linux_old1/drivers/soc/fsl/qe/qe.c

733 lines
18 KiB
C

/*
* Copyright (C) 2006-2010 Freescale Semiconductor, Inc. All rights reserved.
*
* Authors: Shlomi Gridish <gridish@freescale.com>
* Li Yang <leoli@freescale.com>
* Based on cpm2_common.c from Dan Malek (dmalek@jlc.net)
*
* Description:
* General Purpose functions for the global management of the
* QUICC Engine (QE).
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*/
#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/param.h>
#include <linux/string.h>
#include <linux/spinlock.h>
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/delay.h>
#include <linux/ioport.h>
#include <linux/crc32.h>
#include <linux/mod_devicetable.h>
#include <linux/of_platform.h>
#include <asm/irq.h>
#include <asm/page.h>
#include <asm/pgtable.h>
#include <soc/fsl/qe/immap_qe.h>
#include <soc/fsl/qe/qe.h>
#include <asm/prom.h>
#include <asm/rheap.h>
static void qe_snums_init(void);
static int qe_sdma_init(void);
static DEFINE_SPINLOCK(qe_lock);
DEFINE_SPINLOCK(cmxgcr_lock);
EXPORT_SYMBOL(cmxgcr_lock);
/* QE snum state */
enum qe_snum_state {
QE_SNUM_STATE_USED,
QE_SNUM_STATE_FREE
};
/* QE snum */
struct qe_snum {
u8 num;
enum qe_snum_state state;
};
/* We allocate this here because it is used almost exclusively for
* the communication processor devices.
*/
struct qe_immap __iomem *qe_immr;
EXPORT_SYMBOL(qe_immr);
static struct qe_snum snums[QE_NUM_OF_SNUM]; /* Dynamically allocated SNUMs */
static unsigned int qe_num_of_snum;
static phys_addr_t qebase = -1;
static phys_addr_t get_qe_base(void)
{
struct device_node *qe;
int ret;
struct resource res;
if (qebase != -1)
return qebase;
qe = of_find_compatible_node(NULL, NULL, "fsl,qe");
if (!qe) {
qe = of_find_node_by_type(NULL, "qe");
if (!qe)
return qebase;
}
ret = of_address_to_resource(qe, 0, &res);
if (!ret)
qebase = res.start;
of_node_put(qe);
return qebase;
}
void qe_reset(void)
{
if (qe_immr == NULL)
qe_immr = ioremap(get_qe_base(), QE_IMMAP_SIZE);
qe_snums_init();
qe_issue_cmd(QE_RESET, QE_CR_SUBBLOCK_INVALID,
QE_CR_PROTOCOL_UNSPECIFIED, 0);
/* Reclaim the MURAM memory for our use. */
qe_muram_init();
if (qe_sdma_init())
panic("sdma init failed!");
}
int qe_issue_cmd(u32 cmd, u32 device, u8 mcn_protocol, u32 cmd_input)
{
unsigned long flags;
u8 mcn_shift = 0, dev_shift = 0;
u32 ret;
spin_lock_irqsave(&qe_lock, flags);
if (cmd == QE_RESET) {
out_be32(&qe_immr->cp.cecr, (u32) (cmd | QE_CR_FLG));
} else {
if (cmd == QE_ASSIGN_PAGE) {
/* Here device is the SNUM, not sub-block */
dev_shift = QE_CR_SNUM_SHIFT;
} else if (cmd == QE_ASSIGN_RISC) {
/* Here device is the SNUM, and mcnProtocol is
* e_QeCmdRiscAssignment value */
dev_shift = QE_CR_SNUM_SHIFT;
mcn_shift = QE_CR_MCN_RISC_ASSIGN_SHIFT;
} else {
if (device == QE_CR_SUBBLOCK_USB)
mcn_shift = QE_CR_MCN_USB_SHIFT;
else
mcn_shift = QE_CR_MCN_NORMAL_SHIFT;
}
out_be32(&qe_immr->cp.cecdr, cmd_input);
out_be32(&qe_immr->cp.cecr,
(cmd | QE_CR_FLG | ((u32) device << dev_shift) | (u32)
mcn_protocol << mcn_shift));
}
/* wait for the QE_CR_FLG to clear */
ret = spin_event_timeout((in_be32(&qe_immr->cp.cecr) & QE_CR_FLG) == 0,
100, 0);
/* On timeout (e.g. failure), the expression will be false (ret == 0),
otherwise it will be true (ret == 1). */
spin_unlock_irqrestore(&qe_lock, flags);
return ret == 1;
}
EXPORT_SYMBOL(qe_issue_cmd);
/* Set a baud rate generator. This needs lots of work. There are
* 16 BRGs, which can be connected to the QE channels or output
* as clocks. The BRGs are in two different block of internal
* memory mapped space.
