linux_old1/drivers/spi/spi-tegra20-sflash.c

623 lines
16 KiB
C

/*
* SPI driver for Nvidia's Tegra20 Serial Flash Controller.
*
* Copyright (c) 2012, NVIDIA CORPORATION. All rights reserved.
*
* Author: Laxman Dewangan <ldewangan@nvidia.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <linux/clk.h>
#include <linux/completion.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/kthread.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/reset.h>
#include <linux/spi/spi.h>
#define SPI_COMMAND 0x000
#define SPI_GO BIT(30)
#define SPI_M_S BIT(28)
#define SPI_ACTIVE_SCLK_MASK (0x3 << 26)
#define SPI_ACTIVE_SCLK_DRIVE_LOW (0 << 26)
#define SPI_ACTIVE_SCLK_DRIVE_HIGH (1 << 26)
#define SPI_ACTIVE_SCLK_PULL_LOW (2 << 26)
#define SPI_ACTIVE_SCLK_PULL_HIGH (3 << 26)
#define SPI_CK_SDA_FALLING (1 << 21)
#define SPI_CK_SDA_RISING (0 << 21)
#define SPI_CK_SDA_MASK (1 << 21)
#define SPI_ACTIVE_SDA (0x3 << 18)
#define SPI_ACTIVE_SDA_DRIVE_LOW (0 << 18)
#define SPI_ACTIVE_SDA_DRIVE_HIGH (1 << 18)
#define SPI_ACTIVE_SDA_PULL_LOW (2 << 18)
#define SPI_ACTIVE_SDA_PULL_HIGH (3 << 18)
#define SPI_CS_POL_INVERT BIT(16)
#define SPI_TX_EN BIT(15)
#define SPI_RX_EN BIT(14)
#define SPI_CS_VAL_HIGH BIT(13)
#define SPI_CS_VAL_LOW 0x0
#define SPI_CS_SW BIT(12)
#define SPI_CS_HW 0x0
#define SPI_CS_DELAY_MASK (7 << 9)
#define SPI_CS3_EN BIT(8)
#define SPI_CS2_EN BIT(7)
#define SPI_CS1_EN BIT(6)
#define SPI_CS0_EN BIT(5)
#define SPI_CS_MASK (SPI_CS3_EN | SPI_CS2_EN | \
SPI_CS1_EN | SPI_CS0_EN)
#define SPI_BIT_LENGTH(x) (((x) & 0x1f) << 0)
#define SPI_MODES (SPI_ACTIVE_SCLK_MASK | SPI_CK_SDA_MASK)
#define SPI_STATUS 0x004
#define SPI_BSY BIT(31)
#define SPI_RDY BIT(30)
#define SPI_TXF_FLUSH BIT(29)
#define SPI_RXF_FLUSH BIT(28)
#define SPI_RX_UNF BIT(27)
#define SPI_TX_OVF BIT(26)
#define SPI_RXF_EMPTY BIT(25)
#define SPI_RXF_FULL BIT(24)
#define SPI_TXF_EMPTY BIT(23)
#define SPI_TXF_FULL BIT(22)
#define SPI_BLK_CNT(count) (((count) & 0xffff) + 1)
#define SPI_FIFO_ERROR (SPI_RX_UNF | SPI_TX_OVF)
#define SPI_FIFO_EMPTY (SPI_TX_EMPTY | SPI_RX_EMPTY)
#define SPI_RX_CMP 0x8
#define SPI_DMA_CTL 0x0C
#define SPI_DMA_EN BIT(31)
#define SPI_IE_RXC BIT(27)
#define SPI_IE_TXC BIT(26)
#define SPI_PACKED BIT(20)
#define SPI_RX_TRIG_MASK (0x3 << 18)
#define SPI_RX_TRIG_1W (0x0 << 18)
#define SPI_RX_TRIG_4W (0x1 << 18)
#define SPI_TX_TRIG_MASK (0x3 << 16)
#define SPI_TX_TRIG_1W (0x0 << 16)
#define SPI_TX_TRIG_4W (0x1 << 16)
#define SPI_DMA_BLK_COUNT(count) (((count) - 1) & 0xFFFF)
#define SPI_TX_FIFO 0x10
#define SPI_RX_FIFO 0x20
#define DATA_DIR_TX (1 << 0)
#define DATA_DIR_RX (1 << 1)
#define MAX_CHIP_SELECT 4
#define SPI_FIFO_DEPTH 4
#define SPI_DMA_TIMEOUT (msecs_to_jiffies(1000))
struct tegra_sflash_data {
struct device *dev;
struct spi_master *master;
spinlock_t lock;
struct clk *clk;
struct reset_control *rst;
void __iomem *base;
unsigned irq;
u32 cur_speed;
struct spi_device *cur_spi;
unsigned cur_pos;
unsigned cur_len;
unsigned bytes_per_word;
unsigned cur_direction;
unsigned curr_xfer_words;
unsigned cur_rx_pos;
