5232 lines
141 KiB
C
5232 lines
141 KiB
C
/*******************************************************************************
|
|
|
|
Intel PRO/1000 Linux driver
|
|
Copyright(c) 1999 - 2008 Intel Corporation.
|
|
|
|
This program is free software; you can redistribute it and/or modify it
|
|
under the terms and conditions of the GNU General Public License,
|
|
version 2, as published by the Free Software Foundation.
|
|
|
|
This program is distributed in the hope it will be useful, but WITHOUT
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
more details.
|
|
|
|
You should have received a copy of the GNU General Public License along with
|
|
this program; if not, write to the Free Software Foundation, Inc.,
|
|
51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
|
|
|
|
The full GNU General Public License is included in this distribution in
|
|
the file called "COPYING".
|
|
|
|
Contact Information:
|
|
Linux NICS <linux.nics@intel.com>
|
|
e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
|
|
Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
|
|
|
|
*******************************************************************************/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/types.h>
|
|
#include <linux/init.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/netdevice.h>
|
|
#include <linux/tcp.h>
|
|
#include <linux/ipv6.h>
|
|
#include <net/checksum.h>
|
|
#include <net/ip6_checksum.h>
|
|
#include <linux/mii.h>
|
|
#include <linux/ethtool.h>
|
|
#include <linux/if_vlan.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/pm_qos_params.h>
|
|
#include <linux/aer.h>
|
|
|
|
#include "e1000.h"
|
|
|
|
#define DRV_VERSION "0.3.3.4-k2"
|
|
char e1000e_driver_name[] = "e1000e";
|
|
const char e1000e_driver_version[] = DRV_VERSION;
|
|
|
|
static const struct e1000_info *e1000_info_tbl[] = {
|
|
[board_82571] = &e1000_82571_info,
|
|
[board_82572] = &e1000_82572_info,
|
|
[board_82573] = &e1000_82573_info,
|
|
[board_82574] = &e1000_82574_info,
|
|
[board_80003es2lan] = &e1000_es2_info,
|
|
[board_ich8lan] = &e1000_ich8_info,
|
|
[board_ich9lan] = &e1000_ich9_info,
|
|
[board_ich10lan] = &e1000_ich10_info,
|
|
};
|
|
|
|
#ifdef DEBUG
|
|
/**
|
|
* e1000_get_hw_dev_name - return device name string
|
|
* used by hardware layer to print debugging information
|
|
**/
|
|
char *e1000e_get_hw_dev_name(struct e1000_hw *hw)
|
|
{
|
|
return hw->adapter->netdev->name;
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* e1000_desc_unused - calculate if we have unused descriptors
|
|
**/
|
|
static int e1000_desc_unused(struct e1000_ring *ring)
|
|
{
|
|
if (ring->next_to_clean > ring->next_to_use)
|
|
return ring->next_to_clean - ring->next_to_use - 1;
|
|
|
|
return ring->count + ring->next_to_clean - ring->next_to_use - 1;
|
|
}
|
|
|
|
/**
|
|
* e1000_receive_skb - helper function to handle Rx indications
|
|
* @adapter: board private structure
|
|
* @status: descriptor status field as written by hardware
|
|
* @vlan: descriptor vlan field as written by hardware (no le/be conversion)
|
|
* @skb: pointer to sk_buff to be indicated to stack
|
|
**/
|
|
static void e1000_receive_skb(struct e1000_adapter *adapter,
|
|
struct net_device *netdev,
|
|
struct sk_buff *skb,
|
|
u8 status, __le16 vlan)
|
|
{
|
|
skb->protocol = eth_type_trans(skb, netdev);
|
|
|
|
if (adapter->vlgrp && (status & E1000_RXD_STAT_VP))
|
|
vlan_gro_receive(&adapter->napi, adapter->vlgrp,
|
|
le16_to_cpu(vlan), skb);
|
|
else
|
|
napi_gro_receive(&adapter->napi, skb);
|
|
}
|
|
|
|
/**
|
|
* e1000_rx_checksum - Receive Checksum Offload for 82543
|
|
* @adapter: board private structure
|
|
* @status_err: receive descriptor status and error fields
|
|
* @csum: receive descriptor csum field
|
|
* @sk_buff: socket buffer with received data
|
|
**/
|
|
static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
|
|
u32 csum, struct sk_buff *skb)
|
|
{
|
|
u16 status = (u16)status_err;
|
|
u8 errors = (u8)(status_err >> 24);
|
|
skb->ip_summed = CHECKSUM_NONE;
|
|
|
|
/* Ignore Checksum bit is set */
|
|
if (status & E1000_RXD_STAT_IXSM)
|
|
return;
|
|
/* TCP/UDP checksum error bit is set */
|
|
if (errors & E1000_RXD_ERR_TCPE) {
|
|
/* let the stack verify checksum errors */
|
|
adapter->hw_csum_err++;
|
|
return;
|
|
}
|
|
|
|
/* TCP/UDP Checksum has not been calculated */
|
|
if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
|
|
return;
|
|
|
|
/* It must be a TCP or UDP packet with a valid checksum */
|
|
if (status & E1000_RXD_STAT_TCPCS) {
|
|
/* TCP checksum is good */
|
|
skb->ip_summed = CHECKSUM_UNNECESSARY;
|
|
} else {
|
|
/*
|
|
* IP fragment with UDP payload
|
|
* Hardware complements the payload checksum, so we undo it
|
|
* and then put the value in host order for further stack use.
|
|
*/
|
|
__sum16 sum = (__force __sum16)htons(csum);
|
|
skb->csum = csum_unfold(~sum);
|
|
skb->ip_summed = CHECKSUM_COMPLETE;
|
|
}
|
|
adapter->hw_csum_good++;
|
|
}
|
|
|
|
/**
|
|
* e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
|
|
* @adapter: address of board private structure
|
|
**/
|
|
static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
|
|
int cleaned_count)
|
|
{
|
|
struct net_device *netdev = adapter->netdev;
|
|
struct pci_dev *pdev = adapter->pdev;
|
|
struct e1000_ring *rx_ring = adapter->rx_ring;
|
|
struct e1000_rx_desc *rx_desc;
|
|
struct e1000_buffer *buffer_info;
|
|
struct sk_buff *skb;
|
|
unsigned int i;
|
|
unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
|
|
|
|
i = rx_ring->next_to_use;
|
|
buffer_info = &rx_ring->buffer_info[i];
|
|
|
|
while (cleaned_count--) {
|
|
skb = buffer_info->skb;
|
|
if (skb) {
|
|
skb_trim(skb, 0);
|
|
goto map_skb;
|
|
}
|
|
|
|
skb = netdev_alloc_skb(netdev, bufsz);
|
|
if (!skb) {
|
|
/* Better luck next round */
|
|
adapter->alloc_rx_buff_failed++;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Make buffer alignment 2 beyond a 16 byte boundary
|
|
* this will result in a 16 byte aligned IP header after
|
|
* the 14 byte MAC header is removed
|
|
*/
|
|
skb_reserve(skb, NET_IP_ALIGN);
|
|
|
|
buffer_info->skb = skb;
|
|
map_skb:
|
|
buffer_info->dma = pci_map_single(pdev, skb->data,
|
|
adapter->rx_buffer_len,
|
|
PCI_DMA_FROMDEVICE);
|
|
if (pci_dma_mapping_error(pdev, buffer_info->dma)) {
|
|
dev_err(&pdev->dev, "RX DMA map failed\n");
|
|
adapter->rx_dma_failed++;
|
|
break;
|
|
}
|
|
|
|
rx_desc = E1000_RX_DESC(*rx_ring, i);
|
|
rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
|
|
|
|
i++;
|
|
if (i == rx_ring->count)
|
|
i = 0;
|
|
buffer_info = &rx_ring->buffer_info[i];
|
|
}
|
|
|
|
if (rx_ring->next_to_use != i) {
|
|
rx_ring->next_to_use = i;
|
|
if (i-- == 0)
|
|
i = (rx_ring->count - 1);
|
|
|
|
/*
|
|
* Force memory writes to complete before letting h/w
|
|
* know there are new descriptors to fetch. (Only
|
|
* applicable for weak-ordered memory model archs,
|
|
* such as IA-64).
|
|
*/
|
|
wmb();
|
|
writel(i, adapter->hw.hw_addr + rx_ring->tail);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
|
|
* @adapter: address of board private structure
|
|
**/
|
|
static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
|
|
int cleaned_count)
|
|
{
|
|
struct net_device *netdev = adapter->netdev;
|
|
struct pci_dev *pdev = adapter->pdev;
|
|
union e1000_rx_desc_packet_split *rx_desc;
|
|
struct e1000_ring *rx_ring = adapter->rx_ring;
|
|
struct e1000_buffer *buffer_info;
|
|
struct e1000_ps_page *ps_page;
|
|
struct sk_buff *skb;
|
|
unsigned int i, j;
|
|
|
|
i = rx_ring->next_to_use;
|
|
buffer_info = &rx_ring->buffer_info[i];
|
|
|
|
while (cleaned_count--) {
|
|
rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
|
|
|
|
for (j = 0; j < PS_PAGE_BUFFERS; j++) {
|
|
ps_page = &buffer_info->ps_pages[j];
|
|
if (j >= adapter->rx_ps_pages) {
|
|
/* all unused desc entries get hw null ptr */
|
|
rx_desc->read.buffer_addr[j+1] = ~cpu_to_le64(0);
|
|
continue;
|
|
}
|
|
if (!ps_page->page) {
|
|
ps_page->page = alloc_page(GFP_ATOMIC);
|
|
if (!ps_page->page) {
|
|
adapter->alloc_rx_buff_failed++;
|
|
goto no_buffers;
|
|
}
|
|
ps_page->dma = pci_map_page(pdev,
|
|
ps_page->page,
|
|
0, PAGE_SIZE,
|
|
PCI_DMA_FROMDEVICE);
|
|
if (pci_dma_mapping_error(pdev, ps_page->dma)) {
|
|
dev_err(&adapter->pdev->dev,
|
|
"RX DMA page map failed\n");
|
|
adapter->rx_dma_failed++;
|
|
goto no_buffers;
|
|
}
|
|
}
|
|
/*
|
|
* Refresh the desc even if buffer_addrs
|
|
* didn't change because each write-back
|
|
* erases this info.
|
|
*/
|
|
rx_desc->read.buffer_addr[j+1] =
|
|
cpu_to_le64(ps_page->dma);
|
|
}
|
|
|
|
skb = netdev_alloc_skb(netdev,
|
|
adapter->rx_ps_bsize0 + NET_IP_ALIGN);
|
|
|
|
if (!skb) {
|
|
adapter->alloc_rx_buff_failed++;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Make buffer alignment 2 beyond a 16 byte boundary
|
|
* this will result in a 16 byte aligned IP header after
|
|
* the 14 byte MAC header is removed
|
|
*/
|
|
skb_reserve(skb, NET_IP_ALIGN);
|
|
|
|
buffer_info->skb = skb;
|
|
buffer_info->dma = pci_map_single(pdev, skb->data,
|
|
adapter->rx_ps_bsize0,
|
|
PCI_DMA_FROMDEVICE);
|
|
if (pci_dma_mapping_error(pdev, buffer_info->dma)) {
|
|
dev_err(&pdev->dev, "RX DMA map failed\n");
|
|
adapter->rx_dma_failed++;
|
|
/* cleanup skb */
|
|
dev_kfree_skb_any(skb);
|
|
buffer_info->skb = NULL;
|
|
break;
|
|
}
|
|
|
|
rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
|
|
|
|
i++;
|
|
if (i == rx_ring->count)
|
|
i = 0;
|
|
buffer_info = &rx_ring->buffer_info[i];
|
|
}
|
|
|
|
no_buffers:
|
|
if (rx_ring->next_to_use != i) {
|
|
rx_ring->next_to_use = i;
|
|
|
|
if (!(i--))
|
|
i = (rx_ring->count - 1);
|
|
|
|
/*
|
|
* Force memory writes to complete before letting h/w
|
|
* know there are new descriptors to fetch. (Only
|
|
* applicable for weak-ordered memory model archs,
|
|
* such as IA-64).
|
|
*/
|
|
wmb();
|
|
/*
|
|
* Hardware increments by 16 bytes, but packet split
|
|
* descriptors are 32 bytes...so we increment tail
|
|
* twice as much.
|
|
*/
|
|
writel(i<<1, adapter->hw.hw_addr + rx_ring->tail);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
|
|
* @adapter: address of board private structure
|
|
* @cleaned_count: number of buffers to allocate this pass
|
|
**/
|
|
|
|
static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
|
|
int cleaned_count)
|
|
{
|
|
struct net_device *netdev = adapter->netdev;
|
|
struct pci_dev *pdev = adapter->pdev;
|
|
struct e1000_rx_desc *rx_desc;
|
|
struct e1000_ring *rx_ring = adapter->rx_ring;
|
|
struct e1000_buffer *buffer_info;
|
|
struct sk_buff *skb;
|
|
unsigned int i;
|
|
unsigned int bufsz = 256 -
|
|
16 /* for skb_reserve */ -
|
|
NET_IP_ALIGN;
|
|
|
|
i = rx_ring->next_to_use;
|
|
buffer_info = &rx_ring->buffer_info[i];
|
|
|
|
while (cleaned_count--) {
|
|
skb = buffer_info->skb;
|
|
if (skb) {
|
|
skb_trim(skb, 0);
|
|
goto check_page;
|
|
}
|
|
|
|
skb = netdev_alloc_skb(netdev, bufsz);
|
|
if (unlikely(!skb)) {
|
|
/* Better luck next round */
|
|
adapter->alloc_rx_buff_failed++;
|
|
break;
|
|
}
|
|
|
|
/* Make buffer alignment 2 beyond a 16 byte boundary
|
|
* this will result in a 16 byte aligned IP header after
|
|
* the 14 byte MAC header is removed
|
|
*/
|
|
skb_reserve(skb, NET_IP_ALIGN);
|
|
|
|
buffer_info->skb = skb;
|
|
check_page:
|
|
/* allocate a new page if necessary */
|
|
if (!buffer_info->page) {
|
|
buffer_info->page = alloc_page(GFP_ATOMIC);
|
|
if (unlikely(!buffer_info->page)) {
|
|
adapter->alloc_rx_buff_failed++;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!buffer_info->dma)
|
|
buffer_info->dma = pci_map_page(pdev,
|
|
buffer_info->page, 0,
|
|
PAGE_SIZE,
|
|
PCI_DMA_FROMDEVICE);
|
|
|
|
rx_desc = E1000_RX_DESC(*rx_ring, i);
|
|
rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
|
|
|
|
if (unlikely(++i == rx_ring->count))
|
|
i = 0;
|
|
buffer_info = &rx_ring->buffer_info[i];
|
|
}
|
|
|
|
if (likely(rx_ring->next_to_use != i)) {
|
|
rx_ring->next_to_use = i;
|
|
if (unlikely(i-- == 0))
|
|
i = (rx_ring->count - 1);
|
|
|
|
/* Force memory writes to complete before letting h/w
|
|
* know there are new descriptors to fetch. (Only
|
|
* applicable for weak-ordered memory model archs,
|
|
* such as IA-64). */
|
|
wmb();
|
|
writel(i, adapter->hw.hw_addr + rx_ring->tail);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* e1000_clean_rx_irq - Send received data up the network stack; legacy
|
|
* @adapter: board private structure
|
|
*
|
|
* the return value indicates whether actual cleaning was done, there
|
|
* is no guarantee that everything was cleaned
|
|
**/
|
|
static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
|
|
int *work_done, int work_to_do)
|
|
{
|
|
struct net_device *netdev = adapter->netdev;
|
|
struct pci_dev *pdev = adapter->pdev;
|
|
struct e1000_ring *rx_ring = adapter->rx_ring;
|
|
struct e1000_rx_desc *rx_desc, *next_rxd;
|
|
struct e1000_buffer *buffer_info, *next_buffer;
|
|
u32 length;
|
|
unsigned int i;
|
|
int cleaned_count = 0;
|
|
bool cleaned = 0;
|
|
unsigned int total_rx_bytes = 0, total_rx_packets = 0;
|
|
|
|
i = rx_ring->next_to_clean;
|
|
rx_desc = E1000_RX_DESC(*rx_ring, i);
|
|
buffer_info = &rx_ring->buffer_info[i];
|
|
|
|
while (rx_desc->status & E1000_RXD_STAT_DD) {
|
|
struct sk_buff *skb;
|
|
u8 status;
|
|
|
|
if (*work_done >= work_to_do)
|
|
break;
|
|
(*work_done)++;
|
|
|
|
status = rx_desc->status;
|
|
skb = buffer_info->skb;
|
|
buffer_info->skb = NULL;
|
|
|
|
prefetch(skb->data - NET_IP_ALIGN);
|
|
|
|
i++;
|
|
if (i == rx_ring->count)
|
|
i = 0;
|
|
next_rxd = E1000_RX_DESC(*rx_ring, i);
|
|
prefetch(next_rxd);
|
|
|
|
next_buffer = &rx_ring->buffer_info[i];
|
|
|
|
cleaned = 1;
|
|
cleaned_count++;
|
|
pci_unmap_single(pdev,
|
|
buffer_info->dma,
|
|
adapter->rx_buffer_len,
|
|
PCI_DMA_FROMDEVICE);
|
|
buffer_info->dma = 0;
|
|
|
|
length = le16_to_cpu(rx_desc->length);
|
|
|
|
/* !EOP means multiple descriptors were used to store a single
|
|
* packet, also make sure the frame isn't just CRC only */
|
|
if (!(status & E1000_RXD_STAT_EOP) || (length <= 4)) {
|
|
/* All receives must fit into a single buffer */
|
|
e_dbg("%s: Receive packet consumed multiple buffers\n",
|
|
netdev->name);
|
|
/* recycle */
|
|
buffer_info->skb = skb;
|
|
goto next_desc;
|
|
}
|
|
|
|
if (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
|
|
/* recycle */
|
|
buffer_info->skb = skb;
|
|
goto next_desc;
|
|
}
|
|
|
|
/* adjust length to remove Ethernet CRC */
|
|
if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
|
|
length -= 4;
|
|
|
|
total_rx_bytes += length;
|
|
total_rx_packets++;
|
|
|
|
/*
|
|
* code added for copybreak, this should improve
|
|
* performance for small packets with large amounts
|
|
* of reassembly being done in the stack
|
|
*/
|
|
if (length < copybreak) {
|
|
struct sk_buff *new_skb =
|
|
netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
|
|
if (new_skb) {
|
|
skb_reserve(new_skb, NET_IP_ALIGN);
|
|
skb_copy_to_linear_data_offset(new_skb,
|
|
-NET_IP_ALIGN,
|
|
(skb->data -
|
|
NET_IP_ALIGN),
|
|
(length +
|
|
NET_IP_ALIGN));
|
|
/* save the skb in buffer_info as good */
|
|
buffer_info->skb = skb;
|
|
skb = new_skb;
|
|
}
|
|
/* else just continue with the old one */
|
|
}
|
|
/* end copybreak code */
|
|
skb_put(skb, length);
|
|
|
|
/* Receive Checksum Offload */
|
|
e1000_rx_checksum(adapter,
|
|
(u32)(status) |
|
|
((u32)(rx_desc->errors) << 24),
|
|
le16_to_cpu(rx_desc->csum), skb);
|
|
|
|
e1000_receive_skb(adapter, netdev, skb,status,rx_desc->special);
|
|
|
|
next_desc:
|
|
rx_desc->status = 0;
|
|
|
|
/* return some buffers to hardware, one at a time is too slow */
|
|
if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
|
|
adapter->alloc_rx_buf(adapter, cleaned_count);
|
|
cleaned_count = 0;
|
|
}
|
|
|
|
/* use prefetched values */
|
|
rx_desc = next_rxd;
|
|
buffer_info = next_buffer;
|
|
}
|
|
rx_ring->next_to_clean = i;
|
|
|
|
cleaned_count = e1000_desc_unused(rx_ring);
|
|
if (cleaned_count)
|
|
adapter->alloc_rx_buf(adapter, cleaned_count);
|
|
|
|
adapter->total_rx_bytes += total_rx_bytes;
|
|
adapter->total_rx_packets += total_rx_packets;
|
|
adapter->net_stats.rx_bytes += total_rx_bytes;
|
|
adapter->net_stats.rx_packets += total_rx_packets;
|
|
return cleaned;
|
|
}
|
|
|
|
static void e1000_put_txbuf(struct e1000_adapter *adapter,
|
|
struct e1000_buffer *buffer_info)
|
|
{
|
|
buffer_info->dma = 0;
|
|
if (buffer_info->skb) {
|
|
skb_dma_unmap(&adapter->pdev->dev, buffer_info->skb,
|
|
DMA_TO_DEVICE);
|
|
dev_kfree_skb_any(buffer_info->skb);
|
|
buffer_info->skb = NULL;
|
|
}
|
|
}
|
|
|
|
static void e1000_print_tx_hang(struct e1000_adapter *adapter)
|
|
{
|
|
struct e1000_ring *tx_ring = adapter->tx_ring;
|
|
unsigned int i = tx_ring->next_to_clean;
|
|
unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
|
|
struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
|
|
|
|
/* detected Tx unit hang */
|
|
e_err("Detected Tx Unit Hang:\n"
|
|
" TDH <%x>\n"
|
|
" TDT <%x>\n"
|
|
" next_to_use <%x>\n"
|
|
" next_to_clean <%x>\n"
|
|
"buffer_info[next_to_clean]:\n"
|
|
" time_stamp <%lx>\n"
|
|
" next_to_watch <%x>\n"
|
|
" jiffies <%lx>\n"
|
|
" next_to_watch.status <%x>\n",
|
|
readl(adapter->hw.hw_addr + tx_ring->head),
|
|
readl(adapter->hw.hw_addr + tx_ring->tail),
|
|
tx_ring->next_to_use,
|
|
tx_ring->next_to_clean,
|
|
tx_ring->buffer_info[eop].time_stamp,
|
|
eop,
|
|
jiffies,
|
|
eop_desc->upper.fields.status);
|
|
}
|
|
|
|
/**
|
|
* e1000_clean_tx_irq - Reclaim resources after transmit completes
|
|
* @adapter: board private structure
|
|
*
|
|
* the return value indicates whether actual cleaning was done, there
|
|
* is no guarantee that everything was cleaned
|
|
**/
|
|
static bool e1000_clean_tx_irq(struct e1000_adapter *adapter)
|
|
{
|
|
struct net_device *netdev = adapter->netdev;
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
struct e1000_ring *tx_ring = adapter->tx_ring;
|
|
struct e1000_tx_desc *tx_desc, *eop_desc;
|
|
struct e1000_buffer *buffer_info;
|
|
unsigned int i, eop;
|
|
unsigned int count = 0;
|
|
bool cleaned = 0;
|
|
unsigned int total_tx_bytes = 0, total_tx_packets = 0;
|
|
|
|
i = tx_ring->next_to_clean;
|
|
eop = tx_ring->buffer_info[i].next_to_watch;
|
|
eop_desc = E1000_TX_DESC(*tx_ring, eop);
|
|
|
|
while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
|
|
for (cleaned = 0; !cleaned; ) {
|
|
tx_desc = E1000_TX_DESC(*tx_ring, i);
|
|
buffer_info = &tx_ring->buffer_info[i];
|
|
cleaned = (i == eop);
|
|
|
|
if (cleaned) {
|
|
struct sk_buff *skb = buffer_info->skb;
|
|
unsigned int segs, bytecount;
|
|
segs = skb_shinfo(skb)->gso_segs ?: 1;
|
|
/* multiply data chunks by size of headers */
|
|
bytecount = ((segs - 1) * skb_headlen(skb)) +
|
|
skb->len;
|
|
total_tx_packets += segs;
|
|
total_tx_bytes += bytecount;
|
|
}
|
|
|
|
e1000_put_txbuf(adapter, buffer_info);
|
|
tx_desc->upper.data = 0;
|
|
|
|
i++;
|
|
if (i == tx_ring->count)
|
|
i = 0;
|
|
}
|
|
|
|
eop = tx_ring->buffer_info[i].next_to_watch;
|
|
eop_desc = E1000_TX_DESC(*tx_ring, eop);
|
|
#define E1000_TX_WEIGHT 64
|
|
/* weight of a sort for tx, to avoid endless transmit cleanup */
|
|
if (count++ == E1000_TX_WEIGHT)
|
|
break;
|
|
}
|
|
|
|
tx_ring->next_to_clean = i;
|
|
|
|
#define TX_WAKE_THRESHOLD 32
|
|
if (cleaned && netif_carrier_ok(netdev) &&
|
|
e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
|
|
/* Make sure that anybody stopping the queue after this
|
|
* sees the new next_to_clean.
