linux_old1/drivers/gpu/drm/radeon/radeon_kfd.c

864 lines
22 KiB
C

/*
* Copyright 2014 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
#include <linux/module.h>
#include <linux/fdtable.h>
#include <linux/uaccess.h>
#include <drm/drmP.h>
#include "radeon.h"
#include "cikd.h"
#include "cik_reg.h"
#include "radeon_kfd.h"
#include "radeon_ucode.h"
#include <linux/firmware.h>
#include "cik_structs.h"
#define CIK_PIPE_PER_MEC (4)
static const uint32_t watchRegs[MAX_WATCH_ADDRESSES * ADDRESS_WATCH_REG_MAX] = {
TCP_WATCH0_ADDR_H, TCP_WATCH0_ADDR_L, TCP_WATCH0_CNTL,
TCP_WATCH1_ADDR_H, TCP_WATCH1_ADDR_L, TCP_WATCH1_CNTL,
TCP_WATCH2_ADDR_H, TCP_WATCH2_ADDR_L, TCP_WATCH2_CNTL,
TCP_WATCH3_ADDR_H, TCP_WATCH3_ADDR_L, TCP_WATCH3_CNTL
};
struct kgd_mem {
struct radeon_bo *bo;
uint64_t gpu_addr;
void *cpu_ptr;
};
static int alloc_gtt_mem(struct kgd_dev *kgd, size_t size,
void **mem_obj, uint64_t *gpu_addr,
void **cpu_ptr);
static void free_gtt_mem(struct kgd_dev *kgd, void *mem_obj);
static uint64_t get_vmem_size(struct kgd_dev *kgd);
static uint64_t get_gpu_clock_counter(struct kgd_dev *kgd);
static uint32_t get_max_engine_clock_in_mhz(struct kgd_dev *kgd);
static uint16_t get_fw_version(struct kgd_dev *kgd, enum kgd_engine_type type);
/*
* Register access functions
*/
static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
uint32_t sh_mem_config, uint32_t sh_mem_ape1_base,
uint32_t sh_mem_ape1_limit, uint32_t sh_mem_bases);
static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
unsigned int vmid);
static int kgd_init_pipeline(struct kgd_dev *kgd, uint32_t pipe_id,
uint32_t hpd_size, uint64_t hpd_gpu_addr);
static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id);
static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
uint32_t queue_id, uint32_t __user *wptr);
static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd);
static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
uint32_t pipe_id, uint32_t queue_id);
static int kgd_hqd_destroy(struct kgd_dev *kgd, uint32_t reset_type,
unsigned int timeout, uint32_t pipe_id,
uint32_t queue_id);
static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd);
static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
unsigned int timeout);
static int kgd_address_watch_disable(struct kgd_dev *kgd);
static int kgd_address_watch_execute(struct kgd_dev *kgd,
unsigned int watch_point_id,
uint32_t cntl_val,
uint32_t addr_hi,
uint32_t addr_lo);
static int kgd_wave_control_execute(struct kgd_dev *kgd,
uint32_t gfx_index_val,
uint32_t sq_cmd);
static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
unsigned int watch_point_id,
unsigned int reg_offset);
static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd, uint8_t vmid);
static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd,
uint8_t vmid);
static void write_vmid_invalidate_request(struct kgd_dev *kgd, uint8_t vmid);
static const struct kfd2kgd_calls kfd2kgd = {
.init_gtt_mem_allocation = alloc_gtt_mem,
.free_gtt_mem = free_gtt_mem,
.get_vmem_size = get_vmem_size,
.get_gpu_clock_counter = get_gpu_clock_counter,
.get_max_engine_clock_in_mhz = get_max_engine_clock_in_mhz,
.program_sh_mem_settings = kgd_program_sh_mem_settings,
.set_pasid_vmid_mapping = kgd_set_pasid_vmid_mapping,
.init_pipeline = kgd_init_pipeline,
