return -EOPNOTSUPP;
sdata->user_power_level = MBM_TO_DBM(mbm);
break;
}
ieee80211_recalc_txpower(sdata);
return 0;
}
switch (type) {
case NL80211_TX_POWER_AUTOMATIC:
local->user_power_level = IEEE80211_UNSET_POWER_LEVEL;
break;
case NL80211_TX_POWER_LIMITED:
case NL80211_TX_POWER_FIXED:
if (mbm < 0 || (mbm % 100))
return -EOPNOTSUPP;
local->user_power_level = MBM_TO_DBM(mbm);
break;
}
mutex_lock(&local->iflist_mtx);
list_for_each_entry(sdata, &local->interfaces, list)
sdata->user_power_level = local->user_power_level;
list_for_each_entry(sdata, &local->interfaces, list)
ieee80211_recalc_txpower(sdata);
mutex_unlock(&local->iflist_mtx);
return 0;
}
static int ieee80211_get_tx_power(struct wiphy *wiphy,
struct wireless_dev *wdev,
int *dbm)
{
struct ieee80211_local *local = wiphy_priv(wiphy);
struct ieee80211_sub_if_data *sdata = IEEE80211_WDEV_TO_SUB_IF(wdev);
if (!local->use_chanctx)
*dbm = local->hw.conf.power_level;
else
*dbm = sdata->vif.bss_conf.txpower;
return 0;
}
static int ieee80211_set_wds_peer(struct wiphy *wiphy, struct net_device *dev,
const u8 *addr)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
memcpy(&sdata->u.wds.remote_addr, addr, ETH_ALEN);
return 0;
}
static void ieee80211_rfkill_poll(struct wiphy *wiphy)
{
struct ieee80211_local *local = wiphy_priv(wiphy);
drv_rfkill_poll(local);
}
#ifdef CONFIG_NL80211_TESTMODE
static int ieee80211_testmode_cmd(struct wiphy *wiphy, void *data, int len)
{
struct ieee80211_local *local = wiphy_priv(wiphy);
if (!local->ops->testmode_cmd)
return -EOPNOTSUPP;
return local->ops->testmode_cmd(&local->hw, data, len);
}
static int ieee80211_testmode_dump(struct wiphy *wiphy,
struct sk_buff *skb,
struct netlink_callback *cb,
void *data, int len)
{
struct ieee80211_local *local = wiphy_priv(wiphy);
if (!local->ops->testmode_dump)
return -EOPNOTSUPP;
return local->ops->testmode_dump(&local->hw, skb, cb, data, len);
}
#endif
int __ieee80211_request_smps(struct ieee80211_sub_if_data *sdata,
enum ieee80211_smps_mode smps_mode)
{
const u8 *ap;
enum ieee80211_smps_mode old_req;
int err;
lockdep_assert_held(&sdata->u.mgd.mtx);
old_req = sdata->u.mgd.req_smps;
sdata->u.mgd.req_smps = smps_mode;
if (old_req == smps_mode &&
smps_mode != IEEE80211_SMPS_AUTOMATIC)
return 0;
/*
* If not associated, or current association is not an HT
* association, there's no need to do anything, just store
* the new value until we associate.
*/
if (!sdata->u.mgd.associated ||
sdata->vif.bss_conf.chandef.width == NL80211_CHAN_WIDTH_20_NOHT)
return 0;
ap = sdata->u.mgd.associated->bssid;
if (smps_mode == IEEE80211_SMPS_AUTOMATIC) {
if (sdata->u.mgd.powersave)
smps_mode = IEEE80211_SMPS_DYNAMIC;
else
smps_mode = IEEE80211_SMPS_OFF;
}
/* send SM PS frame to AP */
err = ieee80211_send_smps_action(sdata, smps_mode,
ap, ap);
if (err)
sdata->u.mgd.req_smps = old_req;
return err;
}
static int ieee80211_set_power_mgmt(struct wiphy *wiphy, struct net_device *dev,
bool enabled, int timeout)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
if (sdata->vif.type != NL80211_IFTYPE_STATION)
return -EOPNOTSUPP;
if (!(local->hw.flags & IEEE80211_HW_SUPPORTS_PS))
return -EOPNOTSUPP;
if (enabled == sdata->u.mgd.powersave &&
timeout == local->dynamic_ps_forced_timeout)
return 0;
sdata->u.mgd.powersave = enabled;
local->dynamic_ps_forced_timeout = timeout;
/* no change, but if automatic follow powersave */
mutex_lock(&sdata->u.mgd.mtx);
__ieee80211_request_smps(sdata, sdata->u.mgd.req_smps);
mutex_unlock(&sdata->u.mgd.mtx);
if (local->hw.flags & IEEE80211_HW_SUPPORTS_DYNAMIC_PS)
ieee80211_hw_config(local, IEEE80211_CONF_CHANGE_PS);
ieee80211_recalc_ps(local, -1);
ieee80211_recalc_ps_vif(sdata);
return 0;
}
static int ieee80211_set_cqm_rssi_config(struct wiphy *wiphy,