|
|
*/
|
|
smp_mb();
|
|
|
|
if (netif_queue_stopped(netdev) &&
|
|
!(test_bit(__E1000_DOWN, &adapter->state))) {
|
|
netif_wake_queue(netdev);
|
|
++adapter->restart_queue;
|
|
}
|
|
}
|
|
|
|
if (adapter->detect_tx_hung) {
|
|
/*
|
|
* Detect a transmit hang in hardware, this serializes the
|
|
* check with the clearing of time_stamp and movement of i
|
|
*/
|
|
adapter->detect_tx_hung = 0;
|
|
/*
|
|
* read barrier to make sure that the ->dma member and time
|
|
* stamp are updated fully
|
|
*/
|
|
smp_rmb();
|
|
if (tx_ring->buffer_info[eop].dma &&
|
|
time_after(jiffies, tx_ring->buffer_info[eop].time_stamp
|
|
+ (adapter->tx_timeout_factor * HZ))
|
|
&& !(er32(STATUS) & E1000_STATUS_TXOFF)) {
|
|
e1000_print_tx_hang(adapter);
|
|
netif_stop_queue(netdev);
|
|
}
|
|
}
|
|
adapter->total_tx_bytes += total_tx_bytes;
|
|
adapter->total_tx_packets += total_tx_packets;
|
|
adapter->net_stats.tx_bytes += total_tx_bytes;
|
|
adapter->net_stats.tx_packets += total_tx_packets;
|
|
return cleaned;
|
|
}
|
|
|
|
/**
|
|
* e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
|
|
* @adapter: board private structure
|
|
*
|
|
* the return value indicates whether actual cleaning was done, there
|
|
* is no guarantee that everything was cleaned
|
|
**/
|
|
static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
|
|
int *work_done, int work_to_do)
|
|
{
|
|
union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
|
|
struct net_device *netdev = adapter->netdev;
|
|
struct pci_dev *pdev = adapter->pdev;
|
|
struct e1000_ring *rx_ring = adapter->rx_ring;
|
|
struct e1000_buffer *buffer_info, *next_buffer;
|
|
struct e1000_ps_page *ps_page;
|
|
struct sk_buff *skb;
|
|
unsigned int i, j;
|
|
u32 length, staterr;
|
|
int cleaned_count = 0;
|
|
bool cleaned = 0;
|
|
unsigned int total_rx_bytes = 0, total_rx_packets = 0;
|
|
|
|
i = rx_ring->next_to_clean;
|
|
rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
|
|
staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
|
|
buffer_info = &rx_ring->buffer_info[i];
|
|
|
|
while (staterr & E1000_RXD_STAT_DD) {
|
|
if (*work_done >= work_to_do)
|
|
break;
|
|
(*work_done)++;
|
|
skb = buffer_info->skb;
|
|
|
|
/* in the packet split case this is header only */
|
|
prefetch(skb->data - NET_IP_ALIGN);
|
|
|
|
i++;
|
|
if (i == rx_ring->count)
|
|
i = 0;
|
|
next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
|
|
prefetch(next_rxd);
|
|
|
|
next_buffer = &rx_ring->buffer_info[i];
|
|
|
|
cleaned = 1;
|
|
cleaned_count++;
|
|
pci_unmap_single(pdev, buffer_info->dma,
|
|
adapter->rx_ps_bsize0,
|
|
PCI_DMA_FROMDEVICE);
|
|
buffer_info->dma = 0;
|
|
|
|
if (!(staterr & E1000_RXD_STAT_EOP)) {
|
|
e_dbg("%s: Packet Split buffers didn't pick up the "
|
|
"full packet\n", netdev->name);
|
|
dev_kfree_skb_irq(skb);
|
|
goto next_desc;
|
|
}
|
|
|
|
if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
|
|
dev_kfree_skb_irq(skb);
|
|
goto next_desc;
|
|
}
|
|
|
|
length = le16_to_cpu(rx_desc->wb.middle.length0);
|
|
|
|
if (!length) {
|
|
e_dbg("%s: Last part of the packet spanning multiple "
|
|
"descriptors\n", netdev->name);
|
|
dev_kfree_skb_irq(skb);
|
|
goto next_desc;
|
|
}
|
|
|
|
/* Good Receive */
|
|
skb_put(skb, length);
|
|
|
|
{
|
|
/*
|
|
* this looks ugly, but it seems compiler issues make it
|
|
* more efficient than reusing j
|
|
*/
|
|
int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
|
|
|
|
/*
|
|
* page alloc/put takes too long and effects small packet
|
|
* throughput, so unsplit small packets and save the alloc/put
|
|
* only valid in softirq (napi) context to call kmap_*
|
|
*/
|
|
if (l1 && (l1 <= copybreak) &&
|
|
((length + l1) <= adapter->rx_ps_bsize0)) {
|
|
u8 *vaddr;
|
|
|
|
ps_page = &buffer_info->ps_pages[0];
|
|
|
|
/*
|
|
* there is no documentation about how to call
|
|
* kmap_atomic, so we can't hold the mapping
|
|
* very long
|
|
*/
|
|
pci_dma_sync_single_for_cpu(pdev, ps_page->dma,
|
|
PAGE_SIZE, PCI_DMA_FROMDEVICE);
|
|
vaddr = kmap_atomic(ps_page->page, KM_SKB_DATA_SOFTIRQ);
|
|
memcpy(skb_tail_pointer(skb), vaddr, l1);
|
|
kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
|
|
pci_dma_sync_single_for_device(pdev, ps_page->dma,
|
|
PAGE_SIZE, PCI_DMA_FROMDEVICE);
|
|
|
|
/* remove the CRC */
|
|
if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
|
|
l1 -= 4;
|
|
|
|
skb_put(skb, l1);
|
|
goto copydone;
|
|
} /* if */
|
|
}
|
|
|
|
for (j = 0; j < PS_PAGE_BUFFERS; j++) {
|
|
length = le16_to_cpu(rx_desc->wb.upper.length[j]);
|
|
if (!length)
|
|
break;
|
|
|
|
ps_page = &buffer_info->ps_pages[j];
|
|
pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE,
|
|
PCI_DMA_FROMDEVICE);
|
|
ps_page->dma = 0;
|
|
skb_fill_page_desc(skb, j, ps_page->page, 0, length);
|
|
ps_page->page = NULL;
|
|
skb->len += length;
|
|
skb->data_len += length;
|
|
skb->truesize += length;
|
|
}
|
|
|
|
/* strip the ethernet crc, problem is we're using pages now so
|
|
* this whole operation can get a little cpu intensive
|
|
*/
|
|
if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
|
|
pskb_trim(skb, skb->len - 4);
|
|
|
|
copydone:
|
|
total_rx_bytes += skb->len;
|
|
total_rx_packets++;
|
|
|
|
e1000_rx_checksum(adapter, staterr, le16_to_cpu(
|
|
rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
|
|
|
|
if (rx_desc->wb.upper.header_status &
|
|
cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
|
|
adapter->rx_hdr_split++;
|
|
|
|
e1000_receive_skb(adapter, netdev, skb,
|
|
staterr, rx_desc->wb.middle.vlan);
|
|
|
|
next_desc:
|
|
rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
|
|
buffer_info->skb = NULL;
|
|
|
|
/* return some buffers to hardware, one at a time is too slow */
|
|
if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
|
|
adapter->alloc_rx_buf(adapter, cleaned_count);
|
|
cleaned_count = 0;
|
|
}
|
|
|
|
/* use prefetched values */
|
|
rx_desc = next_rxd;
|
|
buffer_info = next_buffer;
|
|
|
|
staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
|
|
}
|
|
rx_ring->next_to_clean = i;
|
|
|
|
cleaned_count = e1000_desc_unused(rx_ring);
|
|
if (cleaned_count)
|
|
adapter->alloc_rx_buf(adapter, cleaned_count);
|
|
|
|
adapter->total_rx_bytes += total_rx_bytes;
|
|
adapter->total_rx_packets += total_rx_packets;
|
|
adapter->net_stats.rx_bytes += total_rx_bytes;
|
|
adapter->net_stats.rx_packets += total_rx_packets;
|
|
return cleaned;
|
|
}
|
|
|
|
/**
|
|
* e1000_consume_page - helper function
|
|
**/
|
|
static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
|
|
u16 length)
|
|
{
|
|
bi->page = NULL;
|
|
skb->len += length;
|
|
skb->data_len += length;
|
|
skb->truesize += length;
|
|
}
|
|
|
|
/**
|
|
* e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
|
|
* @adapter: board private structure
|
|
*
|
|
* the return value indicates whether actual cleaning was done, there
|
|
* is no guarantee that everything was cleaned
|
|
**/
|
|
|
|
static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
|
|
int *work_done, int work_to_do)
|
|
{
|
|
struct net_device *netdev = adapter->netdev;
|
|
struct pci_dev *pdev = adapter->pdev;
|
|
struct e1000_ring *rx_ring = adapter->rx_ring;
|
|
struct e1000_rx_desc *rx_desc, *next_rxd;
|
|
struct e1000_buffer *buffer_info, *next_buffer;
|
|
u32 length;
|
|
unsigned int i;
|
|
int cleaned_count = 0;
|
|
bool cleaned = false;
|
|
unsigned int total_rx_bytes=0, total_rx_packets=0;
|
|
|
|
i = rx_ring->next_to_clean;
|
|
rx_desc = E1000_RX_DESC(*rx_ring, i);
|
|
buffer_info = &rx_ring->buffer_info[i];
|
|
|
|
while (rx_desc->status & E1000_RXD_STAT_DD) {
|
|
struct sk_buff *skb;
|
|
u8 status;
|
|
|
|
if (*work_done >= work_to_do)
|
|
break;
|
|
(*work_done)++;
|
|
|
|
status = rx_desc->status;
|
|
skb = buffer_info->skb;
|
|
buffer_info->skb = NULL;
|
|
|
|
++i;
|
|
if (i == rx_ring->count)
|
|
i = 0;
|
|
next_rxd = E1000_RX_DESC(*rx_ring, i);
|
|
prefetch(next_rxd);
|
|
|
|
next_buffer = &rx_ring->buffer_info[i];
|
|
|
|
cleaned = true;
|
|
cleaned_count++;
|
|
pci_unmap_page(pdev, buffer_info->dma, PAGE_SIZE,
|
|
PCI_DMA_FROMDEVICE);
|
|
buffer_info->dma = 0;
|
|
|
|
length = le16_to_cpu(rx_desc->length);
|
|
|
|
/* errors is only valid for DD + EOP descriptors */
|
|
if (unlikely((status & E1000_RXD_STAT_EOP) &&
|
|
(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
|
|
/* recycle both page and skb */
|
|
buffer_info->skb = skb;
|
|
/* an error means any chain goes out the window
|
|
* too */
|
|
if (rx_ring->rx_skb_top)
|
|
dev_kfree_skb(rx_ring->rx_skb_top);
|
|
rx_ring->rx_skb_top = NULL;
|
|
goto next_desc;
|
|
}
|
|
|
|
#define rxtop rx_ring->rx_skb_top
|
|
if (!(status & E1000_RXD_STAT_EOP)) {
|
|
/* this descriptor is only the beginning (or middle) */
|
|
if (!rxtop) {
|
|
/* this is the beginning of a chain */
|
|
rxtop = skb;
|
|
skb_fill_page_desc(rxtop, 0, buffer_info->page,
|
|
0, length);
|
|
} else {
|
|
/* this is the middle of a chain */
|
|
skb_fill_page_desc(rxtop,
|
|
skb_shinfo(rxtop)->nr_frags,
|
|
buffer_info->page, 0, length);
|
|
/* re-use the skb, only consumed the page */
|
|
buffer_info->skb = skb;
|
|
}
|
|
e1000_consume_page(buffer_info, rxtop, length);
|
|
goto next_desc;
|
|
} else {
|
|
if (rxtop) {
|
|
/* end of the chain */
|
|
skb_fill_page_desc(rxtop,
|
|
skb_shinfo(rxtop)->nr_frags,
|
|
buffer_info->page, 0, length);
|
|
/* re-use the current skb, we only consumed the
|
|
* page */
|
|
buffer_info->skb = skb;
|
|
skb = rxtop;
|
|
rxtop = NULL;
|
|
e1000_consume_page(buffer_info, skb, length);
|
|
} else {
|
|
/* no chain, got EOP, this buf is the packet
|
|
* copybreak to save the put_page/alloc_page */
|
|
if (length <= copybreak &&
|
|
skb_tailroom(skb) >= length) {
|
|
u8 *vaddr;
|
|
vaddr = kmap_atomic(buffer_info->page,
|
|
KM_SKB_DATA_SOFTIRQ);
|
|
memcpy(skb_tail_pointer(skb), vaddr,
|
|
length);
|
|
kunmap_atomic(vaddr,
|
|
KM_SKB_DATA_SOFTIRQ);
|
|
/* re-use the page, so don't erase
|
|
* buffer_info->page */
|
|
skb_put(skb, length);
|
|
} else {
|
|
skb_fill_page_desc(skb, 0,
|
|
buffer_info->page, 0,
|
|
length);
|
|
e1000_consume_page(buffer_info, skb,
|
|
length);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Receive Checksum Offload XXX recompute due to CRC strip? */
|
|
e1000_rx_checksum(adapter,
|
|
(u32)(status) |
|
|
((u32)(rx_desc->errors) << 24),
|
|
le16_to_cpu(rx_desc->csum), skb);
|
|
|
|
/* probably a little skewed due to removing CRC */
|
|
total_rx_bytes += skb->len;
|
|
total_rx_packets++;
|
|
|
|
/* eth type trans needs skb->data to point to something */
|
|
if (!pskb_may_pull(skb, ETH_HLEN)) {
|
|
e_err("pskb_may_pull failed.\n");
|
|
dev_kfree_skb(skb);
|
|
goto next_desc;
|
|
}
|
|
|
|
e1000_receive_skb(adapter, netdev, skb, status,
|
|
rx_desc->special);
|
|
|
|
next_desc:
|
|
rx_desc->status = 0;
|
|
|
|
/* return some buffers to hardware, one at a time is too slow */
|
|
if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
|
|
adapter->alloc_rx_buf(adapter, cleaned_count);
|
|
cleaned_count = 0;
|
|
}
|
|
|
|
/* use prefetched values */
|
|
rx_desc = next_rxd;
|
|
buffer_info = next_buffer;
|
|
}
|
|
rx_ring->next_to_clean = i;
|
|
|
|
cleaned_count = e1000_desc_unused(rx_ring);
|
|
if (cleaned_count)
|
|
adapter->alloc_rx_buf(adapter, cleaned_count);
|
|
|
|
adapter->total_rx_bytes += total_rx_bytes;
|
|
adapter->total_rx_packets += total_rx_packets;
|
|
adapter->net_stats.rx_bytes += total_rx_bytes;
|
|
adapter->net_stats.rx_packets += total_rx_packets;
|
|
return cleaned;
|
|
}
|
|
|
|
/**
|
|
* e1000_clean_rx_ring - Free Rx Buffers per Queue
|
|
* @adapter: board private structure
|
|
**/
|
|
static void e1000_clean_rx_ring(struct e1000_adapter *adapter)
|
|
{
|
|
struct e1000_ring *rx_ring = adapter->rx_ring;
|
|
struct e1000_buffer *buffer_info;
|
|
struct e1000_ps_page *ps_page;
|
|
struct pci_dev *pdev = adapter->pdev;
|
|
unsigned int i, j;
|
|
|
|
/* Free all the Rx ring sk_buffs */
|
|
for (i = 0; i < rx_ring->count; i++) {
|
|
buffer_info = &rx_ring->buffer_info[i];
|
|
if (buffer_info->dma) {
|
|
if (adapter->clean_rx == e1000_clean_rx_irq)
|
|
pci_unmap_single(pdev, buffer_info->dma,
|
|
adapter->rx_buffer_len,
|
|
PCI_DMA_FROMDEVICE);
|
|
else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
|
|
pci_unmap_page(pdev, buffer_info->dma,
|
|
PAGE_SIZE,
|
|
PCI_DMA_FROMDEVICE);
|
|
else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
|
|
pci_unmap_single(pdev, buffer_info->dma,
|
|
adapter->rx_ps_bsize0,
|
|
PCI_DMA_FROMDEVICE);
|
|
buffer_info->dma = 0;
|
|
}
|
|
|
|
if (buffer_info->page) {
|
|
put_page(buffer_info->page);
|
|
buffer_info->page = NULL;
|
|
}
|
|
|
|
if (buffer_info->skb) {
|
|
dev_kfree_skb(buffer_info->skb);
|
|
buffer_info->skb = NULL;
|
|
}
|
|
|
|
for (j = 0; j < PS_PAGE_BUFFERS; j++) {
|
|
ps_page = &buffer_info->ps_pages[j];
|
|
if (!ps_page->page)
|
|
break;
|
|
pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE,
|
|
PCI_DMA_FROMDEVICE);
|
|
ps_page->dma = 0;
|
|
put_page(ps_page->page);
|
|
ps_page->page = NULL;
|
|
}
|
|
}
|
|
|
|
/* there also may be some cached data from a chained receive */
|
|
if (rx_ring->rx_skb_top) {
|
|
dev_kfree_skb(rx_ring->rx_skb_top);
|
|
rx_ring->rx_skb_top = NULL;
|
|
}
|
|
|
|
/* Zero out the descriptor ring */
|
|
memset(rx_ring->desc, 0, rx_ring->size);
|
|
|
|
rx_ring->next_to_clean = 0;
|
|
rx_ring->next_to_use = 0;
|
|
|
|
writel(0, adapter->hw.hw_addr + rx_ring->head);
|
|
writel(0, adapter->hw.hw_addr + rx_ring->tail);
|
|
}
|
|
|
|
static void e1000e_downshift_workaround(struct work_struct *work)
|
|
{
|
|
struct e1000_adapter *adapter = container_of(work,
|
|
struct e1000_adapter, downshift_task);
|
|
|
|
e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
|
|
}
|
|
|
|
/**
|
|
* e1000_intr_msi - Interrupt Handler
|
|
* @irq: interrupt number
|
|
* @data: pointer to a network interface device structure
|
|
**/
|
|
static irqreturn_t e1000_intr_msi(int irq, void *data)
|
|
{
|
|
struct net_device *netdev = data;
|
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
u32 icr = er32(ICR);
|
|
|
|
/*
|
|
* read ICR disables interrupts using IAM
|
|
*/
|
|
|
|
if (icr & E1000_ICR_LSC) {
|
|
hw->mac.get_link_status = 1;
|
|
/*
|
|
* ICH8 workaround-- Call gig speed drop workaround on cable
|
|
* disconnect (LSC) before accessing any PHY registers
|
|
*/
|
|
if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
|
|
(!(er32(STATUS) & E1000_STATUS_LU)))
|
|
schedule_work(&adapter->downshift_task);
|
|
|
|
/*
|
|
* 80003ES2LAN workaround-- For packet buffer work-around on
|
|
* link down event; disable receives here in the ISR and reset
|
|
* adapter in watchdog
|
|
*/
|
|
if (netif_carrier_ok(netdev) &&
|
|
adapter->flags & FLAG_RX_NEEDS_RESTART) {
|
|
/* disable receives */
|
|
u32 rctl = er32(RCTL);
|
|
ew32(RCTL, rctl & ~E1000_RCTL_EN);
|
|
adapter->flags |= FLAG_RX_RESTART_NOW;
|
|
}
|
|
/* guard against interrupt when we're going down */
|
|
if (!test_bit(__E1000_DOWN, &adapter->state))
|
|
mod_timer(&adapter->watchdog_timer, jiffies + 1);
|
|
}
|
|
|
|
if (napi_schedule_prep(&adapter->napi)) {
|
|
adapter->total_tx_bytes = 0;
|
|
adapter->total_tx_packets = 0;
|
|
adapter->total_rx_bytes = 0;
|
|
adapter->total_rx_packets = 0;
|
|
__napi_schedule(&adapter->napi);
|
|
}
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/**
|
|
* e1000_intr - Interrupt Handler
|
|
* @irq: interrupt number
|
|
* @data: pointer to a network interface device structure
|
|
**/
|
|
static irqreturn_t e1000_intr(int irq, void *data)
|
|
{
|
|
struct net_device *netdev = data;
|
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
u32 rctl, icr = er32(ICR);
|
|
|
|
if (!icr)
|
|
return IRQ_NONE; /* Not our interrupt */
|
|
|
|
/*
|
|
* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
|
|
* not set, then the adapter didn't send an interrupt
|
|
*/
|
|
if (!(icr & E1000_ICR_INT_ASSERTED))
|
|
return IRQ_NONE;
|
|
|
|
/*
|
|
* Interrupt Auto-Mask...upon reading ICR,
|
|
* interrupts are masked. No need for the
|
|
* IMC write
|
|
*/
|
|
|
|
if (icr & E1000_ICR_LSC) {
|
|
hw->mac.get_link_status = 1;
|
|
/*
|
|
* ICH8 workaround-- Call gig speed drop workaround on cable
|
|
* disconnect (LSC) before accessing any PHY registers
|
|
*/
|
|
if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
|
|
(!(er32(STATUS) & E1000_STATUS_LU)))
|
|
schedule_work(&adapter->downshift_task);
|
|
|
|
/*
|
|
* 80003ES2LAN workaround--
|
|
* For packet buffer work-around on link down event;
|
|
* disable receives here in the ISR and
|
|
* reset adapter in watchdog
|
|
*/
|
|
if (netif_carrier_ok(netdev) &&
|
|
(adapter->flags & FLAG_RX_NEEDS_RESTART)) {
|
|
/* disable receives */
|
|
rctl = er32(RCTL);
|
|
ew32(RCTL, rctl & ~E1000_RCTL_EN);
|
|
adapter->flags |= FLAG_RX_RESTART_NOW;
|
|
}
|
|
/* guard against interrupt when we're going down */
|
|
if (!test_bit(__E1000_DOWN, &adapter->state))
|
|
mod_timer(&adapter->watchdog_timer, jiffies + 1);
|
|
}
|
|
|
|
if (napi_schedule_prep(&adapter->napi)) {
|
|
adapter->total_tx_bytes = 0;
|
|
adapter->total_tx_packets = 0;
|
|
adapter->total_rx_bytes = 0;
|
|
adapter->total_rx_packets = 0;
|
|
__napi_schedule(&adapter->napi);
|
|
}
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static irqreturn_t e1000_msix_other(int irq, void *data)
|
|
{
|
|
struct net_device *netdev = data;
|
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
u32 icr = er32(ICR);
|
|
|
|
if (!(icr & E1000_ICR_INT_ASSERTED)) {
|
|
ew32(IMS, E1000_IMS_OTHER);
|
|
return IRQ_NONE;
|
|
}
|
|
|
|
if (icr & adapter->eiac_mask)
|
|
ew32(ICS, (icr & adapter->eiac_mask));
|
|
|
|
if (icr & E1000_ICR_OTHER) {
|
|
if (!(icr & E1000_ICR_LSC))
|
|
goto no_link_interrupt;
|
|
hw->mac.get_link_status = 1;
|
|
/* guard against interrupt when we're going down */
|
|
if (!test_bit(__E1000_DOWN, &adapter->state))
|
|
mod_timer(&adapter->watchdog_timer, jiffies + 1);
|
|
}
|
|
|
|
no_link_interrupt:
|
|
ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
|
|
static irqreturn_t e1000_intr_msix_tx(int irq, void *data)
|
|
{
|
|
struct net_device *netdev = data;
|
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
struct e1000_ring *tx_ring = adapter->tx_ring;
|
|
|
|
|
|
adapter->total_tx_bytes = 0;
|
|
adapter->total_tx_packets = 0;
|
|
|
|
if (!e1000_clean_tx_irq(adapter))
|
|
/* Ring was not completely cleaned, so fire another interrupt */
|
|
ew32(ICS, tx_ring->ims_val);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static irqreturn_t e1000_intr_msix_rx(int irq, void *data)
|
|
{
|
|
struct net_device *netdev = data;
|
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
|
|
|
/* Write the ITR value calculated at the end of the
|
|
* previous interrupt.
