linux_old1/drivers/rtc/rtc-x1205.c

699 lines
16 KiB
C

/*
* An i2c driver for the Xicor/Intersil X1205 RTC
* Copyright 2004 Karen Spearel
* Copyright 2005 Alessandro Zummo
*
* please send all reports to:
* Karen Spearel <kas111 at gmail dot com>
* Alessandro Zummo <a.zummo@towertech.it>
*
* based on a lot of other RTC drivers.
*
* Information and datasheet:
* http://www.intersil.com/cda/deviceinfo/0,1477,X1205,00.html
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/i2c.h>
#include <linux/bcd.h>
#include <linux/rtc.h>
#include <linux/delay.h>
#include <linux/module.h>
#include <linux/bitops.h>
/* offsets into CCR area */
#define CCR_SEC 0
#define CCR_MIN 1
#define CCR_HOUR 2
#define CCR_MDAY 3
#define CCR_MONTH 4
#define CCR_YEAR 5
#define CCR_WDAY 6
#define CCR_Y2K 7
#define X1205_REG_SR 0x3F /* status register */
#define X1205_REG_Y2K 0x37
#define X1205_REG_DW 0x36
#define X1205_REG_YR 0x35
#define X1205_REG_MO 0x34
#define X1205_REG_DT 0x33
#define X1205_REG_HR 0x32
#define X1205_REG_MN 0x31
#define X1205_REG_SC 0x30
#define X1205_REG_DTR 0x13
#define X1205_REG_ATR 0x12
#define X1205_REG_INT 0x11
#define X1205_REG_0 0x10
#define X1205_REG_Y2K1 0x0F
#define X1205_REG_DWA1 0x0E
#define X1205_REG_YRA1 0x0D
#define X1205_REG_MOA1 0x0C
#define X1205_REG_DTA1 0x0B
#define X1205_REG_HRA1 0x0A
#define X1205_REG_MNA1 0x09
#define X1205_REG_SCA1 0x08
#define X1205_REG_Y2K0 0x07
#define X1205_REG_DWA0 0x06
#define X1205_REG_YRA0 0x05
#define X1205_REG_MOA0 0x04
#define X1205_REG_DTA0 0x03
#define X1205_REG_HRA0 0x02
#define X1205_REG_MNA0 0x01
#define X1205_REG_SCA0 0x00
#define X1205_CCR_BASE 0x30 /* Base address of CCR */
#define X1205_ALM0_BASE 0x00 /* Base address of ALARM0 */
#define X1205_SR_RTCF 0x01 /* Clock failure */
#define X1205_SR_WEL 0x02 /* Write Enable Latch */
#define X1205_SR_RWEL 0x04 /* Register Write Enable */
#define X1205_SR_AL0 0x20 /* Alarm 0 match */
#define X1205_DTR_DTR0 0x01
#define X1205_DTR_DTR1 0x02
#define X1205_DTR_DTR2 0x04
#define X1205_HR_MIL 0x80 /* Set in ccr.hour for 24 hr mode */
#define X1205_INT_AL0E 0x20 /* Alarm 0 enable */
static struct i2c_driver x1205_driver;
/*
* In the routines that deal directly with the x1205 hardware, we use
* rtc_time -- month 0-11, hour 0-23, yr = calendar year-epoch
* Epoch is initialized as 2000. Time is set to UTC.