* The BRG clock is the QE clock divided by 2.
* It was set up long ago during the initial boot phase and is
* is given to us.
* Baud rate clocks are zero-based in the driver code (as that maps
* to port numbers). Documentation uses 1-based numbering.
*/
static unsigned int brg_clk = 0;
#define CLK_GRAN (1000)
#define CLK_GRAN_LIMIT (5)
unsigned int qe_get_brg_clk(void)
{
struct device_node *qe;
int size;
const u32 *prop;
unsigned int mod;
if (brg_clk)
return brg_clk;
qe = of_find_compatible_node(NULL, NULL, "fsl,qe");
if (!qe) {
qe = of_find_node_by_type(NULL, "qe");
if (!qe)
return brg_clk;
}
prop = of_get_property(qe, "brg-frequency", &size);
if (prop && size == sizeof(*prop))
brg_clk = *prop;
of_node_put(qe);
/* round this if near to a multiple of CLK_GRAN */
mod = brg_clk % CLK_GRAN;
if (mod) {
if (mod < CLK_GRAN_LIMIT)
brg_clk -= mod;
else if (mod > (CLK_GRAN - CLK_GRAN_LIMIT))
brg_clk += CLK_GRAN - mod;
}
return brg_clk;
}
EXPORT_SYMBOL(qe_get_brg_clk);
#define PVR_VER_836x 0x8083
#define PVR_VER_832x 0x8084
/* Program the BRG to the given sampling rate and multiplier
*
* @brg: the BRG, QE_BRG1 - QE_BRG16
* @rate: the desired sampling rate
* @multiplier: corresponds to the value programmed in GUMR_L[RDCR] or
* GUMR_L[TDCR]. E.g., if this BRG is the RX clock, and GUMR_L[RDCR]=01,
* then 'multiplier' should be 8.
*/
int qe_setbrg(enum qe_clock brg, unsigned int rate, unsigned int multiplier)
{
u32 divisor, tempval;
u32 div16 = 0;
if ((brg < QE_BRG1) || (brg > QE_BRG16))
return -EINVAL;
divisor = qe_get_brg_clk() / (rate * multiplier);
if (divisor > QE_BRGC_DIVISOR_MAX + 1) {
div16 = QE_BRGC_DIV16;
divisor /= 16;
}
/* Errata QE_General4, which affects some MPC832x and MPC836x SOCs, says
that the BRG divisor must be even if you're not using divide-by-16
mode. */
if (pvr_version_is(PVR_VER_836x) || pvr_version_is(PVR_VER_832x))
if (!div16 && (divisor & 1) && (divisor > 3))
divisor++;
tempval = ((divisor - 1) << QE_BRGC_DIVISOR_SHIFT) |
QE_BRGC_ENABLE | div16;
out_be32(&qe_immr->brg.brgc[brg - QE_BRG1], tempval);
return 0;
}
EXPORT_SYMBOL(qe_setbrg);
/* Convert a string to a QE clock source enum
*
* This function takes a string, typically from a property in the device
* tree, and returns the corresponding "enum qe_clock" value.