|
|
*/
|
|
if (adapter->rx_ring->set_itr) {
|
|
writel(1000000000 / (adapter->rx_ring->itr_val * 256),
|
|
adapter->hw.hw_addr + adapter->rx_ring->itr_register);
|
|
adapter->rx_ring->set_itr = 0;
|
|
}
|
|
|
|
if (napi_schedule_prep(&adapter->napi)) {
|
|
adapter->total_rx_bytes = 0;
|
|
adapter->total_rx_packets = 0;
|
|
__napi_schedule(&adapter->napi);
|
|
}
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/**
|
|
* e1000_configure_msix - Configure MSI-X hardware
|
|
*
|
|
* e1000_configure_msix sets up the hardware to properly
|
|
* generate MSI-X interrupts.
|
|
**/
|
|
static void e1000_configure_msix(struct e1000_adapter *adapter)
|
|
{
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
struct e1000_ring *rx_ring = adapter->rx_ring;
|
|
struct e1000_ring *tx_ring = adapter->tx_ring;
|
|
int vector = 0;
|
|
u32 ctrl_ext, ivar = 0;
|
|
|
|
adapter->eiac_mask = 0;
|
|
|
|
/* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
|
|
if (hw->mac.type == e1000_82574) {
|
|
u32 rfctl = er32(RFCTL);
|
|
rfctl |= E1000_RFCTL_ACK_DIS;
|
|
ew32(RFCTL, rfctl);
|
|
}
|
|
|
|
#define E1000_IVAR_INT_ALLOC_VALID 0x8
|
|
/* Configure Rx vector */
|
|
rx_ring->ims_val = E1000_IMS_RXQ0;
|
|
adapter->eiac_mask |= rx_ring->ims_val;
|
|
if (rx_ring->itr_val)
|
|
writel(1000000000 / (rx_ring->itr_val * 256),
|
|
hw->hw_addr + rx_ring->itr_register);
|
|
else
|
|
writel(1, hw->hw_addr + rx_ring->itr_register);
|
|
ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
|
|
|
|
/* Configure Tx vector */
|
|
tx_ring->ims_val = E1000_IMS_TXQ0;
|
|
vector++;
|
|
if (tx_ring->itr_val)
|
|
writel(1000000000 / (tx_ring->itr_val * 256),
|
|
hw->hw_addr + tx_ring->itr_register);
|
|
else
|
|
writel(1, hw->hw_addr + tx_ring->itr_register);
|
|
adapter->eiac_mask |= tx_ring->ims_val;
|
|
ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
|
|
|
|
/* set vector for Other Causes, e.g. link changes */
|
|
vector++;
|
|
ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
|
|
if (rx_ring->itr_val)
|
|
writel(1000000000 / (rx_ring->itr_val * 256),
|
|
hw->hw_addr + E1000_EITR_82574(vector));
|
|
else
|
|
writel(1, hw->hw_addr + E1000_EITR_82574(vector));
|
|
|
|
/* Cause Tx interrupts on every write back */
|
|
ivar |= (1 << 31);
|
|
|
|
ew32(IVAR, ivar);
|
|
|
|
/* enable MSI-X PBA support */
|
|
ctrl_ext = er32(CTRL_EXT);
|
|
ctrl_ext |= E1000_CTRL_EXT_PBA_CLR;
|
|
|
|
/* Auto-Mask Other interrupts upon ICR read */
|
|
#define E1000_EIAC_MASK_82574 0x01F00000
|
|
ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER);
|
|
ctrl_ext |= E1000_CTRL_EXT_EIAME;
|
|
ew32(CTRL_EXT, ctrl_ext);
|
|
e1e_flush();
|
|
}
|
|
|
|
void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
|
|
{
|
|
if (adapter->msix_entries) {
|
|
pci_disable_msix(adapter->pdev);
|
|
kfree(adapter->msix_entries);
|
|
adapter->msix_entries = NULL;
|
|
} else if (adapter->flags & FLAG_MSI_ENABLED) {
|
|
pci_disable_msi(adapter->pdev);
|
|
adapter->flags &= ~FLAG_MSI_ENABLED;
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
/**
|
|
* e1000e_set_interrupt_capability - set MSI or MSI-X if supported
|
|
*
|
|
* Attempt to configure interrupts using the best available
|
|
* capabilities of the hardware and kernel.
|
|
**/
|
|
void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
|
|
{
|
|
int err;
|
|
int numvecs, i;
|
|
|
|
|
|
switch (adapter->int_mode) {
|
|
case E1000E_INT_MODE_MSIX:
|
|
if (adapter->flags & FLAG_HAS_MSIX) {
|
|
numvecs = 3; /* RxQ0, TxQ0 and other */
|
|
adapter->msix_entries = kcalloc(numvecs,
|
|
sizeof(struct msix_entry),
|
|
GFP_KERNEL);
|
|
if (adapter->msix_entries) {
|
|
for (i = 0; i < numvecs; i++)
|
|
adapter->msix_entries[i].entry = i;
|
|
|
|
err = pci_enable_msix(adapter->pdev,
|
|
adapter->msix_entries,
|
|
numvecs);
|
|
if (err == 0)
|
|
return;
|
|
}
|
|
/* MSI-X failed, so fall through and try MSI */
|
|
e_err("Failed to initialize MSI-X interrupts. "
|
|
"Falling back to MSI interrupts.\n");
|
|
e1000e_reset_interrupt_capability(adapter);
|
|
}
|
|
adapter->int_mode = E1000E_INT_MODE_MSI;
|
|
/* Fall through */
|
|
case E1000E_INT_MODE_MSI:
|
|
if (!pci_enable_msi(adapter->pdev)) {
|
|
adapter->flags |= FLAG_MSI_ENABLED;
|
|
} else {
|
|
adapter->int_mode = E1000E_INT_MODE_LEGACY;
|
|
e_err("Failed to initialize MSI interrupts. Falling "
|
|
"back to legacy interrupts.\n");
|
|
}
|
|
/* Fall through */
|
|
case E1000E_INT_MODE_LEGACY:
|
|
/* Don't do anything; this is the system default */
|
|
break;
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
/**
|
|
* e1000_request_msix - Initialize MSI-X interrupts
|
|
*
|
|
* e1000_request_msix allocates MSI-X vectors and requests interrupts from the
|
|
* kernel.
|
|
**/
|
|
static int e1000_request_msix(struct e1000_adapter *adapter)
|
|
{
|
|
struct net_device *netdev = adapter->netdev;
|
|
int err = 0, vector = 0;
|
|
|
|
if (strlen(netdev->name) < (IFNAMSIZ - 5))
|
|
sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
|
|
else
|
|
memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
|
|
err = request_irq(adapter->msix_entries[vector].vector,
|
|
&e1000_intr_msix_rx, 0, adapter->rx_ring->name,
|
|
netdev);
|
|
if (err)
|
|
goto out;
|
|
adapter->rx_ring->itr_register = E1000_EITR_82574(vector);
|
|
adapter->rx_ring->itr_val = adapter->itr;
|
|
vector++;
|
|
|
|
if (strlen(netdev->name) < (IFNAMSIZ - 5))
|
|
sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
|
|
else
|
|
memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
|
|
err = request_irq(adapter->msix_entries[vector].vector,
|
|
&e1000_intr_msix_tx, 0, adapter->tx_ring->name,
|
|
netdev);
|
|
if (err)
|
|
goto out;
|
|
adapter->tx_ring->itr_register = E1000_EITR_82574(vector);
|
|
adapter->tx_ring->itr_val = adapter->itr;
|
|
vector++;
|
|
|
|
err = request_irq(adapter->msix_entries[vector].vector,
|
|
&e1000_msix_other, 0, netdev->name, netdev);
|
|
if (err)
|
|
goto out;
|
|
|
|
e1000_configure_msix(adapter);
|
|
return 0;
|
|
out:
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* e1000_request_irq - initialize interrupts
|
|
*
|
|
* Attempts to configure interrupts using the best available
|
|
* capabilities of the hardware and kernel.
|
|
**/
|
|
static int e1000_request_irq(struct e1000_adapter *adapter)
|
|
{
|
|
struct net_device *netdev = adapter->netdev;
|
|
int err;
|
|
|
|
if (adapter->msix_entries) {
|
|
err = e1000_request_msix(adapter);
|
|
if (!err)
|
|
return err;
|
|
/* fall back to MSI */
|
|
e1000e_reset_interrupt_capability(adapter);
|
|
adapter->int_mode = E1000E_INT_MODE_MSI;
|
|
e1000e_set_interrupt_capability(adapter);
|
|
}
|
|
if (adapter->flags & FLAG_MSI_ENABLED) {
|
|
err = request_irq(adapter->pdev->irq, &e1000_intr_msi, 0,
|
|
netdev->name, netdev);
|
|
if (!err)
|
|
return err;
|
|
|
|
/* fall back to legacy interrupt */
|
|
e1000e_reset_interrupt_capability(adapter);
|
|
adapter->int_mode = E1000E_INT_MODE_LEGACY;
|
|
}
|
|
|
|
err = request_irq(adapter->pdev->irq, &e1000_intr, IRQF_SHARED,
|
|
netdev->name, netdev);
|
|
if (err)
|
|
e_err("Unable to allocate interrupt, Error: %d\n", err);
|
|
|
|
return err;
|
|
}
|
|
|
|
static void e1000_free_irq(struct e1000_adapter *adapter)
|
|
{
|
|
struct net_device *netdev = adapter->netdev;
|
|
|
|
if (adapter->msix_entries) {
|
|
int vector = 0;
|
|
|
|
free_irq(adapter->msix_entries[vector].vector, netdev);
|
|
vector++;
|
|
|
|
free_irq(adapter->msix_entries[vector].vector, netdev);
|
|
vector++;
|
|
|
|
/* Other Causes interrupt vector */
|
|
free_irq(adapter->msix_entries[vector].vector, netdev);
|
|
return;
|
|
}
|
|
|
|
free_irq(adapter->pdev->irq, netdev);
|
|
}
|
|
|
|
/**
|
|
* e1000_irq_disable - Mask off interrupt generation on the NIC
|
|
**/
|
|
static void e1000_irq_disable(struct e1000_adapter *adapter)
|
|
{
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
|
|
ew32(IMC, ~0);
|
|
if (adapter->msix_entries)
|
|
ew32(EIAC_82574, 0);
|
|
e1e_flush();
|
|
synchronize_irq(adapter->pdev->irq);
|
|
}
|
|
|
|
/**
|
|
* e1000_irq_enable - Enable default interrupt generation settings
|
|
**/
|
|
static void e1000_irq_enable(struct e1000_adapter *adapter)
|
|
{
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
|
|
if (adapter->msix_entries) {
|
|
ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
|
|
ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC);
|
|
} else {
|
|
ew32(IMS, IMS_ENABLE_MASK);
|
|
}
|
|
e1e_flush();
|
|
}
|
|
|
|
/**
|
|
* e1000_get_hw_control - get control of the h/w from f/w
|
|
* @adapter: address of board private structure
|
|
*
|
|
* e1000_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
|
|
* For ASF and Pass Through versions of f/w this means that
|
|
* the driver is loaded. For AMT version (only with 82573)
|
|
* of the f/w this means that the network i/f is open.
|
|
**/
|
|
static void e1000_get_hw_control(struct e1000_adapter *adapter)
|
|
{
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
u32 ctrl_ext;
|
|
u32 swsm;
|
|
|
|
/* Let firmware know the driver has taken over */
|
|
if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
|
|
swsm = er32(SWSM);
|
|
ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
|
|
} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
|
|
ctrl_ext = er32(CTRL_EXT);
|
|
ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* e1000_release_hw_control - release control of the h/w to f/w
|
|
* @adapter: address of board private structure
|
|
*
|
|
* e1000_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
|
|
* For ASF and Pass Through versions of f/w this means that the
|
|
* driver is no longer loaded. For AMT version (only with 82573) i
|
|
* of the f/w this means that the network i/f is closed.
|
|
*
|
|
**/
|
|
static void e1000_release_hw_control(struct e1000_adapter *adapter)
|
|
{
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
u32 ctrl_ext;
|
|
u32 swsm;
|
|
|
|
/* Let firmware taken over control of h/w */
|
|
if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
|
|
swsm = er32(SWSM);
|
|
ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
|
|
} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
|
|
ctrl_ext = er32(CTRL_EXT);
|
|
ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @e1000_alloc_ring - allocate memory for a ring structure
|
|
**/
|
|
static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
|
|
struct e1000_ring *ring)
|
|
{
|
|
struct pci_dev *pdev = adapter->pdev;
|
|
|
|
ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
|
|
GFP_KERNEL);
|
|
if (!ring->desc)
|
|
return -ENOMEM;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
|
|
* @adapter: board private structure
|
|
*
|
|
* Return 0 on success, negative on failure
|
|
**/
|
|
int e1000e_setup_tx_resources(struct e1000_adapter *adapter)
|
|
{
|
|
struct e1000_ring *tx_ring = adapter->tx_ring;
|
|
int err = -ENOMEM, size;
|
|
|
|
size = sizeof(struct e1000_buffer) * tx_ring->count;
|
|
tx_ring->buffer_info = vmalloc(size);
|
|
if (!tx_ring->buffer_info)
|
|
goto err;
|
|
memset(tx_ring->buffer_info, 0, size);
|
|
|
|
/* round up to nearest 4K */
|
|
tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
|
|
tx_ring->size = ALIGN(tx_ring->size, 4096);
|
|
|
|
err = e1000_alloc_ring_dma(adapter, tx_ring);
|
|
if (err)
|
|
goto err;
|
|
|
|
tx_ring->next_to_use = 0;
|
|
tx_ring->next_to_clean = 0;
|
|
|
|
return 0;
|
|
err:
|
|
vfree(tx_ring->buffer_info);
|
|
e_err("Unable to allocate memory for the transmit descriptor ring\n");
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
|
|
* @adapter: board private structure
|
|
*
|
|
* Returns 0 on success, negative on failure
|
|
**/
|
|
int e1000e_setup_rx_resources(struct e1000_adapter *adapter)
|
|
{
|
|
struct e1000_ring *rx_ring = adapter->rx_ring;
|
|
struct e1000_buffer *buffer_info;
|
|
int i, size, desc_len, err = -ENOMEM;
|
|
|
|
size = sizeof(struct e1000_buffer) * rx_ring->count;
|
|
rx_ring->buffer_info = vmalloc(size);
|
|
if (!rx_ring->buffer_info)
|
|
goto err;
|
|
memset(rx_ring->buffer_info, 0, size);
|
|
|
|
for (i = 0; i < rx_ring->count; i++) {
|
|
buffer_info = &rx_ring->buffer_info[i];
|
|
buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
|
|
sizeof(struct e1000_ps_page),
|
|
GFP_KERNEL);
|
|
if (!buffer_info->ps_pages)
|
|
goto err_pages;
|
|
}
|
|
|
|
desc_len = sizeof(union e1000_rx_desc_packet_split);
|
|
|
|
/* Round up to nearest 4K */
|
|
rx_ring->size = rx_ring->count * desc_len;
|
|
rx_ring->size = ALIGN(rx_ring->size, 4096);
|
|
|
|
err = e1000_alloc_ring_dma(adapter, rx_ring);
|
|
if (err)
|
|
goto err_pages;
|
|
|
|
rx_ring->next_to_clean = 0;
|
|
rx_ring->next_to_use = 0;
|
|
rx_ring->rx_skb_top = NULL;
|
|
|
|
return 0;
|
|
|
|
err_pages:
|
|
for (i = 0; i < rx_ring->count; i++) {
|
|
buffer_info = &rx_ring->buffer_info[i];
|
|
kfree(buffer_info->ps_pages);
|
|
}
|
|
err:
|
|
vfree(rx_ring->buffer_info);
|
|
e_err("Unable to allocate memory for the transmit descriptor ring\n");
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* e1000_clean_tx_ring - Free Tx Buffers
|
|
* @adapter: board private structure
|
|
**/
|
|
static void e1000_clean_tx_ring(struct e1000_adapter *adapter)
|
|
{
|
|
struct e1000_ring *tx_ring = adapter->tx_ring;
|
|
struct e1000_buffer *buffer_info;
|
|
unsigned long size;
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < tx_ring->count; i++) {
|
|
buffer_info = &tx_ring->buffer_info[i];
|
|
e1000_put_txbuf(adapter, buffer_info);
|
|
}
|
|
|
|
size = sizeof(struct e1000_buffer) * tx_ring->count;
|
|
memset(tx_ring->buffer_info, 0, size);
|
|
|
|
memset(tx_ring->desc, 0, tx_ring->size);
|
|
|
|
tx_ring->next_to_use = 0;
|
|
tx_ring->next_to_clean = 0;
|
|
|
|
writel(0, adapter->hw.hw_addr + tx_ring->head);
|
|
writel(0, adapter->hw.hw_addr + tx_ring->tail);
|
|
}
|
|
|
|
/**
|
|
* e1000e_free_tx_resources - Free Tx Resources per Queue
|
|
* @adapter: board private structure
|
|
*
|
|
* Free all transmit software resources
|
|
**/
|
|
void e1000e_free_tx_resources(struct e1000_adapter *adapter)
|
|
{
|
|
struct pci_dev *pdev = adapter->pdev;
|
|
struct e1000_ring *tx_ring = adapter->tx_ring;
|
|
|
|
e1000_clean_tx_ring(adapter);
|
|
|
|
vfree(tx_ring->buffer_info);
|
|
tx_ring->buffer_info = NULL;
|
|
|
|
dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
|
|
tx_ring->dma);
|
|
tx_ring->desc = NULL;
|
|
}
|
|
|
|
/**
|
|
* e1000e_free_rx_resources - Free Rx Resources
|
|
* @adapter: board private structure
|
|
*
|
|
* Free all receive software resources
|
|
**/
|
|
|
|
void e1000e_free_rx_resources(struct e1000_adapter *adapter)
|
|
{
|
|
struct pci_dev *pdev = adapter->pdev;
|
|
struct e1000_ring *rx_ring = adapter->rx_ring;
|
|
int i;
|
|
|
|
e1000_clean_rx_ring(adapter);
|
|
|
|
for (i = 0; i < rx_ring->count; i++) {
|
|
kfree(rx_ring->buffer_info[i].ps_pages);
|
|
}
|
|
|
|
vfree(rx_ring->buffer_info);
|
|
rx_ring->buffer_info = NULL;
|
|
|
|
dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
|
|
rx_ring->dma);
|
|
rx_ring->desc = NULL;
|
|
}
|
|
|
|
/**
|
|
* e1000_update_itr - update the dynamic ITR value based on statistics
|
|
* @adapter: pointer to adapter
|
|
* @itr_setting: current adapter->itr
|
|
* @packets: the number of packets during this measurement interval
|
|
* @bytes: the number of bytes during this measurement interval
|
|
*
|
|
* Stores a new ITR value based on packets and byte
|
|
* counts during the last interrupt. The advantage of per interrupt
|
|
* computation is faster updates and more accurate ITR for the current
|
|
* traffic pattern. Constants in this function were computed
|
|
* based on theoretical maximum wire speed and thresholds were set based
|
|
* on testing data as well as attempting to minimize response time
|
|
* while increasing bulk throughput. This functionality is controlled
|
|
* by the InterruptThrottleRate module parameter.
|
|
**/
|
|
static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
|
|
u16 itr_setting, int packets,
|
|
int bytes)
|
|
{
|
|
unsigned int retval = itr_setting;
|
|
|
|
if (packets == 0)
|
|
goto update_itr_done;
|
|
|
|
switch (itr_setting) {
|
|
case lowest_latency:
|
|
/* handle TSO and jumbo frames */
|
|
if (bytes/packets > 8000)
|
|
retval = bulk_latency;
|
|
else if ((packets < 5) && (bytes > 512)) {
|
|
retval = low_latency;
|
|
}
|
|
break;
|
|
case low_latency: /* 50 usec aka 20000 ints/s */
|
|
if (bytes > 10000) {
|
|
/* this if handles the TSO accounting */
|
|
if (bytes/packets > 8000) {
|
|
retval = bulk_latency;
|
|
} else if ((packets < 10) || ((bytes/packets) > 1200)) {
|
|
retval = bulk_latency;
|
|
} else if ((packets > 35)) {
|
|
retval = lowest_latency;
|
|
}
|
|
} else if (bytes/packets > 2000) {
|
|
retval = bulk_latency;
|
|
} else if (packets <= 2 && bytes < 512) {
|
|
retval = lowest_latency;
|
|
}
|
|
break;
|
|
case bulk_latency: /* 250 usec aka 4000 ints/s */
|
|
if (bytes > 25000) {
|
|
if (packets > 35) {
|
|
retval = low_latency;
|
|
}
|
|
} else if (bytes < 6000) {
|
|
retval = low_latency;
|
|
}
|
|
break;
|
|
}
|
|
|
|
update_itr_done:
|
|
return retval;
|
|
}
|
|
|
|
static void e1000_set_itr(struct e1000_adapter *adapter)
|
|
{
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
u16 current_itr;
|
|
u32 new_itr = adapter->itr;
|
|
|
|
/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
|
|
if (adapter->link_speed != SPEED_1000) {
|
|
current_itr = 0;
|
|
new_itr = 4000;
|
|
goto set_itr_now;
|
|
}
|
|
|
|
adapter->tx_itr = e1000_update_itr(adapter,
|
|
adapter->tx_itr,
|
|
adapter->total_tx_packets,
|
|
adapter->total_tx_bytes);
|
|
/* conservative mode (itr 3) eliminates the lowest_latency setting */
|
|
if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
|
|
adapter->tx_itr = low_latency;
|
|
|
|
adapter->rx_itr = e1000_update_itr(adapter,
|
|
adapter->rx_itr,
|
|
adapter->total_rx_packets,
|
|
adapter->total_rx_bytes);
|
|
/* conservative mode (itr 3) eliminates the lowest_latency setting */
|
|
if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
|
|
adapter->rx_itr = low_latency;
|
|
|
|
current_itr = max(adapter->rx_itr, adapter->tx_itr);
|
|
|
|
switch (current_itr) {
|
|
/* counts and packets in update_itr are dependent on these numbers */
|
|
case lowest_latency:
|
|
new_itr = 70000;
|
|
break;
|
|
case low_latency:
|
|
new_itr = 20000; /* aka hwitr = ~200 */
|
|
break;
|
|
case bulk_latency:
|
|
new_itr = 4000;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
set_itr_now:
|
|
if (new_itr != adapter->itr) {
|
|
/*
|
|
* this attempts to bias the interrupt rate towards Bulk
|
|
* by adding intermediate steps when interrupt rate is
|
|
* increasing
|
|
*/
|
|
new_itr = new_itr > adapter->itr ?