struct net_device *dev,
s32 rssi_thold, u32 rssi_hyst)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
struct ieee80211_vif *vif = &sdata->vif;
struct ieee80211_bss_conf *bss_conf = &vif->bss_conf;
if (rssi_thold == bss_conf->cqm_rssi_thold &&
rssi_hyst == bss_conf->cqm_rssi_hyst)
return 0;
bss_conf->cqm_rssi_thold = rssi_thold;
bss_conf->cqm_rssi_hyst = rssi_hyst;
/* tell the driver upon association, unless already associated */
if (sdata->u.mgd.associated &&
sdata->vif.driver_flags & IEEE80211_VIF_SUPPORTS_CQM_RSSI)
ieee80211_bss_info_change_notify(sdata, BSS_CHANGED_CQM);
return 0;
}
static int ieee80211_set_bitrate_mask(struct wiphy *wiphy,
struct net_device *dev,
const u8 *addr,
const struct cfg80211_bitrate_mask *mask)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
int i, ret;
if (!ieee80211_sdata_running(sdata))
return -ENETDOWN;
if (local->hw.flags & IEEE80211_HW_HAS_RATE_CONTROL) {
ret = drv_set_bitrate_mask(local, sdata, mask);
if (ret)
return ret;
}
for (i = 0; i < IEEE80211_NUM_BANDS; i++) {
sdata->rc_rateidx_mask[i] = mask->control[i].legacy;
memcpy(sdata->rc_rateidx_mcs_mask[i], mask->control[i].mcs,
sizeof(mask->control[i].mcs));
}
return 0;
}
static int ieee80211_start_roc_work(struct ieee80211_local *local,
struct ieee80211_sub_if_data *sdata,
struct ieee80211_channel *channel,
unsigned int duration, u64 *cookie,
struct sk_buff *txskb)
{
struct ieee80211_roc_work *roc, *tmp;
bool queued = false;
int ret;
lockdep_assert_held(&local->mtx);
if (local->use_chanctx && !local->ops->remain_on_channel)
return -EOPNOTSUPP;
roc = kzalloc(sizeof(*roc), GFP_KERNEL);
if (!roc)
return -ENOMEM;
roc->chan = channel;
roc->duration = duration;
roc->req_duration = duration;
roc->frame = txskb;
roc->mgmt_tx_cookie = (unsigned long)txskb;
roc->sdata = sdata;
INIT_DELAYED_WORK(&roc->work, ieee80211_sw_roc_work);
INIT_LIST_HEAD(&roc->dependents);
/* if there's one pending or we're scanning, queue this one */
if (!list_empty(&local->roc_list) || local->scanning)
goto out_check_combine;
/* if not HW assist, just queue & schedule work */
if (!local->ops->remain_on_channel) {
ieee80211_queue_delayed_work(&local->hw, &roc->work, 0);
goto out_queue;
}
/* otherwise actually kick it off here (for error handling) */
/*
* If the duration is zero, then the driver
* wouldn't actually do anything. Set it to
* 10 for now.
*
* TODO: cancel the off-channel operation
* when we get the SKB's TX status and
* the wait time was zero before.
*/
if (!duration)
duration = 10;
ret = drv_remain_on_channel(local, sdata, channel, duration);
if (ret) {
kfree(roc);
return ret;
}
roc->started = true;
goto out_queue;
out_check_combine:
list_for_each_entry(tmp, &local->roc_list, list) {
if (tmp->chan != channel || tmp->sdata != sdata)
continue;
/*
* Extend this ROC if possible:
*
* If it hasn't started yet, just increase the duration
* and add the new one to the list of dependents.
*/
if (!tmp->started) {
list_add_tail(&roc->list, &tmp->dependents);
tmp->duration = max(tmp->duration, roc->duration);
queued = true;
break;
}
/* If it has already started, it's more difficult ... */
if (local->ops->remain_on_channel) {
unsigned long j = jiffies;
/*
* In the offloaded ROC case, if it hasn't begun, add
* this new one to the dependent list to be handled
* when the the master one begins. If it has begun,
* check that there's still a minimum time left and
* if so, start this one, transmitting the frame, but
* add it to the list directly after this one with a
* a reduced time so we'll ask the driver to execute
* it right after finishing the previous one, in the
* hope that it'll also be executed right afterwards,
* effectively extending the old one.
* If there's no minimum time left, just add it to the
* normal list.
