linux_old1/arch/mips/kernel/cpu-probe.c

1721 lines
42 KiB
C

/*
* Processor capabilities determination functions.
*
* Copyright (C) xxxx the Anonymous
* Copyright (C) 1994 - 2006 Ralf Baechle
* Copyright (C) 2003, 2004 Maciej W. Rozycki
* Copyright (C) 2001, 2004, 2011, 2012 MIPS Technologies, Inc.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/ptrace.h>
#include <linux/smp.h>
#include <linux/stddef.h>
#include <linux/export.h>
#include <asm/bugs.h>
#include <asm/cpu.h>
#include <asm/cpu-features.h>
#include <asm/cpu-type.h>
#include <asm/fpu.h>
#include <asm/mipsregs.h>
#include <asm/mipsmtregs.h>
#include <asm/msa.h>
#include <asm/watch.h>
#include <asm/elf.h>
#include <asm/pgtable-bits.h>
#include <asm/spram.h>
#include <asm/uaccess.h>
/* Hardware capabilities */
unsigned int elf_hwcap __read_mostly;
/*
* Get the FPU Implementation/Revision.
*/
static inline unsigned long cpu_get_fpu_id(void)
{
unsigned long tmp, fpu_id;
tmp = read_c0_status();
__enable_fpu(FPU_AS_IS);
fpu_id = read_32bit_cp1_register(CP1_REVISION);
write_c0_status(tmp);
return fpu_id;
}
/*
* Check if the CPU has an external FPU.
*/
static inline int __cpu_has_fpu(void)
{
return (cpu_get_fpu_id() & FPIR_IMP_MASK) != FPIR_IMP_NONE;
}
static inline unsigned long cpu_get_msa_id(void)
{
unsigned long status, msa_id;
status = read_c0_status();
__enable_fpu(FPU_64BIT);
enable_msa();
msa_id = read_msa_ir();
disable_msa();
write_c0_status(status);
return msa_id;
}
/*
* Determine the FCSR mask for FPU hardware.
*/
static inline void cpu_set_fpu_fcsr_mask(struct cpuinfo_mips *c)
{
unsigned long sr, mask, fcsr, fcsr0, fcsr1;
fcsr = c->fpu_csr31;
mask = FPU_CSR_ALL_X | FPU_CSR_ALL_E | FPU_CSR_ALL_S | FPU_CSR_RM;
sr = read_c0_status();
__enable_fpu(FPU_AS_IS);
fcsr0 = fcsr & mask;
write_32bit_cp1_register(CP1_STATUS, fcsr0);
fcsr0 = read_32bit_cp1_register(CP1_STATUS);
fcsr1 = fcsr | ~mask;
write_32bit_cp1_register(CP1_STATUS, fcsr1);
fcsr1 = read_32bit_cp1_register(CP1_STATUS);
write_32bit_cp1_register(CP1_STATUS, fcsr);
write_c0_status(sr);
c->fpu_msk31 = ~(fcsr0 ^ fcsr1) & ~mask;
}
/*
* Determine the IEEE 754 NaN encodings and ABS.fmt/NEG.fmt execution modes
* supported by FPU hardware.
*/
static void cpu_set_fpu_2008(struct cpuinfo_mips *c)
{
if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1 |
MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 |
MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6)) {
unsigned long sr, fir, fcsr, fcsr0, fcsr1;
sr = read_c0_status();
__enable_fpu(FPU_AS_IS);
fir = read_32bit_cp1_register(CP1_REVISION);
if (fir & MIPS_FPIR_HAS2008) {
fcsr = read_32bit_cp1_register(CP1_STATUS);
fcsr0 = fcsr & ~(FPU_CSR_ABS2008 | FPU_CSR_NAN2008);
write_32bit_cp1_register(CP1_STATUS, fcsr0);
fcsr0 = read_32bit_cp1_register(CP1_STATUS);
fcsr1 = fcsr | FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
write_32bit_cp1_register(CP1_STATUS, fcsr1);
fcsr1 = read_32bit_cp1_register(CP1_STATUS);
write_32bit_cp1_register(CP1_STATUS, fcsr);
if (!(fcsr0 & FPU_CSR_NAN2008))
c->options |= MIPS_CPU_NAN_LEGACY;
if (fcsr1 & FPU_CSR_NAN2008)
c->options |= MIPS_CPU_NAN_2008;
if ((fcsr0 ^ fcsr1) & FPU_CSR_ABS2008)
c->fpu_msk31 &= ~FPU_CSR_ABS2008;
else
c->fpu_csr31 |= fcsr & FPU_CSR_ABS2008;
if ((fcsr0 ^ fcsr1) & FPU_CSR_NAN2008)
c->fpu_msk31 &= ~FPU_CSR_NAN2008;
else
c->fpu_csr31 |= fcsr & FPU_CSR_NAN2008;
} else {
c->options |= MIPS_CPU_NAN_LEGACY;
}
write_c0_status(sr);
} else {
c->options |= MIPS_CPU_NAN_LEGACY;
}
}
/*
* IEEE 754 conformance mode to use. Affects the NaN encoding and the
* ABS.fmt/NEG.fmt execution mode.
*/
static enum { STRICT, LEGACY, STD2008, RELAXED } ieee754 = STRICT;
/*
* Set the IEEE 754 NaN encodings and the ABS.fmt/NEG.fmt execution modes
* to support by the FPU emulator according to the IEEE 754 conformance
* mode selected. Note that "relaxed" straps the emulator so that it
* allows 2008-NaN binaries even for legacy processors.
*/
static void cpu_set_nofpu_2008(struct cpuinfo_mips *c)
{
c->options &= ~(MIPS_CPU_NAN_2008 | MIPS_CPU_NAN_LEGACY);
c->fpu_csr31 &= ~(FPU_CSR_ABS2008 | FPU_CSR_NAN2008);
c->fpu_msk31 &= ~(FPU_CSR_ABS2008 | FPU_CSR_NAN2008);
switch (ieee754) {
case STRICT:
if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1 |
MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 |
MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6)) {
c->options |= MIPS_CPU_NAN_2008 | MIPS_CPU_NAN_LEGACY;
} else {
c->options |= MIPS_CPU_NAN_LEGACY;
c->fpu_msk31 |= FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
}
break;
case LEGACY:
c->options |= MIPS_CPU_NAN_LEGACY;
c->fpu_msk31 |= FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
break;
case STD2008:
c->options |= MIPS_CPU_NAN_2008;
c->fpu_csr31 |= FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
c->fpu_msk31 |= FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
break;
case RELAXED:
c->options |= MIPS_CPU_NAN_2008 | MIPS_CPU_NAN_LEGACY;
break;
}
}
/*
* Override the IEEE 754 NaN encoding and ABS.fmt/NEG.fmt execution mode
* according to the "ieee754=" parameter.