|
|
min(adapter->itr + (new_itr >> 2), new_itr) :
|
|
new_itr;
|
|
adapter->itr = new_itr;
|
|
adapter->rx_ring->itr_val = new_itr;
|
|
if (adapter->msix_entries)
|
|
adapter->rx_ring->set_itr = 1;
|
|
else
|
|
ew32(ITR, 1000000000 / (new_itr * 256));
|
|
}
|
|
}
|
|
|
|
/**
|
|
* e1000_alloc_queues - Allocate memory for all rings
|
|
* @adapter: board private structure to initialize
|
|
**/
|
|
static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
|
|
{
|
|
adapter->tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
|
|
if (!adapter->tx_ring)
|
|
goto err;
|
|
|
|
adapter->rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
|
|
if (!adapter->rx_ring)
|
|
goto err;
|
|
|
|
return 0;
|
|
err:
|
|
e_err("Unable to allocate memory for queues\n");
|
|
kfree(adapter->rx_ring);
|
|
kfree(adapter->tx_ring);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/**
|
|
* e1000_clean - NAPI Rx polling callback
|
|
* @napi: struct associated with this polling callback
|
|
* @budget: amount of packets driver is allowed to process this poll
|
|
**/
|
|
static int e1000_clean(struct napi_struct *napi, int budget)
|
|
{
|
|
struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
struct net_device *poll_dev = adapter->netdev;
|
|
int tx_cleaned = 0, work_done = 0;
|
|
|
|
adapter = netdev_priv(poll_dev);
|
|
|
|
if (adapter->msix_entries &&
|
|
!(adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
|
|
goto clean_rx;
|
|
|
|
tx_cleaned = e1000_clean_tx_irq(adapter);
|
|
|
|
clean_rx:
|
|
adapter->clean_rx(adapter, &work_done, budget);
|
|
|
|
if (tx_cleaned)
|
|
work_done = budget;
|
|
|
|
/* If budget not fully consumed, exit the polling mode */
|
|
if (work_done < budget) {
|
|
if (adapter->itr_setting & 3)
|
|
e1000_set_itr(adapter);
|
|
napi_complete(napi);
|
|
if (adapter->msix_entries)
|
|
ew32(IMS, adapter->rx_ring->ims_val);
|
|
else
|
|
e1000_irq_enable(adapter);
|
|
}
|
|
|
|
return work_done;
|
|
}
|
|
|
|
static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
|
|
{
|
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
u32 vfta, index;
|
|
|
|
/* don't update vlan cookie if already programmed */
|
|
if ((adapter->hw.mng_cookie.status &
|
|
E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
|
|
(vid == adapter->mng_vlan_id))
|
|
return;
|
|
/* add VID to filter table */
|
|
index = (vid >> 5) & 0x7F;
|
|
vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
|
|
vfta |= (1 << (vid & 0x1F));
|
|
e1000e_write_vfta(hw, index, vfta);
|
|
}
|
|
|
|
static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
|
|
{
|
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
u32 vfta, index;
|
|
|
|
if (!test_bit(__E1000_DOWN, &adapter->state))
|
|
e1000_irq_disable(adapter);
|
|
vlan_group_set_device(adapter->vlgrp, vid, NULL);
|
|
|
|
if (!test_bit(__E1000_DOWN, &adapter->state))
|
|
e1000_irq_enable(adapter);
|
|
|
|
if ((adapter->hw.mng_cookie.status &
|
|
E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
|
|
(vid == adapter->mng_vlan_id)) {
|
|
/* release control to f/w */
|
|
e1000_release_hw_control(adapter);
|
|
return;
|
|
}
|
|
|
|
/* remove VID from filter table */
|
|
index = (vid >> 5) & 0x7F;
|
|
vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
|
|
vfta &= ~(1 << (vid & 0x1F));
|
|
e1000e_write_vfta(hw, index, vfta);
|
|
}
|
|
|
|
static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
|
|
{
|
|
struct net_device *netdev = adapter->netdev;
|
|
u16 vid = adapter->hw.mng_cookie.vlan_id;
|
|
u16 old_vid = adapter->mng_vlan_id;
|
|
|
|
if (!adapter->vlgrp)
|
|
return;
|
|
|
|
if (!vlan_group_get_device(adapter->vlgrp, vid)) {
|
|
adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
|
|
if (adapter->hw.mng_cookie.status &
|
|
E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
|
|
e1000_vlan_rx_add_vid(netdev, vid);
|
|
adapter->mng_vlan_id = vid;
|
|
}
|
|
|
|
if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
|
|
(vid != old_vid) &&
|
|
!vlan_group_get_device(adapter->vlgrp, old_vid))
|
|
e1000_vlan_rx_kill_vid(netdev, old_vid);
|
|
} else {
|
|
adapter->mng_vlan_id = vid;
|
|
}
|
|
}
|
|
|
|
|
|
static void e1000_vlan_rx_register(struct net_device *netdev,
|
|
struct vlan_group *grp)
|
|
{
|
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
u32 ctrl, rctl;
|
|
|
|
if (!test_bit(__E1000_DOWN, &adapter->state))
|
|
e1000_irq_disable(adapter);
|
|
adapter->vlgrp = grp;
|
|
|
|
if (grp) {
|
|
/* enable VLAN tag insert/strip */
|
|
ctrl = er32(CTRL);
|
|
ctrl |= E1000_CTRL_VME;
|
|
ew32(CTRL, ctrl);
|
|
|
|
if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
|
|
/* enable VLAN receive filtering */
|
|
rctl = er32(RCTL);
|
|
rctl &= ~E1000_RCTL_CFIEN;
|
|
ew32(RCTL, rctl);
|
|
e1000_update_mng_vlan(adapter);
|
|
}
|
|
} else {
|
|
/* disable VLAN tag insert/strip */
|
|
ctrl = er32(CTRL);
|
|
ctrl &= ~E1000_CTRL_VME;
|
|
ew32(CTRL, ctrl);
|
|
|
|
if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
|
|
if (adapter->mng_vlan_id !=
|
|
(u16)E1000_MNG_VLAN_NONE) {
|
|
e1000_vlan_rx_kill_vid(netdev,
|
|
adapter->mng_vlan_id);
|
|
adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!test_bit(__E1000_DOWN, &adapter->state))
|
|
e1000_irq_enable(adapter);
|
|
}
|
|
|
|
static void e1000_restore_vlan(struct e1000_adapter *adapter)
|
|
{
|
|
u16 vid;
|
|
|
|
e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
|
|
|
|
if (!adapter->vlgrp)
|
|
return;
|
|
|
|
for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
|
|
if (!vlan_group_get_device(adapter->vlgrp, vid))
|
|
continue;
|
|
e1000_vlan_rx_add_vid(adapter->netdev, vid);
|
|
}
|
|
}
|
|
|
|
static void e1000_init_manageability(struct e1000_adapter *adapter)
|
|
{
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
u32 manc, manc2h;
|
|
|
|
if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
|
|
return;
|
|
|
|
manc = er32(MANC);
|
|
|
|
/*
|
|
* enable receiving management packets to the host. this will probably
|
|
* generate destination unreachable messages from the host OS, but
|
|
* the packets will be handled on SMBUS
|
|
*/
|
|
manc |= E1000_MANC_EN_MNG2HOST;
|
|
manc2h = er32(MANC2H);
|
|
#define E1000_MNG2HOST_PORT_623 (1 << 5)
|
|
#define E1000_MNG2HOST_PORT_664 (1 << 6)
|
|
manc2h |= E1000_MNG2HOST_PORT_623;
|
|
manc2h |= E1000_MNG2HOST_PORT_664;
|
|
ew32(MANC2H, manc2h);
|
|
ew32(MANC, manc);
|
|
}
|
|
|
|
/**
|
|
* e1000_configure_tx - Configure 8254x Transmit Unit after Reset
|
|
* @adapter: board private structure
|
|
*
|
|
* Configure the Tx unit of the MAC after a reset.
|
|
**/
|
|
static void e1000_configure_tx(struct e1000_adapter *adapter)
|
|
{
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
struct e1000_ring *tx_ring = adapter->tx_ring;
|
|
u64 tdba;
|
|
u32 tdlen, tctl, tipg, tarc;
|
|
u32 ipgr1, ipgr2;
|
|
|
|
/* Setup the HW Tx Head and Tail descriptor pointers */
|
|
tdba = tx_ring->dma;
|
|
tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
|
|
ew32(TDBAL, (tdba & DMA_32BIT_MASK));
|
|
ew32(TDBAH, (tdba >> 32));
|
|
ew32(TDLEN, tdlen);
|
|
ew32(TDH, 0);
|
|
ew32(TDT, 0);
|
|
tx_ring->head = E1000_TDH;
|
|
tx_ring->tail = E1000_TDT;
|
|
|
|
/* Set the default values for the Tx Inter Packet Gap timer */
|
|
tipg = DEFAULT_82543_TIPG_IPGT_COPPER; /* 8 */
|
|
ipgr1 = DEFAULT_82543_TIPG_IPGR1; /* 8 */
|
|
ipgr2 = DEFAULT_82543_TIPG_IPGR2; /* 6 */
|
|
|
|
if (adapter->flags & FLAG_TIPG_MEDIUM_FOR_80003ESLAN)
|
|
ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; /* 7 */
|
|
|
|
tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
|
|
tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
|
|
ew32(TIPG, tipg);
|
|
|
|
/* Set the Tx Interrupt Delay register */
|
|
ew32(TIDV, adapter->tx_int_delay);
|
|
/* Tx irq moderation */
|
|
ew32(TADV, adapter->tx_abs_int_delay);
|
|
|
|
/* Program the Transmit Control Register */
|
|
tctl = er32(TCTL);
|
|
tctl &= ~E1000_TCTL_CT;
|
|
tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
|
|
(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
|
|
|
|
if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
|
|
tarc = er32(TARC(0));
|
|
/*
|
|
* set the speed mode bit, we'll clear it if we're not at
|
|
* gigabit link later
|
|
*/
|
|
#define SPEED_MODE_BIT (1 << 21)
|
|
tarc |= SPEED_MODE_BIT;
|
|
ew32(TARC(0), tarc);
|
|
}
|
|
|
|
/* errata: program both queues to unweighted RR */
|
|
if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
|
|
tarc = er32(TARC(0));
|
|
tarc |= 1;
|
|
ew32(TARC(0), tarc);
|
|
tarc = er32(TARC(1));
|
|
tarc |= 1;
|
|
ew32(TARC(1), tarc);
|
|
}
|
|
|
|
e1000e_config_collision_dist(hw);
|
|
|
|
/* Setup Transmit Descriptor Settings for eop descriptor */
|
|
adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
|
|
|
|
/* only set IDE if we are delaying interrupts using the timers */
|
|
if (adapter->tx_int_delay)
|
|
adapter->txd_cmd |= E1000_TXD_CMD_IDE;
|
|
|
|
/* enable Report Status bit */
|
|
adapter->txd_cmd |= E1000_TXD_CMD_RS;
|
|
|
|
ew32(TCTL, tctl);
|
|
|
|
adapter->tx_queue_len = adapter->netdev->tx_queue_len;
|
|
}
|
|
|
|
/**
|
|
* e1000_setup_rctl - configure the receive control registers
|
|
* @adapter: Board private structure
|
|
**/
|
|
#define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
|
|
(((S) & (PAGE_SIZE - 1)) ? 1 : 0))
|
|
static void e1000_setup_rctl(struct e1000_adapter *adapter)
|
|
{
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
u32 rctl, rfctl;
|
|
u32 psrctl = 0;
|
|
u32 pages = 0;
|
|
|
|
/* Program MC offset vector base */
|
|
rctl = er32(RCTL);
|
|
rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
|
|
rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
|
|
E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
|
|
(adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
|
|
|
|
/* Do not Store bad packets */
|
|
rctl &= ~E1000_RCTL_SBP;
|
|
|
|
/* Enable Long Packet receive */
|
|
if (adapter->netdev->mtu <= ETH_DATA_LEN)
|
|
rctl &= ~E1000_RCTL_LPE;
|
|
else
|
|
rctl |= E1000_RCTL_LPE;
|
|
|
|
/* Some systems expect that the CRC is included in SMBUS traffic. The
|
|
* hardware strips the CRC before sending to both SMBUS (BMC) and to
|
|
* host memory when this is enabled
|
|
*/
|
|
if (adapter->flags2 & FLAG2_CRC_STRIPPING)
|
|
rctl |= E1000_RCTL_SECRC;
|
|
|
|
/* Setup buffer sizes */
|
|
rctl &= ~E1000_RCTL_SZ_4096;
|
|
rctl |= E1000_RCTL_BSEX;
|
|
switch (adapter->rx_buffer_len) {
|
|
case 256:
|
|
rctl |= E1000_RCTL_SZ_256;
|
|
rctl &= ~E1000_RCTL_BSEX;
|
|
break;
|
|
case 512:
|
|
rctl |= E1000_RCTL_SZ_512;
|
|
rctl &= ~E1000_RCTL_BSEX;
|
|
break;
|
|
case 1024:
|
|
rctl |= E1000_RCTL_SZ_1024;
|
|
rctl &= ~E1000_RCTL_BSEX;
|
|
break;
|
|
case 2048:
|
|
default:
|
|
rctl |= E1000_RCTL_SZ_2048;
|
|
rctl &= ~E1000_RCTL_BSEX;
|
|
break;
|
|
case 4096:
|
|
rctl |= E1000_RCTL_SZ_4096;
|
|
break;
|
|
case 8192:
|
|
rctl |= E1000_RCTL_SZ_8192;
|
|
break;
|
|
case 16384:
|
|
rctl |= E1000_RCTL_SZ_16384;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* 82571 and greater support packet-split where the protocol
|
|
* header is placed in skb->data and the packet data is
|
|
* placed in pages hanging off of skb_shinfo(skb)->nr_frags.
|
|
* In the case of a non-split, skb->data is linearly filled,
|
|
* followed by the page buffers. Therefore, skb->data is
|
|
* sized to hold the largest protocol header.
|
|
*
|
|
* allocations using alloc_page take too long for regular MTU
|
|
* so only enable packet split for jumbo frames
|
|
*
|
|
* Using pages when the page size is greater than 16k wastes
|
|
* a lot of memory, since we allocate 3 pages at all times
|
|
* per packet.
|
|
*/
|
|
pages = PAGE_USE_COUNT(adapter->netdev->mtu);
|
|
if (!(adapter->flags & FLAG_IS_ICH) && (pages <= 3) &&
|
|
(PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
|
|
adapter->rx_ps_pages = pages;
|
|
else
|
|
adapter->rx_ps_pages = 0;
|
|
|
|
if (adapter->rx_ps_pages) {
|
|
/* Configure extra packet-split registers */
|
|
rfctl = er32(RFCTL);
|
|
rfctl |= E1000_RFCTL_EXTEN;
|
|
/*
|
|
* disable packet split support for IPv6 extension headers,
|
|
* because some malformed IPv6 headers can hang the Rx
|
|
*/
|
|
rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
|
|
E1000_RFCTL_NEW_IPV6_EXT_DIS);
|
|
|
|
ew32(RFCTL, rfctl);
|
|
|
|
/* Enable Packet split descriptors */
|
|
rctl |= E1000_RCTL_DTYP_PS;
|
|
|
|
psrctl |= adapter->rx_ps_bsize0 >>
|
|
E1000_PSRCTL_BSIZE0_SHIFT;
|
|
|
|
switch (adapter->rx_ps_pages) {
|
|
case 3:
|
|
psrctl |= PAGE_SIZE <<
|
|
E1000_PSRCTL_BSIZE3_SHIFT;
|
|
case 2:
|
|
psrctl |= PAGE_SIZE <<
|
|
E1000_PSRCTL_BSIZE2_SHIFT;
|
|
case 1:
|
|
psrctl |= PAGE_SIZE >>
|
|
E1000_PSRCTL_BSIZE1_SHIFT;
|
|
break;
|
|
}
|
|
|
|
ew32(PSRCTL, psrctl);
|
|
}
|
|
|
|
ew32(RCTL, rctl);
|
|
/* just started the receive unit, no need to restart */
|
|
adapter->flags &= ~FLAG_RX_RESTART_NOW;
|
|
}
|
|
|
|
/**
|
|
* e1000_configure_rx - Configure Receive Unit after Reset
|
|
* @adapter: board private structure
|
|
*
|
|
* Configure the Rx unit of the MAC after a reset.
|
|
**/
|
|
static void e1000_configure_rx(struct e1000_adapter *adapter)
|
|
{
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
struct e1000_ring *rx_ring = adapter->rx_ring;
|
|
u64 rdba;
|
|
u32 rdlen, rctl, rxcsum, ctrl_ext;
|
|
|
|
if (adapter->rx_ps_pages) {
|
|
/* this is a 32 byte descriptor */
|
|
rdlen = rx_ring->count *
|
|
sizeof(union e1000_rx_desc_packet_split);
|
|
adapter->clean_rx = e1000_clean_rx_irq_ps;
|
|
adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
|
|
} else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
|
|
rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
|
|
adapter->clean_rx = e1000_clean_jumbo_rx_irq;
|
|
adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
|
|
} else {
|
|
rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
|
|
adapter->clean_rx = e1000_clean_rx_irq;
|
|
adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
|
|
}
|
|
|
|
/* disable receives while setting up the descriptors */
|
|
rctl = er32(RCTL);
|
|
ew32(RCTL, rctl & ~E1000_RCTL_EN);
|
|
e1e_flush();
|
|
msleep(10);
|
|
|
|
/* set the Receive Delay Timer Register */
|
|
ew32(RDTR, adapter->rx_int_delay);
|
|
|
|
/* irq moderation */
|
|
ew32(RADV, adapter->rx_abs_int_delay);
|
|
if (adapter->itr_setting != 0)
|
|
ew32(ITR, 1000000000 / (adapter->itr * 256));
|
|
|
|
ctrl_ext = er32(CTRL_EXT);
|
|
/* Reset delay timers after every interrupt */
|
|
ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
|
|
/* Auto-Mask interrupts upon ICR access */
|
|
ctrl_ext |= E1000_CTRL_EXT_IAME;
|
|
ew32(IAM, 0xffffffff);
|
|
ew32(CTRL_EXT, ctrl_ext);
|
|
e1e_flush();
|
|
|
|
/*
|
|
* Setup the HW Rx Head and Tail Descriptor Pointers and
|
|
* the Base and Length of the Rx Descriptor Ring
|
|
*/
|
|
rdba = rx_ring->dma;
|
|
ew32(RDBAL, (rdba & DMA_32BIT_MASK));
|
|
ew32(RDBAH, (rdba >> 32));
|
|
ew32(RDLEN, rdlen);
|
|
ew32(RDH, 0);
|
|
ew32(RDT, 0);
|
|
rx_ring->head = E1000_RDH;
|
|
rx_ring->tail = E1000_RDT;
|
|
|
|
/* Enable Receive Checksum Offload for TCP and UDP */
|
|
rxcsum = er32(RXCSUM);
|
|
if (adapter->flags & FLAG_RX_CSUM_ENABLED) {
|
|
rxcsum |= E1000_RXCSUM_TUOFL;
|
|
|
|
/*
|
|
* IPv4 payload checksum for UDP fragments must be
|
|
* used in conjunction with packet-split.
|
|
*/
|
|
if (adapter->rx_ps_pages)
|
|
rxcsum |= E1000_RXCSUM_IPPCSE;
|
|
} else {
|
|
rxcsum &= ~E1000_RXCSUM_TUOFL;
|
|
/* no need to clear IPPCSE as it defaults to 0 */
|
|
}
|
|
ew32(RXCSUM, rxcsum);
|
|
|
|
/*
|
|
* Enable early receives on supported devices, only takes effect when
|
|
* packet size is equal or larger than the specified value (in 8 byte
|
|
* units), e.g. using jumbo frames when setting to E1000_ERT_2048
|
|
*/
|
|
if ((adapter->flags & FLAG_HAS_ERT) &&
|
|
(adapter->netdev->mtu > ETH_DATA_LEN)) {
|
|
u32 rxdctl = er32(RXDCTL(0));
|
|
ew32(RXDCTL(0), rxdctl | 0x3);
|
|
ew32(ERT, E1000_ERT_2048 | (1 << 13));
|
|
/*
|
|
* With jumbo frames and early-receive enabled, excessive
|
|
* C4->C2 latencies result in dropped transactions.
|
|
*/
|
|
pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY,
|
|
e1000e_driver_name, 55);
|
|
} else {
|
|
pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY,
|
|
e1000e_driver_name,
|
|
PM_QOS_DEFAULT_VALUE);
|
|
}
|
|
|
|
/* Enable Receives */
|
|
ew32(RCTL, rctl);
|
|
}
|
|
|
|
/**
|
|
* e1000_update_mc_addr_list - Update Multicast addresses
|
|
* @hw: pointer to the HW structure
|
|
* @mc_addr_list: array of multicast addresses to program
|
|
* @mc_addr_count: number of multicast addresses to program
|
|
* @rar_used_count: the first RAR register free to program
|
|
* @rar_count: total number of supported Receive Address Registers
|
|
*
|
|
* Updates the Receive Address Registers and Multicast Table Array.
|
|
* The caller must have a packed mc_addr_list of multicast addresses.
|
|
* The parameter rar_count will usually be hw->mac.rar_entry_count
|
|
* unless there are workarounds that change this. Currently no func pointer
|
|
* exists and all implementations are handled in the generic version of this
|
|
* function.
|
|
**/
|
|
static void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
|
|
u32 mc_addr_count, u32 rar_used_count,
|
|
u32 rar_count)
|
|
{
|
|
hw->mac.ops.update_mc_addr_list(hw, mc_addr_list, mc_addr_count,
|
|
rar_used_count, rar_count);
|
|
}
|
|
|
|
/**
|
|
* e1000_set_multi - Multicast and Promiscuous mode set
|
|
* @netdev: network interface device structure
|
|
*
|
|
* The set_multi entry point is called whenever the multicast address
|
|
* list or the network interface flags are updated. This routine is
|
|
* responsible for configuring the hardware for proper multicast,
|
|
* promiscuous mode, and all-multi behavior.