*/
static int x1205_get_datetime(struct i2c_client *client, struct rtc_time *tm,
unsigned char reg_base)
{
unsigned char dt_addr[2] = { 0, reg_base };
unsigned char buf[8];
int i;
struct i2c_msg msgs[] = {
{/* setup read ptr */
.addr = client->addr,
.len = 2,
.buf = dt_addr
},
{/* read date */
.addr = client->addr,
.flags = I2C_M_RD,
.len = 8,
.buf = buf
},
};
/* read date registers */
if (i2c_transfer(client->adapter, &msgs[0], 2) != 2) {
dev_err(&client->dev, "%s: read error\n", __func__);
return -EIO;
}
dev_dbg(&client->dev,
"%s: raw read data - sec=%02x, min=%02x, hr=%02x, "
"mday=%02x, mon=%02x, year=%02x, wday=%02x, y2k=%02x\n",
__func__,
buf[0], buf[1], buf[2], buf[3],
buf[4], buf[5], buf[6], buf[7]);
/* Mask out the enable bits if these are alarm registers */
if (reg_base < X1205_CCR_BASE)
for (i = 0; i <= 4; i++)
buf[i] &= 0x7F;
tm->tm_sec = bcd2bin(buf[CCR_SEC]);
tm->tm_min = bcd2bin(buf[CCR_MIN]);
tm->tm_hour = bcd2bin(buf[CCR_HOUR] & 0x3F); /* hr is 0-23 */
tm->tm_mday = bcd2bin(buf[CCR_MDAY]);
tm->tm_mon = bcd2bin(buf[CCR_MONTH]) - 1; /* mon is 0-11 */
tm->tm_year = bcd2bin(buf[CCR_YEAR])
+ (bcd2bin(buf[CCR_Y2K]) * 100) - 1900;
tm->tm_wday = buf[CCR_WDAY];
dev_dbg(&client->dev, "%s: tm is secs=%d, mins=%d, hours=%d, "
"mday=%d, mon=%d, year=%d, wday=%d\n",
__func__,
tm->tm_sec, tm->tm_min, tm->tm_hour,
tm->tm_mday, tm->tm_mon, tm->tm_year, tm->tm_wday);
return 0;
}
static int x1205_get_status(struct i2c_client *client, unsigned char *sr)
{
static unsigned char sr_addr[2] = { 0, X1205_REG_SR };
struct i2c_msg msgs[] = {
{ /* setup read ptr */
.addr = client->addr,
.len = 2,
.buf = sr_addr
},
{ /* read status */
.addr = client->addr,
.flags = I2C_M_RD,
.len = 1,
.buf = sr
},
};
/* read status register */
if (i2c_transfer(client->adapter, &msgs[0], 2) != 2) {
dev_err(&client->dev, "%s: read error\n", __func__);
return -EIO;
}
return 0;
}
static int x1205_set_datetime(struct i2c_client *client, struct rtc_time *tm,
u8 reg_base, unsigned char alm_enable)
{
int i, xfer;
unsigned char rdata[10] = { 0, reg_base };
unsigned char *buf = rdata + 2;
static const unsigned char wel[3] = { 0, X1205_REG_SR,
X1205_SR_WEL };
static const unsigned char rwel[3] = { 0, X1205_REG_SR,
X1205_SR_WEL | X1205_SR_RWEL };
static const unsigned char diswe[3] = { 0, X1205_REG_SR, 0 };
dev_dbg(&client->dev,
"%s: sec=%d min=%d hour=%d mday=%d mon=%d year=%d wday=%d\n",
__func__, tm->tm_sec, tm->tm_min, tm->tm_hour, tm->tm_mday,
tm->tm_mon, tm->tm_year, tm->tm_wday);
buf[CCR_SEC] = bin2bcd(tm->tm_sec);
buf[CCR_MIN] = bin2bcd(tm->tm_min);
/* set hour and 24hr bit */
buf[CCR_HOUR] = bin2bcd(tm->tm_hour) | X1205_HR_MIL;
buf[CCR_MDAY] = bin2bcd(tm->tm_mday);
/* month, 1 - 12 */
buf[CCR_MONTH] = bin2bcd(tm->tm_mon + 1);
/* year, since the rtc epoch*/
buf[CCR_YEAR] = bin2bcd(tm->tm_year % 100);
buf[CCR_WDAY] = tm->tm_wday & 0x07;
buf[CCR_Y2K] = bin2bcd((tm->tm_year + 1900) / 100);
/* If writing alarm registers, set compare bits on registers 0-4 */
if (reg_base < X1205_CCR_BASE)
for (i = 0; i <= 4; i++)
buf[i] |= 0x80;
/* this sequence is required to unlock the chip */
xfer = i2c_master_send(client, wel, 3);
if (xfer != 3) {
dev_err(&client->dev, "%s: wel - %d\n", __func__, xfer);