*/
enum qe_clock qe_clock_source(const char *source)
{
unsigned int i;
if (strcasecmp(source, "none") == 0)
return QE_CLK_NONE;
if (strcmp(source, "tsync_pin") == 0)
return QE_TSYNC_PIN;
if (strcmp(source, "rsync_pin") == 0)
return QE_RSYNC_PIN;
if (strncasecmp(source, "brg", 3) == 0) {
i = simple_strtoul(source + 3, NULL, 10);
if ((i >= 1) && (i <= 16))
return (QE_BRG1 - 1) + i;
else
return QE_CLK_DUMMY;
}
if (strncasecmp(source, "clk", 3) == 0) {
i = simple_strtoul(source + 3, NULL, 10);
if ((i >= 1) && (i <= 24))
return (QE_CLK1 - 1) + i;
else
return QE_CLK_DUMMY;
}
return QE_CLK_DUMMY;
}
EXPORT_SYMBOL(qe_clock_source);
/* Initialize SNUMs (thread serial numbers) according to
* QE Module Control chapter, SNUM table
*/
static void qe_snums_init(void)
{
int i;
static const u8 snum_init_76[] = {
0x04, 0x05, 0x0C, 0x0D, 0x14, 0x15, 0x1C, 0x1D,
0x24, 0x25, 0x2C, 0x2D, 0x34, 0x35, 0x88, 0x89,
0x98, 0x99, 0xA8, 0xA9, 0xB8, 0xB9, 0xC8, 0xC9,
0xD8, 0xD9, 0xE8, 0xE9, 0x44, 0x45, 0x4C, 0x4D,
0x54, 0x55, 0x5C, 0x5D, 0x64, 0x65, 0x6C, 0x6D,
0x74, 0x75, 0x7C, 0x7D, 0x84, 0x85, 0x8C, 0x8D,
0x94, 0x95, 0x9C, 0x9D, 0xA4, 0xA5, 0xAC, 0xAD,
0xB4, 0xB5, 0xBC, 0xBD, 0xC4, 0xC5, 0xCC, 0xCD,
0xD4, 0xD5, 0xDC, 0xDD, 0xE4, 0xE5, 0xEC, 0xED,
0xF4, 0xF5, 0xFC, 0xFD,
};
static const u8 snum_init_46[] = {
0x04, 0x05, 0x0C, 0x0D, 0x14, 0x15, 0x1C, 0x1D,
0x24, 0x25, 0x2C, 0x2D, 0x34, 0x35, 0x88, 0x89,
0x98, 0x99, 0xA8, 0xA9, 0xB8, 0xB9, 0xC8, 0xC9,
0xD8, 0xD9, 0xE8, 0xE9, 0x08, 0x09, 0x18, 0x19,
0x28, 0x29, 0x38, 0x39, 0x48, 0x49, 0x58, 0x59,
0x68, 0x69, 0x78, 0x79, 0x80, 0x81,
};
static const u8 *snum_init;
qe_num_of_snum = qe_get_num_of_snums();
if (qe_num_of_snum == 76)
snum_init = snum_init_76;
else
snum_init = snum_init_46;
for (i = 0; i < qe_num_of_snum; i++) {
snums[i].num = snum_init[i];
snums[i].state = QE_SNUM_STATE_FREE;
}
}
int qe_get_snum(void)
{
unsigned long flags;
int snum = -EBUSY;
int i;
spin_lock_irqsave(&qe_lock, flags);
for (i = 0; i < qe_num_of_snum; i++) {
if (snums[i].state == QE_SNUM_STATE_FREE) {
snums[i].state = QE_SNUM_STATE_USED;
snum = snums[i].num;
break;
}
}
spin_unlock_irqrestore(&qe_lock, flags);
return snum;
}
EXPORT_SYMBOL(qe_get_snum);
void qe_put_snum(u8 snum)
{
int i;
for (i = 0; i < qe_num_of_snum; i++) {
if (snums[i].num == snum) {
snums[i].state = QE_SNUM_STATE_FREE;
break;
}
}
}
EXPORT_SYMBOL(qe_put_snum);
static int qe_sdma_init(void)
{
struct sdma __iomem *sdma = &qe_immr->sdma;
static unsigned long sdma_buf_offset = (unsigned long)-ENOMEM;
if (!sdma)
return -ENODEV;
/* allocate 2 internal temporary buffers (512 bytes size each) for
* the SDMA */
if (IS_ERR_VALUE(sdma_buf_offset)) {
sdma_buf_offset = qe_muram_alloc(512 * 2, 4096);
if (IS_ERR_VALUE(sdma_buf_offset))
return -ENOMEM;
}
out_be32(&sdma->sdebcr, (u32) sdma_buf_offset & QE_SDEBCR_BA_MASK);
out_be32(&sdma->sdmr, (QE_SDMR_GLB_1_MSK |
(0x1 << QE_SDMR_CEN_SHIFT)));
return 0;
}
/* The maximum number of RISCs we support */
#define MAX_QE_RISC 4
/* Firmware information stored here for qe_get_firmware_info() */
static struct qe_firmware_info qe_firmware_info;
/*
* Set to 1 if QE firmware has been uploaded, and therefore
* qe_firmware_info contains valid data.