unsigned cur_tx_pos;
u32 tx_status;
u32 rx_status;
u32 status_reg;
u32 def_command_reg;
u32 command_reg;
u32 dma_control_reg;
struct completion xfer_completion;
struct spi_transfer *curr_xfer;
};
static int tegra_sflash_runtime_suspend(struct device *dev);
static int tegra_sflash_runtime_resume(struct device *dev);
static inline u32 tegra_sflash_readl(struct tegra_sflash_data *tsd,
unsigned long reg)
{
return readl(tsd->base + reg);
}
static inline void tegra_sflash_writel(struct tegra_sflash_data *tsd,
u32 val, unsigned long reg)
{
writel(val, tsd->base + reg);
}
static void tegra_sflash_clear_status(struct tegra_sflash_data *tsd)
{
/* Write 1 to clear status register */
tegra_sflash_writel(tsd, SPI_RDY | SPI_FIFO_ERROR, SPI_STATUS);
}
static unsigned tegra_sflash_calculate_curr_xfer_param(
struct spi_device *spi, struct tegra_sflash_data *tsd,
struct spi_transfer *t)
{
unsigned remain_len = t->len - tsd->cur_pos;
unsigned max_word;
tsd->bytes_per_word = DIV_ROUND_UP(t->bits_per_word, 8);
max_word = remain_len / tsd->bytes_per_word;
if (max_word > SPI_FIFO_DEPTH)
max_word = SPI_FIFO_DEPTH;
tsd->curr_xfer_words = max_word;
return max_word;
}
static unsigned tegra_sflash_fill_tx_fifo_from_client_txbuf(
struct tegra_sflash_data *tsd, struct spi_transfer *t)
{
unsigned nbytes;
u32 status;
unsigned max_n_32bit = tsd->curr_xfer_words;
u8 *tx_buf = (u8 *)t->tx_buf + tsd->cur_tx_pos;
if (max_n_32bit > SPI_FIFO_DEPTH)
max_n_32bit = SPI_FIFO_DEPTH;
nbytes = max_n_32bit * tsd->bytes_per_word;
status = tegra_sflash_readl(tsd, SPI_STATUS);
while (!(status & SPI_TXF_FULL)) {
int i;
u32 x = 0;
for (i = 0; nbytes && (i < tsd->bytes_per_word);
i++, nbytes--)
x |= (u32)(*tx_buf++) << (i * 8);
tegra_sflash_writel(tsd, x, SPI_TX_FIFO);
if (!nbytes)
break;
status = tegra_sflash_readl(tsd, SPI_STATUS);
}
tsd->cur_tx_pos += max_n_32bit * tsd->bytes_per_word;
return max_n_32bit;
}
static int tegra_sflash_read_rx_fifo_to_client_rxbuf(
struct tegra_sflash_data *tsd, struct spi_transfer *t)
{
u32 status;
unsigned int read_words = 0;
u8 *rx_buf = (u8 *)t->rx_buf + tsd->cur_rx_pos;
status = tegra_sflash_readl(tsd, SPI_STATUS);
while (!(status & SPI_RXF_EMPTY)) {
int i;
u32 x = tegra_sflash_readl(tsd, SPI_RX_FIFO);
for (i = 0; (i < tsd->bytes_per_word); i++)
*rx_buf++ = (x >> (i*8)) & 0xFF;
read_words++;
status = tegra_sflash_readl(tsd, SPI_STATUS);
}
tsd->cur_rx_pos += read_words * tsd->bytes_per_word;
return 0;
}
static int tegra_sflash_start_cpu_based_transfer(
struct tegra_sflash_data *tsd, struct spi_transfer *t)
{
u32 val = 0;
unsigned cur_words;
if (tsd->cur_direction & DATA_DIR_TX)
val |= SPI_IE_TXC;
if (tsd->cur_direction & DATA_DIR_RX)
val |= SPI_IE_RXC;
tegra_sflash_writel(tsd, val, SPI_DMA_CTL);
tsd->dma_control_reg = val;
if (tsd->cur_direction & DATA_DIR_TX)
cur_words = tegra_sflash_fill_tx_fifo_from_client_txbuf(tsd, t);
else
cur_words = tsd->curr_xfer_words;
val |= SPI_DMA_BLK_COUNT(cur_words);
tegra_sflash_writel(tsd, val, SPI_DMA_CTL);
tsd->dma_control_reg = val;
val |= SPI_DMA_EN;