return -EIO;
}
xfer = i2c_master_send(client, rwel, 3);
if (xfer != 3) {
dev_err(&client->dev, "%s: rwel - %d\n", __func__, xfer);
return -EIO;
}
xfer = i2c_master_send(client, rdata, sizeof(rdata));
if (xfer != sizeof(rdata)) {
dev_err(&client->dev,
"%s: result=%d addr=%02x, data=%02x\n",
__func__,
xfer, rdata[1], rdata[2]);
return -EIO;
}
/* If we wrote to the nonvolatile region, wait 10msec for write cycle*/
if (reg_base < X1205_CCR_BASE) {
unsigned char al0e[3] = { 0, X1205_REG_INT, 0 };
msleep(10);
/* ...and set or clear the AL0E bit in the INT register */
/* Need to set RWEL again as the write has cleared it */
xfer = i2c_master_send(client, rwel, 3);
if (xfer != 3) {
dev_err(&client->dev,
"%s: aloe rwel - %d\n",
__func__,
xfer);
return -EIO;
}
if (alm_enable)
al0e[2] = X1205_INT_AL0E;
xfer = i2c_master_send(client, al0e, 3);
if (xfer != 3) {
dev_err(&client->dev,
"%s: al0e - %d\n",
__func__,
xfer);
return -EIO;
}
/* and wait 10msec again for this write to complete */
msleep(10);
}
/* disable further writes */
xfer = i2c_master_send(client, diswe, 3);
if (xfer != 3) {
dev_err(&client->dev, "%s: diswe - %d\n", __func__, xfer);
return -EIO;
}
return 0;
}
static int x1205_fix_osc(struct i2c_client *client)
{
int err;
struct rtc_time tm;
memset(&tm, 0, sizeof(tm));
err = x1205_set_datetime(client, &tm, X1205_CCR_BASE, 0);
if (err < 0)
dev_err(&client->dev, "unable to restart the oscillator\n");
return err;
}
static int x1205_get_dtrim(struct i2c_client *client, int *trim)
{
unsigned char dtr;
static unsigned char dtr_addr[2] = { 0, X1205_REG_DTR };
struct i2c_msg msgs[] = {
{ /* setup read ptr */
.addr = client->addr,
.len = 2,
.buf = dtr_addr
},
{ /* read dtr */
.addr = client->addr,
.flags = I2C_M_RD,
.len = 1,
.buf = &dtr
},
};
/* read dtr register */
if (i2c_transfer(client->adapter, &msgs[0], 2) != 2) {
dev_err(&client->dev, "%s: read error\n", __func__);
return -EIO;
}
dev_dbg(&client->dev, "%s: raw dtr=%x\n", __func__, dtr);
*trim = 0;
if (dtr & X1205_DTR_DTR0)
*trim += 20;
if (dtr & X1205_DTR_DTR1)
*trim += 10;
if (dtr & X1205_DTR_DTR2)
*trim = -*trim;
return 0;
}
static int x1205_get_atrim(struct i2c_client *client, int *trim)
{
s8 atr;
static unsigned char atr_addr[2] = { 0, X1205_REG_ATR };
struct i2c_msg msgs[] = {
{/* setup read ptr */
.addr = client->addr,
.len = 2,
.buf = atr_addr
},
{/* read atr */
.addr = client->addr,
.flags = I2C_M_RD,
.len = 1,
.buf = &atr
},
};
/* read atr register */
if (i2c_transfer(client->adapter, &msgs[0], 2) != 2) {
dev_err(&client->dev, "%s: read error\n", __func__);
return -EIO;
}
dev_dbg(&client->dev, "%s: raw atr=%x\n", __func__, atr);
/* atr is a two's complement value on 6 bits,
* perform sign extension. The formula is
* Catr = (atr * 0.25pF) + 11.00pF.
*/
atr = sign_extend32(atr, 5);
dev_dbg(&client->dev, "%s: raw atr=%x (%d)\n", __func__, atr, atr);
*trim = (atr * 250) + 11000;
dev_dbg(&client->dev, "%s: real=%d\n", __func__, *trim);
return 0;
}
struct x1205_limit {
unsigned char reg, mask, min, max;
};
static int x1205_validate_client(struct i2c_client *client)
{
int i, xfer;
/* Probe array. We will read the register at the specified
* address and check if the given bits are zero.