*/
if (!tmp->hw_begun) {
list_add_tail(&roc->list, &tmp->dependents);
queued = true;
break;
}
if (time_before(j + IEEE80211_ROC_MIN_LEFT,
tmp->hw_start_time +
msecs_to_jiffies(tmp->duration))) {
int new_dur;
ieee80211_handle_roc_started(roc);
new_dur = roc->duration -
jiffies_to_msecs(tmp->hw_start_time +
msecs_to_jiffies(
tmp->duration) -
j);
if (new_dur > 0) {
/* add right after tmp */
list_add(&roc->list, &tmp->list);
} else {
list_add_tail(&roc->list,
&tmp->dependents);
}
queued = true;
}
} else if (del_timer_sync(&tmp->work.timer)) {
unsigned long new_end;
/*
* In the software ROC case, cancel the timer, if
* that fails then the finish work is already
* queued/pending and thus we queue the new ROC
* normally, if that succeeds then we can extend
* the timer duration and TX the frame (if any.)
*/
list_add_tail(&roc->list, &tmp->dependents);
queued = true;
new_end = jiffies + msecs_to_jiffies(roc->duration);
/* ok, it was started & we canceled timer */
if (time_after(new_end, tmp->work.timer.expires))
mod_timer(&tmp->work.timer, new_end);
else
add_timer(&tmp->work.timer);
ieee80211_handle_roc_started(roc);
}
break;
}
out_queue:
if (!queued)
list_add_tail(&roc->list, &local->roc_list);
/*
* cookie is either the roc cookie (for normal roc)
* or the SKB (for mgmt TX)
*/
if (!txskb) {
/* local->mtx protects this */
local->roc_cookie_counter++;
roc->cookie = local->roc_cookie_counter;
/* wow, you wrapped 64 bits ... more likely a bug */
if (WARN_ON(roc->cookie == 0)) {
roc->cookie = 1;
local->roc_cookie_counter++;
}
*cookie = roc->cookie;
} else {
*cookie = (unsigned long)txskb;
}
return 0;
}
static int ieee80211_remain_on_channel(struct wiphy *wiphy,
struct wireless_dev *wdev,
struct ieee80211_channel *chan,
unsigned int duration,
u64 *cookie)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_WDEV_TO_SUB_IF(wdev);
struct ieee80211_local *local = sdata->local;
int ret;
mutex_lock(&local->mtx);
ret = ieee80211_start_roc_work(local, sdata, chan,
duration, cookie, NULL);
mutex_unlock(&local->mtx);
return ret;
}
static int ieee80211_cancel_roc(struct ieee80211_local *local,
u64 cookie, bool mgmt_tx)
{
struct ieee80211_roc_work *roc, *tmp, *found = NULL;
int ret;
mutex_lock(&local->mtx);
list_for_each_entry_safe(roc, tmp, &local->roc_list, list) {
struct ieee80211_roc_work *dep, *tmp2;
list_for_each_entry_safe(dep, tmp2, &roc->dependents, list) {
if (!mgmt_tx && dep->cookie != cookie)
continue;
else if (mgmt_tx && dep->mgmt_tx_cookie != cookie)
continue;
/* found dependent item -- just remove it */
list_del(&dep->list);
mutex_unlock(&local->mtx);
ieee80211_roc_notify_destroy(dep);
return 0;
}
if (!mgmt_tx && roc->cookie != cookie)
continue;
else if (mgmt_tx && roc->mgmt_tx_cookie != cookie)
continue;
found = roc;
break;
}
if (!found) {
mutex_unlock(&local->mtx);
return -ENOENT;
}
/*
* We found the item to cancel, so do that. Note that it
* may have dependents, which we also cancel (and send
* the expired signal for.) Not doing so would be quite
* tricky here, but we may need to fix it later.
*/
if (local->ops->remain_on_channel) {
if (found->started) {
ret = drv_cancel_remain_on_channel(local);
if (WARN_ON_ONCE(ret)) {
mutex_unlock(&local->mtx);
return ret;
}
}
list_del(&found->list);
if (found->started)
ieee80211_start_next_roc(local);
mutex_unlock(&local->mtx);
ieee80211_roc_notify_destroy(found);
} else {
/* work may be pending so use it all the time */
found->abort = true;
ieee80211_queue_delayed_work(&local->hw, &found->work, 0);
mutex_unlock(&local->mtx);
/* work will clean up etc */
flush_delayed_work(&found->work);
}
return 0;
}
static int ieee80211_cancel_remain_on_channel(struct wiphy *wiphy,
struct wireless_dev *wdev,
u64 cookie)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_WDEV_TO_SUB_IF(wdev);
struct ieee80211_local *local = sdata->local;
return ieee80211_cancel_roc(local, cookie, false);
