linux_old1/sound/usb/mixer.c

2217 lines
60 KiB
C

/*
* (Tentative) USB Audio Driver for ALSA
*
* Mixer control part
*
* Copyright (c) 2002 by Takashi Iwai <tiwai@suse.de>
*
* Many codes borrowed from audio.c by
* Alan Cox (alan@lxorguk.ukuu.org.uk)
* Thomas Sailer (sailer@ife.ee.ethz.ch)
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
/*
* TODOs, for both the mixer and the streaming interfaces:
*
* - support for UAC2 effect units
* - support for graphical equalizers
* - RANGE and MEM set commands (UAC2)
* - RANGE and MEM interrupt dispatchers (UAC2)
* - audio channel clustering (UAC2)
* - audio sample rate converter units (UAC2)
* - proper handling of clock multipliers (UAC2)
* - dispatch clock change notifications (UAC2)
* - stop PCM streams which use a clock that became invalid
* - stop PCM streams which use a clock selector that has changed
* - parse available sample rates again when clock sources changed
*/
#include <linux/bitops.h>
#include <linux/init.h>
#include <linux/list.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/usb.h>
#include <linux/usb/audio.h>
#include <linux/usb/audio-v2.h>
#include <sound/core.h>
#include <sound/control.h>
#include <sound/hwdep.h>
#include <sound/info.h>
#include <sound/tlv.h>
#include "usbaudio.h"
#include "mixer.h"
#include "helper.h"
#include "mixer_quirks.h"
#define MAX_ID_ELEMS 256
struct usb_audio_term {
int id;
int type;
int channels;
unsigned int chconfig;
int name;
};
struct usbmix_name_map;
struct mixer_build {
struct snd_usb_audio *chip;
struct usb_mixer_interface *mixer;
unsigned char *buffer;
unsigned int buflen;
DECLARE_BITMAP(unitbitmap, MAX_ID_ELEMS);
struct usb_audio_term oterm;
const struct usbmix_name_map *map;
const struct usbmix_selector_map *selector_map;
};
enum {
USB_MIXER_BOOLEAN,
USB_MIXER_INV_BOOLEAN,
USB_MIXER_S8,
USB_MIXER_U8,
USB_MIXER_S16,
USB_MIXER_U16,
};
/*E-mu 0202(0404) eXtension Unit(XU) control*/
enum {
USB_XU_CLOCK_RATE = 0xe301,
USB_XU_CLOCK_SOURCE = 0xe302,
USB_XU_DIGITAL_IO_STATUS = 0xe303,
USB_XU_DEVICE_OPTIONS = 0xe304,
USB_XU_DIRECT_MONITORING = 0xe305,
USB_XU_METERING = 0xe306
};
enum {
USB_XU_CLOCK_SOURCE_SELECTOR = 0x02, /* clock source*/
USB_XU_CLOCK_RATE_SELECTOR = 0x03, /* clock rate */
USB_XU_DIGITAL_FORMAT_SELECTOR = 0x01, /* the spdif format */
USB_XU_SOFT_LIMIT_SELECTOR = 0x03 /* soft limiter */
};
/*
* manual mapping of mixer names
* if the mixer topology is too complicated and the parsed names are
* ambiguous, add the entries in usbmixer_maps.c.
*/
#include "mixer_maps.c"
static const struct usbmix_name_map *
find_map(struct mixer_build *state, int unitid, int control)
{
const struct usbmix_name_map *p = state->map;
if (!p)
return NULL;
for (p = state->map; p->id; p++) {
if (p->id == unitid &&
(!control || !p->control || control == p->control))
return p;
}
return NULL;
}
/* get the mapped name if the unit matches */
static int
check_mapped_name(const struct usbmix_name_map *p, char *buf, int buflen)
{
if (!p || !p->name)
return 0;
buflen--;
return strlcpy(buf, p->name, buflen);
}
/* check whether the control should be ignored */
static inline int
check_ignored_ctl(const struct usbmix_name_map *p)
{
if (!p || p->name || p->dB)
return 0;
return 1;
}
/* dB mapping */
static inline void check_mapped_dB(const struct usbmix_name_map *p,
struct usb_mixer_elem_info *cval)
{
if (p && p->dB) {
cval->dBmin = p->dB->min;
cval->dBmax = p->dB->max;
}
}
/* get the mapped selector source name */
static int check_mapped_selector_name(struct mixer_build *state, int unitid,
int index, char *buf, int buflen)
{
const struct usbmix_selector_map *p;
if (! state->selector_map)
return 0;
for (p = state->selector_map; p->id; p++) {
if (p->id == unitid && index < p->count)
return strlcpy(buf, p->names[index], buflen);
}
return 0;
}
/*
* find an audio control unit with the given unit id
*/
static void *find_audio_control_unit(struct mixer_build *state, unsigned char unit)
{
/* we just parse the header */
struct uac_feature_unit_descriptor *hdr = NULL;
while ((hdr = snd_usb_find_desc(state->buffer, state->buflen, hdr,
USB_DT_CS_INTERFACE)) != NULL) {
if (hdr->bLength >= 4 &&
hdr->bDescriptorSubtype >= UAC_INPUT_TERMINAL &&
hdr->bDescriptorSubtype <= UAC2_SAMPLE_RATE_CONVERTER &&
hdr->bUnitID == unit)
return hdr;
}
return NULL;
}
/*
* copy a string with the given id
*/
static int snd_usb_copy_string_desc(struct mixer_build *state, int index, char *buf, int maxlen)
{
int len = usb_string(state->chip->dev, index, buf, maxlen - 1);
buf[len] = 0;
return len;
}
/*
* convert from the byte/word on usb descriptor to the zero-based integer
*/
static int convert_signed_value(struct usb_mixer_elem_info *cval, int val)
{
switch (cval->val_type) {
case USB_MIXER_BOOLEAN:
return !!val;
case USB_MIXER_INV_BOOLEAN:
return !val;
case USB_MIXER_U8:
val &= 0xff;
break;
case USB_MIXER_S8:
val &= 0xff;
if (val >= 0x80)
val -= 0x100;
break;
case USB_MIXER_U16:
val &= 0xffff;
break;
case USB_MIXER_S16:
val &= 0xffff;
if (val >= 0x8000)
val -= 0x10000;
break;
}
return val;
}
/*
* convert from the zero-based int to the byte/word for usb descriptor
*/
static int convert_bytes_value(struct usb_mixer_elem_info *cval, int val)
{
switch (cval->val_type) {
case USB_MIXER_BOOLEAN:
return !!val;
case USB_MIXER_INV_BOOLEAN:
return !val;
case USB_MIXER_S8:
case USB_MIXER_U8:
return val & 0xff;
case USB_MIXER_S16:
case USB_MIXER_U16:
return val & 0xffff;
}
return 0; /* not reached */
}
static int get_relative_value(struct usb_mixer_elem_info *cval, int val)
{
if (! cval->res)
cval->res = 1;
if (val < cval->min)
return 0;
else if (val >= cval->max)
return (cval->max - cval->min + cval->res - 1) / cval->res;
else
return (val - cval->min) / cval->res;
}
static int get_abs_value(struct usb_mixer_elem_info *cval, int val)
{
if (val < 0)
return cval->min;
if (! cval->res)
cval->res = 1;
val *= cval->res;
val += cval->min;
if (val > cval->max)
return cval->max;
return val;
}
/*
* retrieve a mixer value
*/
static int get_ctl_value_v1(struct usb_mixer_elem_info *cval, int request, int validx, int *value_ret)
{
struct snd_usb_audio *chip = cval->mixer->chip;
unsigned char buf[2];
int val_len = cval->val_type >= USB_MIXER_S16 ? 2 : 1;
int timeout = 10;
while (timeout-- > 0) {
if (snd_usb_ctl_msg(chip->dev, usb_rcvctrlpipe(chip->dev, 0), request,
USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_IN,
validx, snd_usb_ctrl_intf(chip) | (cval->id << 8),
buf, val_len, 100) >= val_len) {
*value_ret = convert_signed_value(cval, snd_usb_combine_bytes(buf, val_len));
return 0;
}
}
snd_printdd(KERN_ERR "cannot get ctl value: req = %#x, wValue = %#x, wIndex = %#x, type = %d\n",
request, validx, snd_usb_ctrl_intf(chip) | (cval->id << 8), cval->val_type);
return -EINVAL;
}
static int get_ctl_value_v2(struct usb_mixer_elem_info *cval, int request, int validx, int *value_ret)
{
struct snd_usb_audio *chip = cval->mixer->chip;
unsigned char buf[2 + 3*sizeof(__u16)]; /* enough space for one range */
unsigned char *val;
int ret, size;
__u8 bRequest;
if (request == UAC_GET_CUR) {
bRequest = UAC2_CS_CUR;
size = sizeof(__u16);
} else {
bRequest = UAC2_CS_RANGE;
size = sizeof(buf);
}
memset(buf, 0, sizeof(buf));
ret = snd_usb_ctl_msg(chip->dev, usb_rcvctrlpipe(chip->dev, 0), bRequest,
USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_IN,
validx, snd_usb_ctrl_intf(chip) | (cval->id << 8),
buf, size, 1000);
if (ret < 0) {
snd_printk(KERN_ERR "cannot get ctl value: req = %#x, wValue = %#x, wIndex = %#x, type = %d\n",
request, validx, snd_usb_ctrl_intf(chip) | (cval->id << 8), cval->val_type);
return ret;
}
/* FIXME: how should we handle multiple triplets here? */
switch (request) {
case UAC_GET_CUR:
val = buf;
break;
case UAC_GET_MIN:
val = buf + sizeof(__u16);
break;
case UAC_GET_MAX:
val = buf + sizeof(__u16) * 2;
break;
case UAC_GET_RES:
val = buf + sizeof(__u16) * 3;
break;
default:
return -EINVAL;
}
*value_ret = convert_signed_value(cval, snd_usb_combine_bytes(val, sizeof(__u16)));
return 0;
}
static int get_ctl_value(struct usb_mixer_elem_info *cval, int request, int validx, int *value_ret)
{
return (cval->mixer->protocol == UAC_VERSION_1) ?