|
|
**/
|
|
static void e1000_set_multi(struct net_device *netdev)
|
|
{
|
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
struct e1000_mac_info *mac = &hw->mac;
|
|
struct dev_mc_list *mc_ptr;
|
|
u8 *mta_list;
|
|
u32 rctl;
|
|
int i;
|
|
|
|
/* Check for Promiscuous and All Multicast modes */
|
|
|
|
rctl = er32(RCTL);
|
|
|
|
if (netdev->flags & IFF_PROMISC) {
|
|
rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
|
|
rctl &= ~E1000_RCTL_VFE;
|
|
} else {
|
|
if (netdev->flags & IFF_ALLMULTI) {
|
|
rctl |= E1000_RCTL_MPE;
|
|
rctl &= ~E1000_RCTL_UPE;
|
|
} else {
|
|
rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
|
|
}
|
|
if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
|
|
rctl |= E1000_RCTL_VFE;
|
|
}
|
|
|
|
ew32(RCTL, rctl);
|
|
|
|
if (netdev->mc_count) {
|
|
mta_list = kmalloc(netdev->mc_count * 6, GFP_ATOMIC);
|
|
if (!mta_list)
|
|
return;
|
|
|
|
/* prepare a packed array of only addresses. */
|
|
mc_ptr = netdev->mc_list;
|
|
|
|
for (i = 0; i < netdev->mc_count; i++) {
|
|
if (!mc_ptr)
|
|
break;
|
|
memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr,
|
|
ETH_ALEN);
|
|
mc_ptr = mc_ptr->next;
|
|
}
|
|
|
|
e1000_update_mc_addr_list(hw, mta_list, i, 1,
|
|
mac->rar_entry_count);
|
|
kfree(mta_list);
|
|
} else {
|
|
/*
|
|
* if we're called from probe, we might not have
|
|
* anything to do here, so clear out the list
|
|
*/
|
|
e1000_update_mc_addr_list(hw, NULL, 0, 1, mac->rar_entry_count);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* e1000_configure - configure the hardware for Rx and Tx
|
|
* @adapter: private board structure
|
|
**/
|
|
static void e1000_configure(struct e1000_adapter *adapter)
|
|
{
|
|
e1000_set_multi(adapter->netdev);
|
|
|
|
e1000_restore_vlan(adapter);
|
|
e1000_init_manageability(adapter);
|
|
|
|
e1000_configure_tx(adapter);
|
|
e1000_setup_rctl(adapter);
|
|
e1000_configure_rx(adapter);
|
|
adapter->alloc_rx_buf(adapter, e1000_desc_unused(adapter->rx_ring));
|
|
}
|
|
|
|
/**
|
|
* e1000e_power_up_phy - restore link in case the phy was powered down
|
|
* @adapter: address of board private structure
|
|
*
|
|
* The phy may be powered down to save power and turn off link when the
|
|
* driver is unloaded and wake on lan is not enabled (among others)
|
|
* *** this routine MUST be followed by a call to e1000e_reset ***
|
|
**/
|
|
void e1000e_power_up_phy(struct e1000_adapter *adapter)
|
|
{
|
|
u16 mii_reg = 0;
|
|
|
|
/* Just clear the power down bit to wake the phy back up */
|
|
if (adapter->hw.phy.media_type == e1000_media_type_copper) {
|
|
/*
|
|
* According to the manual, the phy will retain its
|
|
* settings across a power-down/up cycle
|
|
*/
|
|
e1e_rphy(&adapter->hw, PHY_CONTROL, &mii_reg);
|
|
mii_reg &= ~MII_CR_POWER_DOWN;
|
|
e1e_wphy(&adapter->hw, PHY_CONTROL, mii_reg);
|
|
}
|
|
|
|
adapter->hw.mac.ops.setup_link(&adapter->hw);
|
|
}
|
|
|
|
/**
|
|
* e1000_power_down_phy - Power down the PHY
|
|
*
|
|
* Power down the PHY so no link is implied when interface is down
|
|
* The PHY cannot be powered down is management or WoL is active
|
|
*/
|
|
static void e1000_power_down_phy(struct e1000_adapter *adapter)
|
|
{
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
u16 mii_reg;
|
|
|
|
/* WoL is enabled */
|
|
if (adapter->wol)
|
|
return;
|
|
|
|
/* non-copper PHY? */
|
|
if (adapter->hw.phy.media_type != e1000_media_type_copper)
|
|
return;
|
|
|
|
/* reset is blocked because of a SoL/IDER session */
|
|
if (e1000e_check_mng_mode(hw) || e1000_check_reset_block(hw))
|
|
return;
|
|
|
|
/* manageability (AMT) is enabled */
|
|
if (er32(MANC) & E1000_MANC_SMBUS_EN)
|
|
return;
|
|
|
|
/* power down the PHY */
|
|
e1e_rphy(hw, PHY_CONTROL, &mii_reg);
|
|
mii_reg |= MII_CR_POWER_DOWN;
|
|
e1e_wphy(hw, PHY_CONTROL, mii_reg);
|
|
mdelay(1);
|
|
}
|
|
|
|
/**
|
|
* e1000e_reset - bring the hardware into a known good state
|
|
*
|
|
* This function boots the hardware and enables some settings that
|
|
* require a configuration cycle of the hardware - those cannot be
|
|
* set/changed during runtime. After reset the device needs to be
|
|
* properly configured for Rx, Tx etc.
|
|
*/
|
|
void e1000e_reset(struct e1000_adapter *adapter)
|
|
{
|
|
struct e1000_mac_info *mac = &adapter->hw.mac;
|
|
struct e1000_fc_info *fc = &adapter->hw.fc;
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
u32 tx_space, min_tx_space, min_rx_space;
|
|
u32 pba = adapter->pba;
|
|
u16 hwm;
|
|
|
|
/* reset Packet Buffer Allocation to default */
|
|
ew32(PBA, pba);
|
|
|
|
if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
|
|
/*
|
|
* To maintain wire speed transmits, the Tx FIFO should be
|
|
* large enough to accommodate two full transmit packets,
|
|
* rounded up to the next 1KB and expressed in KB. Likewise,
|
|
* the Rx FIFO should be large enough to accommodate at least
|
|
* one full receive packet and is similarly rounded up and
|
|
* expressed in KB.
|
|
*/
|
|
pba = er32(PBA);
|
|
/* upper 16 bits has Tx packet buffer allocation size in KB */
|
|
tx_space = pba >> 16;
|
|
/* lower 16 bits has Rx packet buffer allocation size in KB */
|
|
pba &= 0xffff;
|
|
/*
|
|
* the Tx fifo also stores 16 bytes of information about the tx
|
|
* but don't include ethernet FCS because hardware appends it
|
|
*/
|
|
min_tx_space = (adapter->max_frame_size +
|
|
sizeof(struct e1000_tx_desc) -
|
|
ETH_FCS_LEN) * 2;
|
|
min_tx_space = ALIGN(min_tx_space, 1024);
|
|
min_tx_space >>= 10;
|
|
/* software strips receive CRC, so leave room for it */
|
|
min_rx_space = adapter->max_frame_size;
|
|
min_rx_space = ALIGN(min_rx_space, 1024);
|
|
min_rx_space >>= 10;
|
|
|
|
/*
|
|
* If current Tx allocation is less than the min Tx FIFO size,
|
|
* and the min Tx FIFO size is less than the current Rx FIFO
|
|
* allocation, take space away from current Rx allocation
|
|
*/
|
|
if ((tx_space < min_tx_space) &&
|
|
((min_tx_space - tx_space) < pba)) {
|
|
pba -= min_tx_space - tx_space;
|
|
|
|
/*
|
|
* if short on Rx space, Rx wins and must trump tx
|
|
* adjustment or use Early Receive if available
|
|
*/
|
|
if ((pba < min_rx_space) &&
|
|
(!(adapter->flags & FLAG_HAS_ERT)))
|
|
/* ERT enabled in e1000_configure_rx */
|
|
pba = min_rx_space;
|
|
}
|
|
|
|
ew32(PBA, pba);
|
|
}
|
|
|
|
|
|
/*
|
|
* flow control settings
|
|
*
|
|
* The high water mark must be low enough to fit one full frame
|
|
* (or the size used for early receive) above it in the Rx FIFO.
|
|
* Set it to the lower of:
|
|
* - 90% of the Rx FIFO size, and
|
|
* - the full Rx FIFO size minus the early receive size (for parts
|
|
* with ERT support assuming ERT set to E1000_ERT_2048), or
|
|
* - the full Rx FIFO size minus one full frame
|
|
*/
|
|
if (adapter->flags & FLAG_HAS_ERT)
|
|
hwm = min(((pba << 10) * 9 / 10),
|
|
((pba << 10) - (E1000_ERT_2048 << 3)));
|
|
else
|
|
hwm = min(((pba << 10) * 9 / 10),
|
|
((pba << 10) - adapter->max_frame_size));
|
|
|
|
fc->high_water = hwm & 0xFFF8; /* 8-byte granularity */
|
|
fc->low_water = fc->high_water - 8;
|
|
|
|
if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
|
|
fc->pause_time = 0xFFFF;
|
|
else
|
|
fc->pause_time = E1000_FC_PAUSE_TIME;
|
|
fc->send_xon = 1;
|
|
fc->current_mode = fc->requested_mode;
|
|
|
|
/* Allow time for pending master requests to run */
|
|
mac->ops.reset_hw(hw);
|
|
|
|
/*
|
|
* For parts with AMT enabled, let the firmware know
|
|
* that the network interface is in control
|
|
*/
|
|
if (adapter->flags & FLAG_HAS_AMT)
|
|
e1000_get_hw_control(adapter);
|
|
|
|
ew32(WUC, 0);
|
|
|
|
if (mac->ops.init_hw(hw))
|
|
e_err("Hardware Error\n");
|
|
|
|
e1000_update_mng_vlan(adapter);
|
|
|
|
/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
|
|
ew32(VET, ETH_P_8021Q);
|
|
|
|
e1000e_reset_adaptive(hw);
|
|
e1000_get_phy_info(hw);
|
|
|
|
if (!(adapter->flags & FLAG_SMART_POWER_DOWN)) {
|
|
u16 phy_data = 0;
|
|
/*
|
|
* speed up time to link by disabling smart power down, ignore
|
|
* the return value of this function because there is nothing
|
|
* different we would do if it failed
|
|
*/
|
|
e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
|
|
phy_data &= ~IGP02E1000_PM_SPD;
|
|
e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
|
|
}
|
|
}
|
|
|
|
int e1000e_up(struct e1000_adapter *adapter)
|
|
{
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
|
|
/* hardware has been reset, we need to reload some things */
|
|
e1000_configure(adapter);
|
|
|
|
clear_bit(__E1000_DOWN, &adapter->state);
|
|
|
|
napi_enable(&adapter->napi);
|
|
if (adapter->msix_entries)
|
|
e1000_configure_msix(adapter);
|
|
e1000_irq_enable(adapter);
|
|
|
|
/* fire a link change interrupt to start the watchdog */
|
|
ew32(ICS, E1000_ICS_LSC);
|
|
return 0;
|
|
}
|
|
|
|
void e1000e_down(struct e1000_adapter *adapter)
|
|
{
|
|
struct net_device *netdev = adapter->netdev;
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
u32 tctl, rctl;
|
|
|
|
/*
|
|
* signal that we're down so the interrupt handler does not
|
|
* reschedule our watchdog timer
|
|
*/
|
|
set_bit(__E1000_DOWN, &adapter->state);
|
|
|
|
/* disable receives in the hardware */
|
|
rctl = er32(RCTL);
|
|
ew32(RCTL, rctl & ~E1000_RCTL_EN);
|
|
/* flush and sleep below */
|
|
|
|
netif_tx_stop_all_queues(netdev);
|
|
|
|
/* disable transmits in the hardware */
|
|
tctl = er32(TCTL);
|
|
tctl &= ~E1000_TCTL_EN;
|
|
ew32(TCTL, tctl);
|
|
/* flush both disables and wait for them to finish */
|
|
e1e_flush();
|
|
msleep(10);
|
|
|
|
napi_disable(&adapter->napi);
|
|
e1000_irq_disable(adapter);
|
|
|
|
del_timer_sync(&adapter->watchdog_timer);
|
|
del_timer_sync(&adapter->phy_info_timer);
|
|
|
|
netdev->tx_queue_len = adapter->tx_queue_len;
|
|
netif_carrier_off(netdev);
|
|
adapter->link_speed = 0;
|
|
adapter->link_duplex = 0;
|
|
|
|
if (!pci_channel_offline(adapter->pdev))
|
|
e1000e_reset(adapter);
|
|
e1000_clean_tx_ring(adapter);
|
|
e1000_clean_rx_ring(adapter);
|
|
|
|
/*
|
|
* TODO: for power management, we could drop the link and
|
|
* pci_disable_device here.
|
|
*/
|
|
}
|
|
|
|
void e1000e_reinit_locked(struct e1000_adapter *adapter)
|
|
{
|
|
might_sleep();
|
|
while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
|
|
msleep(1);
|
|
e1000e_down(adapter);
|
|
e1000e_up(adapter);
|
|
clear_bit(__E1000_RESETTING, &adapter->state);
|
|
}
|
|
|
|
/**
|
|
* e1000_sw_init - Initialize general software structures (struct e1000_adapter)
|
|
* @adapter: board private structure to initialize
|
|
*
|
|
* e1000_sw_init initializes the Adapter private data structure.
|
|
* Fields are initialized based on PCI device information and
|
|
* OS network device settings (MTU size).
|
|
**/
|
|
static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
|
|
{
|
|
struct net_device *netdev = adapter->netdev;
|
|
|
|
adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
|
|
adapter->rx_ps_bsize0 = 128;
|
|
adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
|
|
adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
|
|
|
|
e1000e_set_interrupt_capability(adapter);
|
|
|
|
if (e1000_alloc_queues(adapter))
|
|
return -ENOMEM;
|
|
|
|
/* Explicitly disable IRQ since the NIC can be in any state. */
|
|
e1000_irq_disable(adapter);
|
|
|
|
set_bit(__E1000_DOWN, &adapter->state);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* e1000_intr_msi_test - Interrupt Handler
|
|
* @irq: interrupt number
|
|
* @data: pointer to a network interface device structure
|
|
**/
|
|
static irqreturn_t e1000_intr_msi_test(int irq, void *data)
|
|
{
|
|
struct net_device *netdev = data;
|
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
u32 icr = er32(ICR);
|
|
|
|
e_dbg("%s: icr is %08X\n", netdev->name, icr);
|
|
if (icr & E1000_ICR_RXSEQ) {
|
|
adapter->flags &= ~FLAG_MSI_TEST_FAILED;
|
|
wmb();
|
|
}
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/**
|
|
* e1000_test_msi_interrupt - Returns 0 for successful test
|
|
* @adapter: board private struct
|
|
*
|
|
* code flow taken from tg3.c
|
|
**/
|
|
static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
|
|
{
|
|
struct net_device *netdev = adapter->netdev;
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
int err;
|
|
|
|
/* poll_enable hasn't been called yet, so don't need disable */
|
|
/* clear any pending events */
|
|
er32(ICR);
|
|
|
|
/* free the real vector and request a test handler */
|
|
e1000_free_irq(adapter);
|
|
e1000e_reset_interrupt_capability(adapter);
|
|
|
|
/* Assume that the test fails, if it succeeds then the test
|
|
* MSI irq handler will unset this flag */
|
|
adapter->flags |= FLAG_MSI_TEST_FAILED;
|
|
|
|
err = pci_enable_msi(adapter->pdev);
|
|
if (err)
|
|
goto msi_test_failed;
|
|
|
|
err = request_irq(adapter->pdev->irq, &e1000_intr_msi_test, 0,
|
|
netdev->name, netdev);
|
|
if (err) {
|
|
pci_disable_msi(adapter->pdev);
|
|
goto msi_test_failed;
|
|
}
|
|
|
|
wmb();
|
|
|
|
e1000_irq_enable(adapter);
|
|
|
|
/* fire an unusual interrupt on the test handler */
|
|
ew32(ICS, E1000_ICS_RXSEQ);
|
|
e1e_flush();
|
|
msleep(50);
|
|
|
|
e1000_irq_disable(adapter);
|
|
|
|
rmb();
|
|
|
|
if (adapter->flags & FLAG_MSI_TEST_FAILED) {
|
|
adapter->int_mode = E1000E_INT_MODE_LEGACY;
|
|
err = -EIO;
|
|
e_info("MSI interrupt test failed!\n");
|
|
}
|
|
|
|
free_irq(adapter->pdev->irq, netdev);
|
|
pci_disable_msi(adapter->pdev);
|
|
|
|
if (err == -EIO)
|
|
goto msi_test_failed;
|
|
|
|
/* okay so the test worked, restore settings */
|
|
e_dbg("%s: MSI interrupt test succeeded!\n", netdev->name);
|
|
msi_test_failed:
|
|
e1000e_set_interrupt_capability(adapter);
|
|
e1000_request_irq(adapter);
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
|
|
* @adapter: board private struct
|
|
*
|
|
* code flow taken from tg3.c, called with e1000 interrupts disabled.
|
|
**/
|
|
static int e1000_test_msi(struct e1000_adapter *adapter)
|
|
{
|
|
int err;
|
|
u16 pci_cmd;
|
|
|
|
if (!(adapter->flags & FLAG_MSI_ENABLED))
|
|
return 0;
|
|
|
|
/* disable SERR in case the MSI write causes a master abort */
|
|
pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
|
|
pci_write_config_word(adapter->pdev, PCI_COMMAND,
|
|
pci_cmd & ~PCI_COMMAND_SERR);
|
|
|
|
err = e1000_test_msi_interrupt(adapter);
|
|
|
|
/* restore previous setting of command word */
|
|
pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
|
|
|
|
/* success ! */
|
|
if (!err)
|
|
return 0;
|
|
|
|
/* EIO means MSI test failed */
|
|
if (err != -EIO)
|
|
return err;
|
|
|
|
/* back to INTx mode */
|
|
e_warn("MSI interrupt test failed, using legacy interrupt.\n");
|
|
|
|
e1000_free_irq(adapter);
|
|
|
|
err = e1000_request_irq(adapter);
|
|
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* e1000_open - Called when a network interface is made active
|
|
* @netdev: network interface device structure
|
|
*
|
|
* Returns 0 on success, negative value on failure
|
|
*
|
|
* The open entry point is called when a network interface is made
|
|
* active by the system (IFF_UP). At this point all resources needed
|
|
* for transmit and receive operations are allocated, the interrupt
|
|
* handler is registered with the OS, the watchdog timer is started,
|
|
* and the stack is notified that the interface is ready.
|
|
**/
|
|
static int e1000_open(struct net_device *netdev)
|
|
{
|
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
int err;
|
|
|
|
/* disallow open during test */
|
|
if (test_bit(__E1000_TESTING, &adapter->state))
|
|
return -EBUSY;
|
|
|
|
/* allocate transmit descriptors */
|
|
err = e1000e_setup_tx_resources(adapter);
|
|
if (err)
|
|
goto err_setup_tx;
|
|
|
|
/* allocate receive descriptors */
|
|
err = e1000e_setup_rx_resources(adapter);
|
|
if (err)
|
|
goto err_setup_rx;
|
|
|
|
e1000e_power_up_phy(adapter);
|
|
|
|
adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
|
|
if ((adapter->hw.mng_cookie.status &
|
|
E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
|
|
e1000_update_mng_vlan(adapter);
|
|
|
|
/*
|
|
* If AMT is enabled, let the firmware know that the network
|
|
* interface is now open
|
|
*/
|
|
if (adapter->flags & FLAG_HAS_AMT)
|
|
e1000_get_hw_control(adapter);
|
|
|
|
/*
|
|
* before we allocate an interrupt, we must be ready to handle it.
|
|
* Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
|
|
* as soon as we call pci_request_irq, so we have to setup our
|
|
* clean_rx handler before we do so.
|
|
*/
|
|
e1000_configure(adapter);
|
|
|
|
err = e1000_request_irq(adapter);
|
|
if (err)
|
|
goto err_req_irq;
|
|
|
|
/*
|
|
* Work around PCIe errata with MSI interrupts causing some chipsets to
|
|
* ignore e1000e MSI messages, which means we need to test our MSI
|
|
* interrupt now
|
|
*/
|
|
if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
|
|
err = e1000_test_msi(adapter);
|
|
if (err) {
|
|
e_err("Interrupt allocation failed\n");
|
|
goto err_req_irq;
|
|
}
|
|
}
|
|
|
|
/* From here on the code is the same as e1000e_up() */
|
|
clear_bit(__E1000_DOWN, &adapter->state);
|
|
|
|
napi_enable(&adapter->napi);
|
|
|
|
e1000_irq_enable(adapter);
|
|
|
|
netif_tx_start_all_queues(netdev);
|
|
|
|
/* fire a link status change interrupt to start the watchdog */
|
|
ew32(ICS, E1000_ICS_LSC);
|
|
|
|
return 0;
|
|
|
|
err_req_irq:
|
|
e1000_release_hw_control(adapter);
|
|
e1000_power_down_phy(adapter);
|
|
e1000e_free_rx_resources(adapter);
|
|
err_setup_rx:
|
|
e1000e_free_tx_resources(adapter);
|
|
err_setup_tx:
|
|
e1000e_reset(adapter);
|
|
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* e1000_close - Disables a network interface
|
|
* @netdev: network interface device structure
|
|
*
|
|
* Returns 0, this is not allowed to fail
|
|
*
|
|
* The close entry point is called when an interface is de-activated
|
|
* by the OS. The hardware is still under the drivers control, but
|
|
* needs to be disabled. A global MAC reset is issued to stop the
|
|
* hardware, and all transmit and receive resources are freed.
|
|
**/
|
|
static int e1000_close(struct net_device *netdev)
|
|
{
|
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
|
|
|
WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
|
|
e1000e_down(adapter);
|
|
e1000_power_down_phy(adapter);
|
|
e1000_free_irq(adapter);
|
|
|
|
e1000e_free_tx_resources(adapter);
|
|
e1000e_free_rx_resources(adapter);
|
|
|
|
/*
|
|
* kill manageability vlan ID if supported, but not if a vlan with
|
|
* the same ID is registered on the host OS (let 8021q kill it)
|
|
*/
|
|
if ((adapter->hw.mng_cookie.status &
|
|
E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
|
|
!(adapter->vlgrp &&
|
|
vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
|
|
e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
|
|
|
|
/*
|
|
* If AMT is enabled, let the firmware know that the network
|
|
* interface is now closed
|
|
*/
|
|
if (adapter->flags & FLAG_HAS_AMT)
|
|
e1000_release_hw_control(adapter);
|
|
|
|
return 0;
|
|
}
|
|
/**
|
|
* e1000_set_mac - Change the Ethernet Address of the NIC
|
|
* @netdev: network interface device structure
|
|
* @p: pointer to an address structure
|
|
*
|
|
* Returns 0 on success, negative on failure
|
|
**/
|
|
static int e1000_set_mac(struct net_device *netdev, void *p)
|
|
{
|
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
|
struct sockaddr *addr = p;
|
|
|
|
if (!is_valid_ether_addr(addr->sa_data))
|
|
return -EADDRNOTAVAIL;
|
|
|
|
memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
|
|
memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
|
|
|
|
e1000e_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
|
|
|
|
if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
|
|
/* activate the work around */
|
|
e1000e_set_laa_state_82571(&adapter->hw, 1);
|
|
|
|
/*
|
|
* Hold a copy of the LAA in RAR[14] This is done so that
|
|
* between the time RAR[0] gets clobbered and the time it
|
|
* gets fixed (in e1000_watchdog), the actual LAA is in one
|
|
* of the RARs and no incoming packets directed to this port
|
|
* are dropped. Eventually the LAA will be in RAR[0] and
|
|
* RAR[14]
|
|
*/
|
|
e1000e_rar_set(&adapter->hw,
|
|
adapter->hw.mac.addr,
|
|
adapter->hw.mac.rar_entry_count - 1);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* e1000e_update_phy_task - work thread to update phy
|
|
* @work: pointer to our work struct
|
|
*
|
|
* this worker thread exists because we must acquire a
|
|
* semaphore to read the phy, which we could msleep while
|
|
* waiting for it, and we can't msleep in a timer.
|
|
**/
|
|
static void e1000e_update_phy_task(struct work_struct *work)
|
|
{
|
|
struct e1000_adapter *adapter = container_of(work,
|
|
struct e1000_adapter, update_phy_task);
|
|
e1000_get_phy_info(&adapter->hw);
|
|
}
|
|
|
|
/*
|
|
* Need to wait a few seconds after link up to get diagnostic information from
|
|
* the phy
|
|
*/
|
|
static void e1000_update_phy_info(unsigned long data)
|
|
{
|
|
struct e1000_adapter *adapter = (struct e1000_adapter *) data;
|
|
schedule_work(&adapter->update_phy_task);
|
|
}
|
|
|
|
/**
|
|
* e1000e_update_stats - Update the board statistics counters
|
|
* @adapter: board private structure
|
|
**/
|
|
void e1000e_update_stats(struct e1000_adapter *adapter)
|
|
{
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
struct pci_dev *pdev = adapter->pdev;
|
|
|
|
/*
|
|
* Prevent stats update while adapter is being reset, or if the pci
|
|
* connection is down.