tegra_sflash_writel(tsd, val, SPI_DMA_CTL);
return 0;
}
static int tegra_sflash_start_transfer_one(struct spi_device *spi,
struct spi_transfer *t, bool is_first_of_msg,
bool is_single_xfer)
{
struct tegra_sflash_data *tsd = spi_master_get_devdata(spi->master);
u32 speed;
u32 command;
speed = t->speed_hz;
if (speed != tsd->cur_speed) {
clk_set_rate(tsd->clk, speed);
tsd->cur_speed = speed;
}
tsd->cur_spi = spi;
tsd->cur_pos = 0;
tsd->cur_rx_pos = 0;
tsd->cur_tx_pos = 0;
tsd->curr_xfer = t;
tegra_sflash_calculate_curr_xfer_param(spi, tsd, t);
if (is_first_of_msg) {
command = tsd->def_command_reg;
command |= SPI_BIT_LENGTH(t->bits_per_word - 1);
command |= SPI_CS_VAL_HIGH;
command &= ~SPI_MODES;
if (spi->mode & SPI_CPHA)
command |= SPI_CK_SDA_FALLING;
if (spi->mode & SPI_CPOL)
command |= SPI_ACTIVE_SCLK_DRIVE_HIGH;
else
command |= SPI_ACTIVE_SCLK_DRIVE_LOW;
command |= SPI_CS0_EN << spi->chip_select;
} else {
command = tsd->command_reg;
command &= ~SPI_BIT_LENGTH(~0);
command |= SPI_BIT_LENGTH(t->bits_per_word - 1);
command &= ~(SPI_RX_EN | SPI_TX_EN);
}
tsd->cur_direction = 0;
if (t->rx_buf) {
command |= SPI_RX_EN;
tsd->cur_direction |= DATA_DIR_RX;
}
if (t->tx_buf) {
command |= SPI_TX_EN;
tsd->cur_direction |= DATA_DIR_TX;
}
tegra_sflash_writel(tsd, command, SPI_COMMAND);
tsd->command_reg = command;
return tegra_sflash_start_cpu_based_transfer(tsd, t);
}
static int tegra_sflash_transfer_one_message(struct spi_master *master,
struct spi_message *msg)
{
bool is_first_msg = true;
int single_xfer;
struct tegra_sflash_data *tsd = spi_master_get_devdata(master);
struct spi_transfer *xfer;
struct spi_device *spi = msg->spi;
int ret;
msg->status = 0;
msg->actual_length = 0;
single_xfer = list_is_singular(&msg->transfers);
list_for_each_entry(xfer, &msg->transfers, transfer_list) {
reinit_completion(&tsd->xfer_completion);
ret = tegra_sflash_start_transfer_one(spi, xfer,
is_first_msg, single_xfer);
if (ret < 0) {
dev_err(tsd->dev,
"spi can not start transfer, err %d\n", ret);
goto exit;
}
is_first_msg = false;
ret = wait_for_completion_timeout(&tsd->xfer_completion,
SPI_DMA_TIMEOUT);
if (WARN_ON(ret == 0)) {
dev_err(tsd->dev,
"spi trasfer timeout, err %d\n", ret);
ret = -EIO;
goto exit;
}
if (tsd->tx_status || tsd->rx_status) {
dev_err(tsd->dev, "Error in Transfer\n");
ret = -EIO;
goto exit;
}
msg->actual_length += xfer->len;
if (xfer->cs_change && xfer->delay_usecs) {
tegra_sflash_writel(tsd, tsd->def_command_reg,
SPI_COMMAND);
udelay(xfer->delay_usecs);
}
}
ret = 0;
exit:
tegra_sflash_writel(tsd, tsd->def_command_reg, SPI_COMMAND);
msg->status = ret;
spi_finalize_current_message(master);
return ret;
}
static irqreturn_t handle_cpu_based_xfer(struct tegra_sflash_data *tsd)
{
struct spi_transfer *t = tsd->curr_xfer;
unsigned long flags;
spin_lock_irqsave(&tsd->lock, flags);
if (tsd->tx_status || tsd->rx_status || (tsd->status_reg & SPI_BSY)) {
dev_err(tsd->dev,
"CpuXfer ERROR bit set 0x%x\n", tsd->status_reg);
dev_err(tsd->dev,
"CpuXfer 0x%08x:0x%08x\n", tsd->command_reg,
tsd->dma_control_reg);