get_ctl_value_v1(cval, request, validx, value_ret) :
get_ctl_value_v2(cval, request, validx, value_ret);
}
static int get_cur_ctl_value(struct usb_mixer_elem_info *cval, int validx, int *value)
{
return get_ctl_value(cval, UAC_GET_CUR, validx, value);
}
/* channel = 0: master, 1 = first channel */
static inline int get_cur_mix_raw(struct usb_mixer_elem_info *cval,
int channel, int *value)
{
return get_ctl_value(cval, UAC_GET_CUR, (cval->control << 8) | channel, value);
}
static int get_cur_mix_value(struct usb_mixer_elem_info *cval,
int channel, int index, int *value)
{
int err;
if (cval->cached & (1 << channel)) {
*value = cval->cache_val[index];
return 0;
}
err = get_cur_mix_raw(cval, channel, value);
if (err < 0) {
if (!cval->mixer->ignore_ctl_error)
snd_printd(KERN_ERR "cannot get current value for control %d ch %d: err = %d\n",
cval->control, channel, err);
return err;
}
cval->cached |= 1 << channel;
cval->cache_val[index] = *value;
return 0;
}
/*
* set a mixer value
*/
int snd_usb_mixer_set_ctl_value(struct usb_mixer_elem_info *cval,
int request, int validx, int value_set)
{
struct snd_usb_audio *chip = cval->mixer->chip;
unsigned char buf[2];
int val_len, timeout = 10;
if (cval->mixer->protocol == UAC_VERSION_1) {
val_len = cval->val_type >= USB_MIXER_S16 ? 2 : 1;
} else { /* UAC_VERSION_2 */
/* audio class v2 controls are always 2 bytes in size */
val_len = sizeof(__u16);
/* FIXME */
if (request != UAC_SET_CUR) {
snd_printdd(KERN_WARNING "RANGE setting not yet supported\n");
return -EINVAL;
}
request = UAC2_CS_CUR;
}
value_set = convert_bytes_value(cval, value_set);
buf[0] = value_set & 0xff;
buf[1] = (value_set >> 8) & 0xff;
while (timeout-- > 0)
if (snd_usb_ctl_msg(chip->dev,
usb_sndctrlpipe(chip->dev, 0), request,
USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_OUT,
validx, snd_usb_ctrl_intf(chip) | (cval->id << 8),
buf, val_len, 100) >= 0)
return 0;
snd_printdd(KERN_ERR "cannot set ctl value: req = %#x, wValue = %#x, wIndex = %#x, type = %d, data = %#x/%#x\n",
request, validx, snd_usb_ctrl_intf(chip) | (cval->id << 8), cval->val_type, buf[0], buf[1]);
return -EINVAL;
}
static int set_cur_ctl_value(struct usb_mixer_elem_info *cval, int validx, int value)
{
return snd_usb_mixer_set_ctl_value(cval, UAC_SET_CUR, validx, value);
}
static int set_cur_mix_value(struct usb_mixer_elem_info *cval, int channel,
int index, int value)
{
int err;
unsigned int read_only = (channel == 0) ?
cval->master_readonly :
cval->ch_readonly & (1 << (channel - 1));
if (read_only) {
snd_printdd(KERN_INFO "%s(): channel %d of control %d is read_only\n",
__func__, channel, cval->control);
return 0;
}
err = snd_usb_mixer_set_ctl_value(cval, UAC_SET_CUR, (cval->control << 8) | channel,
value);
if (err < 0)
return err;
cval->cached |= 1 << channel;
cval->cache_val[index] = value;
return 0;
}
/*
* TLV callback for mixer volume controls
*/
static int mixer_vol_tlv(struct snd_kcontrol *kcontrol, int op_flag,
unsigned int size, unsigned int __user *_tlv)
{
struct usb_mixer_elem_info *cval = kcontrol->private_data;
DECLARE_TLV_DB_MINMAX(scale, 0, 0);
if (size < sizeof(scale))
return -ENOMEM;
scale[2] = cval->dBmin;
scale[3] = cval->dBmax;
if (copy_to_user(_tlv, scale, sizeof(scale)))
return -EFAULT;
return 0;
}
/*
* parser routines begin here...
*/
static int parse_audio_unit(struct mixer_build *state, int unitid);
/*
* check if the input/output channel routing is enabled on the given bitmap.
* used for mixer unit parser
*/
static int check_matrix_bitmap(unsigned char *bmap, int ich, int och, int num_outs)
{
int idx = ich * num_outs + och;
return bmap[idx >> 3] & (0x80 >> (idx & 7));
}
/*
* add an alsa control element
* search and increment the index until an empty slot is found.
*
* if failed, give up and free the control instance.
*/
static int add_control_to_empty(struct mixer_build *state, struct snd_kcontrol *kctl)
{
struct usb_mixer_elem_info *cval = kctl->private_data;
int err;
while (snd_ctl_find_id(state->chip->card, &kctl->id))
kctl->id.index++;
if ((err = snd_ctl_add(state->chip->card, kctl)) < 0) {
snd_printd(KERN_ERR "cannot add control (err = %d)\n", err);
return err;
}
cval->elem_id = &kctl->id;
cval->next_id_elem = state->mixer->id_elems[cval->id];
state->mixer->id_elems[cval->id] = cval;
return 0;
}
/*
* get a terminal name string
*/
static struct iterm_name_combo {
int type;
char *name;
} iterm_names[] = {
{ 0x0300, "Output" },
{ 0x0301, "Speaker" },
{ 0x0302, "Headphone" },
{ 0x0303, "HMD Audio" },
{ 0x0304, "Desktop Speaker" },
{ 0x0305, "Room Speaker" },
{ 0x0306, "Com Speaker" },
{ 0x0307, "LFE" },
{ 0x0600, "External In" },
{ 0x0601, "Analog In" },
{ 0x0602, "Digital In" },
{ 0x0603, "Line" },
{ 0x0604, "Legacy In" },
{ 0x0605, "IEC958 In" },
{ 0x0606, "1394 DA Stream" },
{ 0x0607, "1394 DV Stream" },
{ 0x0700, "Embedded" },
{ 0x0701, "Noise Source" },
{ 0x0702, "Equalization Noise" },
{ 0x0703, "CD" },
{ 0x0704, "DAT" },
{ 0x0705, "DCC" },
{ 0x0706, "MiniDisk" },
{ 0x0707, "Analog Tape" },
{ 0x0708, "Phonograph" },
{ 0x0709, "VCR Audio" },
{ 0x070a, "Video Disk Audio" },
{ 0x070b, "DVD Audio" },
{ 0x070c, "TV Tuner Audio" },
{ 0x070d, "Satellite Rec Audio" },
{ 0x070e, "Cable Tuner Audio" },
{ 0x070f, "DSS Audio" },
{ 0x0710, "Radio Receiver" },
{ 0x0711, "Radio Transmitter" },
{ 0x0712, "Multi-Track Recorder" },
{ 0x0713, "Synthesizer" },
{ 0 },
};
static int get_term_name(struct mixer_build *state, struct usb_audio_term *iterm,
unsigned char *name, int maxlen, int term_only)
{
struct iterm_name_combo *names;
if (iterm->name)
return snd_usb_copy_string_desc(state, iterm->name, name, maxlen);
/* virtual type - not a real terminal */
if (iterm->type >> 16) {
if (term_only)
return 0;
switch (iterm->type >> 16) {
case UAC_SELECTOR_UNIT:
strcpy(name, "Selector"); return 8;
case UAC1_PROCESSING_UNIT:
strcpy(name, "Process Unit"); return 12;
case UAC1_EXTENSION_UNIT:
strcpy(name, "Ext Unit"); return 8;
case UAC_MIXER_UNIT:
strcpy(name, "Mixer"); return 5;
default:
return sprintf(name, "Unit %d", iterm->id);
}
}
switch (iterm->type & 0xff00) {
case 0x0100:
strcpy(name, "PCM"); return 3;
case 0x0200:
strcpy(name, "Mic"); return 3;
case 0x0400:
strcpy(name, "Headset"); return 7;
case 0x0500:
strcpy(name, "Phone"); return 5;
}
for (names = iterm_names; names->type; names++)
if (names->type == iterm->type) {
strcpy(name, names->name);
return strlen(names->name);
}
return 0;
}
/*
* parse the source unit recursively until it reaches to a terminal
* or a branched unit.
