linux_old1/arch/mips/alchemy/common/platform.c

390 lines
10 KiB
C

/*
* Platform device support for Au1x00 SoCs.
*
* Copyright 2004, Matt Porter <mporter@kernel.crashing.org>
*
* (C) Copyright Embedded Alley Solutions, Inc 2005
* Author: Pantelis Antoniou <pantelis@embeddedalley.com>
*
* This file is licensed under the terms of the GNU General Public
* License version 2. This program is licensed "as is" without any
* warranty of any kind, whether express or implied.
*/
#include <linux/dma-mapping.h>
#include <linux/etherdevice.h>
#include <linux/init.h>
#include <linux/platform_device.h>
#include <linux/serial_8250.h>
#include <linux/slab.h>
#include <asm/mach-au1x00/au1000.h>
#include <asm/mach-au1x00/au1xxx_dbdma.h>
#include <asm/mach-au1x00/au1100_mmc.h>
#include <asm/mach-au1x00/au1xxx_eth.h>
#include <prom.h>
static void alchemy_8250_pm(struct uart_port *port, unsigned int state,
unsigned int old_state)
{
#ifdef CONFIG_SERIAL_8250
switch (state) {
case 0:
alchemy_uart_enable(CPHYSADDR(port->membase));
serial8250_do_pm(port, state, old_state);
break;
case 3: /* power off */
serial8250_do_pm(port, state, old_state);
alchemy_uart_disable(CPHYSADDR(port->membase));
break;
default:
serial8250_do_pm(port, state, old_state);
break;
}
#endif
}
#define PORT(_base, _irq) \
{ \
.mapbase = _base, \
.irq = _irq, \
.regshift = 2, \
.iotype = UPIO_AU, \
.flags = UPF_SKIP_TEST | UPF_IOREMAP | \
UPF_FIXED_TYPE, \
.type = PORT_16550A, \
.pm = alchemy_8250_pm, \
}
static struct plat_serial8250_port au1x00_uart_data[][4] __initdata = {
[ALCHEMY_CPU_AU1000] = {
PORT(AU1000_UART0_PHYS_ADDR, AU1000_UART0_INT),
PORT(AU1000_UART1_PHYS_ADDR, AU1000_UART1_INT),
PORT(AU1000_UART2_PHYS_ADDR, AU1000_UART2_INT),
PORT(AU1000_UART3_PHYS_ADDR, AU1000_UART3_INT),
},
[ALCHEMY_CPU_AU1500] = {
PORT(AU1000_UART0_PHYS_ADDR, AU1500_UART0_INT),
PORT(AU1000_UART3_PHYS_ADDR, AU1500_UART3_INT),
},
[ALCHEMY_CPU_AU1100] = {
PORT(AU1000_UART0_PHYS_ADDR, AU1100_UART0_INT),
PORT(AU1000_UART1_PHYS_ADDR, AU1100_UART1_INT),
PORT(AU1000_UART3_PHYS_ADDR, AU1100_UART3_INT),
},
[ALCHEMY_CPU_AU1550] = {
PORT(AU1000_UART0_PHYS_ADDR, AU1550_UART0_INT),
PORT(AU1000_UART1_PHYS_ADDR, AU1550_UART1_INT),
PORT(AU1000_UART3_PHYS_ADDR, AU1550_UART3_INT),
},
[ALCHEMY_CPU_AU1200] = {
PORT(AU1000_UART0_PHYS_ADDR, AU1200_UART0_INT),
PORT(AU1000_UART1_PHYS_ADDR, AU1200_UART1_INT),
},
[ALCHEMY_CPU_AU1300] = {
PORT(AU1300_UART0_PHYS_ADDR, AU1300_UART0_INT),
PORT(AU1300_UART1_PHYS_ADDR, AU1300_UART1_INT),
PORT(AU1300_UART2_PHYS_ADDR, AU1300_UART2_INT),