|
|
*/
|
|
if (adapter->link_speed == 0)
|
|
return;
|
|
if (pci_channel_offline(pdev))
|
|
return;
|
|
|
|
adapter->stats.crcerrs += er32(CRCERRS);
|
|
adapter->stats.gprc += er32(GPRC);
|
|
adapter->stats.gorc += er32(GORCL);
|
|
er32(GORCH); /* Clear gorc */
|
|
adapter->stats.bprc += er32(BPRC);
|
|
adapter->stats.mprc += er32(MPRC);
|
|
adapter->stats.roc += er32(ROC);
|
|
|
|
adapter->stats.mpc += er32(MPC);
|
|
adapter->stats.scc += er32(SCC);
|
|
adapter->stats.ecol += er32(ECOL);
|
|
adapter->stats.mcc += er32(MCC);
|
|
adapter->stats.latecol += er32(LATECOL);
|
|
adapter->stats.dc += er32(DC);
|
|
adapter->stats.xonrxc += er32(XONRXC);
|
|
adapter->stats.xontxc += er32(XONTXC);
|
|
adapter->stats.xoffrxc += er32(XOFFRXC);
|
|
adapter->stats.xofftxc += er32(XOFFTXC);
|
|
adapter->stats.gptc += er32(GPTC);
|
|
adapter->stats.gotc += er32(GOTCL);
|
|
er32(GOTCH); /* Clear gotc */
|
|
adapter->stats.rnbc += er32(RNBC);
|
|
adapter->stats.ruc += er32(RUC);
|
|
|
|
adapter->stats.mptc += er32(MPTC);
|
|
adapter->stats.bptc += er32(BPTC);
|
|
|
|
/* used for adaptive IFS */
|
|
|
|
hw->mac.tx_packet_delta = er32(TPT);
|
|
adapter->stats.tpt += hw->mac.tx_packet_delta;
|
|
hw->mac.collision_delta = er32(COLC);
|
|
adapter->stats.colc += hw->mac.collision_delta;
|
|
|
|
adapter->stats.algnerrc += er32(ALGNERRC);
|
|
adapter->stats.rxerrc += er32(RXERRC);
|
|
if (hw->mac.type != e1000_82574)
|
|
adapter->stats.tncrs += er32(TNCRS);
|
|
adapter->stats.cexterr += er32(CEXTERR);
|
|
adapter->stats.tsctc += er32(TSCTC);
|
|
adapter->stats.tsctfc += er32(TSCTFC);
|
|
|
|
/* Fill out the OS statistics structure */
|
|
adapter->net_stats.multicast = adapter->stats.mprc;
|
|
adapter->net_stats.collisions = adapter->stats.colc;
|
|
|
|
/* Rx Errors */
|
|
|
|
/*
|
|
* RLEC on some newer hardware can be incorrect so build
|
|
* our own version based on RUC and ROC
|
|
*/
|
|
adapter->net_stats.rx_errors = adapter->stats.rxerrc +
|
|
adapter->stats.crcerrs + adapter->stats.algnerrc +
|
|
adapter->stats.ruc + adapter->stats.roc +
|
|
adapter->stats.cexterr;
|
|
adapter->net_stats.rx_length_errors = adapter->stats.ruc +
|
|
adapter->stats.roc;
|
|
adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
|
|
adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
|
|
adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
|
|
|
|
/* Tx Errors */
|
|
adapter->net_stats.tx_errors = adapter->stats.ecol +
|
|
adapter->stats.latecol;
|
|
adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
|
|
adapter->net_stats.tx_window_errors = adapter->stats.latecol;
|
|
adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
|
|
|
|
/* Tx Dropped needs to be maintained elsewhere */
|
|
|
|
/* Management Stats */
|
|
adapter->stats.mgptc += er32(MGTPTC);
|
|
adapter->stats.mgprc += er32(MGTPRC);
|
|
adapter->stats.mgpdc += er32(MGTPDC);
|
|
}
|
|
|
|
/**
|
|
* e1000_phy_read_status - Update the PHY register status snapshot
|
|
* @adapter: board private structure
|
|
**/
|
|
static void e1000_phy_read_status(struct e1000_adapter *adapter)
|
|
{
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
struct e1000_phy_regs *phy = &adapter->phy_regs;
|
|
int ret_val;
|
|
|
|
if ((er32(STATUS) & E1000_STATUS_LU) &&
|
|
(adapter->hw.phy.media_type == e1000_media_type_copper)) {
|
|
ret_val = e1e_rphy(hw, PHY_CONTROL, &phy->bmcr);
|
|
ret_val |= e1e_rphy(hw, PHY_STATUS, &phy->bmsr);
|
|
ret_val |= e1e_rphy(hw, PHY_AUTONEG_ADV, &phy->advertise);
|
|
ret_val |= e1e_rphy(hw, PHY_LP_ABILITY, &phy->lpa);
|
|
ret_val |= e1e_rphy(hw, PHY_AUTONEG_EXP, &phy->expansion);
|
|
ret_val |= e1e_rphy(hw, PHY_1000T_CTRL, &phy->ctrl1000);
|
|
ret_val |= e1e_rphy(hw, PHY_1000T_STATUS, &phy->stat1000);
|
|
ret_val |= e1e_rphy(hw, PHY_EXT_STATUS, &phy->estatus);
|
|
if (ret_val)
|
|
e_warn("Error reading PHY register\n");
|
|
} else {
|
|
/*
|
|
* Do not read PHY registers if link is not up
|
|
* Set values to typical power-on defaults
|
|
*/
|
|
phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
|
|
phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
|
|
BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
|
|
BMSR_ERCAP);
|
|
phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
|
|
ADVERTISE_ALL | ADVERTISE_CSMA);
|
|
phy->lpa = 0;
|
|
phy->expansion = EXPANSION_ENABLENPAGE;
|
|
phy->ctrl1000 = ADVERTISE_1000FULL;
|
|
phy->stat1000 = 0;
|
|
phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
|
|
}
|
|
}
|
|
|
|
static void e1000_print_link_info(struct e1000_adapter *adapter)
|
|
{
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
u32 ctrl = er32(CTRL);
|
|
|
|
/* Link status message must follow this format for user tools */
|
|
printk(KERN_INFO "e1000e: %s NIC Link is Up %d Mbps %s, "
|
|
"Flow Control: %s\n",
|
|
adapter->netdev->name,
|
|
adapter->link_speed,
|
|
(adapter->link_duplex == FULL_DUPLEX) ?
|
|
"Full Duplex" : "Half Duplex",
|
|
((ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE)) ?
|
|
"RX/TX" :
|
|
((ctrl & E1000_CTRL_RFCE) ? "RX" :
|
|
((ctrl & E1000_CTRL_TFCE) ? "TX" : "None" )));
|
|
}
|
|
|
|
bool e1000_has_link(struct e1000_adapter *adapter)
|
|
{
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
bool link_active = 0;
|
|
s32 ret_val = 0;
|
|
|
|
/*
|
|
* get_link_status is set on LSC (link status) interrupt or
|
|
* Rx sequence error interrupt. get_link_status will stay
|
|
* false until the check_for_link establishes link
|
|
* for copper adapters ONLY
|
|
*/
|
|
switch (hw->phy.media_type) {
|
|
case e1000_media_type_copper:
|
|
if (hw->mac.get_link_status) {
|
|
ret_val = hw->mac.ops.check_for_link(hw);
|
|
link_active = !hw->mac.get_link_status;
|
|
} else {
|
|
link_active = 1;
|
|
}
|
|
break;
|
|
case e1000_media_type_fiber:
|
|
ret_val = hw->mac.ops.check_for_link(hw);
|
|
link_active = !!(er32(STATUS) & E1000_STATUS_LU);
|
|
break;
|
|
case e1000_media_type_internal_serdes:
|
|
ret_val = hw->mac.ops.check_for_link(hw);
|
|
link_active = adapter->hw.mac.serdes_has_link;
|
|
break;
|
|
default:
|
|
case e1000_media_type_unknown:
|
|
break;
|
|
}
|
|
|
|
if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
|
|
(er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
|
|
/* See e1000_kmrn_lock_loss_workaround_ich8lan() */
|
|
e_info("Gigabit has been disabled, downgrading speed\n");
|
|
}
|
|
|
|
return link_active;
|
|
}
|
|
|
|
static void e1000e_enable_receives(struct e1000_adapter *adapter)
|
|
{
|
|
/* make sure the receive unit is started */
|
|
if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
|
|
(adapter->flags & FLAG_RX_RESTART_NOW)) {
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
u32 rctl = er32(RCTL);
|
|
ew32(RCTL, rctl | E1000_RCTL_EN);
|
|
adapter->flags &= ~FLAG_RX_RESTART_NOW;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* e1000_watchdog - Timer Call-back
|
|
* @data: pointer to adapter cast into an unsigned long
|
|
**/
|
|
static void e1000_watchdog(unsigned long data)
|
|
{
|
|
struct e1000_adapter *adapter = (struct e1000_adapter *) data;
|
|
|
|
/* Do the rest outside of interrupt context */
|
|
schedule_work(&adapter->watchdog_task);
|
|
|
|
/* TODO: make this use queue_delayed_work() */
|
|
}
|
|
|
|
static void e1000_watchdog_task(struct work_struct *work)
|
|
{
|
|
struct e1000_adapter *adapter = container_of(work,
|
|
struct e1000_adapter, watchdog_task);
|
|
struct net_device *netdev = adapter->netdev;
|
|
struct e1000_mac_info *mac = &adapter->hw.mac;
|
|
struct e1000_phy_info *phy = &adapter->hw.phy;
|
|
struct e1000_ring *tx_ring = adapter->tx_ring;
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
u32 link, tctl;
|
|
int tx_pending = 0;
|
|
|
|
link = e1000_has_link(adapter);
|
|
if ((netif_carrier_ok(netdev)) && link) {
|
|
e1000e_enable_receives(adapter);
|
|
goto link_up;
|
|
}
|
|
|
|
if ((e1000e_enable_tx_pkt_filtering(hw)) &&
|
|
(adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
|
|
e1000_update_mng_vlan(adapter);
|
|
|
|
if (link) {
|
|
if (!netif_carrier_ok(netdev)) {
|
|
bool txb2b = 1;
|
|
/* update snapshot of PHY registers on LSC */
|
|
e1000_phy_read_status(adapter);
|
|
mac->ops.get_link_up_info(&adapter->hw,
|
|
&adapter->link_speed,
|
|
&adapter->link_duplex);
|
|
e1000_print_link_info(adapter);
|
|
/*
|
|
* On supported PHYs, check for duplex mismatch only
|
|
* if link has autonegotiated at 10/100 half
|
|
*/
|
|
if ((hw->phy.type == e1000_phy_igp_3 ||
|
|
hw->phy.type == e1000_phy_bm) &&
|
|
(hw->mac.autoneg == true) &&
|
|
(adapter->link_speed == SPEED_10 ||
|
|
adapter->link_speed == SPEED_100) &&
|
|
(adapter->link_duplex == HALF_DUPLEX)) {
|
|
u16 autoneg_exp;
|
|
|
|
e1e_rphy(hw, PHY_AUTONEG_EXP, &autoneg_exp);
|
|
|
|
if (!(autoneg_exp & NWAY_ER_LP_NWAY_CAPS))
|
|
e_info("Autonegotiated half duplex but"
|
|
" link partner cannot autoneg. "
|
|
" Try forcing full duplex if "
|
|
"link gets many collisions.\n");
|
|
}
|
|
|
|
/*
|
|
* tweak tx_queue_len according to speed/duplex
|
|
* and adjust the timeout factor
|
|
*/
|
|
netdev->tx_queue_len = adapter->tx_queue_len;
|
|
adapter->tx_timeout_factor = 1;
|
|
switch (adapter->link_speed) {
|
|
case SPEED_10:
|
|
txb2b = 0;
|
|
netdev->tx_queue_len = 10;
|
|
adapter->tx_timeout_factor = 16;
|
|
break;
|
|
case SPEED_100:
|
|
txb2b = 0;
|
|
netdev->tx_queue_len = 100;
|
|
/* maybe add some timeout factor ? */
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* workaround: re-program speed mode bit after
|
|
* link-up event
|
|
*/
|
|
if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
|
|
!txb2b) {
|
|
u32 tarc0;
|
|
tarc0 = er32(TARC(0));
|
|
tarc0 &= ~SPEED_MODE_BIT;
|
|
ew32(TARC(0), tarc0);
|
|
}
|
|
|
|
/*
|
|
* disable TSO for pcie and 10/100 speeds, to avoid
|
|
* some hardware issues
|
|
*/
|
|
if (!(adapter->flags & FLAG_TSO_FORCE)) {
|
|
switch (adapter->link_speed) {
|
|
case SPEED_10:
|
|
case SPEED_100:
|
|
e_info("10/100 speed: disabling TSO\n");
|
|
netdev->features &= ~NETIF_F_TSO;
|
|
netdev->features &= ~NETIF_F_TSO6;
|
|
break;
|
|
case SPEED_1000:
|
|
netdev->features |= NETIF_F_TSO;
|
|
netdev->features |= NETIF_F_TSO6;
|
|
break;
|
|
default:
|
|
/* oops */
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* enable transmits in the hardware, need to do this
|
|
* after setting TARC(0)
|
|
*/
|
|
tctl = er32(TCTL);
|
|
tctl |= E1000_TCTL_EN;
|
|
ew32(TCTL, tctl);
|
|
|
|
/*
|
|
* Perform any post-link-up configuration before
|
|
* reporting link up.
|
|
*/
|
|
if (phy->ops.cfg_on_link_up)
|
|
phy->ops.cfg_on_link_up(hw);
|
|
|
|
netif_carrier_on(netdev);
|
|
netif_tx_wake_all_queues(netdev);
|
|
|
|
if (!test_bit(__E1000_DOWN, &adapter->state))
|
|
mod_timer(&adapter->phy_info_timer,
|
|
round_jiffies(jiffies + 2 * HZ));
|
|
}
|
|
} else {
|
|
if (netif_carrier_ok(netdev)) {
|
|
adapter->link_speed = 0;
|
|
adapter->link_duplex = 0;
|
|
/* Link status message must follow this format */
|
|
printk(KERN_INFO "e1000e: %s NIC Link is Down\n",
|
|
adapter->netdev->name);
|
|
netif_carrier_off(netdev);
|
|
netif_tx_stop_all_queues(netdev);
|
|
if (!test_bit(__E1000_DOWN, &adapter->state))
|
|
mod_timer(&adapter->phy_info_timer,
|
|
round_jiffies(jiffies + 2 * HZ));
|
|
|
|
if (adapter->flags & FLAG_RX_NEEDS_RESTART)
|
|
schedule_work(&adapter->reset_task);
|
|
}
|
|
}
|
|
|
|
link_up:
|
|
e1000e_update_stats(adapter);
|
|
|
|
mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
|
|
adapter->tpt_old = adapter->stats.tpt;
|
|
mac->collision_delta = adapter->stats.colc - adapter->colc_old;
|
|
adapter->colc_old = adapter->stats.colc;
|
|
|
|
adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
|
|
adapter->gorc_old = adapter->stats.gorc;
|
|
adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
|
|
adapter->gotc_old = adapter->stats.gotc;
|
|
|
|
e1000e_update_adaptive(&adapter->hw);
|
|
|
|
if (!netif_carrier_ok(netdev)) {
|
|
tx_pending = (e1000_desc_unused(tx_ring) + 1 <
|
|
tx_ring->count);
|
|
if (tx_pending) {
|
|
/*
|
|
* We've lost link, so the controller stops DMA,
|
|
* but we've got queued Tx work that's never going
|
|
* to get done, so reset controller to flush Tx.
|
|
* (Do the reset outside of interrupt context).
|
|
*/
|
|
adapter->tx_timeout_count++;
|
|
schedule_work(&adapter->reset_task);
|
|
}
|
|
}
|
|
|
|
/* Cause software interrupt to ensure Rx ring is cleaned */
|
|
if (adapter->msix_entries)
|
|
ew32(ICS, adapter->rx_ring->ims_val);
|
|
else
|
|
ew32(ICS, E1000_ICS_RXDMT0);
|
|
|
|
/* Force detection of hung controller every watchdog period */
|
|
adapter->detect_tx_hung = 1;
|
|
|
|
/*
|
|
* With 82571 controllers, LAA may be overwritten due to controller
|
|
* reset from the other port. Set the appropriate LAA in RAR[0]
|
|
*/
|
|
if (e1000e_get_laa_state_82571(hw))
|
|
e1000e_rar_set(hw, adapter->hw.mac.addr, 0);
|
|
|
|
/* Reset the timer */
|
|
if (!test_bit(__E1000_DOWN, &adapter->state))
|
|
mod_timer(&adapter->watchdog_timer,
|
|
round_jiffies(jiffies + 2 * HZ));
|
|
}
|
|
|
|
#define E1000_TX_FLAGS_CSUM 0x00000001
|
|
#define E1000_TX_FLAGS_VLAN 0x00000002
|
|
#define E1000_TX_FLAGS_TSO 0x00000004
|
|
#define E1000_TX_FLAGS_IPV4 0x00000008
|
|
#define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
|
|
#define E1000_TX_FLAGS_VLAN_SHIFT 16
|
|
|
|
static int e1000_tso(struct e1000_adapter *adapter,
|
|
struct sk_buff *skb)
|
|
{
|
|
struct e1000_ring *tx_ring = adapter->tx_ring;
|
|
struct e1000_context_desc *context_desc;
|
|
struct e1000_buffer *buffer_info;
|
|
unsigned int i;
|
|
u32 cmd_length = 0;
|
|
u16 ipcse = 0, tucse, mss;
|
|
u8 ipcss, ipcso, tucss, tucso, hdr_len;
|
|
int err;
|
|
|
|
if (skb_is_gso(skb)) {
|
|
if (skb_header_cloned(skb)) {
|
|
err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
|
|
mss = skb_shinfo(skb)->gso_size;
|
|
if (skb->protocol == htons(ETH_P_IP)) {
|
|
struct iphdr *iph = ip_hdr(skb);
|
|
iph->tot_len = 0;
|
|
iph->check = 0;
|
|
tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
|
|
iph->daddr, 0,
|
|
IPPROTO_TCP,
|
|
0);
|
|
cmd_length = E1000_TXD_CMD_IP;
|
|
ipcse = skb_transport_offset(skb) - 1;
|
|
} else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
|
|
ipv6_hdr(skb)->payload_len = 0;
|
|
tcp_hdr(skb)->check =
|
|
~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
|
|
&ipv6_hdr(skb)->daddr,
|
|
0, IPPROTO_TCP, 0);
|
|
ipcse = 0;
|
|
}
|
|
ipcss = skb_network_offset(skb);
|
|
ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
|
|
tucss = skb_transport_offset(skb);
|
|
tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
|
|
tucse = 0;
|
|
|
|
cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
|
|
E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
|
|
|
|
i = tx_ring->next_to_use;
|
|
context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
|
|
buffer_info = &tx_ring->buffer_info[i];
|
|
|
|
context_desc->lower_setup.ip_fields.ipcss = ipcss;
|
|
context_desc->lower_setup.ip_fields.ipcso = ipcso;
|
|
context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
|
|
context_desc->upper_setup.tcp_fields.tucss = tucss;
|
|
context_desc->upper_setup.tcp_fields.tucso = tucso;
|
|
context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
|
|
context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
|
|
context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
|
|
context_desc->cmd_and_length = cpu_to_le32(cmd_length);
|
|
|
|
buffer_info->time_stamp = jiffies;
|
|
buffer_info->next_to_watch = i;
|
|
|
|
i++;
|
|
if (i == tx_ring->count)
|
|
i = 0;
|
|
tx_ring->next_to_use = i;
|
|
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static bool e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb)
|
|
{
|
|
struct e1000_ring *tx_ring = adapter->tx_ring;
|
|
struct e1000_context_desc *context_desc;
|
|
struct e1000_buffer *buffer_info;
|
|
unsigned int i;
|
|
u8 css;
|
|
u32 cmd_len = E1000_TXD_CMD_DEXT;
|
|
|
|
if (skb->ip_summed != CHECKSUM_PARTIAL)
|
|
return 0;
|
|
|
|
switch (skb->protocol) {
|
|
case cpu_to_be16(ETH_P_IP):
|
|
if (ip_hdr(skb)->protocol == IPPROTO_TCP)
|
|
cmd_len |= E1000_TXD_CMD_TCP;
|
|
break;
|
|
case cpu_to_be16(ETH_P_IPV6):
|
|
/* XXX not handling all IPV6 headers */
|
|
if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
|
|
cmd_len |= E1000_TXD_CMD_TCP;
|
|
break;
|
|
default:
|
|
if (unlikely(net_ratelimit()))
|
|
e_warn("checksum_partial proto=%x!\n", skb->protocol);
|
|
break;
|
|
}
|
|
|
|
css = skb_transport_offset(skb);
|
|
|
|
i = tx_ring->next_to_use;
|
|
buffer_info = &tx_ring->buffer_info[i];
|
|
context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
|
|
|
|
context_desc->lower_setup.ip_config = 0;
|
|
context_desc->upper_setup.tcp_fields.tucss = css;
|
|
context_desc->upper_setup.tcp_fields.tucso =
|
|
css + skb->csum_offset;
|
|
context_desc->upper_setup.tcp_fields.tucse = 0;
|
|
context_desc->tcp_seg_setup.data = 0;
|
|
context_desc->cmd_and_length = cpu_to_le32(cmd_len);
|
|
|
|
buffer_info->time_stamp = jiffies;
|
|
buffer_info->next_to_watch = i;
|
|
|
|
i++;
|
|
if (i == tx_ring->count)
|
|
i = 0;
|
|
tx_ring->next_to_use = i;
|
|
|
|
return 1;
|
|
}
|
|
|
|
#define E1000_MAX_PER_TXD 8192
|
|
#define E1000_MAX_TXD_PWR 12
|
|
|
|
static int e1000_tx_map(struct e1000_adapter *adapter,
|
|
struct sk_buff *skb, unsigned int first,
|
|
unsigned int max_per_txd, unsigned int nr_frags,
|
|
unsigned int mss)
|
|
{
|
|
struct e1000_ring *tx_ring = adapter->tx_ring;
|
|
unsigned int len = skb_headlen(skb);
|
|
unsigned int offset, size, count = 0, i;
|
|
unsigned int f;
|
|
dma_addr_t map;
|
|
|
|
i = tx_ring->next_to_use;
|
|
|
|
if (skb_dma_map(&adapter->pdev->dev, skb, DMA_TO_DEVICE)) {
|
|
dev_err(&adapter->pdev->dev, "TX DMA map failed\n");
|
|
adapter->tx_dma_failed++;
|
|
dev_kfree_skb(skb);
|
|
return -2;
|
|
}
|
|
|
|
map = skb_shinfo(skb)->dma_maps[0];
|
|
offset = 0;
|
|
|
|
while (len) {
|
|
struct e1000_buffer *buffer_info = &tx_ring->buffer_info[i];
|
|
size = min(len, max_per_txd);
|
|
|
|
buffer_info->length = size;
|
|
/* set time_stamp *before* dma to help avoid a possible race */
|
|
buffer_info->time_stamp = jiffies;
|
|
buffer_info->dma = map + offset;
|
|
buffer_info->next_to_watch = i;
|
|
|
|
len -= size;
|
|
offset += size;
|
|
count++;
|
|
i++;
|
|
if (i == tx_ring->count)
|
|
i = 0;
|
|
}
|
|
|
|
for (f = 0; f < nr_frags; f++) {
|
|
struct skb_frag_struct *frag;
|
|
|
|
frag = &skb_shinfo(skb)->frags[f];
|
|
len = frag->size;
|
|
map = skb_shinfo(skb)->dma_maps[f + 1];
|
|
offset = 0;
|
|
|
|
while (len) {
|
|
struct e1000_buffer *buffer_info;
|
|
buffer_info = &tx_ring->buffer_info[i];
|
|
size = min(len, max_per_txd);
|
|
|
|
buffer_info->length = size;
|
|
buffer_info->time_stamp = jiffies;
|
|
buffer_info->dma = map + offset;
|
|
buffer_info->next_to_watch = i;
|
|
|
|
len -= size;
|
|
offset += size;
|
|
count++;
|
|
|
|
i++;
|
|
if (i == tx_ring->count)
|
|
i = 0;
|
|
}
|
|
}
|
|
|
|
if (i == 0)
|
|
i = tx_ring->count - 1;
|
|
else
|
|
i--;
|
|
|
|
tx_ring->buffer_info[i].skb = skb;
|
|
tx_ring->buffer_info[first].next_to_watch = i;
|
|
smp_wmb();
|
|
|
|
return count;
|
|
}
|
|
|
|
static void e1000_tx_queue(struct e1000_adapter *adapter,
|
|
int tx_flags, int count)
|
|
{
|
|
struct e1000_ring *tx_ring = adapter->tx_ring;
|
|
struct e1000_tx_desc *tx_desc = NULL;
|
|
struct e1000_buffer *buffer_info;
|
|
u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
|
|
unsigned int i;
|
|
|
|
if (tx_flags & E1000_TX_FLAGS_TSO) {
|
|
txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
|
|
E1000_TXD_CMD_TSE;
|
|
txd_upper |= E1000_TXD_POPTS_TXSM << 8;
|
|
|
|
if (tx_flags & E1000_TX_FLAGS_IPV4)
|
|
txd_upper |= E1000_TXD_POPTS_IXSM << 8;
|
|
}
|
|
|
|
if (tx_flags & E1000_TX_FLAGS_CSUM) {
|
|
txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
|
|
txd_upper |= E1000_TXD_POPTS_TXSM << 8;
|
|
}
|
|
|
|
if (tx_flags & E1000_TX_FLAGS_VLAN) {
|
|
txd_lower |= E1000_TXD_CMD_VLE;
|
|
txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
|
|
}
|
|
|
|
i = tx_ring->next_to_use;
|
|
|
|
while (count--) {
|
|
buffer_info = &tx_ring->buffer_info[i];
|
|
tx_desc = E1000_TX_DESC(*tx_ring, i);
|
|
tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
|
|
tx_desc->lower.data =
|
|
cpu_to_le32(txd_lower | buffer_info->length);
|
|
tx_desc->upper.data = cpu_to_le32(txd_upper);
|
|
|
|
i++;
|
|
if (i == tx_ring->count)
|
|
i = 0;
|
|
}
|
|
|
|
tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
|
|
|
|
/*
|
|
* Force memory writes to complete before letting h/w
|
|
* know there are new descriptors to fetch. (Only
|
|
* applicable for weak-ordered memory model archs,
|
|
* such as IA-64).