*/
static void cpu_set_nan_2008(struct cpuinfo_mips *c)
{
switch (ieee754) {
case STRICT:
mips_use_nan_legacy = !!cpu_has_nan_legacy;
mips_use_nan_2008 = !!cpu_has_nan_2008;
break;
case LEGACY:
mips_use_nan_legacy = !!cpu_has_nan_legacy;
mips_use_nan_2008 = !cpu_has_nan_legacy;
break;
case STD2008:
mips_use_nan_legacy = !cpu_has_nan_2008;
mips_use_nan_2008 = !!cpu_has_nan_2008;
break;
case RELAXED:
mips_use_nan_legacy = true;
mips_use_nan_2008 = true;
break;
}
}
/*
* IEEE 754 NaN encoding and ABS.fmt/NEG.fmt execution mode override
* settings:
*
* strict: accept binaries that request a NaN encoding supported by the FPU
* legacy: only accept legacy-NaN binaries
* 2008: only accept 2008-NaN binaries
* relaxed: accept any binaries regardless of whether supported by the FPU
*/
static int __init ieee754_setup(char *s)
{
if (!s)
return -1;
else if (!strcmp(s, "strict"))
ieee754 = STRICT;
else if (!strcmp(s, "legacy"))
ieee754 = LEGACY;
else if (!strcmp(s, "2008"))
ieee754 = STD2008;
else if (!strcmp(s, "relaxed"))
ieee754 = RELAXED;
else
return -1;
if (!(boot_cpu_data.options & MIPS_CPU_FPU))
cpu_set_nofpu_2008(&boot_cpu_data);
cpu_set_nan_2008(&boot_cpu_data);
return 0;
}
early_param("ieee754", ieee754_setup);
/*
* Set the FIR feature flags for the FPU emulator.
*/
static void cpu_set_nofpu_id(struct cpuinfo_mips *c)
{
u32 value;
value = 0;
if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1 |
MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 |
MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6))
value |= MIPS_FPIR_D | MIPS_FPIR_S;
if (c->isa_level & (MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 |
MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6))
value |= MIPS_FPIR_F64 | MIPS_FPIR_L | MIPS_FPIR_W;
if (c->options & MIPS_CPU_NAN_2008)
value |= MIPS_FPIR_HAS2008;
c->fpu_id = value;
}
/* Determined FPU emulator mask to use for the boot CPU with "nofpu". */
static unsigned int mips_nofpu_msk31;
/*
* Set options for FPU hardware.
*/
static void cpu_set_fpu_opts(struct cpuinfo_mips *c)
{
c->fpu_id = cpu_get_fpu_id();
mips_nofpu_msk31 = c->fpu_msk31;
if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1 |
MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 |
MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6)) {
if (c->fpu_id & MIPS_FPIR_3D)
c->ases |= MIPS_ASE_MIPS3D;
if (c->fpu_id & MIPS_FPIR_FREP)
c->options |= MIPS_CPU_FRE;
}
cpu_set_fpu_fcsr_mask(c);
cpu_set_fpu_2008(c);
cpu_set_nan_2008(c);
}
/*
* Set options for the FPU emulator.
*/
static void cpu_set_nofpu_opts(struct cpuinfo_mips *c)
{
c->options &= ~MIPS_CPU_FPU;
c->fpu_msk31 = mips_nofpu_msk31;
cpu_set_nofpu_2008(c);
cpu_set_nan_2008(c);
cpu_set_nofpu_id(c);
}
static int mips_fpu_disabled;
static int __init fpu_disable(char *s)
{
cpu_set_nofpu_opts(&boot_cpu_data);
mips_fpu_disabled = 1;
return 1;
}
__setup("nofpu", fpu_disable);
int mips_dsp_disabled;
static int __init dsp_disable(char *s)
{
cpu_data[0].ases &= ~(MIPS_ASE_DSP | MIPS_ASE_DSP2P);
mips_dsp_disabled = 1;
return 1;
}
__setup("nodsp", dsp_disable);
static int mips_htw_disabled;
static int __init htw_disable(char *s)
{
mips_htw_disabled = 1;
cpu_data[0].options &= ~MIPS_CPU_HTW;
write_c0_pwctl(read_c0_pwctl() &
~(1 << MIPS_PWCTL_PWEN_SHIFT));
return 1;
}
__setup("nohtw", htw_disable);
static int mips_ftlb_disabled;
static int mips_has_ftlb_configured;
static int set_ftlb_enable(struct cpuinfo_mips *c, int enable);
static int __init ftlb_disable(char *s)
{
unsigned int config4, mmuextdef;
/*
* If the core hasn't done any FTLB configuration, there is nothing
* for us to do here.
*/
if (!mips_has_ftlb_configured)
return 1;
/* Disable it in the boot cpu */
if (set_ftlb_enable(&cpu_data[0], 0)) {
pr_warn("Can't turn FTLB off\n");
return 1;
}
back_to_back_c0_hazard();
config4 = read_c0_config4();
/* Check that FTLB has been disabled */
mmuextdef = config4 & MIPS_CONF4_MMUEXTDEF;
/* MMUSIZEEXT == VTLB ON, FTLB OFF */
if (mmuextdef == MIPS_CONF4_MMUEXTDEF_FTLBSIZEEXT) {
/* This should never happen */
pr_warn("FTLB could not be disabled!\n");
return 1;
}
mips_ftlb_disabled = 1;
mips_has_ftlb_configured = 0;
/*
* noftlb is mainly used for debug purposes so print
* an informative message instead of using pr_debug()
*/
pr_info("FTLB has been disabled\n");
/*
* Some of these bits are duplicated in the decode_config4.
* MIPS_CONF4_MMUEXTDEF_MMUSIZEEXT is the only possible case
* once FTLB has been disabled so undo what decode_config4 did.
*/
cpu_data[0].tlbsize -= cpu_data[0].tlbsizeftlbways *
cpu_data[0].tlbsizeftlbsets;
cpu_data[0].tlbsizeftlbsets = 0;
cpu_data[0].tlbsizeftlbways = 0;
return 1;
}
__setup("noftlb", ftlb_disable);
static inline void check_errata(void)
{
struct cpuinfo_mips *c = &current_cpu_data;
switch (current_cpu_type()) {
case CPU_34K:
/*
* Erratum "RPS May Cause Incorrect Instruction Execution"
* This code only handles VPE0, any SMP/RTOS code
* making use of VPE1 will be responsable for that VPE.
*/
if ((c->processor_id & PRID_REV_MASK) <= PRID_REV_34K_V1_0_2)
write_c0_config7(read_c0_config7() | MIPS_CONF7_RPS);
break;
default:
break;
}
}
void __init check_bugs32(void)
{
check_errata();
}
/*
* Probe whether cpu has config register by trying to play with
* alternate cache bit and see whether it matters.
* It's used by cpu_probe to distinguish between R3000A and R3081.
*/
static inline int cpu_has_confreg(void)
{
#ifdef CONFIG_CPU_R3000
extern unsigned long r3k_cache_size(unsigned long);
unsigned long size1, size2;
unsigned long cfg = read_c0_conf();
size1 = r3k_cache_size(ST0_ISC);
write_c0_conf(cfg ^ R30XX_CONF_AC);
size2 = r3k_cache_size(ST0_ISC);
write_c0_conf(cfg);
return size1 != size2;
#else
return 0;
#endif
}
static inline void set_elf_platform(int cpu, const char *plat)
{
if (cpu == 0)
__elf_platform = plat;
}
static inline void cpu_probe_vmbits(struct cpuinfo_mips *c)
{
#ifdef __NEED_VMBITS_PROBE
write_c0_entryhi(0x3fffffffffffe000ULL);
back_to_back_c0_hazard();
c->vmbits = fls64(read_c0_entryhi() & 0x3fffffffffffe000ULL);
#endif
}
static void set_isa(struct cpuinfo_mips *c, unsigned int isa)
{
switch (isa) {
case MIPS_CPU_ISA_M64R2:
c->isa_level |= MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2;
case MIPS_CPU_ISA_M64R1:
c->isa_level |= MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1;
case MIPS_CPU_ISA_V:
c->isa_level |= MIPS_CPU_ISA_V;
case MIPS_CPU_ISA_IV:
c->isa_level |= MIPS_CPU_ISA_IV;
case MIPS_CPU_ISA_III:
c->isa_level |= MIPS_CPU_ISA_II | MIPS_CPU_ISA_III;
break;
/* R6 incompatible with everything else */
case MIPS_CPU_ISA_M64R6:
c->isa_level |= MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6;
case MIPS_CPU_ISA_M32R6:
c->isa_level |= MIPS_CPU_ISA_M32R6;
/* Break here so we don't add incompatible ISAs */
break;
case MIPS_CPU_ISA_M32R2:
c->isa_level |= MIPS_CPU_ISA_M32R2;
case MIPS_CPU_ISA_M32R1:
c->isa_level |= MIPS_CPU_ISA_M32R1;
case MIPS_CPU_ISA_II:
c->isa_level |= MIPS_CPU_ISA_II;
break;
}
}
static char unknown_isa[] = KERN_ERR \
"Unsupported ISA type, c0.config0: %d.";
static unsigned int calculate_ftlb_probability(struct cpuinfo_mips *c)
{
unsigned int probability = c->tlbsize / c->tlbsizevtlb;
/*
* 0 = All TLBWR instructions go to FTLB
* 1 = 15:1: For every 16 TBLWR instructions, 15 go to the
* FTLB and 1 goes to the VTLB.
