linux_old1/include/asm-sparc/bitops.h

539 lines
13 KiB
C

/* $Id: bitops.h,v 1.67 2001/11/19 18:36:34 davem Exp $
* bitops.h: Bit string operations on the Sparc.
*
* Copyright 1995 David S. Miller (davem@caip.rutgers.edu)
* Copyright 1996 Eddie C. Dost (ecd@skynet.be)
* Copyright 2001 Anton Blanchard (anton@samba.org)
*/
#ifndef _SPARC_BITOPS_H
#define _SPARC_BITOPS_H
#include <linux/compiler.h>
#include <asm/byteorder.h>
#ifdef __KERNEL__
/*
* Set bit 'nr' in 32-bit quantity at address 'addr' where bit '0'
* is in the highest of the four bytes and bit '31' is the high bit
* within the first byte. Sparc is BIG-Endian. Unless noted otherwise
* all bit-ops return 0 if bit was previously clear and != 0 otherwise.
*/
static inline int test_and_set_bit(unsigned long nr, volatile unsigned long *addr)
{
register unsigned long mask asm("g2");
register unsigned long *ADDR asm("g1");
register int tmp1 asm("g3");
register int tmp2 asm("g4");
register int tmp3 asm("g5");
register int tmp4 asm("g7");
ADDR = ((unsigned long *) addr) + (nr >> 5);
mask = 1 << (nr & 31);
__asm__ __volatile__(
"mov %%o7, %%g4\n\t"
"call ___set_bit\n\t"
" add %%o7, 8, %%o7\n"
: "=&r" (mask), "=r" (tmp1), "=r" (tmp2), "=r" (tmp3), "=r" (tmp4)
: "0" (mask), "r" (ADDR)
: "memory", "cc");
return mask != 0;
}
static inline void set_bit(unsigned long nr, volatile unsigned long *addr)
{
register unsigned long mask asm("g2");
register unsigned long *ADDR asm("g1");
register int tmp1 asm("g3");
register int tmp2 asm("g4");
register int tmp3 asm("g5");
register int tmp4 asm("g7");
ADDR = ((unsigned long *) addr) + (nr >> 5);
mask = 1 << (nr & 31);
__asm__ __volatile__(
"mov %%o7, %%g4\n\t"
"call ___set_bit\n\t"
" add %%o7, 8, %%o7\n"
: "=&r" (mask), "=r" (tmp1), "=r" (tmp2), "=r" (tmp3), "=r" (tmp4)
: "0" (mask), "r" (ADDR)
: "memory", "cc");
}
static inline int test_and_clear_bit(unsigned long nr, volatile unsigned long *addr)
{
register unsigned long mask asm("g2");
register unsigned long *ADDR asm("g1");
register int tmp1 asm("g3");
register int tmp2 asm("g4");
register int tmp3 asm("g5");
register int tmp4 asm("g7");
ADDR = ((unsigned long *) addr) + (nr >> 5);
mask = 1 << (nr & 31);
__asm__ __volatile__(
"mov %%o7, %%g4\n\t"
"call ___clear_bit\n\t"
" add %%o7, 8, %%o7\n"
: "=&r" (mask), "=r" (tmp1), "=r" (tmp2), "=r" (tmp3), "=r" (tmp4)
: "0" (mask), "r" (ADDR)
: "memory", "cc");
return mask != 0;
}
static inline void clear_bit(unsigned long nr, volatile unsigned long *addr)
{
register unsigned long mask asm("g2");
register unsigned long *ADDR asm("g1");
register int tmp1 asm("g3");
register int tmp2 asm("g4");
register int tmp3 asm("g5");
register int tmp4 asm("g7");
ADDR = ((unsigned long *) addr) + (nr >> 5);
mask = 1 << (nr & 31);
__asm__ __volatile__(
"mov %%o7, %%g4\n\t"
"call ___clear_bit\n\t"
" add %%o7, 8, %%o7\n"
: "=&r" (mask), "=r" (tmp1), "=r" (tmp2), "=r" (tmp3), "=r" (tmp4)
: "0" (mask), "r" (ADDR)
: "memory", "cc");
}
static inline int test_and_change_bit(unsigned long nr, volatile unsigned long *addr)