*/
static const unsigned char probe_zero_pattern[] = {
/* register, mask */
X1205_REG_SR, 0x18,
X1205_REG_DTR, 0xF8,
X1205_REG_ATR, 0xC0,
X1205_REG_INT, 0x18,
X1205_REG_0, 0xFF,
};
static const struct x1205_limit probe_limits_pattern[] = {
/* register, mask, min, max */
{ X1205_REG_Y2K, 0xFF, 19, 20 },
{ X1205_REG_DW, 0xFF, 0, 6 },
{ X1205_REG_YR, 0xFF, 0, 99 },
{ X1205_REG_MO, 0xFF, 0, 12 },
{ X1205_REG_DT, 0xFF, 0, 31 },
{ X1205_REG_HR, 0x7F, 0, 23 },
{ X1205_REG_MN, 0xFF, 0, 59 },
{ X1205_REG_SC, 0xFF, 0, 59 },
{ X1205_REG_Y2K1, 0xFF, 19, 20 },
{ X1205_REG_Y2K0, 0xFF, 19, 20 },
};
/* check that registers have bits a 0 where expected */
for (i = 0; i < ARRAY_SIZE(probe_zero_pattern); i += 2) {
unsigned char buf;
unsigned char addr[2] = { 0, probe_zero_pattern[i] };
struct i2c_msg msgs[2] = {
{
.addr = client->addr,
.len = 2,
.buf = addr
},
{
.addr = client->addr,
.flags = I2C_M_RD,
.len = 1,
.buf = &buf
},
};
xfer = i2c_transfer(client->adapter, msgs, 2);
if (xfer != 2) {
dev_err(&client->dev,
"%s: could not read register %x\n",
__func__, probe_zero_pattern[i]);
return -EIO;
}
if ((buf & probe_zero_pattern[i+1]) != 0) {
dev_err(&client->dev,
"%s: register=%02x, zero pattern=%d, value=%x\n",
__func__, probe_zero_pattern[i], i, buf);
return -ENODEV;
}
}
/* check limits (only registers with bcd values) */
for (i = 0; i < ARRAY_SIZE(probe_limits_pattern); i++) {
unsigned char reg, value;
unsigned char addr[2] = { 0, probe_limits_pattern[i].reg };
struct i2c_msg msgs[2] = {
{
.addr = client->addr,
.len = 2,
.buf = addr
},
{
.addr = client->addr,
.flags = I2C_M_RD,
.len = 1,
.buf = &reg
},
};
xfer = i2c_transfer(client->adapter, msgs, 2);
if (xfer != 2) {
dev_err(&client->dev,
"%s: could not read register %x\n",
__func__, probe_limits_pattern[i].reg);
return -EIO;
}
value = bcd2bin(reg & probe_limits_pattern[i].mask);
if (value > probe_limits_pattern[i].max ||
value < probe_limits_pattern[i].min) {
dev_dbg(&client->dev,
"%s: register=%x, lim pattern=%d, value=%d\n",
__func__, probe_limits_pattern[i].reg,
i, value);
return -ENODEV;
}
}
return 0;
}
static int x1205_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
{
int err;
unsigned char intreg, status;
static unsigned char int_addr[2] = { 0, X1205_REG_INT };
struct i2c_client *client = to_i2c_client(dev);
struct i2c_msg msgs[] = {
{ /* setup read ptr */
.addr = client->addr,
.len = 2,
.buf = int_addr
},
{/* read INT register */
.addr = client->addr,
.flags = I2C_M_RD,
.len = 1,
.buf = &intreg
},
};
/* read interrupt register and status register */
if (i2c_transfer(client->adapter, &msgs[0], 2) != 2) {
dev_err(&client->dev, "%s: read error\n", __func__);
return -EIO;
}
err = x1205_get_status(client, &status);
if (err == 0) {
alrm->pending = (status & X1205_SR_AL0) ? 1 : 0;
alrm->enabled = (intreg & X1205_INT_AL0E) ? 1 : 0;
err = x1205_get_datetime(client, &alrm->time, X1205_ALM0_BASE);
}
return err;
}
static int x1205_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
{
return x1205_set_datetime(to_i2c_client(dev),
&alrm->time, X1205_ALM0_BASE, alrm->enabled);
}
static int x1205_rtc_read_time(struct device *dev, struct rtc_time *tm)
{
return x1205_get_datetime(to_i2c_client(dev),
tm, X1205_CCR_BASE);
}
static int x1205_rtc_set_time(struct device *dev, struct rtc_time *tm)
{