}
static int ieee80211_mgmt_tx(struct wiphy *wiphy, struct wireless_dev *wdev,
struct ieee80211_channel *chan, bool offchan,
unsigned int wait, const u8 *buf, size_t len,
bool no_cck, bool dont_wait_for_ack, u64 *cookie)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_WDEV_TO_SUB_IF(wdev);
struct ieee80211_local *local = sdata->local;
struct sk_buff *skb;
struct sta_info *sta;
const struct ieee80211_mgmt *mgmt = (void *)buf;
bool need_offchan = false;
u32 flags;
int ret;
if (dont_wait_for_ack)
flags = IEEE80211_TX_CTL_NO_ACK;
else
flags = IEEE80211_TX_INTFL_NL80211_FRAME_TX |
IEEE80211_TX_CTL_REQ_TX_STATUS;
if (no_cck)
flags |= IEEE80211_TX_CTL_NO_CCK_RATE;
switch (sdata->vif.type) {
case NL80211_IFTYPE_ADHOC:
if (!sdata->vif.bss_conf.ibss_joined)
need_offchan = true;
/* fall through */
#ifdef CONFIG_MAC80211_MESH
case NL80211_IFTYPE_MESH_POINT:
if (ieee80211_vif_is_mesh(&sdata->vif) &&
!sdata->u.mesh.mesh_id_len)
need_offchan = true;
/* fall through */
#endif
case NL80211_IFTYPE_AP:
case NL80211_IFTYPE_AP_VLAN:
case NL80211_IFTYPE_P2P_GO:
if (sdata->vif.type != NL80211_IFTYPE_ADHOC &&
!ieee80211_vif_is_mesh(&sdata->vif) &&
!rcu_access_pointer(sdata->bss->beacon))
need_offchan = true;
if (!ieee80211_is_action(mgmt->frame_control) ||
mgmt->u.action.category == WLAN_CATEGORY_PUBLIC)
break;
rcu_read_lock();
sta = sta_info_get(sdata, mgmt->da);
rcu_read_unlock();
if (!sta)
return -ENOLINK;
break;
case NL80211_IFTYPE_STATION:
case NL80211_IFTYPE_P2P_CLIENT:
if (!sdata->u.mgd.associated)
need_offchan = true;
break;
case NL80211_IFTYPE_P2P_DEVICE:
need_offchan = true;
break;
default:
return -EOPNOTSUPP;
}
mutex_lock(&local->mtx);
/* Check if the operating channel is the requested channel */
if (!need_offchan) {
struct ieee80211_chanctx_conf *chanctx_conf;
rcu_read_lock();
chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf);
if (chanctx_conf)
need_offchan = chan != chanctx_conf->def.chan;
else
need_offchan = true;
rcu_read_unlock();
}
if (need_offchan && !offchan) {
ret = -EBUSY;
goto out_unlock;
}
skb = dev_alloc_skb(local->hw.extra_tx_headroom + len);
if (!skb) {
ret = -ENOMEM;
goto out_unlock;
}
skb_reserve(skb, local->hw.extra_tx_headroom);
memcpy(skb_put(skb, len), buf, len);
IEEE80211_SKB_CB(skb)->flags = flags;
skb->dev = sdata->dev;
if (!need_offchan) {
*cookie = (unsigned long) skb;
ieee80211_tx_skb(sdata, skb);
ret = 0;
goto out_unlock;
}
IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_CTL_TX_OFFCHAN;
if (local->hw.flags & IEEE80211_HW_QUEUE_CONTROL)
IEEE80211_SKB_CB(skb)->hw_queue =
local->hw.offchannel_tx_hw_queue;
/* This will handle all kinds of coalescing and immediate TX */
ret = ieee80211_start_roc_work(local, sdata, chan,
wait, cookie, skb);
if (ret)
kfree_skb(skb);
out_unlock:
mutex_unlock(&local->mtx);
return ret;
}
static int ieee80211_mgmt_tx_cancel_wait(struct wiphy *wiphy,
struct wireless_dev *wdev,
u64 cookie)
{
struct ieee80211_local *local = wiphy_priv(wiphy);
return ieee80211_cancel_roc(local, cookie, true);
}
static void ieee80211_mgmt_frame_register(struct wiphy *wiphy,
struct wireless_dev *wdev,
u16 frame_type, bool reg)
{
struct ieee80211_local *local = wiphy_priv(wiphy);
struct ieee80211_sub_if_data *sdata = IEEE80211_WDEV_TO_SUB_IF(wdev);
switch (frame_type) {
case IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_AUTH:
if (sdata->vif.type == NL80211_IFTYPE_ADHOC) {
struct ieee80211_if_ibss *ifibss = &sdata->u.ibss;
if (reg)
ifibss->auth_frame_registrations++;
else
ifibss->auth_frame_registrations--;
}
break;
case IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_PROBE_REQ:
if (reg)
local->probe_req_reg++;
else
local->probe_req_reg--;
if (!local->open_count)
break;
ieee80211_queue_work(&local->hw, &local->reconfig_filter);
break;
default:
break;
}
}
static int ieee80211_set_antenna(struct wiphy *wiphy, u32 tx_ant, u32 rx_ant)
{