PORT(AU1300_UART3_PHYS_ADDR, AU1300_UART3_INT),
},
};
static struct platform_device au1xx0_uart_device = {
.name = "serial8250",
.id = PLAT8250_DEV_AU1X00,
};
static void __init alchemy_setup_uarts(int ctype)
{
unsigned int uartclk = get_au1x00_uart_baud_base() * 16;
int s = sizeof(struct plat_serial8250_port);
int c = alchemy_get_uarts(ctype);
struct plat_serial8250_port *ports;
ports = kzalloc(s * (c + 1), GFP_KERNEL);
if (!ports) {
printk(KERN_INFO "Alchemy: no memory for UART data\n");
return;
}
memcpy(ports, au1x00_uart_data[ctype], s * c);
au1xx0_uart_device.dev.platform_data = ports;
/* Fill up uartclk. */
for (s = 0; s < c; s++)
ports[s].uartclk = uartclk;
if (platform_device_register(&au1xx0_uart_device))
printk(KERN_INFO "Alchemy: failed to register UARTs\n");
}
/* The dmamask must be set for OHCI/EHCI to work */
static u64 alchemy_ohci_dmamask = DMA_BIT_MASK(32);
static u64 __maybe_unused alchemy_ehci_dmamask = DMA_BIT_MASK(32);
static unsigned long alchemy_ohci_data[][2] __initdata = {
[ALCHEMY_CPU_AU1000] = { AU1000_USB_OHCI_PHYS_ADDR, AU1000_USB_HOST_INT },
[ALCHEMY_CPU_AU1500] = { AU1000_USB_OHCI_PHYS_ADDR, AU1500_USB_HOST_INT },
[ALCHEMY_CPU_AU1100] = { AU1000_USB_OHCI_PHYS_ADDR, AU1100_USB_HOST_INT },
[ALCHEMY_CPU_AU1550] = { AU1550_USB_OHCI_PHYS_ADDR, AU1550_USB_HOST_INT },
[ALCHEMY_CPU_AU1200] = { AU1200_USB_OHCI_PHYS_ADDR, AU1200_USB_INT },
[ALCHEMY_CPU_AU1300] = { AU1300_USB_OHCI0_PHYS_ADDR, AU1300_USB_INT },
};
static unsigned long alchemy_ehci_data[][2] __initdata = {
[ALCHEMY_CPU_AU1200] = { AU1200_USB_EHCI_PHYS_ADDR, AU1200_USB_INT },
[ALCHEMY_CPU_AU1300] = { AU1300_USB_EHCI_PHYS_ADDR, AU1300_USB_INT },
};
static int __init _new_usbres(struct resource **r, struct platform_device **d)
{
*r = kzalloc(sizeof(struct resource) * 2, GFP_KERNEL);
if (!*r)
return -ENOMEM;
*d = kzalloc(sizeof(struct platform_device), GFP_KERNEL);
if (!*d) {
kfree(*r);
return -ENOMEM;
}
(*d)->dev.coherent_dma_mask = DMA_BIT_MASK(32);
(*d)->num_resources = 2;
(*d)->resource = *r;
return 0;
}
static void __init alchemy_setup_usb(int ctype)
{
struct resource *res;
struct platform_device *pdev;
/* setup OHCI0. Every variant has one */
if (_new_usbres(&res, &pdev))
return;
res[0].start = alchemy_ohci_data[ctype][0];
res[0].end = res[0].start + 0x100 - 1;
res[0].flags = IORESOURCE_MEM;
res[1].start = alchemy_ohci_data[ctype][1];
res[1].end = res[1].start;
res[1].flags = IORESOURCE_IRQ;
pdev->name = "au1xxx-ohci";
pdev->id = 0;
pdev->dev.dma_mask = &alchemy_ohci_dmamask;
