linux_old1/fs/crypto/bio.c

142 lines
3.9 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* This contains encryption functions for per-file encryption.
*
* Copyright (C) 2015, Google, Inc.
* Copyright (C) 2015, Motorola Mobility
*
* Written by Michael Halcrow, 2014.
*
* Filename encryption additions
* Uday Savagaonkar, 2014
* Encryption policy handling additions
* Ildar Muslukhov, 2014
* Add fscrypt_pullback_bio_page()
* Jaegeuk Kim, 2015.
*
* This has not yet undergone a rigorous security audit.
*
* The usage of AES-XTS should conform to recommendations in NIST
* Special Publication 800-38E and IEEE P1619/D16.
*/
#include <linux/pagemap.h>
#include <linux/module.h>
#include <linux/bio.h>
#include <linux/namei.h>
#include "fscrypt_private.h"
void fscrypt_decrypt_bio(struct bio *bio)
{
struct bio_vec *bv;
struct bvec_iter_all iter_all;
bio_for_each_segment_all(bv, bio, iter_all) {
struct page *page = bv->bv_page;
int ret = fscrypt_decrypt_pagecache_blocks(page, bv->bv_len,
bv->bv_offset);
if (ret)
SetPageError(page);
}
}
EXPORT_SYMBOL(fscrypt_decrypt_bio);
/**
* fscrypt_zeroout_range() - zero out a range of blocks in an encrypted file
* @inode: the file's inode
* @lblk: the first file logical block to zero out
* @pblk: the first filesystem physical block to zero out
* @len: number of blocks to zero out
*
* Zero out filesystem blocks in an encrypted regular file on-disk, i.e. write
* ciphertext blocks which decrypt to the all-zeroes block. The blocks must be
* both logically and physically contiguous. It's also assumed that the
* filesystem only uses a single block device, ->s_bdev.
*
* Note that since each block uses a different IV, this involves writing a
* different ciphertext to each block; we can't simply reuse the same one.
*
* Return: 0 on success; -errno on failure.
*/
int fscrypt_zeroout_range(const struct inode *inode, pgoff_t lblk,
sector_t pblk, unsigned int len)
{
const unsigned int blockbits = inode->i_blkbits;
const unsigned int blocksize = 1 << blockbits;
const unsigned int blocks_per_page_bits = PAGE_SHIFT - blockbits;
const unsigned int blocks_per_page = 1 << blocks_per_page_bits;
struct page *pages[16]; /* write up to 16 pages at a time */
unsigned int nr_pages;
unsigned int i;
unsigned int offset;
struct bio *bio;
int ret, err;
if (len == 0)
return 0;
BUILD_BUG_ON(ARRAY_SIZE(pages) > BIO_MAX_PAGES);
nr_pages = min_t(unsigned int, ARRAY_SIZE(pages),
(len + blocks_per_page - 1) >> blocks_per_page_bits);
/*
* We need at least one page for ciphertext. Allocate the first one
* from a mempool, with __GFP_DIRECT_RECLAIM set so that it can't fail.
*
* Any additional page allocations are allowed to fail, as they only
* help performance, and waiting on the mempool for them could deadlock.
*/
for (i = 0; i < nr_pages; i++) {
pages[i] = fscrypt_alloc_bounce_page(i == 0 ? GFP_NOFS :
GFP_NOWAIT | __GFP_NOWARN);
if (!pages[i])
break;
}
nr_pages = i;
if (WARN_ON(nr_pages <= 0))
return -EINVAL;
/* This always succeeds since __GFP_DIRECT_RECLAIM is set. */
bio = bio_alloc(GFP_NOFS, nr_pages);
do {
bio_set_dev(bio, inode->i_sb->s_bdev);
bio->bi_iter.bi_sector = pblk << (blockbits - 9);
bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
i = 0;
offset = 0;
do {
err = fscrypt_crypt_block(inode, FS_ENCRYPT, lblk,
ZERO_PAGE(0), pages[i],
blocksize, offset, GFP_NOFS);
if (err)
goto out;
lblk++;
pblk++;
len--;
offset += blocksize;
if (offset == PAGE_SIZE || len == 0) {
ret = bio_add_page(bio, pages[i++], offset, 0);
if (WARN_ON(ret != offset)) {
err = -EIO;
goto out;
}
offset = 0;
}
} while (i != nr_pages && len != 0);
err = submit_bio_wait(bio);
if (err)
goto out;
bio_reset(bio);
} while (len != 0);
err = 0;
out:
bio_put(bio);
for (i = 0; i < nr_pages; i++)
fscrypt_free_bounce_page(pages[i]);
return err;
}
EXPORT_SYMBOL(fscrypt_zeroout_range);