struct ieee80211_local *local = wiphy_priv(wiphy);
if (local->started)
return -EOPNOTSUPP;
return drv_set_antenna(local, tx_ant, rx_ant);
}
static int ieee80211_get_antenna(struct wiphy *wiphy, u32 *tx_ant, u32 *rx_ant)
{
struct ieee80211_local *local = wiphy_priv(wiphy);
return drv_get_antenna(local, tx_ant, rx_ant);
}
static int ieee80211_set_ringparam(struct wiphy *wiphy, u32 tx, u32 rx)
{
struct ieee80211_local *local = wiphy_priv(wiphy);
return drv_set_ringparam(local, tx, rx);
}
static void ieee80211_get_ringparam(struct wiphy *wiphy,
u32 *tx, u32 *tx_max, u32 *rx, u32 *rx_max)
{
struct ieee80211_local *local = wiphy_priv(wiphy);
drv_get_ringparam(local, tx, tx_max, rx, rx_max);
}
static int ieee80211_set_rekey_data(struct wiphy *wiphy,
struct net_device *dev,
struct cfg80211_gtk_rekey_data *data)
{
struct ieee80211_local *local = wiphy_priv(wiphy);
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
if (!local->ops->set_rekey_data)
return -EOPNOTSUPP;
drv_set_rekey_data(local, sdata, data);
return 0;
}
static void ieee80211_tdls_add_ext_capab(struct sk_buff *skb)
{
u8 *pos = (void *)skb_put(skb, 7);
*pos++ = WLAN_EID_EXT_CAPABILITY;
*pos++ = 5; /* len */
*pos++ = 0x0;
*pos++ = 0x0;
*pos++ = 0x0;
*pos++ = 0x0;
*pos++ = WLAN_EXT_CAPA5_TDLS_ENABLED;
}
static u16 ieee80211_get_tdls_sta_capab(struct ieee80211_sub_if_data *sdata)
{
struct ieee80211_local *local = sdata->local;
u16 capab;
capab = 0;
if (ieee80211_get_sdata_band(sdata) != IEEE80211_BAND_2GHZ)
return capab;
if (!(local->hw.flags & IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE))
capab |= WLAN_CAPABILITY_SHORT_SLOT_TIME;
if (!(local->hw.flags & IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE))
capab |= WLAN_CAPABILITY_SHORT_PREAMBLE;
return capab;
}
static void ieee80211_tdls_add_link_ie(struct sk_buff *skb, u8 *src_addr,
u8 *peer, u8 *bssid)
{
struct ieee80211_tdls_lnkie *lnkid;
lnkid = (void *)skb_put(skb, sizeof(struct ieee80211_tdls_lnkie));
lnkid->ie_type = WLAN_EID_LINK_ID;
lnkid->ie_len = sizeof(struct ieee80211_tdls_lnkie) - 2;
memcpy(lnkid->bssid, bssid, ETH_ALEN);
memcpy(lnkid->init_sta, src_addr, ETH_ALEN);
memcpy(lnkid->resp_sta, peer, ETH_ALEN);
}
static int
ieee80211_prep_tdls_encap_data(struct wiphy *wiphy, struct net_device *dev,
u8 *peer, u8 action_code, u8 dialog_token,
u16 status_code, struct sk_buff *skb)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
enum ieee80211_band band = ieee80211_get_sdata_band(sdata);
struct ieee80211_tdls_data *tf;
tf = (void *)skb_put(skb, offsetof(struct ieee80211_tdls_data, u));
memcpy(tf->da, peer, ETH_ALEN);
memcpy(tf->sa, sdata->vif.addr, ETH_ALEN);
tf->ether_type = cpu_to_be16(ETH_P_TDLS);
tf->payload_type = WLAN_TDLS_SNAP_RFTYPE;
switch (action_code) {
case WLAN_TDLS_SETUP_REQUEST:
tf->category = WLAN_CATEGORY_TDLS;
tf->action_code = WLAN_TDLS_SETUP_REQUEST;
skb_put(skb, sizeof(tf->u.setup_req));
tf->u.setup_req.dialog_token = dialog_token;
tf->u.setup_req.capability =
cpu_to_le16(ieee80211_get_tdls_sta_capab(sdata));
ieee80211_add_srates_ie(sdata, skb, false, band);
ieee80211_add_ext_srates_ie(sdata, skb, false, band);
ieee80211_tdls_add_ext_capab(skb);
break;
case WLAN_TDLS_SETUP_RESPONSE:
tf->category = WLAN_CATEGORY_TDLS;
tf->action_code = WLAN_TDLS_SETUP_RESPONSE;
skb_put(skb, sizeof(tf->u.setup_resp));
tf->u.setup_resp.status_code = cpu_to_le16(status_code);
tf->u.setup_resp.dialog_token = dialog_token;
tf->u.setup_resp.capability =
cpu_to_le16(ieee80211_get_tdls_sta_capab(sdata));
ieee80211_add_srates_ie(sdata, skb, false, band);
ieee80211_add_ext_srates_ie(sdata, skb, false, band);
ieee80211_tdls_add_ext_capab(skb);
break;
case WLAN_TDLS_SETUP_CONFIRM:
tf->category = WLAN_CATEGORY_TDLS;
tf->action_code = WLAN_TDLS_SETUP_CONFIRM;
skb_put(skb, sizeof(tf->u.setup_cfm));
tf->u.setup_cfm.status_code = cpu_to_le16(status_code);
tf->u.setup_cfm.dialog_token = dialog_token;