*/
static int check_input_term(struct mixer_build *state, int id, struct usb_audio_term *term)
{
int err;
void *p1;
memset(term, 0, sizeof(*term));
while ((p1 = find_audio_control_unit(state, id)) != NULL) {
unsigned char *hdr = p1;
term->id = id;
switch (hdr[2]) {
case UAC_INPUT_TERMINAL:
if (state->mixer->protocol == UAC_VERSION_1) {
struct uac_input_terminal_descriptor *d = p1;
term->type = le16_to_cpu(d->wTerminalType);
term->channels = d->bNrChannels;
term->chconfig = le16_to_cpu(d->wChannelConfig);
term->name = d->iTerminal;
} else { /* UAC_VERSION_2 */
struct uac2_input_terminal_descriptor *d = p1;
term->type = le16_to_cpu(d->wTerminalType);
term->channels = d->bNrChannels;
term->chconfig = le32_to_cpu(d->bmChannelConfig);
term->name = d->iTerminal;
/* call recursively to get the clock selectors */
err = check_input_term(state, d->bCSourceID, term);
if (err < 0)
return err;
}
return 0;
case UAC_FEATURE_UNIT: {
/* the header is the same for v1 and v2 */
struct uac_feature_unit_descriptor *d = p1;
id = d->bSourceID;
break; /* continue to parse */
}
case UAC_MIXER_UNIT: {
struct uac_mixer_unit_descriptor *d = p1;
term->type = d->bDescriptorSubtype << 16; /* virtual type */
term->channels = uac_mixer_unit_bNrChannels(d);
term->chconfig = uac_mixer_unit_wChannelConfig(d, state->mixer->protocol);
term->name = uac_mixer_unit_iMixer(d);
return 0;
}
case UAC_SELECTOR_UNIT:
case UAC2_CLOCK_SELECTOR: {
struct uac_selector_unit_descriptor *d = p1;
/* call recursively to retrieve the channel info */
if (check_input_term(state, d->baSourceID[0], term) < 0)
return -ENODEV;
term->type = d->bDescriptorSubtype << 16; /* virtual type */
term->id = id;
term->name = uac_selector_unit_iSelector(d);
return 0;
}
case UAC1_PROCESSING_UNIT:
case UAC1_EXTENSION_UNIT: {
struct uac_processing_unit_descriptor *d = p1;
if (d->bNrInPins) {
id = d->baSourceID[0];
break; /* continue to parse */
}
term->type = d->bDescriptorSubtype << 16; /* virtual type */
term->channels = uac_processing_unit_bNrChannels(d);
term->chconfig = uac_processing_unit_wChannelConfig(d, state->mixer->protocol);
term->name = uac_processing_unit_iProcessing(d, state->mixer->protocol);
return 0;
}
case UAC2_CLOCK_SOURCE: {
struct uac_clock_source_descriptor *d = p1;
term->type = d->bDescriptorSubtype << 16; /* virtual type */
term->id = id;
term->name = d->iClockSource;
return 0;
}
default:
return -ENODEV;
}
}
return -ENODEV;
}
/*
* Feature Unit
*/
/* feature unit control information */
struct usb_feature_control_info {
const char *name;
unsigned int type; /* control type (mute, volume, etc.) */
};
static struct usb_feature_control_info audio_feature_info[] = {
{ "Mute", USB_MIXER_INV_BOOLEAN },
{ "Volume", USB_MIXER_S16 },
{ "Tone Control - Bass", USB_MIXER_S8 },
{ "Tone Control - Mid", USB_MIXER_S8 },
{ "Tone Control - Treble", USB_MIXER_S8 },
{ "Graphic Equalizer", USB_MIXER_S8 }, /* FIXME: not implemeted yet */
{ "Auto Gain Control", USB_MIXER_BOOLEAN },
{ "Delay Control", USB_MIXER_U16 },
{ "Bass Boost", USB_MIXER_BOOLEAN },
{ "Loudness", USB_MIXER_BOOLEAN },
/* UAC2 specific */
{ "Input Gain Control", USB_MIXER_U16 },
{ "Input Gain Pad Control", USB_MIXER_BOOLEAN },
{ "Phase Inverter Control", USB_MIXER_BOOLEAN },
};
/* private_free callback */
static void usb_mixer_elem_free(struct snd_kcontrol *kctl)
{
kfree(kctl->private_data);
kctl->private_data = NULL;
}
/*
* interface to ALSA control for feature/mixer units
*/
/*
* retrieve the minimum and maximum values for the specified control
*/
static int get_min_max(struct usb_mixer_elem_info *cval, int default_min)
{
/* for failsafe */
cval->min = default_min;
cval->max = cval->min + 1;
cval->res = 1;
cval->dBmin = cval->dBmax = 0;
if (cval->val_type == USB_MIXER_BOOLEAN ||
cval->val_type == USB_MIXER_INV_BOOLEAN) {
cval->initialized = 1;
} else {
int minchn = 0;
if (cval->cmask) {
int i;
for (i = 0; i < MAX_CHANNELS; i++)
if (cval->cmask & (1 << i)) {
minchn = i + 1;
break;
}
}
if (get_ctl_value(cval, UAC_GET_MAX, (cval->control << 8) | minchn, &cval->max) < 0 ||
get_ctl_value(cval, UAC_GET_MIN, (cval->control << 8) | minchn, &cval->min) < 0) {
snd_printd(KERN_ERR "%d:%d: cannot get min/max values for control %d (id %d)\n",
cval->id, snd_usb_ctrl_intf(cval->mixer->chip), cval->control, cval->id);
return -EINVAL;
}
if (get_ctl_value(cval, UAC_GET_RES, (cval->control << 8) | minchn, &cval->res) < 0) {
cval->res = 1;
} else {
int last_valid_res = cval->res;
while (cval->res > 1) {
if (snd_usb_mixer_set_ctl_value(cval, UAC_SET_RES,
(cval->control << 8) | minchn, cval->res / 2) < 0)
break;
cval->res /= 2;
}
if (get_ctl_value(cval, UAC_GET_RES, (cval->control << 8) | minchn, &cval->res) < 0)
cval->res = last_valid_res;
}
if (cval->res == 0)
cval->res = 1;
/* Additional checks for the proper resolution
*
* Some devices report smaller resolutions than actually
* reacting. They don't return errors but simply clip
* to the lower aligned value.