|
|
*/
|
|
wmb();
|
|
|
|
tx_ring->next_to_use = i;
|
|
writel(i, adapter->hw.hw_addr + tx_ring->tail);
|
|
/*
|
|
* we need this if more than one processor can write to our tail
|
|
* at a time, it synchronizes IO on IA64/Altix systems
|
|
*/
|
|
mmiowb();
|
|
}
|
|
|
|
#define MINIMUM_DHCP_PACKET_SIZE 282
|
|
static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
|
|
struct sk_buff *skb)
|
|
{
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
u16 length, offset;
|
|
|
|
if (vlan_tx_tag_present(skb)) {
|
|
if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id)
|
|
&& (adapter->hw.mng_cookie.status &
|
|
E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
|
|
return 0;
|
|
}
|
|
|
|
if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
|
|
return 0;
|
|
|
|
if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP))
|
|
return 0;
|
|
|
|
{
|
|
const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14);
|
|
struct udphdr *udp;
|
|
|
|
if (ip->protocol != IPPROTO_UDP)
|
|
return 0;
|
|
|
|
udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
|
|
if (ntohs(udp->dest) != 67)
|
|
return 0;
|
|
|
|
offset = (u8 *)udp + 8 - skb->data;
|
|
length = skb->len - offset;
|
|
return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
|
|
{
|
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
|
|
|
netif_stop_queue(netdev);
|
|
/*
|
|
* Herbert's original patch had:
|
|
* smp_mb__after_netif_stop_queue();
|
|
* but since that doesn't exist yet, just open code it.
|
|
*/
|
|
smp_mb();
|
|
|
|
/*
|
|
* We need to check again in a case another CPU has just
|
|
* made room available.
|
|
*/
|
|
if (e1000_desc_unused(adapter->tx_ring) < size)
|
|
return -EBUSY;
|
|
|
|
/* A reprieve! */
|
|
netif_start_queue(netdev);
|
|
++adapter->restart_queue;
|
|
return 0;
|
|
}
|
|
|
|
static int e1000_maybe_stop_tx(struct net_device *netdev, int size)
|
|
{
|
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
|
|
|
if (e1000_desc_unused(adapter->tx_ring) >= size)
|
|
return 0;
|
|
return __e1000_maybe_stop_tx(netdev, size);
|
|
}
|
|
|
|
#define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
|
|
static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
|
|
{
|
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
|
struct e1000_ring *tx_ring = adapter->tx_ring;
|
|
unsigned int first;
|
|
unsigned int max_per_txd = E1000_MAX_PER_TXD;
|
|
unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
|
|
unsigned int tx_flags = 0;
|
|
unsigned int len = skb->len - skb->data_len;
|
|
unsigned int nr_frags;
|
|
unsigned int mss;
|
|
int count = 0;
|
|
int tso;
|
|
unsigned int f;
|
|
|
|
if (test_bit(__E1000_DOWN, &adapter->state)) {
|
|
dev_kfree_skb_any(skb);
|
|
return NETDEV_TX_OK;
|
|
}
|
|
|
|
if (skb->len <= 0) {
|
|
dev_kfree_skb_any(skb);
|
|
return NETDEV_TX_OK;
|
|
}
|
|
|
|
mss = skb_shinfo(skb)->gso_size;
|
|
/*
|
|
* The controller does a simple calculation to
|
|
* make sure there is enough room in the FIFO before
|
|
* initiating the DMA for each buffer. The calc is:
|
|
* 4 = ceil(buffer len/mss). To make sure we don't
|
|
* overrun the FIFO, adjust the max buffer len if mss
|
|
* drops.
|
|
*/
|
|
if (mss) {
|
|
u8 hdr_len;
|
|
max_per_txd = min(mss << 2, max_per_txd);
|
|
max_txd_pwr = fls(max_per_txd) - 1;
|
|
|
|
/*
|
|
* TSO Workaround for 82571/2/3 Controllers -- if skb->data
|
|
* points to just header, pull a few bytes of payload from
|
|
* frags into skb->data
|
|
*/
|
|
hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
|
|
/*
|
|
* we do this workaround for ES2LAN, but it is un-necessary,
|
|
* avoiding it could save a lot of cycles
|
|
*/
|
|
if (skb->data_len && (hdr_len == len)) {
|
|
unsigned int pull_size;
|
|
|
|
pull_size = min((unsigned int)4, skb->data_len);
|
|
if (!__pskb_pull_tail(skb, pull_size)) {
|
|
e_err("__pskb_pull_tail failed.\n");
|
|
dev_kfree_skb_any(skb);
|
|
return NETDEV_TX_OK;
|
|
}
|
|
len = skb->len - skb->data_len;
|
|
}
|
|
}
|
|
|
|
/* reserve a descriptor for the offload context */
|
|
if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
|
|
count++;
|
|
count++;
|
|
|
|
count += TXD_USE_COUNT(len, max_txd_pwr);
|
|
|
|
nr_frags = skb_shinfo(skb)->nr_frags;
|
|
for (f = 0; f < nr_frags; f++)
|
|
count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
|
|
max_txd_pwr);
|
|
|
|
if (adapter->hw.mac.tx_pkt_filtering)
|
|
e1000_transfer_dhcp_info(adapter, skb);
|
|
|
|
/*
|
|
* need: count + 2 desc gap to keep tail from touching
|
|
* head, otherwise try next time
|
|
*/
|
|
if (e1000_maybe_stop_tx(netdev, count + 2))
|
|
return NETDEV_TX_BUSY;
|
|
|
|
if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
|
|
tx_flags |= E1000_TX_FLAGS_VLAN;
|
|
tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
|
|
}
|
|
|
|
first = tx_ring->next_to_use;
|
|
|
|
tso = e1000_tso(adapter, skb);
|
|
if (tso < 0) {
|
|
dev_kfree_skb_any(skb);
|
|
return NETDEV_TX_OK;
|
|
}
|
|
|
|
if (tso)
|
|
tx_flags |= E1000_TX_FLAGS_TSO;
|
|
else if (e1000_tx_csum(adapter, skb))
|
|
tx_flags |= E1000_TX_FLAGS_CSUM;
|
|
|
|
/*
|
|
* Old method was to assume IPv4 packet by default if TSO was enabled.
|
|
* 82571 hardware supports TSO capabilities for IPv6 as well...
|
|
* no longer assume, we must.
|
|
*/
|
|
if (skb->protocol == htons(ETH_P_IP))
|
|
tx_flags |= E1000_TX_FLAGS_IPV4;
|
|
|
|
count = e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss);
|
|
if (count < 0) {
|
|
/* handle pci_map_single() error in e1000_tx_map */
|
|
dev_kfree_skb_any(skb);
|
|
return NETDEV_TX_OK;
|
|
}
|
|
|
|
e1000_tx_queue(adapter, tx_flags, count);
|
|
|
|
netdev->trans_start = jiffies;
|
|
|
|
/* Make sure there is space in the ring for the next send. */
|
|
e1000_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 2);
|
|
|
|
return NETDEV_TX_OK;
|
|
}
|
|
|
|
/**
|
|
* e1000_tx_timeout - Respond to a Tx Hang
|
|
* @netdev: network interface device structure
|
|
**/
|
|
static void e1000_tx_timeout(struct net_device *netdev)
|
|
{
|
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
|
|
|
/* Do the reset outside of interrupt context */
|
|
adapter->tx_timeout_count++;
|
|
schedule_work(&adapter->reset_task);
|
|
}
|
|
|
|
static void e1000_reset_task(struct work_struct *work)
|
|
{
|
|
struct e1000_adapter *adapter;
|
|
adapter = container_of(work, struct e1000_adapter, reset_task);
|
|
|
|
e1000e_reinit_locked(adapter);
|
|
}
|
|
|
|
/**
|
|
* e1000_get_stats - Get System Network Statistics
|
|
* @netdev: network interface device structure
|
|
*
|
|
* Returns the address of the device statistics structure.
|
|
* The statistics are actually updated from the timer callback.
|
|
**/
|
|
static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
|
|
{
|
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
|
|
|
/* only return the current stats */
|
|
return &adapter->net_stats;
|
|
}
|
|
|
|
/**
|
|
* e1000_change_mtu - Change the Maximum Transfer Unit
|
|
* @netdev: network interface device structure
|
|
* @new_mtu: new value for maximum frame size
|
|
*
|
|
* Returns 0 on success, negative on failure
|
|
**/
|
|
static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
|
|
{
|
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
|
int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
|
|
|
|
if ((new_mtu < ETH_ZLEN + ETH_FCS_LEN + VLAN_HLEN) ||
|
|
(max_frame > MAX_JUMBO_FRAME_SIZE)) {
|
|
e_err("Invalid MTU setting\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Jumbo frame size limits */
|
|
if (max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) {
|
|
if (!(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
|
|
e_err("Jumbo Frames not supported.\n");
|
|
return -EINVAL;
|
|
}
|
|
if (adapter->hw.phy.type == e1000_phy_ife) {
|
|
e_err("Jumbo Frames not supported.\n");
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
#define MAX_STD_JUMBO_FRAME_SIZE 9234
|
|
if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
|
|
e_err("MTU > 9216 not supported.\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
|
|
msleep(1);
|
|
/* e1000e_down has a dependency on max_frame_size */
|
|
adapter->max_frame_size = max_frame;
|
|
if (netif_running(netdev))
|
|
e1000e_down(adapter);
|
|
|
|
/*
|
|
* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
|
|
* means we reserve 2 more, this pushes us to allocate from the next
|
|
* larger slab size.
|
|
* i.e. RXBUFFER_2048 --> size-4096 slab
|
|
* However with the new *_jumbo_rx* routines, jumbo receives will use
|
|
* fragmented skbs
|
|
*/
|
|
|
|
if (max_frame <= 256)
|
|
adapter->rx_buffer_len = 256;
|
|
else if (max_frame <= 512)
|
|
adapter->rx_buffer_len = 512;
|
|
else if (max_frame <= 1024)
|
|
adapter->rx_buffer_len = 1024;
|
|
else if (max_frame <= 2048)
|
|
adapter->rx_buffer_len = 2048;
|
|
else
|
|
adapter->rx_buffer_len = 4096;
|
|
|
|
/* adjust allocation if LPE protects us, and we aren't using SBP */
|
|
if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
|
|
(max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
|
|
adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
|
|
+ ETH_FCS_LEN;
|
|
|
|
e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
|
|
netdev->mtu = new_mtu;
|
|
|
|
if (netif_running(netdev))
|
|
e1000e_up(adapter);
|
|
else
|
|
e1000e_reset(adapter);
|
|
|
|
clear_bit(__E1000_RESETTING, &adapter->state);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
|
|
int cmd)
|
|
{
|
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
|
struct mii_ioctl_data *data = if_mii(ifr);
|
|
|
|
if (adapter->hw.phy.media_type != e1000_media_type_copper)
|
|
return -EOPNOTSUPP;
|
|
|
|
switch (cmd) {
|
|
case SIOCGMIIPHY:
|
|
data->phy_id = adapter->hw.phy.addr;
|
|
break;
|
|
case SIOCGMIIREG:
|
|
if (!capable(CAP_NET_ADMIN))
|
|
return -EPERM;
|
|
switch (data->reg_num & 0x1F) {
|
|
case MII_BMCR:
|
|
data->val_out = adapter->phy_regs.bmcr;
|
|
break;
|
|
case MII_BMSR:
|
|
data->val_out = adapter->phy_regs.bmsr;
|
|
break;
|
|
case MII_PHYSID1:
|
|
data->val_out = (adapter->hw.phy.id >> 16);
|
|
break;
|
|
case MII_PHYSID2:
|
|
data->val_out = (adapter->hw.phy.id & 0xFFFF);
|
|
break;
|
|
case MII_ADVERTISE:
|
|
data->val_out = adapter->phy_regs.advertise;
|
|
break;
|
|
case MII_LPA:
|
|
data->val_out = adapter->phy_regs.lpa;
|
|
break;
|
|
case MII_EXPANSION:
|
|
data->val_out = adapter->phy_regs.expansion;
|
|
break;
|
|
case MII_CTRL1000:
|
|
data->val_out = adapter->phy_regs.ctrl1000;
|
|
break;
|
|
case MII_STAT1000:
|
|
data->val_out = adapter->phy_regs.stat1000;
|
|
break;
|
|
case MII_ESTATUS:
|
|
data->val_out = adapter->phy_regs.estatus;
|
|
break;
|
|
default:
|
|
return -EIO;
|
|
}
|
|
break;
|
|
case SIOCSMIIREG:
|
|
default:
|
|
return -EOPNOTSUPP;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
|
|
{
|
|
switch (cmd) {
|
|
case SIOCGMIIPHY:
|
|
case SIOCGMIIREG:
|
|
case SIOCSMIIREG:
|
|
return e1000_mii_ioctl(netdev, ifr, cmd);
|
|
default:
|
|
return -EOPNOTSUPP;
|
|
}
|
|
}
|
|
|
|
static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
|
|
{
|
|
struct net_device *netdev = pci_get_drvdata(pdev);
|
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
u32 ctrl, ctrl_ext, rctl, status;
|
|
u32 wufc = adapter->wol;
|
|
int retval = 0;
|
|
|
|
netif_device_detach(netdev);
|
|
|
|
if (netif_running(netdev)) {
|
|
WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
|
|
e1000e_down(adapter);
|
|
e1000_free_irq(adapter);
|
|
}
|
|
e1000e_reset_interrupt_capability(adapter);
|
|
|
|
retval = pci_save_state(pdev);
|
|
if (retval)
|
|
return retval;
|
|
|
|
status = er32(STATUS);
|
|
if (status & E1000_STATUS_LU)
|
|
wufc &= ~E1000_WUFC_LNKC;
|
|
|
|
if (wufc) {
|
|
e1000_setup_rctl(adapter);
|
|
e1000_set_multi(netdev);
|
|
|
|
/* turn on all-multi mode if wake on multicast is enabled */
|
|
if (wufc & E1000_WUFC_MC) {
|
|
rctl = er32(RCTL);
|
|
rctl |= E1000_RCTL_MPE;
|
|
ew32(RCTL, rctl);
|
|
}
|
|
|
|
ctrl = er32(CTRL);
|
|
/* advertise wake from D3Cold */
|
|
#define E1000_CTRL_ADVD3WUC 0x00100000
|
|
/* phy power management enable */
|
|
#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
|
|
ctrl |= E1000_CTRL_ADVD3WUC |
|
|
E1000_CTRL_EN_PHY_PWR_MGMT;
|
|
ew32(CTRL, ctrl);
|
|
|
|
if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
|
|
adapter->hw.phy.media_type ==
|
|
e1000_media_type_internal_serdes) {
|
|
/* keep the laser running in D3 */
|
|
ctrl_ext = er32(CTRL_EXT);
|
|
ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
|
|
ew32(CTRL_EXT, ctrl_ext);
|
|
}
|
|
|
|
if (adapter->flags & FLAG_IS_ICH)
|
|
e1000e_disable_gig_wol_ich8lan(&adapter->hw);
|
|
|
|
/* Allow time for pending master requests to run */
|
|
e1000e_disable_pcie_master(&adapter->hw);
|
|
|
|
ew32(WUC, E1000_WUC_PME_EN);
|
|
ew32(WUFC, wufc);
|
|
pci_enable_wake(pdev, PCI_D3hot, 1);
|
|
pci_enable_wake(pdev, PCI_D3cold, 1);
|
|
} else {
|
|
ew32(WUC, 0);
|
|
ew32(WUFC, 0);
|
|
pci_enable_wake(pdev, PCI_D3hot, 0);
|
|
pci_enable_wake(pdev, PCI_D3cold, 0);
|
|
}
|
|
|
|
/* make sure adapter isn't asleep if manageability is enabled */
|
|
if (adapter->flags & FLAG_MNG_PT_ENABLED) {
|
|
pci_enable_wake(pdev, PCI_D3hot, 1);
|
|
pci_enable_wake(pdev, PCI_D3cold, 1);
|
|
}
|
|
|
|
if (adapter->hw.phy.type == e1000_phy_igp_3)
|
|
e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
|
|
|
|
/*
|
|
* Release control of h/w to f/w. If f/w is AMT enabled, this
|
|
* would have already happened in close and is redundant.
|
|
*/
|
|
e1000_release_hw_control(adapter);
|
|
|
|
pci_disable_device(pdev);
|
|
|
|
/*
|
|
* The pci-e switch on some quad port adapters will report a
|
|
* correctable error when the MAC transitions from D0 to D3. To
|
|
* prevent this we need to mask off the correctable errors on the
|
|
* downstream port of the pci-e switch.
|
|
*/
|
|
if (adapter->flags & FLAG_IS_QUAD_PORT) {
|
|
struct pci_dev *us_dev = pdev->bus->self;
|
|
int pos = pci_find_capability(us_dev, PCI_CAP_ID_EXP);
|
|
u16 devctl;
|
|
|
|
pci_read_config_word(us_dev, pos + PCI_EXP_DEVCTL, &devctl);
|
|
pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL,
|
|
(devctl & ~PCI_EXP_DEVCTL_CERE));
|
|
|
|
pci_set_power_state(pdev, pci_choose_state(pdev, state));
|
|
|
|
pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL, devctl);
|
|
} else {
|
|
pci_set_power_state(pdev, pci_choose_state(pdev, state));
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void e1000e_disable_l1aspm(struct pci_dev *pdev)
|
|
{
|
|
int pos;
|
|
u16 val;
|
|
|
|
/*
|
|
* 82573 workaround - disable L1 ASPM on mobile chipsets
|
|
*
|
|
* L1 ASPM on various mobile (ich7) chipsets do not behave properly
|
|
* resulting in lost data or garbage information on the pci-e link
|
|
* level. This could result in (false) bad EEPROM checksum errors,
|
|
* long ping times (up to 2s) or even a system freeze/hang.
|
|
*
|
|
* Unfortunately this feature saves about 1W power consumption when
|
|
* active.
|
|
*/
|
|
pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
|
|
pci_read_config_word(pdev, pos + PCI_EXP_LNKCTL, &val);
|
|
if (val & 0x2) {
|
|
dev_warn(&pdev->dev, "Disabling L1 ASPM\n");
|
|
val &= ~0x2;
|
|
pci_write_config_word(pdev, pos + PCI_EXP_LNKCTL, val);
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_PM
|
|
static int e1000_resume(struct pci_dev *pdev)
|
|
{
|
|
struct net_device *netdev = pci_get_drvdata(pdev);
|
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
u32 err;
|
|
|
|
pci_set_power_state(pdev, PCI_D0);
|
|
pci_restore_state(pdev);
|
|
e1000e_disable_l1aspm(pdev);
|
|
|
|
err = pci_enable_device_mem(pdev);
|
|
if (err) {
|
|
dev_err(&pdev->dev,
|
|
"Cannot enable PCI device from suspend\n");
|
|
return err;
|
|
}
|
|
|
|
/* AER (Advanced Error Reporting) hooks */
|
|
err = pci_enable_pcie_error_reporting(pdev);
|
|
if (err) {
|
|
dev_err(&pdev->dev, "pci_enable_pcie_error_reporting failed "
|
|
"0x%x\n", err);
|
|
/* non-fatal, continue */
|
|
}
|
|
|
|
pci_set_master(pdev);
|
|
|
|
pci_enable_wake(pdev, PCI_D3hot, 0);
|
|
pci_enable_wake(pdev, PCI_D3cold, 0);
|
|
|
|
e1000e_set_interrupt_capability(adapter);
|
|
if (netif_running(netdev)) {
|
|
err = e1000_request_irq(adapter);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
e1000e_power_up_phy(adapter);
|
|
e1000e_reset(adapter);
|
|
ew32(WUS, ~0);
|
|
|
|
e1000_init_manageability(adapter);
|
|
|
|
if (netif_running(netdev))
|
|
e1000e_up(adapter);
|
|
|
|
netif_device_attach(netdev);
|
|
|
|
/*
|
|
* If the controller has AMT, do not set DRV_LOAD until the interface
|
|
* is up. For all other cases, let the f/w know that the h/w is now
|
|
* under the control of the driver.
|
|
*/
|
|
if (!(adapter->flags & FLAG_HAS_AMT))
|
|
e1000_get_hw_control(adapter);
|
|
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
static void e1000_shutdown(struct pci_dev *pdev)
|
|
{
|
|
e1000_suspend(pdev, PMSG_SUSPEND);
|
|
}
|
|
|
|
#ifdef CONFIG_NET_POLL_CONTROLLER
|
|
/*
|
|
* Polling 'interrupt' - used by things like netconsole to send skbs
|
|
* without having to re-enable interrupts. It's not called while
|
|
* the interrupt routine is executing.