.init_interrupts = kgd_init_interrupts,
.hqd_load = kgd_hqd_load,
.hqd_sdma_load = kgd_hqd_sdma_load,
.hqd_is_occupied = kgd_hqd_is_occupied,
.hqd_sdma_is_occupied = kgd_hqd_sdma_is_occupied,
.hqd_destroy = kgd_hqd_destroy,
.hqd_sdma_destroy = kgd_hqd_sdma_destroy,
.address_watch_disable = kgd_address_watch_disable,
.address_watch_execute = kgd_address_watch_execute,
.wave_control_execute = kgd_wave_control_execute,
.address_watch_get_offset = kgd_address_watch_get_offset,
.get_atc_vmid_pasid_mapping_pasid = get_atc_vmid_pasid_mapping_pasid,
.get_atc_vmid_pasid_mapping_valid = get_atc_vmid_pasid_mapping_valid,
.write_vmid_invalidate_request = write_vmid_invalidate_request,
.get_fw_version = get_fw_version
};
static const struct kgd2kfd_calls *kgd2kfd;
bool radeon_kfd_init(void)
{
#if defined(CONFIG_HSA_AMD_MODULE)
bool (*kgd2kfd_init_p)(unsigned, const struct kgd2kfd_calls**);
kgd2kfd_init_p = symbol_request(kgd2kfd_init);
if (kgd2kfd_init_p == NULL)
return false;
if (!kgd2kfd_init_p(KFD_INTERFACE_VERSION, &kgd2kfd)) {
symbol_put(kgd2kfd_init);
kgd2kfd = NULL;
return false;
}
return true;
#elif defined(CONFIG_HSA_AMD)
if (!kgd2kfd_init(KFD_INTERFACE_VERSION, &kgd2kfd)) {
kgd2kfd = NULL;
return false;
}
return true;
#else
return false;
#endif
}
void radeon_kfd_fini(void)
{
if (kgd2kfd) {
kgd2kfd->exit();
symbol_put(kgd2kfd_init);
}
}
void radeon_kfd_device_probe(struct radeon_device *rdev)
{
if (kgd2kfd)
rdev->kfd = kgd2kfd->probe((struct kgd_dev *)rdev,
rdev->pdev, &kfd2kgd);
}
void radeon_kfd_device_init(struct radeon_device *rdev)
{
if (rdev->kfd) {
struct kgd2kfd_shared_resources gpu_resources = {
.compute_vmid_bitmap = 0xFF00,
.first_compute_pipe = 1,
.compute_pipe_count = 4 - 1,
};
radeon_doorbell_get_kfd_info(rdev,
&gpu_resources.doorbell_physical_address,
&gpu_resources.doorbell_aperture_size,
&gpu_resources.doorbell_start_offset);
kgd2kfd->device_init(rdev->kfd, &gpu_resources);
}
}
void radeon_kfd_device_fini(struct radeon_device *rdev)
{
if (rdev->kfd) {
kgd2kfd->device_exit(rdev->kfd);
rdev->kfd = NULL;
}
}
void radeon_kfd_interrupt(struct radeon_device *rdev, const void *ih_ring_entry)
{
if (rdev->kfd)
kgd2kfd->interrupt(rdev->kfd, ih_ring_entry);
}
void radeon_kfd_suspend(struct radeon_device *rdev)
{
if (rdev->kfd)
kgd2kfd->suspend(rdev->kfd);
}
int radeon_kfd_resume(struct radeon_device *rdev)
{
int r = 0;
if (rdev->kfd)
r = kgd2kfd->resume(rdev->kfd);
return r;
}
static int alloc_gtt_mem(struct kgd_dev *kgd, size_t size,
void **mem_obj, uint64_t *gpu_addr,
void **cpu_ptr)
{
struct radeon_device *rdev = (struct radeon_device *)kgd;
struct kgd_mem **mem = (struct kgd_mem **) mem_obj;
int r;
BUG_ON(kgd == NULL);
BUG_ON(gpu_addr == NULL);
BUG_ON(cpu_ptr == NULL);
*mem = kmalloc(sizeof(struct kgd_mem), GFP_KERNEL);
if ((*mem) == NULL)
return -ENOMEM;
r = radeon_bo_create(rdev, size, PAGE_SIZE, true, RADEON_GEM_DOMAIN_GTT,
RADEON_GEM_GTT_WC, NULL, NULL, &(*mem)->bo);
if (r) {
dev_err(rdev->dev,
"failed to allocate BO for amdkfd (%d)\n", r);
return r;
}
/* map the buffer */
r = radeon_bo_reserve((*mem)->bo, true);
if (r) {
dev_err(rdev->dev, "(%d) failed to reserve bo for amdkfd\n", r);
goto allocate_mem_reserve_bo_failed;
}
r = radeon_bo_pin((*mem)->bo, RADEON_GEM_DOMAIN_GTT,