*/
if (cval->min + cval->res < cval->max) {
int last_valid_res = cval->res;
int saved, test, check;
get_cur_mix_raw(cval, minchn, &saved);
for (;;) {
test = saved;
if (test < cval->max)
test += cval->res;
else
test -= cval->res;
if (test < cval->min || test > cval->max ||
set_cur_mix_value(cval, minchn, 0, test) ||
get_cur_mix_raw(cval, minchn, &check)) {
cval->res = last_valid_res;
break;
}
if (test == check)
break;
cval->res *= 2;
}
set_cur_mix_value(cval, minchn, 0, saved);
}
cval->initialized = 1;
}
/* USB descriptions contain the dB scale in 1/256 dB unit
* while ALSA TLV contains in 1/100 dB unit
*/
cval->dBmin = (convert_signed_value(cval, cval->min) * 100) / 256;
cval->dBmax = (convert_signed_value(cval, cval->max) * 100) / 256;
if (cval->dBmin > cval->dBmax) {
/* something is wrong; assume it's either from/to 0dB */
if (cval->dBmin < 0)
cval->dBmax = 0;
else if (cval->dBmin > 0)
cval->dBmin = 0;
if (cval->dBmin > cval->dBmax) {
/* totally crap, return an error */
return -EINVAL;
}
}
return 0;
}
/* get a feature/mixer unit info */
static int mixer_ctl_feature_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
{
struct usb_mixer_elem_info *cval = kcontrol->private_data;
if (cval->val_type == USB_MIXER_BOOLEAN ||
cval->val_type == USB_MIXER_INV_BOOLEAN)
uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
else
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = cval->channels;
if (cval->val_type == USB_MIXER_BOOLEAN ||
cval->val_type == USB_MIXER_INV_BOOLEAN) {
uinfo->value.integer.min = 0;
uinfo->value.integer.max = 1;
} else {
if (! cval->initialized)
get_min_max(cval, 0);
uinfo->value.integer.min = 0;
uinfo->value.integer.max =
(cval->max - cval->min + cval->res - 1) / cval->res;
}
return 0;
}
/* get the current value from feature/mixer unit */
static int mixer_ctl_feature_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
struct usb_mixer_elem_info *cval = kcontrol->private_data;
int c, cnt, val, err;
ucontrol->value.integer.value[0] = cval->min;
if (cval->cmask) {
cnt = 0;
for (c = 0; c < MAX_CHANNELS; c++) {
if (!(cval->cmask & (1 << c)))
continue;
err = get_cur_mix_value(cval, c + 1, cnt, &val);
if (err < 0)
return cval->mixer->ignore_ctl_error ? 0 : err;
val = get_relative_value(cval, val);
ucontrol->value.integer.value[cnt] = val;
cnt++;
}
return 0;
} else {
/* master channel */
err = get_cur_mix_value(cval, 0, 0, &val);
if (err < 0)
return cval->mixer->ignore_ctl_error ? 0 : err;
val = get_relative_value(cval, val);
ucontrol->value.integer.value[0] = val;
}
return 0;
}
/* put the current value to feature/mixer unit */
static int mixer_ctl_feature_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
struct usb_mixer_elem_info *cval = kcontrol->private_data;
int c, cnt, val, oval, err;
int changed = 0;
if (cval->cmask) {
cnt = 0;
for (c = 0; c < MAX_CHANNELS; c++) {
if (!(cval->cmask & (1 << c)))
continue;
err = get_cur_mix_value(cval, c + 1, cnt, &oval);
if (err < 0)
return cval->mixer->ignore_ctl_error ? 0 : err;
val = ucontrol->value.integer.value[cnt];
val = get_abs_value(cval, val);
if (oval != val) {
set_cur_mix_value(cval, c + 1, cnt, val);
changed = 1;
}
cnt++;
}
} else {
/* master channel */
err = get_cur_mix_value(cval, 0, 0, &oval);
if (err < 0)
return cval->mixer->ignore_ctl_error ? 0 : err;
val = ucontrol->value.integer.value[0];
val = get_abs_value(cval, val);
if (val != oval) {
set_cur_mix_value(cval, 0, 0, val);
changed = 1;
}
}
return changed;
}
static struct snd_kcontrol_new usb_feature_unit_ctl = {
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "", /* will be filled later manually */
.info = mixer_ctl_feature_info,
.get = mixer_ctl_feature_get,
.put = mixer_ctl_feature_put,
};
/* the read-only variant */
static struct snd_kcontrol_new usb_feature_unit_ctl_ro = {
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "", /* will be filled later manually */
.info = mixer_ctl_feature_info,
.get = mixer_ctl_feature_get,
.put = NULL,
};
/*
* build a feature control
*/
static size_t append_ctl_name(struct snd_kcontrol *kctl, const char *str)
{
return strlcat(kctl->id.name, str, sizeof(kctl->id.name));
}
static void build_feature_ctl(struct mixer_build *state, void *raw_desc,
unsigned int ctl_mask, int control,
struct usb_audio_term *iterm, int unitid,
int readonly_mask)
{
struct uac_feature_unit_descriptor *desc = raw_desc;
unsigned int len = 0;
int mapped_name = 0;
int nameid = uac_feature_unit_iFeature(desc);
struct snd_kcontrol *kctl;
struct usb_mixer_elem_info *cval;
const struct usbmix_name_map *map;
control++; /* change from zero-based to 1-based value */
if (control == UAC_FU_GRAPHIC_EQUALIZER) {
/* FIXME: not supported yet */
return;
}
map = find_map(state, unitid, control);
if (check_ignored_ctl(map))
return;
cval = kzalloc(sizeof(*cval), GFP_KERNEL);
if (! cval) {
snd_printk(KERN_ERR "cannot malloc kcontrol\n");
return;
}
cval->mixer = state->mixer;
cval->id = unitid;
cval->control = control;
cval->cmask = ctl_mask;
cval->val_type = audio_feature_info[control-1].type;
if (ctl_mask == 0) {
cval->channels = 1; /* master channel */
cval->master_readonly = readonly_mask;
} else {
int i, c = 0;
for (i = 0; i < 16; i++)
if (ctl_mask & (1 << i))
c++;
cval->channels = c;
cval->ch_readonly = readonly_mask;
}
/* get min/max values */
get_min_max(cval, 0);
/* if all channels in the mask are marked read-only, make the control
* read-only. set_cur_mix_value() will check the mask again and won't
* issue write commands to read-only channels. */
if (cval->channels == readonly_mask)
kctl = snd_ctl_new1(&usb_feature_unit_ctl_ro, cval);
else
kctl = snd_ctl_new1(&usb_feature_unit_ctl, cval);
if (! kctl) {
snd_printk(KERN_ERR "cannot malloc kcontrol\n");
kfree(cval);
return;
}
kctl->private_free = usb_mixer_elem_free;
len = check_mapped_name(map, kctl->id.name, sizeof(kctl->id.name));
mapped_name = len != 0;
if (! len && nameid)
len = snd_usb_copy_string_desc(state, nameid,
kctl->id.name, sizeof(kctl->id.name));
switch (control) {
case UAC_FU_MUTE:
case UAC_FU_VOLUME:
/* determine the control name. the rule is:
* - if a name id is given in descriptor, use it.
* - if the connected input can be determined, then use the name
* of terminal type.
* - if the connected output can be determined, use it.
* - otherwise, anonymous name.
*/
if (! len) {
len = get_term_name(state, iterm, kctl->id.name, sizeof(kctl->id.name), 1);
if (! len)
len = get_term_name(state, &state->oterm, kctl->id.name, sizeof(kctl->id.name), 1);
if (! len)
len = snprintf(kctl->id.name, sizeof(kctl->id.name),
"Feature %d", unitid);
}
/* determine the stream direction:
* if the connected output is USB stream, then it's likely a
* capture stream. otherwise it should be playback (hopefully :)
*/
if (! mapped_name && ! (state->oterm.type >> 16)) {
if ((state->oterm.type & 0xff00) == 0x0100) {
len = append_ctl_name(kctl, " Capture");
} else {
len = append_ctl_name(kctl, " Playback");
}
}
append_ctl_name(kctl, control == UAC_FU_MUTE ?
" Switch" : " Volume");
if (control == UAC_FU_VOLUME) {
kctl->tlv.c = mixer_vol_tlv;
kctl->vd[0].access |=
SNDRV_CTL_ELEM_ACCESS_TLV_READ |
SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK;
check_mapped_dB(map, cval);
}
break;
default:
if (! len)
strlcpy(kctl->id.name, audio_feature_info[control-1].name,
sizeof(kctl->id.name));
break;
}
/* volume control quirks */
switch (state->chip->usb_id) {
case USB_ID(0x0471, 0x0101):
case USB_ID(0x0471, 0x0104):
case USB_ID(0x0471, 0x0105):
case USB_ID(0x0672, 0x1041):
/* quirk for UDA1321/N101.
* note that detection between firmware 2.1.1.7 (N101)
* and later 2.1.1.21 is not very clear from datasheets.
* I hope that the min value is -15360 for newer firmware --jk
*/
if (!strcmp(kctl->id.name, "PCM Playback Volume") &&
cval->min == -15616) {
snd_printk(KERN_INFO
"set volume quirk for UDA1321/N101 chip\n");
cval->max = -256;
}
break;
case USB_ID(0x046d, 0x09a4):
if (!strcmp(kctl->id.name, "Mic Capture Volume")) {
snd_printk(KERN_INFO
"set volume quirk for QuickCam E3500\n");
cval->min = 6080;
cval->max = 8768;
cval->res = 192;
}
break;
case USB_ID(0x046d, 0x0809):
case USB_ID(0x046d, 0x0991):
/* Most audio usb devices lie about volume resolution.
* Most Logitech webcams have res = 384.
* Proboly there is some logitech magic behind this number --fishor
*/
if (!strcmp(kctl->id.name, "Mic Capture Volume")) {
snd_printk(KERN_INFO
"set resolution quirk: cval->res = 384\n");
cval->res = 384;
}
break;
}
snd_printdd(KERN_INFO "[%d] FU [%s] ch = %d, val = %d/%d/%d\n",
cval->id, kctl->id.name, cval->channels, cval->min, cval->max, cval->res);
add_control_to_empty(state, kctl);
}
/*
* parse a feature unit
*
* most of controlls are defined here.