* 2 = 7:1: As above with 7:1 ratio.
* 3 = 3:1: As above with 3:1 ratio.
*
* Use the linear midpoint as the probability threshold.
*/
if (probability >= 12)
return 1;
else if (probability >= 6)
return 2;
else
/*
* So FTLB is less than 4 times bigger than VTLB.
* A 3:1 ratio can still be useful though.
*/
return 3;
}
static int set_ftlb_enable(struct cpuinfo_mips *c, int enable)
{
unsigned int config;
/* It's implementation dependent how the FTLB can be enabled */
switch (c->cputype) {
case CPU_PROAPTIV:
case CPU_P5600:
/* proAptiv & related cores use Config6 to enable the FTLB */
config = read_c0_config6();
/* Clear the old probability value */
config &= ~(3 << MIPS_CONF6_FTLBP_SHIFT);
if (enable)
/* Enable FTLB */
write_c0_config6(config |
(calculate_ftlb_probability(c)
<< MIPS_CONF6_FTLBP_SHIFT)
| MIPS_CONF6_FTLBEN);
else
/* Disable FTLB */
write_c0_config6(config & ~MIPS_CONF6_FTLBEN);
break;
case CPU_I6400:
/* I6400 & related cores use Config7 to configure FTLB */
config = read_c0_config7();
/* Clear the old probability value */
config &= ~(3 << MIPS_CONF7_FTLBP_SHIFT);
write_c0_config7(config | (calculate_ftlb_probability(c)
<< MIPS_CONF7_FTLBP_SHIFT));
break;
default:
return 1;
}
return 0;
}
static inline unsigned int decode_config0(struct cpuinfo_mips *c)
{
unsigned int config0;
int isa, mt;
config0 = read_c0_config();
/*
* Look for Standard TLB or Dual VTLB and FTLB
*/
mt = config0 & MIPS_CONF_MT;
if (mt == MIPS_CONF_MT_TLB)
c->options |= MIPS_CPU_TLB;
else if (mt == MIPS_CONF_MT_FTLB)
c->options |= MIPS_CPU_TLB | MIPS_CPU_FTLB;
isa = (config0 & MIPS_CONF_AT) >> 13;
switch (isa) {
case 0:
switch ((config0 & MIPS_CONF_AR) >> 10) {
case 0:
set_isa(c, MIPS_CPU_ISA_M32R1);
break;
case 1:
set_isa(c, MIPS_CPU_ISA_M32R2);
break;
case 2:
set_isa(c, MIPS_CPU_ISA_M32R6);
break;
default:
goto unknown;
}
break;
case 2:
switch ((config0 & MIPS_CONF_AR) >> 10) {
case 0:
set_isa(c, MIPS_CPU_ISA_M64R1);
break;
case 1:
set_isa(c, MIPS_CPU_ISA_M64R2);
break;
case 2:
set_isa(c, MIPS_CPU_ISA_M64R6);
break;
default:
goto unknown;
}
break;
default:
goto unknown;
}
return config0 & MIPS_CONF_M;
unknown:
panic(unknown_isa, config0);
}
static inline unsigned int decode_config1(struct cpuinfo_mips *c)
{
unsigned int config1;
config1 = read_c0_config1();
if (config1 & MIPS_CONF1_MD)
c->ases |= MIPS_ASE_MDMX;
if (config1 & MIPS_CONF1_WR)
c->options |= MIPS_CPU_WATCH;
if (config1 & MIPS_CONF1_CA)
c->ases |= MIPS_ASE_MIPS16;
if (config1 & MIPS_CONF1_EP)
c->options |= MIPS_CPU_EJTAG;
if (config1 & MIPS_CONF1_FP) {
c->options |= MIPS_CPU_FPU;
c->options |= MIPS_CPU_32FPR;
}
if (cpu_has_tlb) {
c->tlbsize = ((config1 & MIPS_CONF1_TLBS) >> 25) + 1;
c->tlbsizevtlb = c->tlbsize;
c->tlbsizeftlbsets = 0;
}
return config1 & MIPS_CONF_M;
}
static inline unsigned int decode_config2(struct cpuinfo_mips *c)
{
unsigned int config2;
config2 = read_c0_config2();
if (config2 & MIPS_CONF2_SL)
c->scache.flags &= ~MIPS_CACHE_NOT_PRESENT;
return config2 & MIPS_CONF_M;
}
static inline unsigned int decode_config3(struct cpuinfo_mips *c)
{
unsigned int config3;
config3 = read_c0_config3();
if (config3 & MIPS_CONF3_SM) {
c->ases |= MIPS_ASE_SMARTMIPS;
c->options |= MIPS_CPU_RIXI;
}
if (config3 & MIPS_CONF3_RXI)
c->options |= MIPS_CPU_RIXI;
if (config3 & MIPS_CONF3_DSP)
c->ases |= MIPS_ASE_DSP;
if (config3 & MIPS_CONF3_DSP2P)
c->ases |= MIPS_ASE_DSP2P;
if (config3 & MIPS_CONF3_VINT)
c->options |= MIPS_CPU_VINT;
if (config3 & MIPS_CONF3_VEIC)
c->options |= MIPS_CPU_VEIC;
if (config3 & MIPS_CONF3_MT)
c->ases |= MIPS_ASE_MIPSMT;
if (config3 & MIPS_CONF3_ULRI)
c->options |= MIPS_CPU_ULRI;
if (config3 & MIPS_CONF3_ISA)
c->options |= MIPS_CPU_MICROMIPS;
if (config3 & MIPS_CONF3_VZ)
c->ases |= MIPS_ASE_VZ;
if (config3 & MIPS_CONF3_SC)
c->options |= MIPS_CPU_SEGMENTS;
if (config3 & MIPS_CONF3_MSA)
c->ases |= MIPS_ASE_MSA;
if (config3 & MIPS_CONF3_PW) {
c->htw_seq = 0;
c->options |= MIPS_CPU_HTW;
}
if (config3 & MIPS_CONF3_CDMM)
c->options |= MIPS_CPU_CDMM;
if (config3 & MIPS_CONF3_SP)
c->options |= MIPS_CPU_SP;
return config3 & MIPS_CONF_M;
}
static inline unsigned int decode_config4(struct cpuinfo_mips *c)
{
unsigned int config4;
unsigned int newcf4;
unsigned int mmuextdef;
unsigned int ftlb_page = MIPS_CONF4_FTLBPAGESIZE;
config4 = read_c0_config4();
if (cpu_has_tlb) {
if (((config4 & MIPS_CONF4_IE) >> 29) == 2)
c->options |= MIPS_CPU_TLBINV;
/*
* R6 has dropped the MMUExtDef field from config4.