&(*mem)->gpu_addr);
if (r) {
dev_err(rdev->dev, "(%d) failed to pin bo for amdkfd\n", r);
goto allocate_mem_pin_bo_failed;
}
*gpu_addr = (*mem)->gpu_addr;
r = radeon_bo_kmap((*mem)->bo, &(*mem)->cpu_ptr);
if (r) {
dev_err(rdev->dev,
"(%d) failed to map bo to kernel for amdkfd\n", r);
goto allocate_mem_kmap_bo_failed;
}
*cpu_ptr = (*mem)->cpu_ptr;
radeon_bo_unreserve((*mem)->bo);
return 0;
allocate_mem_kmap_bo_failed:
radeon_bo_unpin((*mem)->bo);
allocate_mem_pin_bo_failed:
radeon_bo_unreserve((*mem)->bo);
allocate_mem_reserve_bo_failed:
radeon_bo_unref(&(*mem)->bo);
return r;
}
static void free_gtt_mem(struct kgd_dev *kgd, void *mem_obj)
{
struct kgd_mem *mem = (struct kgd_mem *) mem_obj;
BUG_ON(mem == NULL);
radeon_bo_reserve(mem->bo, true);
radeon_bo_kunmap(mem->bo);
radeon_bo_unpin(mem->bo);
radeon_bo_unreserve(mem->bo);
radeon_bo_unref(&(mem->bo));
kfree(mem);
}
static uint64_t get_vmem_size(struct kgd_dev *kgd)
{
struct radeon_device *rdev = (struct radeon_device *)kgd;
BUG_ON(kgd == NULL);
return rdev->mc.real_vram_size;
}
static uint64_t get_gpu_clock_counter(struct kgd_dev *kgd)
{
struct radeon_device *rdev = (struct radeon_device *)kgd;
return rdev->asic->get_gpu_clock_counter(rdev);
}
static uint32_t get_max_engine_clock_in_mhz(struct kgd_dev *kgd)
{
struct radeon_device *rdev = (struct radeon_device *)kgd;
/* The sclk is in quantas of 10kHz */
return rdev->pm.dpm.dyn_state.max_clock_voltage_on_ac.sclk / 100;
}
static inline struct radeon_device *get_radeon_device(struct kgd_dev *kgd)
{
return (struct radeon_device *)kgd;
}
static void write_register(struct kgd_dev *kgd, uint32_t offset, uint32_t value)
{
struct radeon_device *rdev = get_radeon_device(kgd);
writel(value, (void __iomem *)(rdev->rmmio + offset));
}
static uint32_t read_register(struct kgd_dev *kgd, uint32_t offset)
{
struct radeon_device *rdev = get_radeon_device(kgd);
return readl((void __iomem *)(rdev->rmmio + offset));
}
static void lock_srbm(struct kgd_dev *kgd, uint32_t mec, uint32_t pipe,
uint32_t queue, uint32_t vmid)
{
struct radeon_device *rdev = get_radeon_device(kgd);
uint32_t value = PIPEID(pipe) | MEID(mec) | VMID(vmid) | QUEUEID(queue);
mutex_lock(&rdev->srbm_mutex);
write_register(kgd, SRBM_GFX_CNTL, value);
}
static void unlock_srbm(struct kgd_dev *kgd)
{
struct radeon_device *rdev = get_radeon_device(kgd);
write_register(kgd, SRBM_GFX_CNTL, 0);
mutex_unlock(&rdev->srbm_mutex);
}
static void acquire_queue(struct kgd_dev *kgd, uint32_t pipe_id,
uint32_t queue_id)
{
uint32_t mec = (++pipe_id / CIK_PIPE_PER_MEC) + 1;
uint32_t pipe = (pipe_id % CIK_PIPE_PER_MEC);
lock_srbm(kgd, mec, pipe, queue_id, 0);
}
static void release_queue(struct kgd_dev *kgd)
{
unlock_srbm(kgd);
}
static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
uint32_t sh_mem_config,
uint32_t sh_mem_ape1_base,
uint32_t sh_mem_ape1_limit,
uint32_t sh_mem_bases)
{
lock_srbm(kgd, 0, 0, 0, vmid);
write_register(kgd, SH_MEM_CONFIG, sh_mem_config);
write_register(kgd, SH_MEM_APE1_BASE, sh_mem_ape1_base);
write_register(kgd, SH_MEM_APE1_LIMIT, sh_mem_ape1_limit);
write_register(kgd, SH_MEM_BASES, sh_mem_bases);
unlock_srbm(kgd);
}
static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
unsigned int vmid)
{
/*
* We have to assume that there is no outstanding mapping.