|
|
*/
|
|
static void e1000_netpoll(struct net_device *netdev)
|
|
{
|
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
|
|
|
disable_irq(adapter->pdev->irq);
|
|
e1000_intr(adapter->pdev->irq, netdev);
|
|
|
|
enable_irq(adapter->pdev->irq);
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* e1000_io_error_detected - called when PCI error is detected
|
|
* @pdev: Pointer to PCI device
|
|
* @state: The current pci connection state
|
|
*
|
|
* This function is called after a PCI bus error affecting
|
|
* this device has been detected.
|
|
*/
|
|
static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
|
|
pci_channel_state_t state)
|
|
{
|
|
struct net_device *netdev = pci_get_drvdata(pdev);
|
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
|
|
|
netif_device_detach(netdev);
|
|
|
|
if (netif_running(netdev))
|
|
e1000e_down(adapter);
|
|
pci_disable_device(pdev);
|
|
|
|
/* Request a slot slot reset. */
|
|
return PCI_ERS_RESULT_NEED_RESET;
|
|
}
|
|
|
|
/**
|
|
* e1000_io_slot_reset - called after the pci bus has been reset.
|
|
* @pdev: Pointer to PCI device
|
|
*
|
|
* Restart the card from scratch, as if from a cold-boot. Implementation
|
|
* resembles the first-half of the e1000_resume routine.
|
|
*/
|
|
static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
|
|
{
|
|
struct net_device *netdev = pci_get_drvdata(pdev);
|
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
int err;
|
|
pci_ers_result_t result;
|
|
|
|
e1000e_disable_l1aspm(pdev);
|
|
err = pci_enable_device_mem(pdev);
|
|
if (err) {
|
|
dev_err(&pdev->dev,
|
|
"Cannot re-enable PCI device after reset.\n");
|
|
result = PCI_ERS_RESULT_DISCONNECT;
|
|
} else {
|
|
pci_set_master(pdev);
|
|
pci_restore_state(pdev);
|
|
|
|
pci_enable_wake(pdev, PCI_D3hot, 0);
|
|
pci_enable_wake(pdev, PCI_D3cold, 0);
|
|
|
|
e1000e_reset(adapter);
|
|
ew32(WUS, ~0);
|
|
result = PCI_ERS_RESULT_RECOVERED;
|
|
}
|
|
|
|
pci_cleanup_aer_uncorrect_error_status(pdev);
|
|
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* e1000_io_resume - called when traffic can start flowing again.
|
|
* @pdev: Pointer to PCI device
|
|
*
|
|
* This callback is called when the error recovery driver tells us that
|
|
* its OK to resume normal operation. Implementation resembles the
|
|
* second-half of the e1000_resume routine.
|
|
*/
|
|
static void e1000_io_resume(struct pci_dev *pdev)
|
|
{
|
|
struct net_device *netdev = pci_get_drvdata(pdev);
|
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
|
|
|
e1000_init_manageability(adapter);
|
|
|
|
if (netif_running(netdev)) {
|
|
if (e1000e_up(adapter)) {
|
|
dev_err(&pdev->dev,
|
|
"can't bring device back up after reset\n");
|
|
return;
|
|
}
|
|
}
|
|
|
|
netif_device_attach(netdev);
|
|
|
|
/*
|
|
* If the controller has AMT, do not set DRV_LOAD until the interface
|
|
* is up. For all other cases, let the f/w know that the h/w is now
|
|
* under the control of the driver.
|
|
*/
|
|
if (!(adapter->flags & FLAG_HAS_AMT))
|
|
e1000_get_hw_control(adapter);
|
|
|
|
}
|
|
|
|
static void e1000_print_device_info(struct e1000_adapter *adapter)
|
|
{
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
struct net_device *netdev = adapter->netdev;
|
|
u32 pba_num;
|
|
|
|
/* print bus type/speed/width info */
|
|
e_info("(PCI Express:2.5GB/s:%s) %pM\n",
|
|
/* bus width */
|
|
((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
|
|
"Width x1"),
|
|
/* MAC address */
|
|
netdev->dev_addr);
|
|
e_info("Intel(R) PRO/%s Network Connection\n",
|
|
(hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
|
|
e1000e_read_pba_num(hw, &pba_num);
|
|
e_info("MAC: %d, PHY: %d, PBA No: %06x-%03x\n",
|
|
hw->mac.type, hw->phy.type, (pba_num >> 8), (pba_num & 0xff));
|
|
}
|
|
|
|
static void e1000_eeprom_checks(struct e1000_adapter *adapter)
|
|
{
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
int ret_val;
|
|
u16 buf = 0;
|
|
|
|
if (hw->mac.type != e1000_82573)
|
|
return;
|
|
|
|
ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
|
|
if (!ret_val && (!(le16_to_cpu(buf) & (1 << 0)))) {
|
|
/* Deep Smart Power Down (DSPD) */
|
|
dev_warn(&adapter->pdev->dev,
|
|
"Warning: detected DSPD enabled in EEPROM\n");
|
|
}
|
|
|
|
ret_val = e1000_read_nvm(hw, NVM_INIT_3GIO_3, 1, &buf);
|
|
if (!ret_val && (le16_to_cpu(buf) & (3 << 2))) {
|
|
/* ASPM enable */
|
|
dev_warn(&adapter->pdev->dev,
|
|
"Warning: detected ASPM enabled in EEPROM\n");
|
|
}
|
|
}
|
|
|
|
static const struct net_device_ops e1000e_netdev_ops = {
|
|
.ndo_open = e1000_open,
|
|
.ndo_stop = e1000_close,
|
|
.ndo_start_xmit = e1000_xmit_frame,
|
|
.ndo_get_stats = e1000_get_stats,
|
|
.ndo_set_multicast_list = e1000_set_multi,
|
|
.ndo_set_mac_address = e1000_set_mac,
|
|
.ndo_change_mtu = e1000_change_mtu,
|
|
.ndo_do_ioctl = e1000_ioctl,
|
|
.ndo_tx_timeout = e1000_tx_timeout,
|
|
.ndo_validate_addr = eth_validate_addr,
|
|
|
|
.ndo_vlan_rx_register = e1000_vlan_rx_register,
|
|
.ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid,
|
|
.ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid,
|
|
#ifdef CONFIG_NET_POLL_CONTROLLER
|
|
.ndo_poll_controller = e1000_netpoll,
|
|
#endif
|
|
};
|
|
|
|
/**
|
|
* e1000_probe - Device Initialization Routine
|
|
* @pdev: PCI device information struct
|
|
* @ent: entry in e1000_pci_tbl
|
|
*
|
|
* Returns 0 on success, negative on failure
|
|
*
|
|
* e1000_probe initializes an adapter identified by a pci_dev structure.
|
|
* The OS initialization, configuring of the adapter private structure,
|
|
* and a hardware reset occur.
|
|
**/
|
|
static int __devinit e1000_probe(struct pci_dev *pdev,
|
|
const struct pci_device_id *ent)
|
|
{
|
|
struct net_device *netdev;
|
|
struct e1000_adapter *adapter;
|
|
struct e1000_hw *hw;
|
|
const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
|
|
resource_size_t mmio_start, mmio_len;
|
|
resource_size_t flash_start, flash_len;
|
|
|
|
static int cards_found;
|
|
int i, err, pci_using_dac;
|
|
u16 eeprom_data = 0;
|
|
u16 eeprom_apme_mask = E1000_EEPROM_APME;
|
|
|
|
e1000e_disable_l1aspm(pdev);
|
|
|
|
err = pci_enable_device_mem(pdev);
|
|
if (err)
|
|
return err;
|
|
|
|
pci_using_dac = 0;
|
|
err = pci_set_dma_mask(pdev, DMA_64BIT_MASK);
|
|
if (!err) {
|
|
err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
|
|
if (!err)
|
|
pci_using_dac = 1;
|
|
} else {
|
|
err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
|
|
if (err) {
|
|
err = pci_set_consistent_dma_mask(pdev,
|
|
DMA_32BIT_MASK);
|
|
if (err) {
|
|
dev_err(&pdev->dev, "No usable DMA "
|
|
"configuration, aborting\n");
|
|
goto err_dma;
|
|
}
|
|
}
|
|
}
|
|
|
|
err = pci_request_selected_regions_exclusive(pdev,
|
|
pci_select_bars(pdev, IORESOURCE_MEM),
|
|
e1000e_driver_name);
|
|
if (err)
|
|
goto err_pci_reg;
|
|
|
|
pci_set_master(pdev);
|
|
/* PCI config space info */
|
|
err = pci_save_state(pdev);
|
|
if (err)
|
|
goto err_alloc_etherdev;
|
|
|
|
err = -ENOMEM;
|
|
netdev = alloc_etherdev(sizeof(struct e1000_adapter));
|
|
if (!netdev)
|
|
goto err_alloc_etherdev;
|
|
|
|
SET_NETDEV_DEV(netdev, &pdev->dev);
|
|
|
|
pci_set_drvdata(pdev, netdev);
|
|
adapter = netdev_priv(netdev);
|
|
hw = &adapter->hw;
|
|
adapter->netdev = netdev;
|
|
adapter->pdev = pdev;
|
|
adapter->ei = ei;
|
|
adapter->pba = ei->pba;
|
|
adapter->flags = ei->flags;
|
|
adapter->flags2 = ei->flags2;
|
|
adapter->hw.adapter = adapter;
|
|
adapter->hw.mac.type = ei->mac;
|
|
adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1;
|
|
|
|
mmio_start = pci_resource_start(pdev, 0);
|
|
mmio_len = pci_resource_len(pdev, 0);
|
|
|
|
err = -EIO;
|
|
adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
|
|
if (!adapter->hw.hw_addr)
|
|
goto err_ioremap;
|
|
|
|
if ((adapter->flags & FLAG_HAS_FLASH) &&
|
|
(pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
|
|
flash_start = pci_resource_start(pdev, 1);
|
|
flash_len = pci_resource_len(pdev, 1);
|
|
adapter->hw.flash_address = ioremap(flash_start, flash_len);
|
|
if (!adapter->hw.flash_address)
|
|
goto err_flashmap;
|
|
}
|
|
|
|
/* construct the net_device struct */
|
|
netdev->netdev_ops = &e1000e_netdev_ops;
|
|
e1000e_set_ethtool_ops(netdev);
|
|
netdev->watchdog_timeo = 5 * HZ;
|
|
netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
|
|
strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
|
|
|
|
netdev->mem_start = mmio_start;
|
|
netdev->mem_end = mmio_start + mmio_len;
|
|
|
|
adapter->bd_number = cards_found++;
|
|
|
|
e1000e_check_options(adapter);
|
|
|
|
/* setup adapter struct */
|
|
err = e1000_sw_init(adapter);
|
|
if (err)
|
|
goto err_sw_init;
|
|
|
|
err = -EIO;
|
|
|
|
memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
|
|
memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
|
|
memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
|
|
|
|
err = ei->get_variants(adapter);
|
|
if (err)
|
|
goto err_hw_init;
|
|
|
|
if ((adapter->flags & FLAG_IS_ICH) &&
|
|
(adapter->flags & FLAG_READ_ONLY_NVM))
|
|
e1000e_write_protect_nvm_ich8lan(&adapter->hw);
|
|
|
|
hw->mac.ops.get_bus_info(&adapter->hw);
|
|
|
|
adapter->hw.phy.autoneg_wait_to_complete = 0;
|
|
|
|
/* Copper options */
|
|
if (adapter->hw.phy.media_type == e1000_media_type_copper) {
|
|
adapter->hw.phy.mdix = AUTO_ALL_MODES;
|
|
adapter->hw.phy.disable_polarity_correction = 0;
|
|
adapter->hw.phy.ms_type = e1000_ms_hw_default;
|
|
}
|
|
|
|
if (e1000_check_reset_block(&adapter->hw))
|
|
e_info("PHY reset is blocked due to SOL/IDER session.\n");
|
|
|
|
netdev->features = NETIF_F_SG |
|
|
NETIF_F_HW_CSUM |
|
|
NETIF_F_HW_VLAN_TX |
|
|
NETIF_F_HW_VLAN_RX;
|
|
|
|
if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
|
|
netdev->features |= NETIF_F_HW_VLAN_FILTER;
|
|
|
|
netdev->features |= NETIF_F_TSO;
|
|
netdev->features |= NETIF_F_TSO6;
|
|
|
|
netdev->vlan_features |= NETIF_F_TSO;
|
|
netdev->vlan_features |= NETIF_F_TSO6;
|
|
netdev->vlan_features |= NETIF_F_HW_CSUM;
|
|
netdev->vlan_features |= NETIF_F_SG;
|
|
|
|
if (pci_using_dac)
|
|
netdev->features |= NETIF_F_HIGHDMA;
|
|
|
|
if (e1000e_enable_mng_pass_thru(&adapter->hw))
|
|
adapter->flags |= FLAG_MNG_PT_ENABLED;
|
|
|
|
/*
|
|
* before reading the NVM, reset the controller to
|
|
* put the device in a known good starting state
|
|
*/
|
|
adapter->hw.mac.ops.reset_hw(&adapter->hw);
|
|
|
|
/*
|
|
* systems with ASPM and others may see the checksum fail on the first
|
|
* attempt. Let's give it a few tries
|
|
*/
|
|
for (i = 0;; i++) {
|
|
if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
|
|
break;
|
|
if (i == 2) {
|
|
e_err("The NVM Checksum Is Not Valid\n");
|
|
err = -EIO;
|
|
goto err_eeprom;
|
|
}
|
|
}
|
|
|
|
e1000_eeprom_checks(adapter);
|
|
|
|
/* copy the MAC address out of the NVM */
|
|
if (e1000e_read_mac_addr(&adapter->hw))
|
|
e_err("NVM Read Error while reading MAC address\n");
|
|
|
|
memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
|
|
memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
|
|
|
|
if (!is_valid_ether_addr(netdev->perm_addr)) {
|
|
e_err("Invalid MAC Address: %pM\n", netdev->perm_addr);
|
|
err = -EIO;
|
|
goto err_eeprom;
|
|
}
|
|
|
|
init_timer(&adapter->watchdog_timer);
|
|
adapter->watchdog_timer.function = &e1000_watchdog;
|
|
adapter->watchdog_timer.data = (unsigned long) adapter;
|
|
|
|
init_timer(&adapter->phy_info_timer);
|
|
adapter->phy_info_timer.function = &e1000_update_phy_info;
|
|
adapter->phy_info_timer.data = (unsigned long) adapter;
|
|
|
|
INIT_WORK(&adapter->reset_task, e1000_reset_task);
|
|
INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
|
|
INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
|
|
INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
|
|
|
|
/* Initialize link parameters. User can change them with ethtool */
|
|
adapter->hw.mac.autoneg = 1;
|
|
adapter->fc_autoneg = 1;
|
|
adapter->hw.fc.requested_mode = e1000_fc_default;
|
|
adapter->hw.fc.current_mode = e1000_fc_default;
|
|
adapter->hw.phy.autoneg_advertised = 0x2f;
|
|
|
|
/* ring size defaults */
|
|
adapter->rx_ring->count = 256;
|
|
adapter->tx_ring->count = 256;
|
|
|
|
/*
|
|
* Initial Wake on LAN setting - If APM wake is enabled in
|
|
* the EEPROM, enable the ACPI Magic Packet filter
|
|
*/
|
|
if (adapter->flags & FLAG_APME_IN_WUC) {
|
|
/* APME bit in EEPROM is mapped to WUC.APME */
|
|
eeprom_data = er32(WUC);
|
|
eeprom_apme_mask = E1000_WUC_APME;
|
|
} else if (adapter->flags & FLAG_APME_IN_CTRL3) {
|
|
if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
|
|
(adapter->hw.bus.func == 1))
|
|
e1000_read_nvm(&adapter->hw,
|
|
NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
|
|
else
|
|
e1000_read_nvm(&adapter->hw,
|
|
NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
|
|
}
|
|
|
|
/* fetch WoL from EEPROM */
|
|
if (eeprom_data & eeprom_apme_mask)
|
|
adapter->eeprom_wol |= E1000_WUFC_MAG;
|
|
|
|
/*
|
|
* now that we have the eeprom settings, apply the special cases
|
|
* where the eeprom may be wrong or the board simply won't support
|
|
* wake on lan on a particular port
|
|
*/
|
|
if (!(adapter->flags & FLAG_HAS_WOL))
|
|
adapter->eeprom_wol = 0;
|
|
|
|
/* initialize the wol settings based on the eeprom settings */
|
|
adapter->wol = adapter->eeprom_wol;
|
|
device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
|
|
|
|
/* save off EEPROM version number */
|
|
e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
|
|
|
|
/* reset the hardware with the new settings */
|
|
e1000e_reset(adapter);
|
|
|
|
/*
|
|
* If the controller has AMT, do not set DRV_LOAD until the interface
|
|
* is up. For all other cases, let the f/w know that the h/w is now
|
|
* under the control of the driver.
|
|
*/
|
|
if (!(adapter->flags & FLAG_HAS_AMT))
|
|
e1000_get_hw_control(adapter);
|
|
|
|
/* tell the stack to leave us alone until e1000_open() is called */
|
|
netif_carrier_off(netdev);
|
|
netif_tx_stop_all_queues(netdev);
|
|
|
|
strcpy(netdev->name, "eth%d");
|
|
err = register_netdev(netdev);
|
|
if (err)
|
|
goto err_register;
|
|
|
|
e1000_print_device_info(adapter);
|
|
|
|
return 0;
|
|
|
|
err_register:
|
|
if (!(adapter->flags & FLAG_HAS_AMT))
|
|
e1000_release_hw_control(adapter);
|
|
err_eeprom:
|
|
if (!e1000_check_reset_block(&adapter->hw))
|
|
e1000_phy_hw_reset(&adapter->hw);
|
|
err_hw_init:
|
|
|
|
kfree(adapter->tx_ring);
|
|
kfree(adapter->rx_ring);
|
|
err_sw_init:
|
|
if (adapter->hw.flash_address)
|
|
iounmap(adapter->hw.flash_address);
|
|
e1000e_reset_interrupt_capability(adapter);
|
|
err_flashmap:
|
|
iounmap(adapter->hw.hw_addr);
|
|
err_ioremap:
|
|
free_netdev(netdev);
|
|
err_alloc_etherdev:
|
|
pci_release_selected_regions(pdev,
|
|
pci_select_bars(pdev, IORESOURCE_MEM));
|
|
err_pci_reg:
|
|
err_dma:
|
|
pci_disable_device(pdev);
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* e1000_remove - Device Removal Routine
|
|
* @pdev: PCI device information struct
|
|
*
|
|
* e1000_remove is called by the PCI subsystem to alert the driver
|
|
* that it should release a PCI device. The could be caused by a
|
|
* Hot-Plug event, or because the driver is going to be removed from
|
|
* memory.
|
|
**/
|
|
static void __devexit e1000_remove(struct pci_dev *pdev)
|
|
{
|
|
struct net_device *netdev = pci_get_drvdata(pdev);
|
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
|
int err;
|
|
|
|
/*
|
|
* flush_scheduled work may reschedule our watchdog task, so
|
|
* explicitly disable watchdog tasks from being rescheduled
|
|
*/
|
|
set_bit(__E1000_DOWN, &adapter->state);
|
|
del_timer_sync(&adapter->watchdog_timer);
|
|
del_timer_sync(&adapter->phy_info_timer);
|
|
|
|
flush_scheduled_work();
|
|
|
|
/*
|
|
* Release control of h/w to f/w. If f/w is AMT enabled, this
|
|
* would have already happened in close and is redundant.
|
|
*/
|
|
e1000_release_hw_control(adapter);
|
|
|
|
unregister_netdev(netdev);
|
|
|
|
if (!e1000_check_reset_block(&adapter->hw))
|
|
e1000_phy_hw_reset(&adapter->hw);
|
|
|
|
e1000e_reset_interrupt_capability(adapter);
|
|
kfree(adapter->tx_ring);
|
|
kfree(adapter->rx_ring);
|
|
|
|
iounmap(adapter->hw.hw_addr);
|
|
if (adapter->hw.flash_address)
|
|
iounmap(adapter->hw.flash_address);
|
|
pci_release_selected_regions(pdev,
|
|
pci_select_bars(pdev, IORESOURCE_MEM));
|
|
|
|
free_netdev(netdev);
|
|
|
|
/* AER disable */
|
|
err = pci_disable_pcie_error_reporting(pdev);
|
|
if (err)
|
|
dev_err(&pdev->dev,
|
|
"pci_disable_pcie_error_reporting failed 0x%x\n", err);
|
|
|
|
pci_disable_device(pdev);
|
|
}
|
|
|
|
/* PCI Error Recovery (ERS) */
|
|
static struct pci_error_handlers e1000_err_handler = {
|
|
.error_detected = e1000_io_error_detected,
|
|
.slot_reset = e1000_io_slot_reset,
|
|
.resume = e1000_io_resume,
|
|
};
|
|
|
|
static struct pci_device_id e1000_pci_tbl[] = {
|
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
|
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
|
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
|
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 },
|
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
|
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
|
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
|
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
|
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
|
|
|
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
|
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
|
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
|
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
|
|
|
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
|
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
|
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
|
|
|
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
|
|
|
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
|
|
board_80003es2lan },
|
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
|
|
board_80003es2lan },
|
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
|
|
board_80003es2lan },
|
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
|
|
board_80003es2lan },
|
|
|
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
|
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
|
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
|
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
|
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
|
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
|
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
|
|
|
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
|
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
|
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
|
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
|
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
|
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
|
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
|
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
|
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
|
|
|
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
|
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
|
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
|
|
|
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
|
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
|
|
|
|
{ } /* terminate list */
|
|
};
|
|
MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
|
|
|
|
/* PCI Device API Driver */
|
|
static struct pci_driver e1000_driver = {
|
|
.name = e1000e_driver_name,
|
|
.id_table = e1000_pci_tbl,
|
|
.probe = e1000_probe,
|
|
.remove = __devexit_p(e1000_remove),
|
|
#ifdef CONFIG_PM
|
|
/* Power Management Hooks */
|
|
.suspend = e1000_suspend,
|
|
.resume = e1000_resume,
|
|
#endif
|
|
.shutdown = e1000_shutdown,
|
|
.err_handler = &e1000_err_handler
|
|
};
|
|
|
|
/**
|
|
* e1000_init_module - Driver Registration Routine
|
|
*
|
|
* e1000_init_module is the first routine called when the driver is
|
|
* loaded. All it does is register with the PCI subsystem.
|
|
**/
|
|
static int __init e1000_init_module(void)
|
|
{
|
|
int ret;
|
|
printk(KERN_INFO "%s: Intel(R) PRO/1000 Network Driver - %s\n",
|
|
e1000e_driver_name, e1000e_driver_version);
|
|
printk(KERN_INFO "%s: Copyright (c) 1999-2008 Intel Corporation.\n",
|
|
e1000e_driver_name);
|
|
ret = pci_register_driver(&e1000_driver);
|
|
pm_qos_add_requirement(PM_QOS_CPU_DMA_LATENCY, e1000e_driver_name,
|
|
PM_QOS_DEFAULT_VALUE);
|
|
|
|
return ret;
|
|
}
|
|
module_init(e1000_init_module);
|
|
|
|
/**
|
|
* e1000_exit_module - Driver Exit Cleanup Routine
|
|
*
|
|
* e1000_exit_module is called just before the driver is removed
|
|
* from memory.
|
|
**/
|
|
static void __exit e1000_exit_module(void)
|
|
{
|
|
pci_unregister_driver(&e1000_driver);
|
|
pm_qos_remove_requirement(PM_QOS_CPU_DMA_LATENCY, e1000e_driver_name);
|
|
}
|
|
module_exit(e1000_exit_module);
|
|
|
|
|
|
MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
|
|
MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_VERSION(DRV_VERSION);
|
|
|
|
/* e1000_main.c */
|