* On R6 the fields always describe the FTLB, and only if it is
* present according to Config.MT.
*/
if (!cpu_has_mips_r6)
mmuextdef = config4 & MIPS_CONF4_MMUEXTDEF;
else if (cpu_has_ftlb)
mmuextdef = MIPS_CONF4_MMUEXTDEF_VTLBSIZEEXT;
else
mmuextdef = 0;
switch (mmuextdef) {
case MIPS_CONF4_MMUEXTDEF_MMUSIZEEXT:
c->tlbsize += (config4 & MIPS_CONF4_MMUSIZEEXT) * 0x40;
c->tlbsizevtlb = c->tlbsize;
break;
case MIPS_CONF4_MMUEXTDEF_VTLBSIZEEXT:
c->tlbsizevtlb +=
((config4 & MIPS_CONF4_VTLBSIZEEXT) >>
MIPS_CONF4_VTLBSIZEEXT_SHIFT) * 0x40;
c->tlbsize = c->tlbsizevtlb;
ftlb_page = MIPS_CONF4_VFTLBPAGESIZE;
/* fall through */
case MIPS_CONF4_MMUEXTDEF_FTLBSIZEEXT:
if (mips_ftlb_disabled)
break;
newcf4 = (config4 & ~ftlb_page) |
(page_size_ftlb(mmuextdef) <<
MIPS_CONF4_FTLBPAGESIZE_SHIFT);
write_c0_config4(newcf4);
back_to_back_c0_hazard();
config4 = read_c0_config4();
if (config4 != newcf4) {
pr_err("PAGE_SIZE 0x%lx is not supported by FTLB (config4=0x%x)\n",
PAGE_SIZE, config4);
/* Switch FTLB off */
set_ftlb_enable(c, 0);
break;
}
c->tlbsizeftlbsets = 1 <<
((config4 & MIPS_CONF4_FTLBSETS) >>
MIPS_CONF4_FTLBSETS_SHIFT);
c->tlbsizeftlbways = ((config4 & MIPS_CONF4_FTLBWAYS) >>
MIPS_CONF4_FTLBWAYS_SHIFT) + 2;
c->tlbsize += c->tlbsizeftlbways * c->tlbsizeftlbsets;
mips_has_ftlb_configured = 1;
break;
}
}
c->kscratch_mask = (config4 >> 16) & 0xff;
return config4 & MIPS_CONF_M;
}
static inline unsigned int decode_config5(struct cpuinfo_mips *c)
{
unsigned int config5;
config5 = read_c0_config5();
config5 &= ~(MIPS_CONF5_UFR | MIPS_CONF5_UFE);
write_c0_config5(config5);
if (config5 & MIPS_CONF5_EVA)
c->options |= MIPS_CPU_EVA;
if (config5 & MIPS_CONF5_MRP)
c->options |= MIPS_CPU_MAAR;
if (config5 & MIPS_CONF5_LLB)
c->options |= MIPS_CPU_RW_LLB;
#ifdef CONFIG_XPA
if (config5 & MIPS_CONF5_MVH)
c->options |= MIPS_CPU_XPA;
#endif
return config5 & MIPS_CONF_M;
}
static void decode_configs(struct cpuinfo_mips *c)
{
int ok;
/* MIPS32 or MIPS64 compliant CPU. */
c->options = MIPS_CPU_4KEX | MIPS_CPU_4K_CACHE | MIPS_CPU_COUNTER |
MIPS_CPU_DIVEC | MIPS_CPU_LLSC | MIPS_CPU_MCHECK;
c->scache.flags = MIPS_CACHE_NOT_PRESENT;
/* Enable FTLB if present and not disabled */
set_ftlb_enable(c, !mips_ftlb_disabled);
ok = decode_config0(c); /* Read Config registers. */
BUG_ON(!ok); /* Arch spec violation! */
if (ok)
ok = decode_config1(c);
if (ok)
ok = decode_config2(c);
if (ok)
ok = decode_config3(c);
if (ok)
ok = decode_config4(c);
if (ok)
ok = decode_config5(c);
mips_probe_watch_registers(c);
if (cpu_has_rixi) {
/* Enable the RIXI exceptions */
set_c0_pagegrain(PG_IEC);
back_to_back_c0_hazard();
/* Verify the IEC bit is set */
if (read_c0_pagegrain() & PG_IEC)
c->options |= MIPS_CPU_RIXIEX;
}
#ifndef CONFIG_MIPS_CPS
if (cpu_has_mips_r2_r6) {
c->core = get_ebase_cpunum();
if (cpu_has_mipsmt)
c->core >>= fls(core_nvpes()) - 1;
}
#endif
}
#define R4K_OPTS (MIPS_CPU_TLB | MIPS_CPU_4KEX | MIPS_CPU_4K_CACHE \
| MIPS_CPU_COUNTER)
static inline void cpu_probe_legacy(struct cpuinfo_mips *c, unsigned int cpu)
{
switch (c->processor_id & PRID_IMP_MASK) {
case PRID_IMP_R2000:
c->cputype = CPU_R2000;
__cpu_name[cpu] = "R2000";
c->fpu_msk31 |= FPU_CSR_CONDX | FPU_CSR_FS;
c->options = MIPS_CPU_TLB | MIPS_CPU_3K_CACHE |
MIPS_CPU_NOFPUEX;
if (__cpu_has_fpu())
c->options |= MIPS_CPU_FPU;
c->tlbsize = 64;
break;
case PRID_IMP_R3000:
if ((c->processor_id & PRID_REV_MASK) == PRID_REV_R3000A) {
if (cpu_has_confreg()) {
c->cputype = CPU_R3081E;
__cpu_name[cpu] = "R3081";
} else {
c->cputype = CPU_R3000A;
__cpu_name[cpu] = "R3000A";
}
} else {
c->cputype = CPU_R3000;
__cpu_name[cpu] = "R3000";
}
c->fpu_msk31 |= FPU_CSR_CONDX | FPU_CSR_FS;
c->options = MIPS_CPU_TLB | MIPS_CPU_3K_CACHE |
MIPS_CPU_NOFPUEX;
if (__cpu_has_fpu())
c->options |= MIPS_CPU_FPU;
c->tlbsize = 64;
break;
case PRID_IMP_R4000:
if (read_c0_config() & CONF_SC) {
if ((c->processor_id & PRID_REV_MASK) >=
PRID_REV_R4400) {
c->cputype = CPU_R4400PC;
__cpu_name[cpu] = "R4400PC";
} else {
c->cputype = CPU_R4000PC;
__cpu_name[cpu] = "R4000PC";
}
} else {
int cca = read_c0_config() & CONF_CM_CMASK;
int mc;
/*
* SC and MC versions can't be reliably told apart,
* but only the latter support coherent caching
* modes so assume the firmware has set the KSEG0
* coherency attribute reasonably (if uncached, we
* assume SC).