* The ATC_VMID_PASID_MAPPING_UPDATE_STATUS bit could be 0
* because a mapping is in progress or because a mapping finished and
* the SW cleared it.
* So the protocol is to always wait & clear.
*/
uint32_t pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid |
ATC_VMID_PASID_MAPPING_VALID_MASK;
write_register(kgd, ATC_VMID0_PASID_MAPPING + vmid*sizeof(uint32_t),
pasid_mapping);
while (!(read_register(kgd, ATC_VMID_PASID_MAPPING_UPDATE_STATUS) &
(1U << vmid)))
cpu_relax();
write_register(kgd, ATC_VMID_PASID_MAPPING_UPDATE_STATUS, 1U << vmid);
/* Mapping vmid to pasid also for IH block */
write_register(kgd, IH_VMID_0_LUT + vmid * sizeof(uint32_t),
pasid_mapping);
return 0;
}
static int kgd_init_pipeline(struct kgd_dev *kgd, uint32_t pipe_id,
uint32_t hpd_size, uint64_t hpd_gpu_addr)
{
uint32_t mec = (pipe_id / CIK_PIPE_PER_MEC) + 1;
uint32_t pipe = (pipe_id % CIK_PIPE_PER_MEC);
lock_srbm(kgd, mec, pipe, 0, 0);
write_register(kgd, CP_HPD_EOP_BASE_ADDR,
lower_32_bits(hpd_gpu_addr >> 8));
write_register(kgd, CP_HPD_EOP_BASE_ADDR_HI,
upper_32_bits(hpd_gpu_addr >> 8));
write_register(kgd, CP_HPD_EOP_VMID, 0);
write_register(kgd, CP_HPD_EOP_CONTROL, hpd_size);
unlock_srbm(kgd);
return 0;
}
static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id)
{
uint32_t mec;
uint32_t pipe;
mec = (pipe_id / CIK_PIPE_PER_MEC) + 1;
pipe = (pipe_id % CIK_PIPE_PER_MEC);
lock_srbm(kgd, mec, pipe, 0, 0);
write_register(kgd, CPC_INT_CNTL,
TIME_STAMP_INT_ENABLE | OPCODE_ERROR_INT_ENABLE);
unlock_srbm(kgd);
return 0;
}
static inline uint32_t get_sdma_base_addr(struct cik_sdma_rlc_registers *m)
{
uint32_t retval;
retval = m->sdma_engine_id * SDMA1_REGISTER_OFFSET +
m->sdma_queue_id * KFD_CIK_SDMA_QUEUE_OFFSET;
pr_debug("kfd: sdma base address: 0x%x\n", retval);
return retval;
}
static inline struct cik_mqd *get_mqd(void *mqd)
{
return (struct cik_mqd *)mqd;
}
static inline struct cik_sdma_rlc_registers *get_sdma_mqd(void *mqd)
{
return (struct cik_sdma_rlc_registers *)mqd;
}
static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
uint32_t queue_id, uint32_t __user *wptr)
{
uint32_t wptr_shadow, is_wptr_shadow_valid;
struct cik_mqd *m;
m = get_mqd(mqd);
is_wptr_shadow_valid = !get_user(wptr_shadow, wptr);
acquire_queue(kgd, pipe_id, queue_id);
write_register(kgd, CP_MQD_BASE_ADDR, m->cp_mqd_base_addr_lo);
write_register(kgd, CP_MQD_BASE_ADDR_HI, m->cp_mqd_base_addr_hi);
write_register(kgd, CP_MQD_CONTROL, m->cp_mqd_control);
write_register(kgd, CP_HQD_PQ_BASE, m->cp_hqd_pq_base_lo);
write_register(kgd, CP_HQD_PQ_BASE_HI, m->cp_hqd_pq_base_hi);
write_register(kgd, CP_HQD_PQ_CONTROL, m->cp_hqd_pq_control);
write_register(kgd, CP_HQD_IB_CONTROL, m->cp_hqd_ib_control);
write_register(kgd, CP_HQD_IB_BASE_ADDR, m->cp_hqd_ib_base_addr_lo);