{
register unsigned long mask asm("g2");
register unsigned long *ADDR asm("g1");
register int tmp1 asm("g3");
register int tmp2 asm("g4");
register int tmp3 asm("g5");
register int tmp4 asm("g7");
ADDR = ((unsigned long *) addr) + (nr >> 5);
mask = 1 << (nr & 31);
__asm__ __volatile__(
"mov %%o7, %%g4\n\t"
"call ___change_bit\n\t"
" add %%o7, 8, %%o7\n"
: "=&r" (mask), "=r" (tmp1), "=r" (tmp2), "=r" (tmp3), "=r" (tmp4)
: "0" (mask), "r" (ADDR)
: "memory", "cc");
return mask != 0;
}
static inline void change_bit(unsigned long nr, volatile unsigned long *addr)
{
register unsigned long mask asm("g2");
register unsigned long *ADDR asm("g1");
register int tmp1 asm("g3");
register int tmp2 asm("g4");
register int tmp3 asm("g5");
register int tmp4 asm("g7");
ADDR = ((unsigned long *) addr) + (nr >> 5);
mask = 1 << (nr & 31);
__asm__ __volatile__(
"mov %%o7, %%g4\n\t"
"call ___change_bit\n\t"
" add %%o7, 8, %%o7\n"
: "=&r" (mask), "=r" (tmp1), "=r" (tmp2), "=r" (tmp3), "=r" (tmp4)
: "0" (mask), "r" (ADDR)
: "memory", "cc");
}
/*
* non-atomic versions
*/
static inline void __set_bit(int nr, volatile unsigned long *addr)
{
unsigned long mask = 1UL << (nr & 0x1f);
unsigned long *p = ((unsigned long *)addr) + (nr >> 5);
*p |= mask;
}
static inline void __clear_bit(int nr, volatile unsigned long *addr)
{
unsigned long mask = 1UL << (nr & 0x1f);
unsigned long *p = ((unsigned long *)addr) + (nr >> 5);
*p &= ~mask;
}
static inline void __change_bit(int nr, volatile unsigned long *addr)
{
unsigned long mask = 1UL << (nr & 0x1f);
unsigned long *p = ((unsigned long *)addr) + (nr >> 5);
*p ^= mask;
}
static inline int __test_and_set_bit(int nr, volatile unsigned long *addr)
{
unsigned long mask = 1UL << (nr & 0x1f);
unsigned long *p = ((unsigned long *)addr) + (nr >> 5);
unsigned long old = *p;
*p = old | mask;
return (old & mask) != 0;
}
static inline int __test_and_clear_bit(int nr, volatile unsigned long *addr)
{
unsigned long mask = 1UL << (nr & 0x1f);
unsigned long *p = ((unsigned long *)addr) + (nr >> 5);
unsigned long old = *p;
*p = old & ~mask;
return (old & mask) != 0;
}
static inline int __test_and_change_bit(int nr, volatile unsigned long *addr)
{
unsigned long mask = 1UL << (nr & 0x1f);
unsigned long *p = ((unsigned long *)addr) + (nr >> 5);
unsigned long old = *p;
*p = old ^ mask;
return (old & mask) != 0;
}
#define smp_mb__before_clear_bit() do { } while(0)
#define smp_mb__after_clear_bit() do { } while(0)
/* The following routine need not be atomic. */
static inline int test_bit(int nr, __const__ volatile unsigned long *addr)
{
return (1UL & (((unsigned long *)addr)[nr >> 5] >> (nr & 31))) != 0UL;
}
/* The easy/cheese version for now. */
static inline unsigned long ffz(unsigned long word)
{
unsigned long result = 0;
while(word & 1) {
result++;
word >>= 1;
}
return result;
}
/**
* __ffs - find first bit in word.
* @word: The word to search
*
* Undefined if no bit exists, so code should check against 0 first.