*/
switch (cca) {
case CONF_CM_CACHABLE_CE:
case CONF_CM_CACHABLE_COW:
case CONF_CM_CACHABLE_CUW:
mc = 1;
break;
default:
mc = 0;
break;
}
if ((c->processor_id & PRID_REV_MASK) >=
PRID_REV_R4400) {
c->cputype = mc ? CPU_R4400MC : CPU_R4400SC;
__cpu_name[cpu] = mc ? "R4400MC" : "R4400SC";
} else {
c->cputype = mc ? CPU_R4000MC : CPU_R4000SC;
__cpu_name[cpu] = mc ? "R4000MC" : "R4000SC";
}
}
set_isa(c, MIPS_CPU_ISA_III);
c->fpu_msk31 |= FPU_CSR_CONDX;
c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
MIPS_CPU_WATCH | MIPS_CPU_VCE |
MIPS_CPU_LLSC;
c->tlbsize = 48;
break;
case PRID_IMP_VR41XX:
set_isa(c, MIPS_CPU_ISA_III);
c->fpu_msk31 |= FPU_CSR_CONDX;
c->options = R4K_OPTS;
c->tlbsize = 32;
switch (c->processor_id & 0xf0) {
case PRID_REV_VR4111:
c->cputype = CPU_VR4111;
__cpu_name[cpu] = "NEC VR4111";
break;
case PRID_REV_VR4121:
c->cputype = CPU_VR4121;
__cpu_name[cpu] = "NEC VR4121";
break;
case PRID_REV_VR4122:
if ((c->processor_id & 0xf) < 0x3) {
c->cputype = CPU_VR4122;
__cpu_name[cpu] = "NEC VR4122";
} else {
c->cputype = CPU_VR4181A;
__cpu_name[cpu] = "NEC VR4181A";
}
break;
case PRID_REV_VR4130:
if ((c->processor_id & 0xf) < 0x4) {
c->cputype = CPU_VR4131;
__cpu_name[cpu] = "NEC VR4131";
} else {
c->cputype = CPU_VR4133;
c->options |= MIPS_CPU_LLSC;
__cpu_name[cpu] = "NEC VR4133";
}
break;
default:
printk(KERN_INFO "Unexpected CPU of NEC VR4100 series\n");
c->cputype = CPU_VR41XX;
__cpu_name[cpu] = "NEC Vr41xx";
break;
}
break;
case PRID_IMP_R4300:
c->cputype = CPU_R4300;
__cpu_name[cpu] = "R4300";
set_isa(c, MIPS_CPU_ISA_III);
c->fpu_msk31 |= FPU_CSR_CONDX;
c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
MIPS_CPU_LLSC;
c->tlbsize = 32;
break;
case PRID_IMP_R4600:
c->cputype = CPU_R4600;
__cpu_name[cpu] = "R4600";
set_isa(c, MIPS_CPU_ISA_III);
c->fpu_msk31 |= FPU_CSR_CONDX;
c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
MIPS_CPU_LLSC;
c->tlbsize = 48;
break;
#if 0
case PRID_IMP_R4650:
/*
* This processor doesn't have an MMU, so it's not
* "real easy" to run Linux on it. It is left purely
* for documentation. Commented out because it shares
* it's c0_prid id number with the TX3900.
*/
c->cputype = CPU_R4650;
__cpu_name[cpu] = "R4650";
set_isa(c, MIPS_CPU_ISA_III);
c->fpu_msk31 |= FPU_CSR_CONDX;
c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_LLSC;
c->tlbsize = 48;
break;
#endif
case PRID_IMP_TX39:
c->fpu_msk31 |= FPU_CSR_CONDX | FPU_CSR_FS;
c->options = MIPS_CPU_TLB | MIPS_CPU_TX39_CACHE;
if ((c->processor_id & 0xf0) == (PRID_REV_TX3927 & 0xf0)) {
c->cputype = CPU_TX3927;
__cpu_name[cpu] = "TX3927";
c->tlbsize = 64;
} else {
switch (c->processor_id & PRID_REV_MASK) {
case PRID_REV_TX3912:
c->cputype = CPU_TX3912;
__cpu_name[cpu] = "TX3912";
c->tlbsize = 32;
break;
case PRID_REV_TX3922:
c->cputype = CPU_TX3922;
__cpu_name[cpu] = "TX3922";
c->tlbsize = 64;
break;
}
}
break;
case PRID_IMP_R4700:
c->cputype = CPU_R4700;
__cpu_name[cpu] = "R4700";
set_isa(c, MIPS_CPU_ISA_III);
c->fpu_msk31 |= FPU_CSR_CONDX;
c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
MIPS_CPU_LLSC;
c->tlbsize = 48;
break;
case PRID_IMP_TX49:
c->cputype = CPU_TX49XX;
__cpu_name[cpu] = "R49XX";
set_isa(c, MIPS_CPU_ISA_III);
c->fpu_msk31 |= FPU_CSR_CONDX;
c->options = R4K_OPTS | MIPS_CPU_LLSC;
if (!(c->processor_id & 0x08))
c->options |= MIPS_CPU_FPU | MIPS_CPU_32FPR;
c->tlbsize = 48;
break;
case PRID_IMP_R5000:
c->cputype = CPU_R5000;
__cpu_name[cpu] = "R5000";
set_isa(c, MIPS_CPU_ISA_IV);
c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
MIPS_CPU_LLSC;
c->tlbsize = 48;
break;
case PRID_IMP_R5432:
c->cputype = CPU_R5432;
__cpu_name[cpu] = "R5432";
set_isa(c, MIPS_CPU_ISA_IV);
c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
MIPS_CPU_WATCH | MIPS_CPU_LLSC;
c->tlbsize = 48;
break;
case PRID_IMP_R5500:
c->cputype = CPU_R5500;
__cpu_name[cpu] = "R5500";
set_isa(c, MIPS_CPU_ISA_IV);
c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
MIPS_CPU_WATCH | MIPS_CPU_LLSC;
c->tlbsize = 48;
break;
case PRID_IMP_NEVADA:
c->cputype = CPU_NEVADA;
__cpu_name[cpu] = "Nevada";
set_isa(c, MIPS_CPU_ISA_IV);
c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
MIPS_CPU_DIVEC | MIPS_CPU_LLSC;
c->tlbsize = 48;
break;
case PRID_IMP_R6000:
c->cputype = CPU_R6000;
__cpu_name[cpu] = "R6000";
set_isa(c, MIPS_CPU_ISA_II);
c->fpu_msk31 |= FPU_CSR_CONDX | FPU_CSR_FS;
c->options = MIPS_CPU_TLB | MIPS_CPU_FPU |
MIPS_CPU_LLSC;
c->tlbsize = 32;
break;
case PRID_IMP_R6000A:
c->cputype = CPU_R6000A;
__cpu_name[cpu] = "R6000A";
set_isa(c, MIPS_CPU_ISA_II);
c->fpu_msk31 |= FPU_CSR_CONDX | FPU_CSR_FS;
c->options = MIPS_CPU_TLB | MIPS_CPU_FPU |
MIPS_CPU_LLSC;
c->tlbsize = 32;
break;
case PRID_IMP_RM7000:
c->cputype = CPU_RM7000;
__cpu_name[cpu] = "RM7000";
set_isa(c, MIPS_CPU_ISA_IV);
c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
MIPS_CPU_LLSC;
/*
* Undocumented RM7000: Bit 29 in the info register of
* the RM7000 v2.0 indicates if the TLB has 48 or 64
* entries.