break;
case WLAN_TDLS_TEARDOWN:
tf->category = WLAN_CATEGORY_TDLS;
tf->action_code = WLAN_TDLS_TEARDOWN;
skb_put(skb, sizeof(tf->u.teardown));
tf->u.teardown.reason_code = cpu_to_le16(status_code);
break;
case WLAN_TDLS_DISCOVERY_REQUEST:
tf->category = WLAN_CATEGORY_TDLS;
tf->action_code = WLAN_TDLS_DISCOVERY_REQUEST;
skb_put(skb, sizeof(tf->u.discover_req));
tf->u.discover_req.dialog_token = dialog_token;
break;
default:
return -EINVAL;
}
return 0;
}
static int
ieee80211_prep_tdls_direct(struct wiphy *wiphy, struct net_device *dev,
u8 *peer, u8 action_code, u8 dialog_token,
u16 status_code, struct sk_buff *skb)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
enum ieee80211_band band = ieee80211_get_sdata_band(sdata);
struct ieee80211_mgmt *mgmt;
mgmt = (void *)skb_put(skb, 24);
memset(mgmt, 0, 24);
memcpy(mgmt->da, peer, ETH_ALEN);
memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN);
memcpy(mgmt->bssid, sdata->u.mgd.bssid, ETH_ALEN);
mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
IEEE80211_STYPE_ACTION);
switch (action_code) {
case WLAN_PUB_ACTION_TDLS_DISCOVER_RES:
skb_put(skb, 1 + sizeof(mgmt->u.action.u.tdls_discover_resp));
mgmt->u.action.category = WLAN_CATEGORY_PUBLIC;
mgmt->u.action.u.tdls_discover_resp.action_code =
WLAN_PUB_ACTION_TDLS_DISCOVER_RES;
mgmt->u.action.u.tdls_discover_resp.dialog_token =
dialog_token;
mgmt->u.action.u.tdls_discover_resp.capability =
cpu_to_le16(ieee80211_get_tdls_sta_capab(sdata));
ieee80211_add_srates_ie(sdata, skb, false, band);
ieee80211_add_ext_srates_ie(sdata, skb, false, band);
ieee80211_tdls_add_ext_capab(skb);
break;
default:
return -EINVAL;
}
return 0;
}
static int ieee80211_tdls_mgmt(struct wiphy *wiphy, struct net_device *dev,
u8 *peer, u8 action_code, u8 dialog_token,
u16 status_code, const u8 *extra_ies,
size_t extra_ies_len)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
struct ieee80211_local *local = sdata->local;
struct sk_buff *skb = NULL;
bool send_direct;
int ret;
if (!(wiphy->flags & WIPHY_FLAG_SUPPORTS_TDLS))
return -ENOTSUPP;
/* make sure we are in managed mode, and associated */
if (sdata->vif.type != NL80211_IFTYPE_STATION ||
!sdata->u.mgd.associated)
return -EINVAL;
tdls_dbg(sdata, "TDLS mgmt action %d peer %pM\n",
action_code, peer);
skb = dev_alloc_skb(local->hw.extra_tx_headroom +
max(sizeof(struct ieee80211_mgmt),
sizeof(struct ieee80211_tdls_data)) +
50 + /* supported rates */
7 + /* ext capab */
extra_ies_len +
sizeof(struct ieee80211_tdls_lnkie));
if (!skb)
return -ENOMEM;
skb_reserve(skb, local->hw.extra_tx_headroom);
switch (action_code) {
case WLAN_TDLS_SETUP_REQUEST:
case WLAN_TDLS_SETUP_RESPONSE:
case WLAN_TDLS_SETUP_CONFIRM:
case WLAN_TDLS_TEARDOWN:
case WLAN_TDLS_DISCOVERY_REQUEST:
ret = ieee80211_prep_tdls_encap_data(wiphy, dev, peer,
action_code, dialog_token,
status_code, skb);
send_direct = false;
break;
case WLAN_PUB_ACTION_TDLS_DISCOVER_RES:
ret = ieee80211_prep_tdls_direct(wiphy, dev, peer, action_code,
dialog_token, status_code,
skb);
send_direct = true;
break;
default:
ret = -ENOTSUPP;
break;
}
if (ret < 0)
goto fail;
if (extra_ies_len)
memcpy(skb_put(skb, extra_ies_len), extra_ies, extra_ies_len);
/* the TDLS link IE is always added last */
switch (action_code) {
case WLAN_TDLS_SETUP_REQUEST:
case WLAN_TDLS_SETUP_CONFIRM:
case WLAN_TDLS_TEARDOWN:
case WLAN_TDLS_DISCOVERY_REQUEST:
/* we are the initiator */
ieee80211_tdls_add_link_ie(skb, sdata->vif.addr, peer,
sdata->u.mgd.bssid);
break;
case WLAN_TDLS_SETUP_RESPONSE:
case WLAN_PUB_ACTION_TDLS_DISCOVER_RES:
/* we are the responder */
ieee80211_tdls_add_link_ie(skb, peer, sdata->vif.addr,
sdata->u.mgd.bssid);
break;
default:
ret = -ENOTSUPP;
goto fail;
}
if (send_direct) {
ieee80211_tx_skb(sdata, skb);
return 0;
}
/*
* According to 802.11z: Setup req/resp are sent in AC_BK, otherwise
* we should default to AC_VI.