return x1205_set_datetime(to_i2c_client(dev),
tm, X1205_CCR_BASE, 0);
}
static int x1205_rtc_proc(struct device *dev, struct seq_file *seq)
{
int err, dtrim, atrim;
err = x1205_get_dtrim(to_i2c_client(dev), &dtrim);
if (!err)
seq_printf(seq, "digital_trim\t: %d ppm\n", dtrim);
err = x1205_get_atrim(to_i2c_client(dev), &atrim);
if (!err)
seq_printf(seq, "analog_trim\t: %d.%02d pF\n",
atrim / 1000, atrim % 1000);
return 0;
}
static const struct rtc_class_ops x1205_rtc_ops = {
.proc = x1205_rtc_proc,
.read_time = x1205_rtc_read_time,
.set_time = x1205_rtc_set_time,
.read_alarm = x1205_rtc_read_alarm,
.set_alarm = x1205_rtc_set_alarm,
};
static ssize_t x1205_sysfs_show_atrim(struct device *dev,
struct device_attribute *attr, char *buf)
{
int err, atrim;
err = x1205_get_atrim(to_i2c_client(dev), &atrim);
if (err)
return err;
return sprintf(buf, "%d.%02d pF\n", atrim / 1000, atrim % 1000);
}
static DEVICE_ATTR(atrim, S_IRUGO, x1205_sysfs_show_atrim, NULL);
static ssize_t x1205_sysfs_show_dtrim(struct device *dev,
struct device_attribute *attr, char *buf)
{
int err, dtrim;
err = x1205_get_dtrim(to_i2c_client(dev), &dtrim);
if (err)
return err;
return sprintf(buf, "%d ppm\n", dtrim);
}
static DEVICE_ATTR(dtrim, S_IRUGO, x1205_sysfs_show_dtrim, NULL);
static int x1205_sysfs_register(struct device *dev)
{
int err;
err = device_create_file(dev, &dev_attr_atrim);
if (err)
return err;
err = device_create_file(dev, &dev_attr_dtrim);
if (err)
device_remove_file(dev, &dev_attr_atrim);
return err;
}
static void x1205_sysfs_unregister(struct device *dev)
{
device_remove_file(dev, &dev_attr_atrim);
device_remove_file(dev, &dev_attr_dtrim);
}
static int x1205_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
int err = 0;
unsigned char sr;
struct rtc_device *rtc;
dev_dbg(&client->dev, "%s\n", __func__);
if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C))
return -ENODEV;
if (x1205_validate_client(client) < 0)
return -ENODEV;
rtc = devm_rtc_device_register(&client->dev, x1205_driver.driver.name,
&x1205_rtc_ops, THIS_MODULE);
if (IS_ERR(rtc))
return PTR_ERR(rtc);
i2c_set_clientdata(client, rtc);
/* Check for power failures and eventually enable the osc */
err = x1205_get_status(client, &sr);
if (!err) {
if (sr & X1205_SR_RTCF) {
dev_err(&client->dev,
"power failure detected, "
"please set the clock\n");
udelay(50);
x1205_fix_osc(client);
}
} else {
dev_err(&client->dev, "couldn't read status\n");
}
err = x1205_sysfs_register(&client->dev);
if (err)
dev_err(&client->dev, "Unable to create sysfs entries\n");
return 0;
}
static int x1205_remove(struct i2c_client *client)
{
x1205_sysfs_unregister(&client->dev);
return 0;
}
static const struct i2c_device_id x1205_id[] = {
{ "x1205", 0 },
{ }
};
MODULE_DEVICE_TABLE(i2c, x1205_id);
static const struct of_device_id x1205_dt_ids[] = {
{ .compatible = "xircom,x1205", },
{},
};
MODULE_DEVICE_TABLE(of, x1205_dt_ids);
static struct i2c_driver x1205_driver = {
.driver = {
.name = "rtc-x1205",
.of_match_table = x1205_dt_ids,
},
.probe = x1205_probe,
.remove = x1205_remove,
.id_table = x1205_id,
};
module_i2c_driver(x1205_driver);
MODULE_AUTHOR(
"Karen Spearel <kas111 at gmail dot com>, "
"Alessandro Zummo <a.zummo@towertech.it>");
MODULE_DESCRIPTION("Xicor/Intersil X1205 RTC driver");
MODULE_LICENSE("GPL");