write_register(kgd, CP_HQD_IB_BASE_ADDR_HI, m->cp_hqd_ib_base_addr_hi);
write_register(kgd, CP_HQD_IB_RPTR, m->cp_hqd_ib_rptr);
write_register(kgd, CP_HQD_PERSISTENT_STATE,
m->cp_hqd_persistent_state);
write_register(kgd, CP_HQD_SEMA_CMD, m->cp_hqd_sema_cmd);
write_register(kgd, CP_HQD_MSG_TYPE, m->cp_hqd_msg_type);
write_register(kgd, CP_HQD_ATOMIC0_PREOP_LO,
m->cp_hqd_atomic0_preop_lo);
write_register(kgd, CP_HQD_ATOMIC0_PREOP_HI,
m->cp_hqd_atomic0_preop_hi);
write_register(kgd, CP_HQD_ATOMIC1_PREOP_LO,
m->cp_hqd_atomic1_preop_lo);
write_register(kgd, CP_HQD_ATOMIC1_PREOP_HI,
m->cp_hqd_atomic1_preop_hi);
write_register(kgd, CP_HQD_PQ_RPTR_REPORT_ADDR,
m->cp_hqd_pq_rptr_report_addr_lo);
write_register(kgd, CP_HQD_PQ_RPTR_REPORT_ADDR_HI,
m->cp_hqd_pq_rptr_report_addr_hi);
write_register(kgd, CP_HQD_PQ_RPTR, m->cp_hqd_pq_rptr);
write_register(kgd, CP_HQD_PQ_WPTR_POLL_ADDR,
m->cp_hqd_pq_wptr_poll_addr_lo);
write_register(kgd, CP_HQD_PQ_WPTR_POLL_ADDR_HI,
m->cp_hqd_pq_wptr_poll_addr_hi);
write_register(kgd, CP_HQD_PQ_DOORBELL_CONTROL,
m->cp_hqd_pq_doorbell_control);
write_register(kgd, CP_HQD_VMID, m->cp_hqd_vmid);
write_register(kgd, CP_HQD_QUANTUM, m->cp_hqd_quantum);
write_register(kgd, CP_HQD_PIPE_PRIORITY, m->cp_hqd_pipe_priority);
write_register(kgd, CP_HQD_QUEUE_PRIORITY, m->cp_hqd_queue_priority);
write_register(kgd, CP_HQD_IQ_RPTR, m->cp_hqd_iq_rptr);
if (is_wptr_shadow_valid)
write_register(kgd, CP_HQD_PQ_WPTR, wptr_shadow);
write_register(kgd, CP_HQD_ACTIVE, m->cp_hqd_active);
release_queue(kgd);
return 0;
}
static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd)
{
struct cik_sdma_rlc_registers *m;
uint32_t sdma_base_addr;
m = get_sdma_mqd(mqd);
sdma_base_addr = get_sdma_base_addr(m);
write_register(kgd,
sdma_base_addr + SDMA0_RLC0_VIRTUAL_ADDR,
m->sdma_rlc_virtual_addr);
write_register(kgd,
sdma_base_addr + SDMA0_RLC0_RB_BASE,
m->sdma_rlc_rb_base);
write_register(kgd,
sdma_base_addr + SDMA0_RLC0_RB_BASE_HI,
m->sdma_rlc_rb_base_hi);
write_register(kgd,
sdma_base_addr + SDMA0_RLC0_RB_RPTR_ADDR_LO,
m->sdma_rlc_rb_rptr_addr_lo);
write_register(kgd,
sdma_base_addr + SDMA0_RLC0_RB_RPTR_ADDR_HI,
m->sdma_rlc_rb_rptr_addr_hi);
write_register(kgd,
sdma_base_addr + SDMA0_RLC0_DOORBELL,
m->sdma_rlc_doorbell);
write_register(kgd,
sdma_base_addr + SDMA0_RLC0_RB_CNTL,
m->sdma_rlc_rb_cntl);
return 0;
}
static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
uint32_t pipe_id, uint32_t queue_id)
{
uint32_t act;
bool retval = false;
uint32_t low, high;
acquire_queue(kgd, pipe_id, queue_id);
act = read_register(kgd, CP_HQD_ACTIVE);
if (act) {
low = lower_32_bits(queue_address >> 8);
high = upper_32_bits(queue_address >> 8);
if (low == read_register(kgd, CP_HQD_PQ_BASE) &&