*
* 29 1 => 64 entry JTLB
* 0 => 48 entry JTLB
*/
c->tlbsize = (read_c0_info() & (1 << 29)) ? 64 : 48;
break;
case PRID_IMP_R8000:
c->cputype = CPU_R8000;
__cpu_name[cpu] = "RM8000";
set_isa(c, MIPS_CPU_ISA_IV);
c->options = MIPS_CPU_TLB | MIPS_CPU_4KEX |
MIPS_CPU_FPU | MIPS_CPU_32FPR |
MIPS_CPU_LLSC;
c->tlbsize = 384; /* has weird TLB: 3-way x 128 */
break;
case PRID_IMP_R10000:
c->cputype = CPU_R10000;
__cpu_name[cpu] = "R10000";
set_isa(c, MIPS_CPU_ISA_IV);
c->options = MIPS_CPU_TLB | MIPS_CPU_4K_CACHE | MIPS_CPU_4KEX |
MIPS_CPU_FPU | MIPS_CPU_32FPR |
MIPS_CPU_COUNTER | MIPS_CPU_WATCH |
MIPS_CPU_LLSC;
c->tlbsize = 64;
break;
case PRID_IMP_R12000:
c->cputype = CPU_R12000;
__cpu_name[cpu] = "R12000";
set_isa(c, MIPS_CPU_ISA_IV);
c->options = MIPS_CPU_TLB | MIPS_CPU_4K_CACHE | MIPS_CPU_4KEX |
MIPS_CPU_FPU | MIPS_CPU_32FPR |
MIPS_CPU_COUNTER | MIPS_CPU_WATCH |
MIPS_CPU_LLSC | MIPS_CPU_BP_GHIST;
c->tlbsize = 64;
break;
case PRID_IMP_R14000:
if (((c->processor_id >> 4) & 0x0f) > 2) {
c->cputype = CPU_R16000;
__cpu_name[cpu] = "R16000";
} else {
c->cputype = CPU_R14000;
__cpu_name[cpu] = "R14000";
}
set_isa(c, MIPS_CPU_ISA_IV);
c->options = MIPS_CPU_TLB | MIPS_CPU_4K_CACHE | MIPS_CPU_4KEX |
MIPS_CPU_FPU | MIPS_CPU_32FPR |
MIPS_CPU_COUNTER | MIPS_CPU_WATCH |
MIPS_CPU_LLSC | MIPS_CPU_BP_GHIST;
c->tlbsize = 64;
break;
case PRID_IMP_LOONGSON_64: /* Loongson-2/3 */
switch (c->processor_id & PRID_REV_MASK) {
case PRID_REV_LOONGSON2E:
c->cputype = CPU_LOONGSON2;
__cpu_name[cpu] = "ICT Loongson-2";
set_elf_platform(cpu, "loongson2e");
set_isa(c, MIPS_CPU_ISA_III);
c->fpu_msk31 |= FPU_CSR_CONDX;
break;
case PRID_REV_LOONGSON2F:
c->cputype = CPU_LOONGSON2;
__cpu_name[cpu] = "ICT Loongson-2";
set_elf_platform(cpu, "loongson2f");
set_isa(c, MIPS_CPU_ISA_III);
c->fpu_msk31 |= FPU_CSR_CONDX;
break;
case PRID_REV_LOONGSON3A:
c->cputype = CPU_LOONGSON3;
__cpu_name[cpu] = "ICT Loongson-3";
set_elf_platform(cpu, "loongson3a");
set_isa(c, MIPS_CPU_ISA_M64R1);
break;
case PRID_REV_LOONGSON3B_R1:
case PRID_REV_LOONGSON3B_R2:
c->cputype = CPU_LOONGSON3;
__cpu_name[cpu] = "ICT Loongson-3";
set_elf_platform(cpu, "loongson3b");
set_isa(c, MIPS_CPU_ISA_M64R1);
break;
}
c->options = R4K_OPTS |
MIPS_CPU_FPU | MIPS_CPU_LLSC |
MIPS_CPU_32FPR;
c->tlbsize = 64;
c->writecombine = _CACHE_UNCACHED_ACCELERATED;
break;
case PRID_IMP_LOONGSON_32: /* Loongson-1 */
decode_configs(c);
c->cputype = CPU_LOONGSON1;
switch (c->processor_id & PRID_REV_MASK) {
case PRID_REV_LOONGSON1B:
__cpu_name[cpu] = "Loongson 1B";
break;
}
break;
}
}
static inline void cpu_probe_mips(struct cpuinfo_mips *c, unsigned int cpu)
{
c->writecombine = _CACHE_UNCACHED_ACCELERATED;
switch (c->processor_id & PRID_IMP_MASK) {
case PRID_IMP_QEMU_GENERIC:
c->writecombine = _CACHE_UNCACHED;
c->cputype = CPU_QEMU_GENERIC;
__cpu_name[cpu] = "MIPS GENERIC QEMU";
break;
case PRID_IMP_4KC:
c->cputype = CPU_4KC;
c->writecombine = _CACHE_UNCACHED;
__cpu_name[cpu] = "MIPS 4Kc";
break;
case PRID_IMP_4KEC:
case PRID_IMP_4KECR2:
c->cputype = CPU_4KEC;
c->writecombine = _CACHE_UNCACHED;
__cpu_name[cpu] = "MIPS 4KEc";
break;
case PRID_IMP_4KSC:
case PRID_IMP_4KSD:
c->cputype = CPU_4KSC;
c->writecombine = _CACHE_UNCACHED;
__cpu_name[cpu] = "MIPS 4KSc";
break;
case PRID_IMP_5KC:
c->cputype = CPU_5KC;
c->writecombine = _CACHE_UNCACHED;
__cpu_name[cpu] = "MIPS 5Kc";
break;
case PRID_IMP_5KE:
c->cputype = CPU_5KE;
c->writecombine = _CACHE_UNCACHED;
__cpu_name[cpu] = "MIPS 5KE";
break;
case PRID_IMP_20KC:
c->cputype = CPU_20KC;
c->writecombine = _CACHE_UNCACHED;
__cpu_name[cpu] = "MIPS 20Kc";
break;
case PRID_IMP_24K:
c->cputype = CPU_24K;
c->writecombine = _CACHE_UNCACHED;
__cpu_name[cpu] = "MIPS 24Kc";
break;
case PRID_IMP_24KE:
c->cputype = CPU_24K;
c->writecombine = _CACHE_UNCACHED;
__cpu_name[cpu] = "MIPS 24KEc";
break;
case PRID_IMP_25KF:
c->cputype = CPU_25KF;
c->writecombine = _CACHE_UNCACHED;
__cpu_name[cpu] = "MIPS 25Kc";
break;
case PRID_IMP_34K:
c->cputype = CPU_34K;
c->writecombine = _CACHE_UNCACHED;
__cpu_name[cpu] = "MIPS 34Kc";
break;
case PRID_IMP_74K:
c->cputype = CPU_74K;
c->writecombine = _CACHE_UNCACHED;
__cpu_name[cpu] = "MIPS 74Kc";
break;
case PRID_IMP_M14KC:
c->cputype = CPU_M14KC;
c->writecombine = _CACHE_UNCACHED;
__cpu_name[cpu] = "MIPS M14Kc";
break;
case PRID_IMP_M14KEC:
c->cputype = CPU_M14KEC;
c->writecombine = _CACHE_UNCACHED;
__cpu_name[cpu] = "MIPS M14KEc";
break;
case PRID_IMP_1004K:
c->cputype = CPU_1004K;
c->writecombine = _CACHE_UNCACHED;
__cpu_name[cpu] = "MIPS 1004Kc";
break;
case PRID_IMP_1074K:
c->cputype = CPU_1074K;
c->writecombine = _CACHE_UNCACHED;
__cpu_name[cpu] = "MIPS 1074Kc";
break;
case PRID_IMP_INTERAPTIV_UP:
c->cputype = CPU_INTERAPTIV;
__cpu_name[cpu] = "MIPS interAptiv";
break;
case PRID_IMP_INTERAPTIV_MP:
c->cputype = CPU_INTERAPTIV;
