linux_old1/drivers/net/wireless/iwlwifi/iwl-prph.h

258 lines
10 KiB
C

/******************************************************************************
*
* This file is provided under a dual BSD/GPLv2 license. When using or
* redistributing this file, you may do so under either license.
*
* GPL LICENSE SUMMARY
*
* Copyright(c) 2005 - 2012 Intel Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
* USA
*
* The full GNU General Public License is included in this distribution
* in the file called LICENSE.GPL.
*
* Contact Information:
* Intel Linux Wireless <ilw@linux.intel.com>
* Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
*
* BSD LICENSE
*
* Copyright(c) 2005 - 2012 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*****************************************************************************/
#ifndef __iwl_prph_h__
#define __iwl_prph_h__
/*
* Registers in this file are internal, not PCI bus memory mapped.
* Driver accesses these via HBUS_TARG_PRPH_* registers.
*/
#define PRPH_BASE (0x00000)
#define PRPH_END (0xFFFFF)
/* APMG (power management) constants */
#define APMG_BASE (PRPH_BASE + 0x3000)
#define APMG_CLK_CTRL_REG (APMG_BASE + 0x0000)
#define APMG_CLK_EN_REG (APMG_BASE + 0x0004)
#define APMG_CLK_DIS_REG (APMG_BASE + 0x0008)
#define APMG_PS_CTRL_REG (APMG_BASE + 0x000c)
#define APMG_PCIDEV_STT_REG (APMG_BASE + 0x0010)
#define APMG_RFKILL_REG (APMG_BASE + 0x0014)
#define APMG_RTC_INT_STT_REG (APMG_BASE + 0x001c)
#define APMG_RTC_INT_MSK_REG (APMG_BASE + 0x0020)
#define APMG_DIGITAL_SVR_REG (APMG_BASE + 0x0058)
#define APMG_ANALOG_SVR_REG (APMG_BASE + 0x006C)
#define APMS_CLK_VAL_MRB_FUNC_MODE (0x00000001)
#define APMG_CLK_VAL_DMA_CLK_RQT (0x00000200)
#define APMG_CLK_VAL_BSM_CLK_RQT (0x00000800)
#define APMG_PS_CTRL_EARLY_PWR_OFF_RESET_DIS (0x00400000)
#define APMG_PS_CTRL_VAL_RESET_REQ (0x04000000)
#define APMG_PS_CTRL_MSK_PWR_SRC (0x03000000)
#define APMG_PS_CTRL_VAL_PWR_SRC_VMAIN (0x00000000)
#define APMG_PS_CTRL_VAL_PWR_SRC_VAUX (0x02000000)
#define APMG_SVR_VOLTAGE_CONFIG_BIT_MSK (0x000001E0) /* bit 8:5 */
#define APMG_SVR_DIGITAL_VOLTAGE_1_32 (0x00000060)
#define APMG_PCIDEV_STT_VAL_L1_ACT_DIS (0x00000800)
/**
* Tx Scheduler
*
* The Tx Scheduler selects the next frame to be transmitted, choosing TFDs
* (Transmit Frame Descriptors) from up to 16 circular Tx queues resident in
* host DRAM. It steers each frame's Tx command (which contains the frame
* data) into one of up to 7 prioritized Tx DMA FIFO channels within the
* device. A queue maps to only one (selectable by driver) Tx DMA channel,
* but one DMA channel may take input from several queues.
*
* Tx DMA FIFOs have dedicated purposes.
*
* For 5000 series and up, they are used differently
* (cf. iwl5000_default_queue_to_tx_fifo in iwl-5000.c):
*
* 0 -- EDCA BK (background) frames, lowest priority
* 1 -- EDCA BE (best effort) frames, normal priority
* 2 -- EDCA VI (video) frames, higher priority
* 3 -- EDCA VO (voice) and management frames, highest priority
* 4 -- unused
* 5 -- unused
* 6 -- unused
* 7 -- Commands
*
* Driver should normally map queues 0-6 to Tx DMA/FIFO channels 0-6.
* In addition, driver can map the remaining queues to Tx DMA/FIFO
* channels 0-3 to support 11n aggregation via EDCA DMA channels.
*
* The driver sets up each queue to work in one of two modes:
*
* 1) Scheduler-Ack, in which the scheduler automatically supports a
* block-ack (BA) window of up to 64 TFDs. In this mode, each queue
* contains TFDs for a unique combination of Recipient Address (RA)
* and Traffic Identifier (TID), that is, traffic of a given
* Quality-Of-Service (QOS) priority, destined for a single station.
*
* In scheduler-ack mode, the scheduler keeps track of the Tx status of
* each frame within the BA window, including whether it's been transmitted,
* and whether it's been acknowledged by the receiving station. The device
* automatically processes block-acks received from the receiving STA,
* and reschedules un-acked frames to be retransmitted (successful
* Tx completion may end up being out-of-order).
*
* The driver must maintain the queue's Byte Count table in host DRAM
* for this mode.
* This mode does not support fragmentation.
*
* 2) FIFO (a.k.a. non-Scheduler-ACK), in which each TFD is processed in order.
* The device may automatically retry Tx, but will retry only one frame
* at a time, until receiving ACK from receiving station, or reaching
* retry limit and giving up.
*
* The command queue (#4/#9) must use this mode!
* This mode does not require use of the Byte Count table in host DRAM.
