linux_old1/drivers/iio/adc/stmpe-adc.c

364 lines
8.0 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* STMicroelectronics STMPE811 IIO ADC Driver
*
* 4 channel, 10/12-bit ADC
*
* Copyright (C) 2013-2018 Toradex AG <stefan.agner@toradex.com>
*/
#include <linux/completion.h>
#include <linux/err.h>
#include <linux/iio/iio.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/mfd/stmpe.h>
#include <linux/module.h>
#include <linux/of_platform.h>
#include <linux/platform_device.h>
#include <linux/device.h>
#define STMPE_REG_INT_STA 0x0B
#define STMPE_REG_ADC_INT_EN 0x0E
#define STMPE_REG_ADC_INT_STA 0x0F
#define STMPE_REG_ADC_CTRL1 0x20
#define STMPE_REG_ADC_CTRL2 0x21
#define STMPE_REG_ADC_CAPT 0x22
#define STMPE_REG_ADC_DATA_CH(channel) (0x30 + 2 * (channel))
#define STMPE_REG_TEMP_CTRL 0x60
#define STMPE_TEMP_CTRL_ENABLE BIT(0)
#define STMPE_TEMP_CTRL_ACQ BIT(1)
#define STMPE_TEMP_CTRL_THRES_EN BIT(3)
#define STMPE_START_ONE_TEMP_CONV (STMPE_TEMP_CTRL_ENABLE | \
STMPE_TEMP_CTRL_ACQ | \
STMPE_TEMP_CTRL_THRES_EN)
#define STMPE_REG_TEMP_DATA 0x61
#define STMPE_REG_TEMP_TH 0x63
#define STMPE_ADC_LAST_NR 7
#define STMPE_TEMP_CHANNEL (STMPE_ADC_LAST_NR + 1)
#define STMPE_ADC_CH(channel) ((1 << (channel)) & 0xff)
#define STMPE_ADC_TIMEOUT msecs_to_jiffies(1000)
struct stmpe_adc {
struct stmpe *stmpe;
struct clk *clk;
struct device *dev;
struct mutex lock;
/* We are allocating plus one for the temperature channel */
struct iio_chan_spec stmpe_adc_iio_channels[STMPE_ADC_LAST_NR + 2];
struct completion completion;
u8 channel;
u32 value;
};
static int stmpe_read_voltage(struct stmpe_adc *info,
struct iio_chan_spec const *chan, int *val)
{
long ret;
mutex_lock(&info->lock);
info->channel = (u8)chan->channel;
if (info->channel > STMPE_ADC_LAST_NR) {
mutex_unlock(&info->lock);
return -EINVAL;
}
stmpe_reg_write(info->stmpe, STMPE_REG_ADC_INT_EN,
STMPE_ADC_CH(info->channel));
stmpe_reg_write(info->stmpe, STMPE_REG_ADC_CAPT,
STMPE_ADC_CH(info->channel));
*val = info->value;
ret = wait_for_completion_interruptible_timeout
(&info->completion, STMPE_ADC_TIMEOUT);
if (ret <= 0) {
mutex_unlock(&info->lock);
if (ret == 0)
return -ETIMEDOUT;
else
return ret;
}
*val = info->value;
mutex_unlock(&info->lock);
return 0;
}
static int stmpe_read_temp(struct stmpe_adc *info,
struct iio_chan_spec const *chan, int *val)
{
long ret;
mutex_lock(&info->lock);
info->channel = (u8)chan->channel;
if (info->channel != STMPE_TEMP_CHANNEL) {
mutex_unlock(&info->lock);
return -EINVAL;
}
stmpe_reg_write(info->stmpe, STMPE_REG_TEMP_CTRL,
STMPE_START_ONE_TEMP_CONV);
ret = wait_for_completion_interruptible_timeout
(&info->completion, STMPE_ADC_TIMEOUT);
if (ret <= 0) {
mutex_unlock(&info->lock);
if (ret == 0)
return -ETIMEDOUT;
else
return ret;
}
/*
* absolute temp = +V3.3 * value /7.51 [K]
* scale to [milli °C]
*/
*val = ((449960l * info->value) / 1024l) - 273150;
mutex_unlock(&info->lock);
return 0;
}
static int stmpe_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int *val,
int *val2,
long mask)
{
struct stmpe_adc *info = iio_priv(indio_dev);
long ret;
switch (mask) {
case IIO_CHAN_INFO_RAW:
case IIO_CHAN_INFO_PROCESSED:
switch (chan->type) {
case IIO_VOLTAGE:
ret = stmpe_read_voltage(info, chan, val);
break;
case IIO_TEMP:
ret = stmpe_read_temp(info, chan, val);
break;
default:
return -EINVAL;
}
if (ret < 0)
return ret;
return IIO_VAL_INT;
case IIO_CHAN_INFO_SCALE:
*val = 3300;
*val2 = info->stmpe->mod_12b ? 12 : 10;
return IIO_VAL_FRACTIONAL_LOG2;
default:
break;
}
return -EINVAL;
}
static irqreturn_t stmpe_adc_isr(int irq, void *dev_id)
{
struct stmpe_adc *info = (struct stmpe_adc *)dev_id;
u16 data;
if (info->channel > STMPE_TEMP_CHANNEL)
return IRQ_NONE;
if (info->channel <= STMPE_ADC_LAST_NR) {
int int_sta;
int_sta = stmpe_reg_read(info->stmpe, STMPE_REG_ADC_INT_STA);
/* Is the interrupt relevant */
if (!(int_sta & STMPE_ADC_CH(info->channel)))
return IRQ_NONE;
/* Read value */