__cpu_name[cpu] = "MIPS interAptiv (multi)";
break;
case PRID_IMP_PROAPTIV_UP:
c->cputype = CPU_PROAPTIV;
__cpu_name[cpu] = "MIPS proAptiv";
break;
case PRID_IMP_PROAPTIV_MP:
c->cputype = CPU_PROAPTIV;
__cpu_name[cpu] = "MIPS proAptiv (multi)";
break;
case PRID_IMP_P5600:
c->cputype = CPU_P5600;
__cpu_name[cpu] = "MIPS P5600";
break;
case PRID_IMP_I6400:
c->cputype = CPU_I6400;
__cpu_name[cpu] = "MIPS I6400";
break;
case PRID_IMP_M5150:
c->cputype = CPU_M5150;
__cpu_name[cpu] = "MIPS M5150";
break;
}
decode_configs(c);
spram_config();
}
static inline void cpu_probe_alchemy(struct cpuinfo_mips *c, unsigned int cpu)
{
decode_configs(c);
switch (c->processor_id & PRID_IMP_MASK) {
case PRID_IMP_AU1_REV1:
case PRID_IMP_AU1_REV2:
c->cputype = CPU_ALCHEMY;
switch ((c->processor_id >> 24) & 0xff) {
case 0:
__cpu_name[cpu] = "Au1000";
break;
case 1:
__cpu_name[cpu] = "Au1500";
break;
case 2:
__cpu_name[cpu] = "Au1100";
break;
case 3:
__cpu_name[cpu] = "Au1550";
break;
case 4:
__cpu_name[cpu] = "Au1200";
if ((c->processor_id & PRID_REV_MASK) == 2)
__cpu_name[cpu] = "Au1250";
break;
case 5:
__cpu_name[cpu] = "Au1210";
break;
default:
__cpu_name[cpu] = "Au1xxx";
break;
}
break;
}
}
static inline void cpu_probe_sibyte(struct cpuinfo_mips *c, unsigned int cpu)
{
decode_configs(c);
c->writecombine = _CACHE_UNCACHED_ACCELERATED;
switch (c->processor_id & PRID_IMP_MASK) {
case PRID_IMP_SB1:
c->cputype = CPU_SB1;
__cpu_name[cpu] = "SiByte SB1";
/* FPU in pass1 is known to have issues. */
if ((c->processor_id & PRID_REV_MASK) < 0x02)
c->options &= ~(MIPS_CPU_FPU | MIPS_CPU_32FPR);
break;
case PRID_IMP_SB1A:
c->cputype = CPU_SB1A;
__cpu_name[cpu] = "SiByte SB1A";
break;
}
}
static inline void cpu_probe_sandcraft(struct cpuinfo_mips *c, unsigned int cpu)
{
decode_configs(c);
switch (c->processor_id & PRID_IMP_MASK) {
case PRID_IMP_SR71000:
c->cputype = CPU_SR71000;
__cpu_name[cpu] = "Sandcraft SR71000";
c->scache.ways = 8;
c->tlbsize = 64;
break;
}
}
static inline void cpu_probe_nxp(struct cpuinfo_mips *c, unsigned int cpu)
{
decode_configs(c);
switch (c->processor_id & PRID_IMP_MASK) {
case PRID_IMP_PR4450:
c->cputype = CPU_PR4450;
__cpu_name[cpu] = "Philips PR4450";
set_isa(c, MIPS_CPU_ISA_M32R1);
break;
}
}
static inline void cpu_probe_broadcom(struct cpuinfo_mips *c, unsigned int cpu)
{
decode_configs(c);
switch (c->processor_id & PRID_IMP_MASK) {
case PRID_IMP_BMIPS32_REV4:
case PRID_IMP_BMIPS32_REV8:
c->cputype = CPU_BMIPS32;
__cpu_name[cpu] = "Broadcom BMIPS32";
set_elf_platform(cpu, "bmips32");
break;
case PRID_IMP_BMIPS3300:
case PRID_IMP_BMIPS3300_ALT:
case PRID_IMP_BMIPS3300_BUG:
c->cputype = CPU_BMIPS3300;
__cpu_name[cpu] = "Broadcom BMIPS3300";
set_elf_platform(cpu, "bmips3300");
break;
case PRID_IMP_BMIPS43XX: {
int rev = c->processor_id & PRID_REV_MASK;
if (rev >= PRID_REV_BMIPS4380_LO &&
rev <= PRID_REV_BMIPS4380_HI) {
c->cputype = CPU_BMIPS4380;
__cpu_name[cpu] = "Broadcom BMIPS4380";
set_elf_platform(cpu, "bmips4380");
} else {
c->cputype = CPU_BMIPS4350;
__cpu_name[cpu] = "Broadcom BMIPS4350";
set_elf_platform(cpu, "bmips4350");
}
break;
}
case PRID_IMP_BMIPS5000:
case PRID_IMP_BMIPS5200:
c->cputype = CPU_BMIPS5000;
__cpu_name[cpu] = "Broadcom BMIPS5000";
set_elf_platform(cpu, "bmips5000");
c->options |= MIPS_CPU_ULRI;
break;
}
}
static inline void cpu_probe_cavium(struct cpuinfo_mips *c, unsigned int cpu)
{
decode_configs(c);
switch (c->processor_id & PRID_IMP_MASK) {
case PRID_IMP_CAVIUM_CN38XX:
case PRID_IMP_CAVIUM_CN31XX:
case PRID_IMP_CAVIUM_CN30XX:
c->cputype = CPU_CAVIUM_OCTEON;
__cpu_name[cpu] = "Cavium Octeon";
goto platform;
case PRID_IMP_CAVIUM_CN58XX:
case PRID_IMP_CAVIUM_CN56XX:
case PRID_IMP_CAVIUM_CN50XX:
case PRID_IMP_CAVIUM_CN52XX:
c->cputype = CPU_CAVIUM_OCTEON_PLUS;
__cpu_name[cpu] = "Cavium Octeon+";
platform:
set_elf_platform(cpu, "octeon");
break;
case PRID_IMP_CAVIUM_CN61XX:
case PRID_IMP_CAVIUM_CN63XX:
case PRID_IMP_CAVIUM_CN66XX:
case PRID_IMP_CAVIUM_CN68XX:
case PRID_IMP_CAVIUM_CNF71XX:
c->cputype = CPU_CAVIUM_OCTEON2;
__cpu_name[cpu] = "Cavium Octeon II";
set_elf_platform(cpu, "octeon2");
break;
case PRID_IMP_CAVIUM_CN70XX:
case PRID_IMP_CAVIUM_CN78XX:
c->cputype = CPU_CAVIUM_OCTEON3;
__cpu_name[cpu] = "Cavium Octeon III";
set_elf_platform(cpu, "octeon3");
break;
default:
printk(KERN_INFO "Unknown Octeon chip!\n");
c->cputype = CPU_UNKNOWN;
break;
}
}
static inline void cpu_probe_ingenic(struct cpuinfo_mips *c, unsigned int cpu)
{
decode_configs(c);
/* JZRISC does not implement the CP0 counter. */
c->options &= ~MIPS_CPU_COUNTER;
BUG_ON(!__builtin_constant_p(cpu_has_counter) || cpu_has_counter);
switch (c->processor_id & PRID_IMP_MASK) {
case PRID_IMP_JZRISC:
c->cputype = CPU_JZRISC;
c->writecombine = _CACHE_UNCACHED_ACCELERATED;