reset_control_assert(tsd->rst);
udelay(2);
reset_control_deassert(tsd->rst);
complete(&tsd->xfer_completion);
goto exit;
}
if (tsd->cur_direction & DATA_DIR_RX)
tegra_sflash_read_rx_fifo_to_client_rxbuf(tsd, t);
if (tsd->cur_direction & DATA_DIR_TX)
tsd->cur_pos = tsd->cur_tx_pos;
else
tsd->cur_pos = tsd->cur_rx_pos;
if (tsd->cur_pos == t->len) {
complete(&tsd->xfer_completion);
goto exit;
}
tegra_sflash_calculate_curr_xfer_param(tsd->cur_spi, tsd, t);
tegra_sflash_start_cpu_based_transfer(tsd, t);
exit:
spin_unlock_irqrestore(&tsd->lock, flags);
return IRQ_HANDLED;
}
static irqreturn_t tegra_sflash_isr(int irq, void *context_data)
{
struct tegra_sflash_data *tsd = context_data;
tsd->status_reg = tegra_sflash_readl(tsd, SPI_STATUS);
if (tsd->cur_direction & DATA_DIR_TX)
tsd->tx_status = tsd->status_reg & SPI_TX_OVF;
if (tsd->cur_direction & DATA_DIR_RX)
tsd->rx_status = tsd->status_reg & SPI_RX_UNF;
tegra_sflash_clear_status(tsd);
return handle_cpu_based_xfer(tsd);
}
static const struct of_device_id tegra_sflash_of_match[] = {
{ .compatible = "nvidia,tegra20-sflash", },
{}
};
MODULE_DEVICE_TABLE(of, tegra_sflash_of_match);
static int tegra_sflash_probe(struct platform_device *pdev)
{
struct spi_master *master;
struct tegra_sflash_data *tsd;
struct resource *r;
int ret;
const struct of_device_id *match;
match = of_match_device(tegra_sflash_of_match, &pdev->dev);
if (!match) {
dev_err(&pdev->dev, "Error: No device match found\n");
return -ENODEV;
}
master = spi_alloc_master(&pdev->dev, sizeof(*tsd));
if (!master) {
dev_err(&pdev->dev, "master allocation failed\n");
return -ENOMEM;
}
/* the spi->mode bits understood by this driver: */
master->mode_bits = SPI_CPOL | SPI_CPHA;
master->transfer_one_message = tegra_sflash_transfer_one_message;
master->auto_runtime_pm = true;
master->num_chipselect = MAX_CHIP_SELECT;
platform_set_drvdata(pdev, master);
tsd = spi_master_get_devdata(master);
tsd->master = master;
tsd->dev = &pdev->dev;
spin_lock_init(&tsd->lock);
if (of_property_read_u32(tsd->dev->of_node, "spi-max-frequency",
&master->max_speed_hz))
master->max_speed_hz = 25000000; /* 25MHz */
r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
tsd->base = devm_ioremap_resource(&pdev->dev, r);
if (IS_ERR(tsd->base)) {
ret = PTR_ERR(tsd->base);
goto exit_free_master;
}
tsd->irq = platform_get_irq(pdev, 0);
ret = request_irq(tsd->irq, tegra_sflash_isr, 0,
dev_name(&pdev->dev), tsd);
if (ret < 0) {
dev_err(&pdev->dev, "Failed to register ISR for IRQ %d\n",
tsd->irq);
goto exit_free_master;
}
tsd->clk = devm_clk_get(&pdev->dev, NULL);
if (IS_ERR(tsd->clk)) {
dev_err(&pdev->dev, "can not get clock\n");
ret = PTR_ERR(tsd->clk);
goto exit_free_irq;
}
tsd->rst = devm_reset_control_get(&pdev->dev, "spi");
if (IS_ERR(tsd->rst)) {
dev_err(&pdev->dev, "can not get reset\n");
ret = PTR_ERR(tsd->rst);
goto exit_free_irq;
}
init_completion(&tsd->xfer_completion);
pm_runtime_enable(&pdev->dev);
if (!pm_runtime_enabled(&pdev->dev)) {
ret = tegra_sflash_runtime_resume(&pdev->dev);
if (ret)
goto exit_pm_disable;