*/
switch (action_code) {
case WLAN_TDLS_SETUP_REQUEST:
case WLAN_TDLS_SETUP_RESPONSE:
skb_set_queue_mapping(skb, IEEE80211_AC_BK);
skb->priority = 2;
break;
default:
skb_set_queue_mapping(skb, IEEE80211_AC_VI);
skb->priority = 5;
break;
}
/* disable bottom halves when entering the Tx path */
local_bh_disable();
ret = ieee80211_subif_start_xmit(skb, dev);
local_bh_enable();
return ret;
fail:
dev_kfree_skb(skb);
return ret;
}
static int ieee80211_tdls_oper(struct wiphy *wiphy, struct net_device *dev,
u8 *peer, enum nl80211_tdls_operation oper)
{
struct sta_info *sta;
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
if (!(wiphy->flags & WIPHY_FLAG_SUPPORTS_TDLS))
return -ENOTSUPP;
if (sdata->vif.type != NL80211_IFTYPE_STATION)
return -EINVAL;
tdls_dbg(sdata, "TDLS oper %d peer %pM\n", oper, peer);
switch (oper) {
case NL80211_TDLS_ENABLE_LINK:
rcu_read_lock();
sta = sta_info_get(sdata, peer);
if (!sta) {
rcu_read_unlock();
return -ENOLINK;
}
set_sta_flag(sta, WLAN_STA_TDLS_PEER_AUTH);
rcu_read_unlock();
break;
case NL80211_TDLS_DISABLE_LINK:
return sta_info_destroy_addr(sdata, peer);
case NL80211_TDLS_TEARDOWN:
case NL80211_TDLS_SETUP:
case NL80211_TDLS_DISCOVERY_REQ:
/* We don't support in-driver setup/teardown/discovery */
return -ENOTSUPP;
default:
return -ENOTSUPP;
}
return 0;
}
static int ieee80211_probe_client(struct wiphy *wiphy, struct net_device *dev,
const u8 *peer, u64 *cookie)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
struct ieee80211_local *local = sdata->local;
struct ieee80211_qos_hdr *nullfunc;
struct sk_buff *skb;
int size = sizeof(*nullfunc);
__le16 fc;
bool qos;
struct ieee80211_tx_info *info;
struct sta_info *sta;
struct ieee80211_chanctx_conf *chanctx_conf;
enum ieee80211_band band;
rcu_read_lock();
chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf);
if (WARN_ON(!chanctx_conf)) {
rcu_read_unlock();
return -EINVAL;
}
band = chanctx_conf->def.chan->band;
sta = sta_info_get(sdata, peer);
if (sta) {
qos = test_sta_flag(sta, WLAN_STA_WME);
} else {
rcu_read_unlock();
return -ENOLINK;
}
if (qos) {
fc = cpu_to_le16(IEEE80211_FTYPE_DATA |
IEEE80211_STYPE_QOS_NULLFUNC |
IEEE80211_FCTL_FROMDS);
} else {
size -= 2;
fc = cpu_to_le16(IEEE80211_FTYPE_DATA |
IEEE80211_STYPE_NULLFUNC |
IEEE80211_FCTL_FROMDS);
}
skb = dev_alloc_skb(local->hw.extra_tx_headroom + size);
if (!skb) {
rcu_read_unlock();
return -ENOMEM;
}
skb->dev = dev;
skb_reserve(skb, local->hw.extra_tx_headroom);
nullfunc = (void *) skb_put(skb, size);
nullfunc->frame_control = fc;
nullfunc->duration_id = 0;
memcpy(nullfunc->addr1, sta->sta.addr, ETH_ALEN);
memcpy(nullfunc->addr2, sdata->vif.addr, ETH_ALEN);
memcpy(nullfunc->addr3, sdata->vif.addr, ETH_ALEN);
nullfunc->seq_ctrl = 0;
info = IEEE80211_SKB_CB(skb);
info->flags |= IEEE80211_TX_CTL_REQ_TX_STATUS |
IEEE80211_TX_INTFL_NL80211_FRAME_TX;
skb_set_queue_mapping(skb, IEEE80211_AC_VO);
skb->priority = 7;
if (qos)
nullfunc->qos_ctrl = cpu_to_le16(7);
local_bh_disable();
ieee80211_xmit(sdata, skb, band);
local_bh_enable();
rcu_read_unlock();
*cookie = (unsigned long) skb;
return 0;
}
static int ieee80211_cfg_get_channel(struct wiphy *wiphy,
struct wireless_dev *wdev,
struct cfg80211_chan_def *chandef)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_WDEV_TO_SUB_IF(wdev);
struct ieee80211_chanctx_conf *chanctx_conf;