*/
static int parse_audio_feature_unit(struct mixer_build *state, int unitid, void *_ftr)
{
int channels, i, j;
struct usb_audio_term iterm;
unsigned int master_bits, first_ch_bits;
int err, csize;
struct uac_feature_unit_descriptor *hdr = _ftr;
__u8 *bmaControls;
if (state->mixer->protocol == UAC_VERSION_1) {
csize = hdr->bControlSize;
channels = (hdr->bLength - 7) / csize - 1;
bmaControls = hdr->bmaControls;
} else {
struct uac2_feature_unit_descriptor *ftr = _ftr;
csize = 4;
channels = (hdr->bLength - 6) / 4 - 1;
bmaControls = ftr->bmaControls;
}
if (hdr->bLength < 7 || !csize || hdr->bLength < 7 + csize) {
snd_printk(KERN_ERR "usbaudio: unit %u: invalid UAC_FEATURE_UNIT descriptor\n", unitid);
return -EINVAL;
}
/* parse the source unit */
if ((err = parse_audio_unit(state, hdr->bSourceID)) < 0)
return err;
/* determine the input source type and name */
if (check_input_term(state, hdr->bSourceID, &iterm) < 0)
return -EINVAL;
master_bits = snd_usb_combine_bytes(bmaControls, csize);
/* master configuration quirks */
switch (state->chip->usb_id) {
case USB_ID(0x08bb, 0x2702):
snd_printk(KERN_INFO
"usbmixer: master volume quirk for PCM2702 chip\n");
/* disable non-functional volume control */
master_bits &= ~UAC_CONTROL_BIT(UAC_FU_VOLUME);
break;
}
if (channels > 0)
first_ch_bits = snd_usb_combine_bytes(bmaControls + csize, csize);
else
first_ch_bits = 0;
if (state->mixer->protocol == UAC_VERSION_1) {
/* check all control types */
for (i = 0; i < 10; i++) {
unsigned int ch_bits = 0;
for (j = 0; j < channels; j++) {
unsigned int mask = snd_usb_combine_bytes(bmaControls + csize * (j+1), csize);
if (mask & (1 << i))
ch_bits |= (1 << j);
}
/* audio class v1 controls are never read-only */
if (ch_bits & 1) /* the first channel must be set (for ease of programming) */
build_feature_ctl(state, _ftr, ch_bits, i, &iterm, unitid, 0);
if (master_bits & (1 << i))
build_feature_ctl(state, _ftr, 0, i, &iterm, unitid, 0);
}
} else { /* UAC_VERSION_2 */
for (i = 0; i < 30/2; i++) {
unsigned int ch_bits = 0;
unsigned int ch_read_only = 0;
for (j = 0; j < channels; j++) {
unsigned int mask = snd_usb_combine_bytes(bmaControls + csize * (j+1), csize);
if (uac2_control_is_readable(mask, i)) {
ch_bits |= (1 << j);
if (!uac2_control_is_writeable(mask, i))
ch_read_only |= (1 << j);
}
}
/* NOTE: build_feature_ctl() will mark the control read-only if all channels
* are marked read-only in the descriptors. Otherwise, the control will be
* reported as writeable, but the driver will not actually issue a write
* command for read-only channels */
if (ch_bits & 1) /* the first channel must be set (for ease of programming) */
build_feature_ctl(state, _ftr, ch_bits, i, &iterm, unitid, ch_read_only);
if (uac2_control_is_readable(master_bits, i))
build_feature_ctl(state, _ftr, 0, i, &iterm, unitid,
!uac2_control_is_writeable(master_bits, i));
}
}
return 0;
}
/*
* Mixer Unit
*/
/*
* build a mixer unit control
*
* the callbacks are identical with feature unit.
* input channel number (zero based) is given in control field instead.
*/
static void build_mixer_unit_ctl(struct mixer_build *state,
struct uac_mixer_unit_descriptor *desc,
int in_pin, int in_ch, int unitid,
struct usb_audio_term *iterm)
{
struct usb_mixer_elem_info *cval;
unsigned int num_outs = uac_mixer_unit_bNrChannels(desc);
unsigned int i, len;
struct snd_kcontrol *kctl;
const struct usbmix_name_map *map;
map = find_map(state, unitid, 0);
if (check_ignored_ctl(map))
return;
cval = kzalloc(sizeof(*cval), GFP_KERNEL);
if (! cval)
return;
cval->mixer = state->mixer;
cval->id = unitid;
cval->control = in_ch + 1; /* based on 1 */
cval->val_type = USB_MIXER_S16;
for (i = 0; i < num_outs; i++) {
if (check_matrix_bitmap(uac_mixer_unit_bmControls(desc, state->mixer->protocol), in_ch, i, num_outs)) {
cval->cmask |= (1 << i);
cval->channels++;
}
}
/* get min/max values */
get_min_max(cval, 0);
kctl = snd_ctl_new1(&usb_feature_unit_ctl, cval);
if (! kctl) {
snd_printk(KERN_ERR "cannot malloc kcontrol\n");
kfree(cval);
return;
}
kctl->private_free = usb_mixer_elem_free;
len = check_mapped_name(map, kctl->id.name, sizeof(kctl->id.name));
if (! len)
len = get_term_name(state, iterm, kctl->id.name, sizeof(kctl->id.name), 0);
if (! len)
len = sprintf(kctl->id.name, "Mixer Source %d", in_ch + 1);
append_ctl_name(kctl, " Volume");
snd_printdd(KERN_INFO "[%d] MU [%s] ch = %d, val = %d/%d\n",
cval->id, kctl->id.name, cval->channels, cval->min, cval->max);
add_control_to_empty(state, kctl);
}
/*
* parse a mixer unit
*/
static int parse_audio_mixer_unit(struct mixer_build *state, int unitid, void *raw_desc)
{
struct uac_mixer_unit_descriptor *desc = raw_desc;
struct usb_audio_term iterm;
int input_pins, num_ins, num_outs;
int pin, ich, err;
if (desc->bLength < 11 || ! (input_pins = desc->bNrInPins) || ! (num_outs = uac_mixer_unit_bNrChannels(desc))) {
snd_printk(KERN_ERR "invalid MIXER UNIT descriptor %d\n", unitid);
return -EINVAL;
}
/* no bmControls field (e.g. Maya44) -> ignore */
if (desc->bLength <= 10 + input_pins) {
snd_printdd(KERN_INFO "MU %d has no bmControls field\n", unitid);
return 0;
}
num_ins = 0;
ich = 0;
for (pin = 0; pin < input_pins; pin++) {
err = parse_audio_unit(state, desc->baSourceID[pin]);
if (err < 0)
return err;
err = check_input_term(state, desc->baSourceID[pin], &iterm);
if (err < 0)
return err;
num_ins += iterm.channels;
for (; ich < num_ins; ++ich) {
int och, ich_has_controls = 0;
for (och = 0; och < num_outs; ++och) {
if (check_matrix_bitmap(uac_mixer_unit_bmControls(desc, state->mixer->protocol),
ich, och, num_outs)) {
ich_has_controls = 1;
break;
}
}
if (ich_has_controls)
build_mixer_unit_ctl(state, desc, pin, ich,
unitid, &iterm);
}
}
return 0;
}
/*
* Processing Unit / Extension Unit
*/
/* get callback for processing/extension unit */
static int mixer_ctl_procunit_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
struct usb_mixer_elem_info *cval = kcontrol->private_data;
int err, val;
err = get_cur_ctl_value(cval, cval->control << 8, &val);
if (err < 0 && cval->mixer->ignore_ctl_error) {
ucontrol->value.integer.value[0] = cval->min;
return 0;
}
if (err < 0)
return err;
val = get_relative_value(cval, val);
ucontrol->value.integer.value[0] = val;
return 0;
}
/* put callback for processing/extension unit */
static int mixer_ctl_procunit_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
struct usb_mixer_elem_info *cval = kcontrol->private_data;
int val, oval, err;
err = get_cur_ctl_value(cval, cval->control << 8, &oval);
if (err < 0) {
if (cval->mixer->ignore_ctl_error)
return 0;
return err;
}
val = ucontrol->value.integer.value[0];
val = get_abs_value(cval, val);
if (val != oval) {
set_cur_ctl_value(cval, cval->control << 8, val);
return 1;
}
return 0;
}
/* alsa control interface for processing/extension unit */
static struct snd_kcontrol_new mixer_procunit_ctl = {
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "", /* will be filled later */
.info = mixer_ctl_feature_info,
.get = mixer_ctl_procunit_get,
.put = mixer_ctl_procunit_put,
};
/*
* predefined data for processing units
*/
struct procunit_value_info {
int control;
char *suffix;
int val_type;
int min_value;
};
struct procunit_info {
int type;
char *name;
struct procunit_value_info *values;
};
static struct procunit_value_info updown_proc_info[] = {
{ UAC_UD_ENABLE, "Switch", USB_MIXER_BOOLEAN },
{ UAC_UD_MODE_SELECT, "Mode Select", USB_MIXER_U8, 1 },
{ 0 }
};
static struct procunit_value_info prologic_proc_info[] = {
{ UAC_DP_ENABLE, "Switch", USB_MIXER_BOOLEAN },
{ UAC_DP_MODE_SELECT, "Mode Select", USB_MIXER_U8, 1 },
{ 0 }
};
static struct procunit_value_info threed_enh_proc_info[] = {
{ UAC_3D_ENABLE, "Switch", USB_MIXER_BOOLEAN },
{ UAC_3D_SPACE, "Spaciousness", USB_MIXER_U8 },