high == read_register(kgd, CP_HQD_PQ_BASE_HI))
retval = true;
}
release_queue(kgd);
return retval;
}
static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd)
{
struct cik_sdma_rlc_registers *m;
uint32_t sdma_base_addr;
uint32_t sdma_rlc_rb_cntl;
m = get_sdma_mqd(mqd);
sdma_base_addr = get_sdma_base_addr(m);
sdma_rlc_rb_cntl = read_register(kgd,
sdma_base_addr + SDMA0_RLC0_RB_CNTL);
if (sdma_rlc_rb_cntl & SDMA_RB_ENABLE)
return true;
return false;
}
static int kgd_hqd_destroy(struct kgd_dev *kgd, uint32_t reset_type,
unsigned int timeout, uint32_t pipe_id,
uint32_t queue_id)
{
uint32_t temp;
acquire_queue(kgd, pipe_id, queue_id);
write_register(kgd, CP_HQD_PQ_DOORBELL_CONTROL, 0);
write_register(kgd, CP_HQD_DEQUEUE_REQUEST, reset_type);
while (true) {
temp = read_register(kgd, CP_HQD_ACTIVE);
if (temp & 0x1)
break;
if (timeout == 0) {
pr_err("kfd: cp queue preemption time out (%dms)\n",
temp);
release_queue(kgd);
return -ETIME;
}
msleep(20);
timeout -= 20;
}
release_queue(kgd);
return 0;
}
static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
unsigned int timeout)
{
struct cik_sdma_rlc_registers *m;
uint32_t sdma_base_addr;
uint32_t temp;
m = get_sdma_mqd(mqd);
sdma_base_addr = get_sdma_base_addr(m);
temp = read_register(kgd, sdma_base_addr + SDMA0_RLC0_RB_CNTL);
temp = temp & ~SDMA_RB_ENABLE;
write_register(kgd, sdma_base_addr + SDMA0_RLC0_RB_CNTL, temp);
while (true) {
temp = read_register(kgd, sdma_base_addr +
SDMA0_RLC0_CONTEXT_STATUS);
if (temp & SDMA_RLC_IDLE)
break;
if (timeout == 0)
return -ETIME;
msleep(20);
timeout -= 20;
}
write_register(kgd, sdma_base_addr + SDMA0_RLC0_DOORBELL, 0);
write_register(kgd, sdma_base_addr + SDMA0_RLC0_RB_RPTR, 0);
write_register(kgd, sdma_base_addr + SDMA0_RLC0_RB_WPTR, 0);
write_register(kgd, sdma_base_addr + SDMA0_RLC0_RB_BASE, 0);
return 0;
}
static int kgd_address_watch_disable(struct kgd_dev *kgd)
{
union TCP_WATCH_CNTL_BITS cntl;
unsigned int i;
cntl.u32All = 0;
cntl.bitfields.valid = 0;
cntl.bitfields.mask = ADDRESS_WATCH_REG_CNTL_DEFAULT_MASK;
cntl.bitfields.atc = 1;
/* Turning off this address until we set all the registers */
for (i = 0; i < MAX_WATCH_ADDRESSES; i++)
write_register(kgd,
watchRegs[i * ADDRESS_WATCH_REG_MAX +
ADDRESS_WATCH_REG_CNTL],
cntl.u32All);
return 0;
}
static int kgd_address_watch_execute(struct kgd_dev *kgd,
unsigned int watch_point_id,
uint32_t cntl_val,
uint32_t addr_hi,
uint32_t addr_lo)
{
union TCP_WATCH_CNTL_BITS cntl;
cntl.u32All = cntl_val;
/* Turning off this watch point until we set all the registers */
cntl.bitfields.valid = 0;
write_register(kgd,
watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
ADDRESS_WATCH_REG_CNTL],
cntl.u32All);
write_register(kgd,
watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