}
ret = pm_runtime_get_sync(&pdev->dev);
if (ret < 0) {
dev_err(&pdev->dev, "pm runtime get failed, e = %d\n", ret);
goto exit_pm_disable;
}
/* Reset controller */
reset_control_assert(tsd->rst);
udelay(2);
reset_control_deassert(tsd->rst);
tsd->def_command_reg = SPI_M_S | SPI_CS_SW;
tegra_sflash_writel(tsd, tsd->def_command_reg, SPI_COMMAND);
pm_runtime_put(&pdev->dev);
master->dev.of_node = pdev->dev.of_node;
ret = devm_spi_register_master(&pdev->dev, master);
if (ret < 0) {
dev_err(&pdev->dev, "can not register to master err %d\n", ret);
goto exit_pm_disable;
}
return ret;
exit_pm_disable:
pm_runtime_disable(&pdev->dev);
if (!pm_runtime_status_suspended(&pdev->dev))
tegra_sflash_runtime_suspend(&pdev->dev);
exit_free_irq:
free_irq(tsd->irq, tsd);
exit_free_master:
spi_master_put(master);
return ret;
}
static int tegra_sflash_remove(struct platform_device *pdev)
{
struct spi_master *master = platform_get_drvdata(pdev);
struct tegra_sflash_data *tsd = spi_master_get_devdata(master);
free_irq(tsd->irq, tsd);
pm_runtime_disable(&pdev->dev);
if (!pm_runtime_status_suspended(&pdev->dev))
tegra_sflash_runtime_suspend(&pdev->dev);
return 0;
}
#ifdef CONFIG_PM_SLEEP
static int tegra_sflash_suspend(struct device *dev)
{
struct spi_master *master = dev_get_drvdata(dev);
return spi_master_suspend(master);
}
static int tegra_sflash_resume(struct device *dev)
{
struct spi_master *master = dev_get_drvdata(dev);
struct tegra_sflash_data *tsd = spi_master_get_devdata(master);
int ret;
ret = pm_runtime_get_sync(dev);
if (ret < 0) {
dev_err(dev, "pm runtime failed, e = %d\n", ret);
return ret;
}
tegra_sflash_writel(tsd, tsd->command_reg, SPI_COMMAND);
pm_runtime_put(dev);
return spi_master_resume(master);
}
#endif
static int tegra_sflash_runtime_suspend(struct device *dev)
{
struct spi_master *master = dev_get_drvdata(dev);
struct tegra_sflash_data *tsd = spi_master_get_devdata(master);
/* Flush all write which are in PPSB queue by reading back */
tegra_sflash_readl(tsd, SPI_COMMAND);
clk_disable_unprepare(tsd->clk);
return 0;
}
static int tegra_sflash_runtime_resume(struct device *dev)
{
struct spi_master *master = dev_get_drvdata(dev);
struct tegra_sflash_data *tsd = spi_master_get_devdata(master);
int ret;
ret = clk_prepare_enable(tsd->clk);
if (ret < 0) {
dev_err(tsd->dev, "clk_prepare failed: %d\n", ret);
return ret;
}
return 0;
}
static const struct dev_pm_ops slink_pm_ops = {
SET_RUNTIME_PM_OPS(tegra_sflash_runtime_suspend,
tegra_sflash_runtime_resume, NULL)
SET_SYSTEM_SLEEP_PM_OPS(tegra_sflash_suspend, tegra_sflash_resume)
};
static struct platform_driver tegra_sflash_driver = {
.driver = {
.name = "spi-tegra-sflash",
.pm = &slink_pm_ops,
.of_match_table = tegra_sflash_of_match,
},
.probe = tegra_sflash_probe,
.remove = tegra_sflash_remove,
};
module_platform_driver(tegra_sflash_driver);
MODULE_ALIAS("platform:spi-tegra-sflash");
MODULE_DESCRIPTION("NVIDIA Tegra20 Serial Flash Controller Driver");
MODULE_AUTHOR("Laxman Dewangan <ldewangan@nvidia.com>");
MODULE_LICENSE("GPL v2");