*
* Driver controls scheduler operation via 3 means:
* 1) Scheduler registers
* 2) Shared scheduler data base in internal SRAM
* 3) Shared data in host DRAM
*
* Initialization:
*
* When loading, driver should allocate memory for:
* 1) 16 TFD circular buffers, each with space for (typically) 256 TFDs.
* 2) 16 Byte Count circular buffers in 16 KBytes contiguous memory
* (1024 bytes for each queue).
*
* After receiving "Alive" response from uCode, driver must initialize
* the scheduler (especially for queue #4/#9, the command queue, otherwise
* the driver can't issue commands!):
*/
#define SCD_MEM_LOWER_BOUND (0x0000)
/**
* Max Tx window size is the max number of contiguous TFDs that the scheduler
* can keep track of at one time when creating block-ack chains of frames.
* Note that "64" matches the number of ack bits in a block-ack packet.
*/
#define SCD_WIN_SIZE 64
#define SCD_FRAME_LIMIT 64
#define SCD_TXFIFO_POS_TID (0)
#define SCD_TXFIFO_POS_RA (4)
#define SCD_QUEUE_RA_TID_MAP_RATID_MSK (0x01FF)
/* agn SCD */
#define SCD_QUEUE_STTS_REG_POS_TXF (0)
#define SCD_QUEUE_STTS_REG_POS_ACTIVE (3)
#define SCD_QUEUE_STTS_REG_POS_WSL (4)
#define SCD_QUEUE_STTS_REG_POS_SCD_ACT_EN (19)
#define SCD_QUEUE_STTS_REG_MSK (0x017F0000)
#define SCD_QUEUE_CTX_REG1_CREDIT_POS (8)
#define SCD_QUEUE_CTX_REG1_CREDIT_MSK (0x00FFFF00)
#define SCD_QUEUE_CTX_REG1_SUPER_CREDIT_POS (24)
#define SCD_QUEUE_CTX_REG1_SUPER_CREDIT_MSK (0xFF000000)
#define SCD_QUEUE_CTX_REG2_WIN_SIZE_POS (0)
#define SCD_QUEUE_CTX_REG2_WIN_SIZE_MSK (0x0000007F)
#define SCD_QUEUE_CTX_REG2_FRAME_LIMIT_POS (16)
#define SCD_QUEUE_CTX_REG2_FRAME_LIMIT_MSK (0x007F0000)
/* Context Data */
#define SCD_CONTEXT_MEM_LOWER_BOUND (SCD_MEM_LOWER_BOUND + 0x600)
#define SCD_CONTEXT_MEM_UPPER_BOUND (SCD_MEM_LOWER_BOUND + 0x6A0)
/* Tx status */
#define SCD_TX_STTS_MEM_LOWER_BOUND (SCD_MEM_LOWER_BOUND + 0x6A0)
#define SCD_TX_STTS_MEM_UPPER_BOUND (SCD_MEM_LOWER_BOUND + 0x7E0)
/* Translation Data */
#define SCD_TRANS_TBL_MEM_LOWER_BOUND (SCD_MEM_LOWER_BOUND + 0x7E0)
#define SCD_TRANS_TBL_MEM_UPPER_BOUND (SCD_MEM_LOWER_BOUND + 0x808)
#define SCD_CONTEXT_QUEUE_OFFSET(x)\
(SCD_CONTEXT_MEM_LOWER_BOUND + ((x) * 8))
#define SCD_TRANS_TBL_OFFSET_QUEUE(x) \
((SCD_TRANS_TBL_MEM_LOWER_BOUND + ((x) * 2)) & 0xfffc)
#define SCD_BASE (PRPH_BASE + 0xa02c00)
#define SCD_SRAM_BASE_ADDR (SCD_BASE + 0x0)
#define SCD_DRAM_BASE_ADDR (SCD_BASE + 0x8)
#define SCD_AIT (SCD_BASE + 0x0c)
#define SCD_TXFACT (SCD_BASE + 0x10)
#define SCD_ACTIVE (SCD_BASE + 0x14)
#define SCD_QUEUECHAIN_SEL (SCD_BASE + 0xe8)
#define SCD_CHAINEXT_EN (SCD_BASE + 0x244)
#define SCD_AGGR_SEL (SCD_BASE + 0x248)
#define SCD_INTERRUPT_MASK (SCD_BASE + 0x108)
static inline unsigned int SCD_QUEUE_WRPTR(unsigned int chnl)
{
if (chnl < 20)
return SCD_BASE + 0x18 + chnl * 4;
WARN_ON_ONCE(chnl >= 32);
return SCD_BASE + 0x284 + (chnl - 20) * 4;
}
static inline unsigned int SCD_QUEUE_RDPTR(unsigned int chnl)
{
if (chnl < 20)
return SCD_BASE + 0x68 + chnl * 4;
WARN_ON_ONCE(chnl >= 32);
return SCD_BASE + 0x2B4 + (chnl - 20) * 4;
}
static inline unsigned int SCD_QUEUE_STATUS_BITS(unsigned int chnl)
{
if (chnl < 20)
return SCD_BASE + 0x10c + chnl * 4;
WARN_ON_ONCE(chnl >= 32);
return SCD_BASE + 0x384 + (chnl - 20) * 4;
}
/*********************** END TX SCHEDULER *************************************/
#endif /* __iwl_prph_h__ */