if (platform_device_register(pdev))
printk(KERN_INFO "Alchemy USB: cannot add OHCI0\n");
/* setup EHCI0: Au1200/Au1300 */
if ((ctype == ALCHEMY_CPU_AU1200) || (ctype == ALCHEMY_CPU_AU1300)) {
if (_new_usbres(&res, &pdev))
return;
res[0].start = alchemy_ehci_data[ctype][0];
res[0].end = res[0].start + 0x100 - 1;
res[0].flags = IORESOURCE_MEM;
res[1].start = alchemy_ehci_data[ctype][1];
res[1].end = res[1].start;
res[1].flags = IORESOURCE_IRQ;
pdev->name = "au1xxx-ehci";
pdev->id = 0;
pdev->dev.dma_mask = &alchemy_ehci_dmamask;
if (platform_device_register(pdev))
printk(KERN_INFO "Alchemy USB: cannot add EHCI0\n");
}
/* Au1300: OHCI1 */
if (ctype == ALCHEMY_CPU_AU1300) {
if (_new_usbres(&res, &pdev))
return;
res[0].start = AU1300_USB_OHCI1_PHYS_ADDR;
res[0].end = res[0].start + 0x100 - 1;
res[0].flags = IORESOURCE_MEM;
res[1].start = AU1300_USB_INT;
res[1].end = res[1].start;
res[1].flags = IORESOURCE_IRQ;
pdev->name = "au1xxx-ohci";
pdev->id = 1;
pdev->dev.dma_mask = &alchemy_ohci_dmamask;
if (platform_device_register(pdev))
printk(KERN_INFO "Alchemy USB: cannot add OHCI1\n");
}
}
/* Macro to help defining the Ethernet MAC resources */
#define MAC_RES_COUNT 4 /* MAC regs, MAC en, MAC INT, MACDMA regs */
#define MAC_RES(_base, _enable, _irq, _macdma) \
{ \
.start = _base, \
.end = _base + 0xffff, \
.flags = IORESOURCE_MEM, \
}, \
{ \
.start = _enable, \
.end = _enable + 0x3, \
.flags = IORESOURCE_MEM, \
}, \
{ \
.start = _irq, \
.end = _irq, \
.flags = IORESOURCE_IRQ \
}, \
{ \
.start = _macdma, \
.end = _macdma + 0x1ff, \
.flags = IORESOURCE_MEM, \
}
static struct resource au1xxx_eth0_resources[][MAC_RES_COUNT] __initdata = {
[ALCHEMY_CPU_AU1000] = {
MAC_RES(AU1000_MAC0_PHYS_ADDR,
AU1000_MACEN_PHYS_ADDR,
AU1000_MAC0_DMA_INT,
AU1000_MACDMA0_PHYS_ADDR)
},
[ALCHEMY_CPU_AU1500] = {
MAC_RES(AU1500_MAC0_PHYS_ADDR,
AU1500_MACEN_PHYS_ADDR,
AU1500_MAC0_DMA_INT,
AU1000_MACDMA0_PHYS_ADDR)
},
[ALCHEMY_CPU_AU1100] = {
MAC_RES(AU1000_MAC0_PHYS_ADDR,
AU1000_MACEN_PHYS_ADDR,
AU1100_MAC0_DMA_INT,
AU1000_MACDMA0_PHYS_ADDR)
},
[ALCHEMY_CPU_AU1550] = {
MAC_RES(AU1000_MAC0_PHYS_ADDR,
AU1000_MACEN_PHYS_ADDR,
AU1550_MAC0_DMA_INT,
AU1000_MACDMA0_PHYS_ADDR)
},
};
static struct au1000_eth_platform_data au1xxx_eth0_platform_data = {
.phy1_search_mac0 = 1,
};
static struct platform_device au1xxx_eth0_device = {
.name = "au1000-eth",
.id = 0,
.num_resources = MAC_RES_COUNT,
.dev.platform_data = &au1xxx_eth0_platform_data,
};
static struct resource au1xxx_eth1_resources[][MAC_RES_COUNT] __initdata = {
[ALCHEMY_CPU_AU1000] = {