{ 0 }
};
static struct procunit_value_info reverb_proc_info[] = {
{ UAC_REVERB_ENABLE, "Switch", USB_MIXER_BOOLEAN },
{ UAC_REVERB_LEVEL, "Level", USB_MIXER_U8 },
{ UAC_REVERB_TIME, "Time", USB_MIXER_U16 },
{ UAC_REVERB_FEEDBACK, "Feedback", USB_MIXER_U8 },
{ 0 }
};
static struct procunit_value_info chorus_proc_info[] = {
{ UAC_CHORUS_ENABLE, "Switch", USB_MIXER_BOOLEAN },
{ UAC_CHORUS_LEVEL, "Level", USB_MIXER_U8 },
{ UAC_CHORUS_RATE, "Rate", USB_MIXER_U16 },
{ UAC_CHORUS_DEPTH, "Depth", USB_MIXER_U16 },
{ 0 }
};
static struct procunit_value_info dcr_proc_info[] = {
{ UAC_DCR_ENABLE, "Switch", USB_MIXER_BOOLEAN },
{ UAC_DCR_RATE, "Ratio", USB_MIXER_U16 },
{ UAC_DCR_MAXAMPL, "Max Amp", USB_MIXER_S16 },
{ UAC_DCR_THRESHOLD, "Threshold", USB_MIXER_S16 },
{ UAC_DCR_ATTACK_TIME, "Attack Time", USB_MIXER_U16 },
{ UAC_DCR_RELEASE_TIME, "Release Time", USB_MIXER_U16 },
{ 0 }
};
static struct procunit_info procunits[] = {
{ UAC_PROCESS_UP_DOWNMIX, "Up Down", updown_proc_info },
{ UAC_PROCESS_DOLBY_PROLOGIC, "Dolby Prologic", prologic_proc_info },
{ UAC_PROCESS_STEREO_EXTENDER, "3D Stereo Extender", threed_enh_proc_info },
{ UAC_PROCESS_REVERB, "Reverb", reverb_proc_info },
{ UAC_PROCESS_CHORUS, "Chorus", chorus_proc_info },
{ UAC_PROCESS_DYN_RANGE_COMP, "DCR", dcr_proc_info },
{ 0 },
};
/*
* predefined data for extension units
*/
static struct procunit_value_info clock_rate_xu_info[] = {
{ USB_XU_CLOCK_RATE_SELECTOR, "Selector", USB_MIXER_U8, 0 },
{ 0 }
};
static struct procunit_value_info clock_source_xu_info[] = {
{ USB_XU_CLOCK_SOURCE_SELECTOR, "External", USB_MIXER_BOOLEAN },
{ 0 }
};
static struct procunit_value_info spdif_format_xu_info[] = {
{ USB_XU_DIGITAL_FORMAT_SELECTOR, "SPDIF/AC3", USB_MIXER_BOOLEAN },
{ 0 }
};
static struct procunit_value_info soft_limit_xu_info[] = {
{ USB_XU_SOFT_LIMIT_SELECTOR, " ", USB_MIXER_BOOLEAN },
{ 0 }
};
static struct procunit_info extunits[] = {
{ USB_XU_CLOCK_RATE, "Clock rate", clock_rate_xu_info },
{ USB_XU_CLOCK_SOURCE, "DigitalIn CLK source", clock_source_xu_info },
{ USB_XU_DIGITAL_IO_STATUS, "DigitalOut format:", spdif_format_xu_info },
{ USB_XU_DEVICE_OPTIONS, "AnalogueIn Soft Limit", soft_limit_xu_info },
{ 0 }
};
/*
* build a processing/extension unit
*/
static int build_audio_procunit(struct mixer_build *state, int unitid, void *raw_desc, struct procunit_info *list, char *name)
{
struct uac_processing_unit_descriptor *desc = raw_desc;
int num_ins = desc->bNrInPins;
struct usb_mixer_elem_info *cval;
struct snd_kcontrol *kctl;
int i, err, nameid, type, len;
struct procunit_info *info;
struct procunit_value_info *valinfo;
const struct usbmix_name_map *map;
static struct procunit_value_info default_value_info[] = {
{ 0x01, "Switch", USB_MIXER_BOOLEAN },
{ 0 }
};
static struct procunit_info default_info = {
0, NULL, default_value_info
};
if (desc->bLength < 13 || desc->bLength < 13 + num_ins ||
desc->bLength < num_ins + uac_processing_unit_bControlSize(desc, state->mixer->protocol)) {
snd_printk(KERN_ERR "invalid %s descriptor (id %d)\n", name, unitid);
return -EINVAL;
}
for (i = 0; i < num_ins; i++) {
if ((err = parse_audio_unit(state, desc->baSourceID[i])) < 0)
return err;
}
type = le16_to_cpu(desc->wProcessType);
for (info = list; info && info->type; info++)
if (info->type == type)
break;
if (! info || ! info->type)
info = &default_info;
for (valinfo = info->values; valinfo->control; valinfo++) {
__u8 *controls = uac_processing_unit_bmControls(desc, state->mixer->protocol);
if (! (controls[valinfo->control / 8] & (1 << ((valinfo->control % 8) - 1))))
continue;
map = find_map(state, unitid, valinfo->control);
if (check_ignored_ctl(map))
continue;
cval = kzalloc(sizeof(*cval), GFP_KERNEL);
if (! cval) {
snd_printk(KERN_ERR "cannot malloc kcontrol\n");
return -ENOMEM;
}
cval->mixer = state->mixer;
cval->id = unitid;
cval->control = valinfo->control;
cval->val_type = valinfo->val_type;
cval->channels = 1;
/* get min/max values */
if (type == UAC_PROCESS_UP_DOWNMIX && cval->control == UAC_UD_MODE_SELECT) {
__u8 *control_spec = uac_processing_unit_specific(desc, state->mixer->protocol);
/* FIXME: hard-coded */
cval->min = 1;
cval->max = control_spec[0];
cval->res = 1;
cval->initialized = 1;
} else {
if (type == USB_XU_CLOCK_RATE) {
/* E-Mu USB 0404/0202/TrackerPre
* samplerate control quirk
*/
cval->min = 0;
cval->max = 5;
cval->res = 1;
cval->initialized = 1;
} else
get_min_max(cval, valinfo->min_value);
}
kctl = snd_ctl_new1(&mixer_procunit_ctl, cval);
if (! kctl) {
snd_printk(KERN_ERR "cannot malloc kcontrol\n");
kfree(cval);
return -ENOMEM;
}
kctl->private_free = usb_mixer_elem_free;
if (check_mapped_name(map, kctl->id.name,
sizeof(kctl->id.name)))
/* nothing */ ;
else if (info->name)
strlcpy(kctl->id.name, info->name, sizeof(kctl->id.name));
else {
nameid = uac_processing_unit_iProcessing(desc, state->mixer->protocol);
len = 0;
if (nameid)
len = snd_usb_copy_string_desc(state, nameid, kctl->id.name, sizeof(kctl->id.name));
if (! len)
strlcpy(kctl->id.name, name, sizeof(kctl->id.name));
}
append_ctl_name(kctl, " ");
append_ctl_name(kctl, valinfo->suffix);
snd_printdd(KERN_INFO "[%d] PU [%s] ch = %d, val = %d/%d\n",
cval->id, kctl->id.name, cval->channels, cval->min, cval->max);
if ((err = add_control_to_empty(state, kctl)) < 0)
return err;
}
return 0;
}
static int parse_audio_processing_unit(struct mixer_build *state, int unitid, void *raw_desc)
{
return build_audio_procunit(state, unitid, raw_desc, procunits, "Processing Unit");
}
static int parse_audio_extension_unit(struct mixer_build *state, int unitid, void *raw_desc)
{
/* Note that we parse extension units with processing unit descriptors.
* That's ok as the layout is the same */
return build_audio_procunit(state, unitid, raw_desc, extunits, "Extension Unit");
}
/*
* Selector Unit
*/
/* info callback for selector unit
* use an enumerator type for routing
*/
static int mixer_ctl_selector_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
{
struct usb_mixer_elem_info *cval = kcontrol->private_data;
char **itemlist = (char **)kcontrol->private_value;
if (snd_BUG_ON(!itemlist))
return -EINVAL;
uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
uinfo->count = 1;
uinfo->value.enumerated.items = cval->max;
if (uinfo->value.enumerated.item >= cval->max)
uinfo->value.enumerated.item = cval->max - 1;
strlcpy(uinfo->value.enumerated.name, itemlist[uinfo->value.enumerated.item],
sizeof(uinfo->value.enumerated.name));
return 0;
}
/* get callback for selector unit */
static int mixer_ctl_selector_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
struct usb_mixer_elem_info *cval = kcontrol->private_data;
int val, err;
err = get_cur_ctl_value(cval, cval->control << 8, &val);
if (err < 0) {
if (cval->mixer->ignore_ctl_error) {
ucontrol->value.enumerated.item[0] = 0;
return 0;
}
return err;
}
val = get_relative_value(cval, val);
ucontrol->value.enumerated.item[0] = val;
return 0;
}
/* put callback for selector unit */
static int mixer_ctl_selector_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
struct usb_mixer_elem_info *cval = kcontrol->private_data;
int val, oval, err;
err = get_cur_ctl_value(cval, cval->control << 8, &oval);
if (err < 0) {
if (cval->mixer->ignore_ctl_error)
return 0;
return err;
}
val = ucontrol->value.enumerated.item[0];
val = get_abs_value(cval, val);
if (val != oval) {
set_cur_ctl_value(cval, cval->control << 8, val);
return 1;
}
return 0;
}
/* alsa control interface for selector unit */
static struct snd_kcontrol_new mixer_selectunit_ctl = {
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "", /* will be filled later */
.info = mixer_ctl_selector_info,
.get = mixer_ctl_selector_get,
.put = mixer_ctl_selector_put,
};
/* private free callback.