*/
static inline int __ffs(unsigned long word)
{
int num = 0;
if ((word & 0xffff) == 0) {
num += 16;
word >>= 16;
}
if ((word & 0xff) == 0) {
num += 8;
word >>= 8;
}
if ((word & 0xf) == 0) {
num += 4;
word >>= 4;
}
if ((word & 0x3) == 0) {
num += 2;
word >>= 2;
}
if ((word & 0x1) == 0)
num += 1;
return num;
}
/*
* Every architecture must define this function. It's the fastest
* way of searching a 140-bit bitmap where the first 100 bits are
* unlikely to be set. It's guaranteed that at least one of the 140
* bits is cleared.
*/
static inline int sched_find_first_bit(unsigned long *b)
{
if (unlikely(b[0]))
return __ffs(b[0]);
if (unlikely(b[1]))
return __ffs(b[1]) + 32;
if (unlikely(b[2]))
return __ffs(b[2]) + 64;
if (b[3])
return __ffs(b[3]) + 96;
return __ffs(b[4]) + 128;
}
/*
* ffs: find first bit set. This is defined the same way as
* the libc and compiler builtin ffs routines, therefore
* differs in spirit from the above ffz (man ffs).
*/
static inline int ffs(int x)
{
if (!x)
return 0;
return __ffs((unsigned long)x) + 1;
}
/*
* fls: find last (most-significant) bit set.
* Note fls(0) = 0, fls(1) = 1, fls(0x80000000) = 32.
*/
#define fls(x) generic_fls(x)
#define fls64(x) generic_fls64(x)
/*
* hweightN: returns the hamming weight (i.e. the number
* of bits set) of a N-bit word
*/
#define hweight32(x) generic_hweight32(x)
#define hweight16(x) generic_hweight16(x)
#define hweight8(x) generic_hweight8(x)
/*
* find_next_zero_bit() finds the first zero bit in a bit string of length
* 'size' bits, starting the search at bit 'offset'. This is largely based
* on Linus's ALPHA routines, which are pretty portable BTW.
*/
static inline unsigned long find_next_zero_bit(const unsigned long *addr,
unsigned long size, unsigned long offset)
{
const unsigned long *p = addr + (offset >> 5);
unsigned long result = offset & ~31UL;
unsigned long tmp;
if (offset >= size)
return size;
size -= result;
offset &= 31UL;
if (offset) {
tmp = *(p++);
tmp |= ~0UL >> (32-offset);
if (size < 32)
goto found_first;
if (~tmp)
goto found_middle;
size -= 32;
result += 32;
}
while (size & ~31UL) {
if (~(tmp = *(p++)))
goto found_middle;
result += 32;
size -= 32;
}
if (!size)
return result;
tmp = *p;
found_first:
tmp |= ~0UL << size;
if (tmp == ~0UL) /* Are any bits zero? */
return result + size; /* Nope. */
found_middle:
return result + ffz(tmp);
}
/*
* Linus sez that gcc can optimize the following correctly, we'll see if this
* holds on the Sparc as it does for the ALPHA.
*/
#define find_first_zero_bit(addr, size) \
find_next_zero_bit((addr), (size), 0)
/**
* find_next_bit - find the first set bit in a memory region
* @addr: The address to base the search on
* @offset: The bitnumber to start searching at
* @size: The maximum size to search
*
* Scheduler induced bitop, do not use.
*/
static inline int find_next_bit(const unsigned long *addr, int size, int offset)
{
const unsigned long *p = addr + (offset >> 5);
int num = offset & ~0x1f;
unsigned long word;
word = *p++;
word &= ~((1 << (offset & 0x1f)) - 1);
while (num < size) {
if (word != 0) {
return __ffs(word) + num;
}
word = *p++;
num += 0x20;
}
return num;
}
/**
* find_first_bit - find the first set bit in a memory region
* @addr: The address to start the search at
* @size: The maximum size to search
*
* Returns the bit-number of the first set bit, not the number of the byte
* containing a bit.