MAC_RES(AU1000_MAC1_PHYS_ADDR,
AU1000_MACEN_PHYS_ADDR + 4,
AU1000_MAC1_DMA_INT,
AU1000_MACDMA1_PHYS_ADDR)
},
[ALCHEMY_CPU_AU1500] = {
MAC_RES(AU1500_MAC1_PHYS_ADDR,
AU1500_MACEN_PHYS_ADDR + 4,
AU1500_MAC1_DMA_INT,
AU1000_MACDMA1_PHYS_ADDR)
},
[ALCHEMY_CPU_AU1550] = {
MAC_RES(AU1000_MAC1_PHYS_ADDR,
AU1000_MACEN_PHYS_ADDR + 4,
AU1550_MAC1_DMA_INT,
AU1000_MACDMA1_PHYS_ADDR)
},
};
static struct au1000_eth_platform_data au1xxx_eth1_platform_data = {
.phy1_search_mac0 = 1,
};
static struct platform_device au1xxx_eth1_device = {
.name = "au1000-eth",
.id = 1,
.num_resources = MAC_RES_COUNT,
.dev.platform_data = &au1xxx_eth1_platform_data,
};
void __init au1xxx_override_eth_cfg(unsigned int port,
struct au1000_eth_platform_data *eth_data)
{
if (!eth_data || port > 1)
return;
if (port == 0)
memcpy(&au1xxx_eth0_platform_data, eth_data,
sizeof(struct au1000_eth_platform_data));
else
memcpy(&au1xxx_eth1_platform_data, eth_data,
sizeof(struct au1000_eth_platform_data));
}
static void __init alchemy_setup_macs(int ctype)
{
int ret, i;
unsigned char ethaddr[6];
struct resource *macres;
/* Handle 1st MAC */
if (alchemy_get_macs(ctype) < 1)
return;
macres = kmemdup(au1xxx_eth0_resources[ctype],
sizeof(struct resource) * MAC_RES_COUNT, GFP_KERNEL);
if (!macres) {
printk(KERN_INFO "Alchemy: no memory for MAC0 resources\n");
return;
}
au1xxx_eth0_device.resource = macres;
i = prom_get_ethernet_addr(ethaddr);
if (!i && !is_valid_ether_addr(au1xxx_eth0_platform_data.mac))
memcpy(au1xxx_eth0_platform_data.mac, ethaddr, 6);
ret = platform_device_register(&au1xxx_eth0_device);
if (ret)
printk(KERN_INFO "Alchemy: failed to register MAC0\n");
/* Handle 2nd MAC */
if (alchemy_get_macs(ctype) < 2)
return;
macres = kmemdup(au1xxx_eth1_resources[ctype],
sizeof(struct resource) * MAC_RES_COUNT, GFP_KERNEL);
if (!macres) {
printk(KERN_INFO "Alchemy: no memory for MAC1 resources\n");
return;
}
au1xxx_eth1_device.resource = macres;
ethaddr[5] += 1; /* next addr for 2nd MAC */
if (!i && !is_valid_ether_addr(au1xxx_eth1_platform_data.mac))
memcpy(au1xxx_eth1_platform_data.mac, ethaddr, 6);
/* Register second MAC if enabled in pinfunc */
if (!(au_readl(SYS_PINFUNC) & (u32)SYS_PF_NI2)) {
ret = platform_device_register(&au1xxx_eth1_device);
if (ret)
printk(KERN_INFO "Alchemy: failed to register MAC1\n");
}
}
static int __init au1xxx_platform_init(void)
{
int ctype = alchemy_get_cputype();
alchemy_setup_uarts(ctype);
alchemy_setup_macs(ctype);
alchemy_setup_usb(ctype);
return 0;
}
arch_initcall(au1xxx_platform_init);