* free both private_data and private_value
*/
static void usb_mixer_selector_elem_free(struct snd_kcontrol *kctl)
{
int i, num_ins = 0;
if (kctl->private_data) {
struct usb_mixer_elem_info *cval = kctl->private_data;
num_ins = cval->max;
kfree(cval);
kctl->private_data = NULL;
}
if (kctl->private_value) {
char **itemlist = (char **)kctl->private_value;
for (i = 0; i < num_ins; i++)
kfree(itemlist[i]);
kfree(itemlist);
kctl->private_value = 0;
}
}
/*
* parse a selector unit
*/
static int parse_audio_selector_unit(struct mixer_build *state, int unitid, void *raw_desc)
{
struct uac_selector_unit_descriptor *desc = raw_desc;
unsigned int i, nameid, len;
int err;
struct usb_mixer_elem_info *cval;
struct snd_kcontrol *kctl;
const struct usbmix_name_map *map;
char **namelist;
if (!desc->bNrInPins || desc->bLength < 5 + desc->bNrInPins) {
snd_printk(KERN_ERR "invalid SELECTOR UNIT descriptor %d\n", unitid);
return -EINVAL;
}
for (i = 0; i < desc->bNrInPins; i++) {
if ((err = parse_audio_unit(state, desc->baSourceID[i])) < 0)
return err;
}
if (desc->bNrInPins == 1) /* only one ? nonsense! */
return 0;
map = find_map(state, unitid, 0);
if (check_ignored_ctl(map))
return 0;
cval = kzalloc(sizeof(*cval), GFP_KERNEL);
if (! cval) {
snd_printk(KERN_ERR "cannot malloc kcontrol\n");
return -ENOMEM;
}
cval->mixer = state->mixer;
cval->id = unitid;
cval->val_type = USB_MIXER_U8;
cval->channels = 1;
cval->min = 1;
cval->max = desc->bNrInPins;
cval->res = 1;
cval->initialized = 1;
if (desc->bDescriptorSubtype == UAC2_CLOCK_SELECTOR)
cval->control = UAC2_CX_CLOCK_SELECTOR;
else
cval->control = 0;
namelist = kmalloc(sizeof(char *) * desc->bNrInPins, GFP_KERNEL);
if (! namelist) {
snd_printk(KERN_ERR "cannot malloc\n");
kfree(cval);
return -ENOMEM;
}
#define MAX_ITEM_NAME_LEN 64
for (i = 0; i < desc->bNrInPins; i++) {
struct usb_audio_term iterm;
len = 0;
namelist[i] = kmalloc(MAX_ITEM_NAME_LEN, GFP_KERNEL);
if (! namelist[i]) {
snd_printk(KERN_ERR "cannot malloc\n");
while (i--)
kfree(namelist[i]);
kfree(namelist);
kfree(cval);
return -ENOMEM;
}
len = check_mapped_selector_name(state, unitid, i, namelist[i],
MAX_ITEM_NAME_LEN);
if (! len && check_input_term(state, desc->baSourceID[i], &iterm) >= 0)
len = get_term_name(state, &iterm, namelist[i], MAX_ITEM_NAME_LEN, 0);
if (! len)
sprintf(namelist[i], "Input %d", i);
}
kctl = snd_ctl_new1(&mixer_selectunit_ctl, cval);
if (! kctl) {
snd_printk(KERN_ERR "cannot malloc kcontrol\n");
kfree(namelist);
kfree(cval);
return -ENOMEM;
}
kctl->private_value = (unsigned long)namelist;
kctl->private_free = usb_mixer_selector_elem_free;
nameid = uac_selector_unit_iSelector(desc);
len = check_mapped_name(map, kctl->id.name, sizeof(kctl->id.name));
if (len)
;
else if (nameid)
snd_usb_copy_string_desc(state, nameid, kctl->id.name, sizeof(kctl->id.name));
else {
len = get_term_name(state, &state->oterm,
kctl->id.name, sizeof(kctl->id.name), 0);
if (! len)
strlcpy(kctl->id.name, "USB", sizeof(kctl->id.name));
if (desc->bDescriptorSubtype == UAC2_CLOCK_SELECTOR)
append_ctl_name(kctl, " Clock Source");
else if ((state->oterm.type & 0xff00) == 0x0100)
append_ctl_name(kctl, " Capture Source");
else
append_ctl_name(kctl, " Playback Source");
}
snd_printdd(KERN_INFO "[%d] SU [%s] items = %d\n",
cval->id, kctl->id.name, desc->bNrInPins);
if ((err = add_control_to_empty(state, kctl)) < 0)
return err;
return 0;
}
/*
* parse an audio unit recursively
*/
static int parse_audio_unit(struct mixer_build *state, int unitid)
{
unsigned char *p1;
if (test_and_set_bit(unitid, state->unitbitmap))
return 0; /* the unit already visited */
p1 = find_audio_control_unit(state, unitid);
if (!p1) {
snd_printk(KERN_ERR "usbaudio: unit %d not found!\n", unitid);
return -EINVAL;
}
switch (p1[2]) {
case UAC_INPUT_TERMINAL:
case UAC2_CLOCK_SOURCE:
return 0; /* NOP */
case UAC_MIXER_UNIT:
return parse_audio_mixer_unit(state, unitid, p1);
case UAC_SELECTOR_UNIT:
case UAC2_CLOCK_SELECTOR:
return parse_audio_selector_unit(state, unitid, p1);
case UAC_FEATURE_UNIT:
return parse_audio_feature_unit(state, unitid, p1);
case UAC1_PROCESSING_UNIT:
/* UAC2_EFFECT_UNIT has the same value */
if (state->mixer->protocol == UAC_VERSION_1)
return parse_audio_processing_unit(state, unitid, p1);
else
return 0; /* FIXME - effect units not implemented yet */
case UAC1_EXTENSION_UNIT:
/* UAC2_PROCESSING_UNIT_V2 has the same value */
if (state->mixer->protocol == UAC_VERSION_1)
return parse_audio_extension_unit(state, unitid, p1);
else /* UAC_VERSION_2 */
return parse_audio_processing_unit(state, unitid, p1);
default:
snd_printk(KERN_ERR "usbaudio: unit %u: unexpected type 0x%02x\n", unitid, p1[2]);
return -EINVAL;
}
}
static void snd_usb_mixer_free(struct usb_mixer_interface *mixer)
{
kfree(mixer->id_elems);
if (mixer->urb) {
kfree(mixer->urb->transfer_buffer);
usb_free_urb(mixer->urb);
}
usb_free_urb(mixer->rc_urb);
kfree(mixer->rc_setup_packet);
kfree(mixer);
}
static int snd_usb_mixer_dev_free(struct snd_device *device)
{
struct usb_mixer_interface *mixer = device->device_data;
snd_usb_mixer_free(mixer);
return 0;
}
/*
* create mixer controls
*
* walk through all UAC_OUTPUT_TERMINAL descriptors to search for mixers
*/
static int snd_usb_mixer_controls(struct usb_mixer_interface *mixer)
{
struct mixer_build state;
int err;
const struct usbmix_ctl_map *map;
struct usb_host_interface *hostif;
void *p;
hostif = mixer->chip->ctrl_intf;
memset(&state, 0, sizeof(state));
state.chip = mixer->chip;
state.mixer = mixer;
state.buffer = hostif->extra;
state.buflen = hostif->extralen;
/* check the mapping table */
for (map = usbmix_ctl_maps; map->id; map++) {
if (map->id == state.chip->usb_id) {
state.map = map->map;
state.selector_map = map->selector_map;
mixer->ignore_ctl_error = map->ignore_ctl_error;
break;
}
}
p = NULL;
while ((p = snd_usb_find_csint_desc(hostif->extra, hostif->extralen, p, UAC_OUTPUT_TERMINAL)) != NULL) {
if (mixer->protocol == UAC_VERSION_1) {
struct uac1_output_terminal_descriptor *desc = p;
if (desc->bLength < sizeof(*desc))
continue; /* invalid descriptor? */
set_bit(desc->bTerminalID, state.unitbitmap); /* mark terminal ID as visited */
state.oterm.id = desc->bTerminalID;
state.oterm.type = le16_to_cpu(desc->wTerminalType);
state.oterm.name = desc->iTerminal;
err = parse_audio_unit(&state, desc->bSourceID);
if (err < 0)
return err;
} else { /* UAC_VERSION_2 */
struct uac2_output_terminal_descriptor *desc = p;
if (desc->bLength < sizeof(*desc))
continue; /* invalid descriptor? */
set_bit(desc->bTerminalID, state.unitbitmap); /* mark terminal ID as visited */
state.oterm.id = desc->bTerminalID;
state.oterm.type = le16_to_cpu(desc->wTerminalType);