*/
#define find_first_bit(addr, size) \
find_next_bit((addr), (size), 0)
/*
*/
static inline int test_le_bit(int nr, __const__ unsigned long * addr)
{
__const__ unsigned char *ADDR = (__const__ unsigned char *) addr;
return (ADDR[nr >> 3] >> (nr & 7)) & 1;
}
/*
* non-atomic versions
*/
static inline void __set_le_bit(int nr, unsigned long *addr)
{
unsigned char *ADDR = (unsigned char *)addr;
ADDR += nr >> 3;
*ADDR |= 1 << (nr & 0x07);
}
static inline void __clear_le_bit(int nr, unsigned long *addr)
{
unsigned char *ADDR = (unsigned char *)addr;
ADDR += nr >> 3;
*ADDR &= ~(1 << (nr & 0x07));
}
static inline int __test_and_set_le_bit(int nr, unsigned long *addr)
{
int mask, retval;
unsigned char *ADDR = (unsigned char *)addr;
ADDR += nr >> 3;
mask = 1 << (nr & 0x07);
retval = (mask & *ADDR) != 0;
*ADDR |= mask;
return retval;
}
static inline int __test_and_clear_le_bit(int nr, unsigned long *addr)
{
int mask, retval;
unsigned char *ADDR = (unsigned char *)addr;
ADDR += nr >> 3;
mask = 1 << (nr & 0x07);
retval = (mask & *ADDR) != 0;
*ADDR &= ~mask;
return retval;
}
static inline unsigned long find_next_zero_le_bit(const unsigned long *addr,
unsigned long size, unsigned long offset)
{
const unsigned long *p = addr + (offset >> 5);
unsigned long result = offset & ~31UL;
unsigned long tmp;
if (offset >= size)
return size;
size -= result;
offset &= 31UL;
if(offset) {
tmp = *(p++);
tmp |= __swab32(~0UL >> (32-offset));
if(size < 32)
goto found_first;
if(~tmp)
goto found_middle;
size -= 32;
result += 32;
}
while(size & ~31UL) {
if(~(tmp = *(p++)))
goto found_middle;
result += 32;
size -= 32;
}
if(!size)
return result;
tmp = *p;
found_first:
tmp = __swab32(tmp) | (~0UL << size);
if (tmp == ~0UL) /* Are any bits zero? */
return result + size; /* Nope. */
return result + ffz(tmp);
found_middle:
return result + ffz(__swab32(tmp));
}
#define find_first_zero_le_bit(addr, size) \
find_next_zero_le_bit((addr), (size), 0)
#define ext2_set_bit(nr,addr) \
__test_and_set_le_bit((nr),(unsigned long *)(addr))
#define ext2_clear_bit(nr,addr) \
__test_and_clear_le_bit((nr),(unsigned long *)(addr))
#define ext2_set_bit_atomic(lock, nr, addr) \
({ \
int ret; \
spin_lock(lock); \
ret = ext2_set_bit((nr), (unsigned long *)(addr)); \
spin_unlock(lock); \
ret; \
})
#define ext2_clear_bit_atomic(lock, nr, addr) \
({ \
int ret; \
spin_lock(lock); \
ret = ext2_clear_bit((nr), (unsigned long *)(addr)); \
spin_unlock(lock); \
ret; \
})
#define ext2_test_bit(nr,addr) \
test_le_bit((nr),(unsigned long *)(addr))
#define ext2_find_first_zero_bit(addr, size) \
find_first_zero_le_bit((unsigned long *)(addr), (size))
#define ext2_find_next_zero_bit(addr, size, off) \
find_next_zero_le_bit((unsigned long *)(addr), (size), (off))
/* Bitmap functions for the minix filesystem. */
#define minix_test_and_set_bit(nr,addr) \
test_and_set_bit((nr),(unsigned long *)(addr))
#define minix_set_bit(nr,addr) \
set_bit((nr),(unsigned long *)(addr))
#define minix_test_and_clear_bit(nr,addr) \
test_and_clear_bit((nr),(unsigned long *)(addr))
#define minix_test_bit(nr,addr) \
test_bit((nr),(unsigned long *)(addr))
#define minix_find_first_zero_bit(addr,size) \
find_first_zero_bit((unsigned long *)(addr),(size))
#endif /* __KERNEL__ */
#endif /* defined(_SPARC_BITOPS_H) */