int ret = -ENODATA;
rcu_read_lock();
chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf);
if (chanctx_conf) {
*chandef = chanctx_conf->def;
ret = 0;
}
rcu_read_unlock();
return ret;
}
#ifdef CONFIG_PM
static void ieee80211_set_wakeup(struct wiphy *wiphy, bool enabled)
{
drv_set_wakeup(wiphy_priv(wiphy), enabled);
}
#endif
struct cfg80211_ops mac80211_config_ops = {
.add_virtual_intf = ieee80211_add_iface,
.del_virtual_intf = ieee80211_del_iface,
.change_virtual_intf = ieee80211_change_iface,
.start_p2p_device = ieee80211_start_p2p_device,
.stop_p2p_device = ieee80211_stop_p2p_device,
.add_key = ieee80211_add_key,
.del_key = ieee80211_del_key,
.get_key = ieee80211_get_key,
.set_default_key = ieee80211_config_default_key,
.set_default_mgmt_key = ieee80211_config_default_mgmt_key,
.start_ap = ieee80211_start_ap,
.change_beacon = ieee80211_change_beacon,
.stop_ap = ieee80211_stop_ap,
.add_station = ieee80211_add_station,
.del_station = ieee80211_del_station,
.change_station = ieee80211_change_station,
.get_station = ieee80211_get_station,
.dump_station = ieee80211_dump_station,
.dump_survey = ieee80211_dump_survey,
#ifdef CONFIG_MAC80211_MESH
.add_mpath = ieee80211_add_mpath,
.del_mpath = ieee80211_del_mpath,
.change_mpath = ieee80211_change_mpath,
.get_mpath = ieee80211_get_mpath,
.dump_mpath = ieee80211_dump_mpath,
.update_mesh_config = ieee80211_update_mesh_config,
.get_mesh_config = ieee80211_get_mesh_config,
.join_mesh = ieee80211_join_mesh,
.leave_mesh = ieee80211_leave_mesh,
#endif
.change_bss = ieee80211_change_bss,
.set_txq_params = ieee80211_set_txq_params,
.set_monitor_channel = ieee80211_set_monitor_channel,
.suspend = ieee80211_suspend,
.resume = ieee80211_resume,
.scan = ieee80211_scan,
.sched_scan_start = ieee80211_sched_scan_start,
.sched_scan_stop = ieee80211_sched_scan_stop,
.auth = ieee80211_auth,
.assoc = ieee80211_assoc,
.deauth = ieee80211_deauth,
.disassoc = ieee80211_disassoc,
.join_ibss = ieee80211_join_ibss,
.leave_ibss = ieee80211_leave_ibss,
.set_mcast_rate = ieee80211_set_mcast_rate,
.set_wiphy_params = ieee80211_set_wiphy_params,
.set_tx_power = ieee80211_set_tx_power,
.get_tx_power = ieee80211_get_tx_power,
.set_wds_peer = ieee80211_set_wds_peer,
.rfkill_poll = ieee80211_rfkill_poll,
CFG80211_TESTMODE_CMD(ieee80211_testmode_cmd)
CFG80211_TESTMODE_DUMP(ieee80211_testmode_dump)
.set_power_mgmt = ieee80211_set_power_mgmt,
.set_bitrate_mask = ieee80211_set_bitrate_mask,
.remain_on_channel = ieee80211_remain_on_channel,
.cancel_remain_on_channel = ieee80211_cancel_remain_on_channel,
.mgmt_tx = ieee80211_mgmt_tx,
.mgmt_tx_cancel_wait = ieee80211_mgmt_tx_cancel_wait,
.set_cqm_rssi_config = ieee80211_set_cqm_rssi_config,
.mgmt_frame_register = ieee80211_mgmt_frame_register,
.set_antenna = ieee80211_set_antenna,
.get_antenna = ieee80211_get_antenna,
.set_ringparam = ieee80211_set_ringparam,
.get_ringparam = ieee80211_get_ringparam,
.set_rekey_data = ieee80211_set_rekey_data,
.tdls_oper = ieee80211_tdls_oper,
.tdls_mgmt = ieee80211_tdls_mgmt,
.probe_client = ieee80211_probe_client,
.set_noack_map = ieee80211_set_noack_map,
#ifdef CONFIG_PM
.set_wakeup = ieee80211_set_wakeup,
#endif
.get_et_sset_count = ieee80211_get_et_sset_count,
.get_et_stats = ieee80211_get_et_stats,
.get_et_strings = ieee80211_get_et_strings,
.get_channel = ieee80211_cfg_get_channel,
};