stmpe_block_read(info->stmpe,
STMPE_REG_ADC_DATA_CH(info->channel), 2, (u8 *) &data);
stmpe_reg_write(info->stmpe, STMPE_REG_ADC_INT_STA, int_sta);
} else if (info->channel == STMPE_TEMP_CHANNEL) {
/* Read value */
stmpe_block_read(info->stmpe, STMPE_REG_TEMP_DATA, 2,
(u8 *) &data);
}
info->value = (u32) be16_to_cpu(data);
complete(&info->completion);
return IRQ_HANDLED;
}
static const struct iio_info stmpe_adc_iio_info = {
.read_raw = &stmpe_read_raw,
};
static void stmpe_adc_voltage_chan(struct iio_chan_spec *ics, int chan)
{
ics->type = IIO_VOLTAGE;
ics->info_mask_separate = BIT(IIO_CHAN_INFO_RAW);
ics->info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE);
ics->indexed = 1;
ics->channel = chan;
}
static void stmpe_adc_temp_chan(struct iio_chan_spec *ics, int chan)
{
ics->type = IIO_TEMP;
ics->info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED);
ics->indexed = 1;
ics->channel = chan;
}
static int stmpe_adc_init_hw(struct stmpe_adc *adc)
{
int ret;
struct stmpe *stmpe = adc->stmpe;
ret = stmpe_enable(stmpe, STMPE_BLOCK_ADC);
if (ret) {
dev_err(stmpe->dev, "Could not enable clock for ADC\n");
return ret;
}
ret = stmpe811_adc_common_init(stmpe);
if (ret) {
stmpe_disable(stmpe, STMPE_BLOCK_ADC);
return ret;
}
/* use temp irq for each conversion completion */
stmpe_reg_write(stmpe, STMPE_REG_TEMP_TH, 0);
stmpe_reg_write(stmpe, STMPE_REG_TEMP_TH + 1, 0);
return 0;
}
static int stmpe_adc_probe(struct platform_device *pdev)
{
struct iio_dev *indio_dev;
struct stmpe_adc *info;
struct device_node *np;
u32 norequest_mask = 0;
int irq_temp, irq_adc;
int num_chan = 0;
int i = 0;
int ret;
irq_adc = platform_get_irq_byname(pdev, "STMPE_ADC");
if (irq_adc < 0)
return irq_adc;
indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(struct stmpe_adc));
if (!indio_dev) {
dev_err(&pdev->dev, "failed allocating iio device\n");
return -ENOMEM;
}
info = iio_priv(indio_dev);
mutex_init(&info->lock);
init_completion(&info->completion);
ret = devm_request_threaded_irq(&pdev->dev, irq_adc, NULL,
stmpe_adc_isr, IRQF_ONESHOT,
"stmpe-adc", info);
if (ret < 0) {
dev_err(&pdev->dev, "failed requesting irq, irq = %d\n",
irq_adc);
return ret;
}
irq_temp = platform_get_irq_byname(pdev, "STMPE_TEMP_SENS");
if (irq_temp >= 0) {
ret = devm_request_threaded_irq(&pdev->dev, irq_temp, NULL,
stmpe_adc_isr, IRQF_ONESHOT,
"stmpe-adc", info);
if (ret < 0)
dev_warn(&pdev->dev, "failed requesting irq for"
" temp sensor, irq = %d\n", irq_temp);
}
platform_set_drvdata(pdev, indio_dev);
indio_dev->name = dev_name(&pdev->dev);
indio_dev->dev.parent = &pdev->dev;
indio_dev->info = &stmpe_adc_iio_info;
indio_dev->modes = INDIO_DIRECT_MODE;
info->stmpe = dev_get_drvdata(pdev->dev.parent);
np = pdev->dev.of_node;
if (!np)
dev_err(&pdev->dev, "no device tree node found\n");
of_property_read_u32(np, "st,norequest-mask", &norequest_mask);
for_each_clear_bit(i, (unsigned long *) &norequest_mask,
(STMPE_ADC_LAST_NR + 1)) {
stmpe_adc_voltage_chan(&info->stmpe_adc_iio_channels[num_chan], i);
num_chan++;
}
stmpe_adc_temp_chan(&info->stmpe_adc_iio_channels[num_chan], i);
num_chan++;
indio_dev->channels = info->stmpe_adc_iio_channels;
indio_dev->num_channels = num_chan;
ret = stmpe_adc_init_hw(info);
if (ret)
return ret;
return devm_iio_device_register(&pdev->dev, indio_dev);
}
static int __maybe_unused stmpe_adc_resume(struct device *dev)
{
struct iio_dev *indio_dev = dev_get_drvdata(dev);
struct stmpe_adc *info = iio_priv(indio_dev);
stmpe_adc_init_hw(info);
return 0;
}
static SIMPLE_DEV_PM_OPS(stmpe_adc_pm_ops, NULL, stmpe_adc_resume);
static struct platform_driver stmpe_adc_driver = {
.probe = stmpe_adc_probe,
.driver = {
.name = "stmpe-adc",
.pm = &stmpe_adc_pm_ops,
},
};
module_platform_driver(stmpe_adc_driver);
MODULE_AUTHOR("Stefan Agner <stefan.agner@toradex.com>");
MODULE_DESCRIPTION("STMPEXXX ADC driver");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:stmpe-adc");