state.oterm.name = desc->iTerminal;
err = parse_audio_unit(&state, desc->bSourceID);
if (err < 0)
return err;
/* for UAC2, use the same approach to also add the clock selectors */
err = parse_audio_unit(&state, desc->bCSourceID);
if (err < 0)
return err;
}
}
return 0;
}
void snd_usb_mixer_notify_id(struct usb_mixer_interface *mixer, int unitid)
{
struct usb_mixer_elem_info *info;
for (info = mixer->id_elems[unitid]; info; info = info->next_id_elem)
snd_ctl_notify(mixer->chip->card, SNDRV_CTL_EVENT_MASK_VALUE,
info->elem_id);
}
static void snd_usb_mixer_dump_cval(struct snd_info_buffer *buffer,
int unitid,
struct usb_mixer_elem_info *cval)
{
static char *val_types[] = {"BOOLEAN", "INV_BOOLEAN",
"S8", "U8", "S16", "U16"};
snd_iprintf(buffer, " Unit: %i\n", unitid);
if (cval->elem_id)
snd_iprintf(buffer, " Control: name=\"%s\", index=%i\n",
cval->elem_id->name, cval->elem_id->index);
snd_iprintf(buffer, " Info: id=%i, control=%i, cmask=0x%x, "
"channels=%i, type=\"%s\"\n", cval->id,
cval->control, cval->cmask, cval->channels,
val_types[cval->val_type]);
snd_iprintf(buffer, " Volume: min=%i, max=%i, dBmin=%i, dBmax=%i\n",
cval->min, cval->max, cval->dBmin, cval->dBmax);
}
static void snd_usb_mixer_proc_read(struct snd_info_entry *entry,
struct snd_info_buffer *buffer)
{
struct snd_usb_audio *chip = entry->private_data;
struct usb_mixer_interface *mixer;
struct usb_mixer_elem_info *cval;
int unitid;
list_for_each_entry(mixer, &chip->mixer_list, list) {
snd_iprintf(buffer,
"USB Mixer: usb_id=0x%08x, ctrlif=%i, ctlerr=%i\n",
chip->usb_id, snd_usb_ctrl_intf(chip),
mixer->ignore_ctl_error);
snd_iprintf(buffer, "Card: %s\n", chip->card->longname);
for (unitid = 0; unitid < MAX_ID_ELEMS; unitid++) {
for (cval = mixer->id_elems[unitid]; cval;
cval = cval->next_id_elem)
snd_usb_mixer_dump_cval(buffer, unitid, cval);
}
}
}
static void snd_usb_mixer_interrupt_v2(struct usb_mixer_interface *mixer,
int attribute, int value, int index)
{
struct usb_mixer_elem_info *info;
__u8 unitid = (index >> 8) & 0xff;
__u8 control = (value >> 8) & 0xff;
__u8 channel = value & 0xff;
if (channel >= MAX_CHANNELS) {
snd_printk(KERN_DEBUG "%s(): bogus channel number %d\n",
__func__, channel);
return;
}
for (info = mixer->id_elems[unitid]; info; info = info->next_id_elem) {
if (info->control != control)
continue;
switch (attribute) {
case UAC2_CS_CUR:
/* invalidate cache, so the value is read from the device */
if (channel)
info->cached &= ~(1 << channel);
else /* master channel */
info->cached = 0;
snd_ctl_notify(mixer->chip->card, SNDRV_CTL_EVENT_MASK_VALUE,
info->elem_id);
break;
case UAC2_CS_RANGE:
/* TODO */
break;
case UAC2_CS_MEM:
/* TODO */
break;
default:
snd_printk(KERN_DEBUG "unknown attribute %d in interrupt\n",
attribute);
break;
} /* switch */
}
}
static void snd_usb_mixer_interrupt(struct urb *urb)
{
struct usb_mixer_interface *mixer = urb->context;
int len = urb->actual_length;
if (urb->status != 0)
goto requeue;
if (mixer->protocol == UAC_VERSION_1) {
struct uac1_status_word *status;
for (status = urb->transfer_buffer;
len >= sizeof(*status);
len -= sizeof(*status), status++) {
snd_printd(KERN_DEBUG "status interrupt: %02x %02x\n",
status->bStatusType,
status->bOriginator);
/* ignore any notifications not from the control interface */
if ((status->bStatusType & UAC1_STATUS_TYPE_ORIG_MASK) !=
UAC1_STATUS_TYPE_ORIG_AUDIO_CONTROL_IF)
continue;
if (status->bStatusType & UAC1_STATUS_TYPE_MEM_CHANGED)
snd_usb_mixer_rc_memory_change(mixer, status->bOriginator);
else
snd_usb_mixer_notify_id(mixer, status->bOriginator);
}
} else { /* UAC_VERSION_2 */
struct uac2_interrupt_data_msg *msg;
for (msg = urb->transfer_buffer;
len >= sizeof(*msg);
len -= sizeof(*msg), msg++) {
/* drop vendor specific and endpoint requests */
if ((msg->bInfo & UAC2_INTERRUPT_DATA_MSG_VENDOR) ||
(msg->bInfo & UAC2_INTERRUPT_DATA_MSG_EP))
continue;
snd_usb_mixer_interrupt_v2(mixer, msg->bAttribute,
le16_to_cpu(msg->wValue),
le16_to_cpu(msg->wIndex));
}
}
requeue:
if (urb->status != -ENOENT && urb->status != -ECONNRESET) {
urb->dev = mixer->chip->dev;
usb_submit_urb(urb, GFP_ATOMIC);
}
}
/* create the handler for the optional status interrupt endpoint */
static int snd_usb_mixer_status_create(struct usb_mixer_interface *mixer)
{
struct usb_host_interface *hostif;
struct usb_endpoint_descriptor *ep;
void *transfer_buffer;
int buffer_length;
unsigned int epnum;
hostif = mixer->chip->ctrl_intf;
/* we need one interrupt input endpoint */
if (get_iface_desc(hostif)->bNumEndpoints < 1)
return 0;
ep = get_endpoint(hostif, 0);
if (!usb_endpoint_dir_in(ep) || !usb_endpoint_xfer_int(ep))
return 0;
epnum = usb_endpoint_num(ep);
buffer_length = le16_to_cpu(ep->wMaxPacketSize);
transfer_buffer = kmalloc(buffer_length, GFP_KERNEL);
if (!transfer_buffer)
return -ENOMEM;
mixer->urb = usb_alloc_urb(0, GFP_KERNEL);
if (!mixer->urb) {
kfree(transfer_buffer);
return -ENOMEM;
}
usb_fill_int_urb(mixer->urb, mixer->chip->dev,
usb_rcvintpipe(mixer->chip->dev, epnum),
transfer_buffer, buffer_length,
snd_usb_mixer_interrupt, mixer, ep->bInterval);
usb_submit_urb(mixer->urb, GFP_KERNEL);
return 0;
}
int snd_usb_create_mixer(struct snd_usb_audio *chip, int ctrlif,
int ignore_error)
{
static struct snd_device_ops dev_ops = {
.dev_free = snd_usb_mixer_dev_free
};
struct usb_mixer_interface *mixer;
struct snd_info_entry *entry;
struct usb_host_interface *host_iface;
int err;
strcpy(chip->card->mixername, "USB Mixer");
mixer = kzalloc(sizeof(*mixer), GFP_KERNEL);
if (!mixer)
return -ENOMEM;
mixer->chip = chip;
mixer->ignore_ctl_error = ignore_error;
mixer->id_elems = kcalloc(MAX_ID_ELEMS, sizeof(*mixer->id_elems),
GFP_KERNEL);
if (!mixer->id_elems) {
kfree(mixer);
return -ENOMEM;
}
host_iface = &usb_ifnum_to_if(chip->dev, ctrlif)->altsetting[0];
switch (get_iface_desc(host_iface)->bInterfaceProtocol) {
case UAC_VERSION_1:
default:
mixer->protocol = UAC_VERSION_1;
break;
case UAC_VERSION_2:
mixer->protocol = UAC_VERSION_2;
break;
}
if ((err = snd_usb_mixer_controls(mixer)) < 0 ||
(err = snd_usb_mixer_status_create(mixer)) < 0)
goto _error;
snd_usb_mixer_apply_create_quirk(mixer);
err = snd_device_new(chip->card, SNDRV_DEV_LOWLEVEL, mixer, &dev_ops);
if (err < 0)
goto _error;
if (list_empty(&chip->mixer_list) &&
!snd_card_proc_new(chip->card, "usbmixer", &entry))
snd_info_set_text_ops(entry, chip, snd_usb_mixer_proc_read);
list_add(&mixer->list, &chip->mixer_list);
return 0;
_error:
snd_usb_mixer_free(mixer);
return err;
}
void snd_usb_mixer_disconnect(struct list_head *p)
{
struct usb_mixer_interface *mixer;
mixer = list_entry(p, struct usb_mixer_interface, list);
usb_kill_urb(mixer->urb);
usb_kill_urb(mixer->rc_urb);
}