ADDRESS_WATCH_REG_ADDR_HI],
addr_hi);
write_register(kgd,
watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
ADDRESS_WATCH_REG_ADDR_LO],
addr_lo);
/* Enable the watch point */
cntl.bitfields.valid = 1;
write_register(kgd,
watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
ADDRESS_WATCH_REG_CNTL],
cntl.u32All);
return 0;
}
static int kgd_wave_control_execute(struct kgd_dev *kgd,
uint32_t gfx_index_val,
uint32_t sq_cmd)
{
struct radeon_device *rdev = get_radeon_device(kgd);
uint32_t data;
mutex_lock(&rdev->grbm_idx_mutex);
write_register(kgd, GRBM_GFX_INDEX, gfx_index_val);
write_register(kgd, SQ_CMD, sq_cmd);
/* Restore the GRBM_GFX_INDEX register */
data = INSTANCE_BROADCAST_WRITES | SH_BROADCAST_WRITES |
SE_BROADCAST_WRITES;
write_register(kgd, GRBM_GFX_INDEX, data);
mutex_unlock(&rdev->grbm_idx_mutex);
return 0;
}
static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
unsigned int watch_point_id,
unsigned int reg_offset)
{
return watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX + reg_offset];
}
static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd, uint8_t vmid)
{
uint32_t reg;
struct radeon_device *rdev = (struct radeon_device *) kgd;
reg = RREG32(ATC_VMID0_PASID_MAPPING + vmid*4);
return reg & ATC_VMID_PASID_MAPPING_VALID_MASK;
}
static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd,
uint8_t vmid)
{
uint32_t reg;
struct radeon_device *rdev = (struct radeon_device *) kgd;
reg = RREG32(ATC_VMID0_PASID_MAPPING + vmid*4);
return reg & ATC_VMID_PASID_MAPPING_PASID_MASK;
}
static void write_vmid_invalidate_request(struct kgd_dev *kgd, uint8_t vmid)
{
struct radeon_device *rdev = (struct radeon_device *) kgd;
return WREG32(VM_INVALIDATE_REQUEST, 1 << vmid);
}
static uint16_t get_fw_version(struct kgd_dev *kgd, enum kgd_engine_type type)
{
struct radeon_device *rdev = (struct radeon_device *) kgd;
const union radeon_firmware_header *hdr;
BUG_ON(kgd == NULL || rdev->mec_fw == NULL);
switch (type) {
case KGD_ENGINE_PFP:
hdr = (const union radeon_firmware_header *) rdev->pfp_fw->data;
break;
case KGD_ENGINE_ME:
hdr = (const union radeon_firmware_header *) rdev->me_fw->data;
break;
case KGD_ENGINE_CE:
hdr = (const union radeon_firmware_header *) rdev->ce_fw->data;
break;
case KGD_ENGINE_MEC1:
hdr = (const union radeon_firmware_header *) rdev->mec_fw->data;
break;
case KGD_ENGINE_MEC2:
hdr = (const union radeon_firmware_header *)
rdev->mec2_fw->data;
break;
case KGD_ENGINE_RLC:
hdr = (const union radeon_firmware_header *) rdev->rlc_fw->data;
break;
case KGD_ENGINE_SDMA1:
case KGD_ENGINE_SDMA2:
hdr = (const union radeon_firmware_header *)
rdev->sdma_fw->data;
break;
default:
return 0;
}
if (hdr == NULL)
return 0;
/* Only 12 bit in use*/
return hdr->common.ucode_version;
}