__cpu_name[cpu] = "Ingenic JZRISC";
break;
default:
panic("Unknown Ingenic Processor ID!");
break;
}
}
static inline void cpu_probe_netlogic(struct cpuinfo_mips *c, int cpu)
{
decode_configs(c);
if ((c->processor_id & PRID_IMP_MASK) == PRID_IMP_NETLOGIC_AU13XX) {
c->cputype = CPU_ALCHEMY;
__cpu_name[cpu] = "Au1300";
/* following stuff is not for Alchemy */
return;
}
c->options = (MIPS_CPU_TLB |
MIPS_CPU_4KEX |
MIPS_CPU_COUNTER |
MIPS_CPU_DIVEC |
MIPS_CPU_WATCH |
MIPS_CPU_EJTAG |
MIPS_CPU_LLSC);
switch (c->processor_id & PRID_IMP_MASK) {
case PRID_IMP_NETLOGIC_XLP2XX:
case PRID_IMP_NETLOGIC_XLP9XX:
case PRID_IMP_NETLOGIC_XLP5XX:
c->cputype = CPU_XLP;
__cpu_name[cpu] = "Broadcom XLPII";
break;
case PRID_IMP_NETLOGIC_XLP8XX:
case PRID_IMP_NETLOGIC_XLP3XX:
c->cputype = CPU_XLP;
__cpu_name[cpu] = "Netlogic XLP";
break;
case PRID_IMP_NETLOGIC_XLR732:
case PRID_IMP_NETLOGIC_XLR716:
case PRID_IMP_NETLOGIC_XLR532:
case PRID_IMP_NETLOGIC_XLR308:
case PRID_IMP_NETLOGIC_XLR532C:
case PRID_IMP_NETLOGIC_XLR516C:
case PRID_IMP_NETLOGIC_XLR508C:
case PRID_IMP_NETLOGIC_XLR308C:
c->cputype = CPU_XLR;
__cpu_name[cpu] = "Netlogic XLR";
break;
case PRID_IMP_NETLOGIC_XLS608:
case PRID_IMP_NETLOGIC_XLS408:
case PRID_IMP_NETLOGIC_XLS404:
case PRID_IMP_NETLOGIC_XLS208:
case PRID_IMP_NETLOGIC_XLS204:
case PRID_IMP_NETLOGIC_XLS108:
case PRID_IMP_NETLOGIC_XLS104:
case PRID_IMP_NETLOGIC_XLS616B:
case PRID_IMP_NETLOGIC_XLS608B:
case PRID_IMP_NETLOGIC_XLS416B:
case PRID_IMP_NETLOGIC_XLS412B:
case PRID_IMP_NETLOGIC_XLS408B:
case PRID_IMP_NETLOGIC_XLS404B:
c->cputype = CPU_XLR;
__cpu_name[cpu] = "Netlogic XLS";
break;
default:
pr_info("Unknown Netlogic chip id [%02x]!\n",
c->processor_id);
c->cputype = CPU_XLR;
break;
}
if (c->cputype == CPU_XLP) {
set_isa(c, MIPS_CPU_ISA_M64R2);
c->options |= (MIPS_CPU_FPU | MIPS_CPU_ULRI | MIPS_CPU_MCHECK);
/* This will be updated again after all threads are woken up */
c->tlbsize = ((read_c0_config6() >> 16) & 0xffff) + 1;
} else {
set_isa(c, MIPS_CPU_ISA_M64R1);
c->tlbsize = ((read_c0_config1() >> 25) & 0x3f) + 1;
}
c->kscratch_mask = 0xf;
}
#ifdef CONFIG_64BIT
/* For use by uaccess.h */
u64 __ua_limit;
EXPORT_SYMBOL(__ua_limit);
#endif
const char *__cpu_name[NR_CPUS];
const char *__elf_platform;
void cpu_probe(void)
{
struct cpuinfo_mips *c = &current_cpu_data;
unsigned int cpu = smp_processor_id();
c->processor_id = PRID_IMP_UNKNOWN;
c->fpu_id = FPIR_IMP_NONE;
c->cputype = CPU_UNKNOWN;
c->writecombine = _CACHE_UNCACHED;
c->fpu_csr31 = FPU_CSR_RN;
c->fpu_msk31 = FPU_CSR_RSVD | FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
c->processor_id = read_c0_prid();
switch (c->processor_id & PRID_COMP_MASK) {
case PRID_COMP_LEGACY:
cpu_probe_legacy(c, cpu);
break;
case PRID_COMP_MIPS:
cpu_probe_mips(c, cpu);
break;
case PRID_COMP_ALCHEMY:
cpu_probe_alchemy(c, cpu);
break;
case PRID_COMP_SIBYTE:
cpu_probe_sibyte(c, cpu);
break;
case PRID_COMP_BROADCOM:
cpu_probe_broadcom(c, cpu);
break;
case PRID_COMP_SANDCRAFT:
cpu_probe_sandcraft(c, cpu);
break;
case PRID_COMP_NXP:
cpu_probe_nxp(c, cpu);
break;
case PRID_COMP_CAVIUM:
cpu_probe_cavium(c, cpu);
break;
case PRID_COMP_INGENIC_D0:
case PRID_COMP_INGENIC_D1:
case PRID_COMP_INGENIC_E1:
cpu_probe_ingenic(c, cpu);
break;
case PRID_COMP_NETLOGIC:
cpu_probe_netlogic(c, cpu);
break;
}
BUG_ON(!__cpu_name[cpu]);
BUG_ON(c->cputype == CPU_UNKNOWN);
/*
* Platform code can force the cpu type to optimize code
* generation. In that case be sure the cpu type is correctly
* manually setup otherwise it could trigger some nasty bugs.
*/
BUG_ON(current_cpu_type() != c->cputype);
if (mips_fpu_disabled)
c->options &= ~MIPS_CPU_FPU;
if (mips_dsp_disabled)
c->ases &= ~(MIPS_ASE_DSP | MIPS_ASE_DSP2P);
if (mips_htw_disabled) {
c->options &= ~MIPS_CPU_HTW;
write_c0_pwctl(read_c0_pwctl() &
~(1 << MIPS_PWCTL_PWEN_SHIFT));
}
if (c->options & MIPS_CPU_FPU)
cpu_set_fpu_opts(c);
else
cpu_set_nofpu_opts(c);
if (cpu_has_bp_ghist)
write_c0_r10k_diag(read_c0_r10k_diag() |
R10K_DIAG_E_GHIST);
if (cpu_has_mips_r2_r6) {
c->srsets = ((read_c0_srsctl() >> 26) & 0x0f) + 1;
/* R2 has Performance Counter Interrupt indicator */
c->options |= MIPS_CPU_PCI;
}
else
c->srsets = 1;
if (cpu_has_mips_r6)
elf_hwcap |= HWCAP_MIPS_R6;
if (cpu_has_msa) {
c->msa_id = cpu_get_msa_id();
WARN(c->msa_id & MSA_IR_WRPF,
"Vector register partitioning unimplemented!");
elf_hwcap |= HWCAP_MIPS_MSA;
}
cpu_probe_vmbits(c);
#ifdef CONFIG_64BIT
if (cpu == 0)
__ua_limit = ~((1ull << cpu_vmbits) - 1);
#endif
}
void cpu_report(void)
{
struct cpuinfo_mips *c = &current_cpu_data;
pr_info("CPU%d revision is: %08x (%s)\n",
smp_processor_id(), c->processor_id, cpu_name_string());
if (c->options & MIPS_CPU_FPU)
printk(KERN_INFO "FPU revision is: %08x\n", c->fpu_id);
if (cpu_has_msa)
pr_info("MSA revision is: %08x\n", c->msa_id);
}