*/
static int qe_firmware_uploaded;
/*
* Upload a QE microcode
*
* This function is a worker function for qe_upload_firmware(). It does
* the actual uploading of the microcode.
*/
static void qe_upload_microcode(const void *base,
const struct qe_microcode *ucode)
{
const __be32 *code = base + be32_to_cpu(ucode->code_offset);
unsigned int i;
if (ucode->major || ucode->minor || ucode->revision)
printk(KERN_INFO "qe-firmware: "
"uploading microcode '%s' version %u.%u.%u\n",
ucode->id, ucode->major, ucode->minor, ucode->revision);
else
printk(KERN_INFO "qe-firmware: "
"uploading microcode '%s'\n", ucode->id);
/* Use auto-increment */
out_be32(&qe_immr->iram.iadd, be32_to_cpu(ucode->iram_offset) |
QE_IRAM_IADD_AIE | QE_IRAM_IADD_BADDR);
for (i = 0; i < be32_to_cpu(ucode->count); i++)
out_be32(&qe_immr->iram.idata, be32_to_cpu(code[i]));
/* Set I-RAM Ready Register */
out_be32(&qe_immr->iram.iready, be32_to_cpu(QE_IRAM_READY));
}
/*
* Upload a microcode to the I-RAM at a specific address.
*
* See Documentation/powerpc/qe_firmware.txt for information on QE microcode
* uploading.
*
* Currently, only version 1 is supported, so the 'version' field must be
* set to 1.
*
* The SOC model and revision are not validated, they are only displayed for
* informational purposes.
*
* 'calc_size' is the calculated size, in bytes, of the firmware structure and
* all of the microcode structures, minus the CRC.
*
* 'length' is the size that the structure says it is, including the CRC.
*/
int qe_upload_firmware(const struct qe_firmware *firmware)
{
unsigned int i;
unsigned int j;
u32 crc;
size_t calc_size = sizeof(struct qe_firmware);
size_t length;
const struct qe_header *hdr;
if (!firmware) {
printk(KERN_ERR "qe-firmware: invalid pointer\n");
return -EINVAL;
}
hdr = &firmware->header;
length = be32_to_cpu(hdr->length);
/* Check the magic */
if ((hdr->magic[0] != 'Q') || (hdr->magic[1] != 'E') ||
(hdr->magic[2] != 'F')) {
printk(KERN_ERR "qe-firmware: not a microcode\n");
return -EPERM;
}
/* Check the version */
if (hdr->version != 1) {
printk(KERN_ERR "qe-firmware: unsupported version\n");
return -EPERM;
}
/* Validate some of the fields */
if ((firmware->count < 1) || (firmware->count > MAX_QE_RISC)) {
printk(KERN_ERR "qe-firmware: invalid data\n");
return -EINVAL;
}
/* Validate the length and check if there's a CRC */
calc_size += (firmware->count - 1) * sizeof(struct qe_microcode);
for (i = 0; i < firmware->count; i++)
/*
* For situations where the second RISC uses the same microcode
* as the first, the 'code_offset' and 'count' fields will be
* zero, so it's okay to add those.
*/
calc_size += sizeof(__be32) *
be32_to_cpu(firmware->microcode[i].count);
/* Validate the length */
if (length != calc_size + sizeof(__be32)) {
printk(KERN_ERR "qe-firmware: invalid length\n");
return -EPERM;
}
/* Validate the CRC */
crc = be32_to_cpu(*(__be32 *)((void *)firmware + calc_size));
if (crc != crc32(0, firmware, calc_size)) {
printk(KERN_ERR "qe-firmware: firmware CRC is invalid\n");
return -EIO;
}
/*
* If the microcode calls for it, split the I-RAM.
*/
if (!firmware->split)
setbits16(&qe_immr->cp.cercr, QE_CP_CERCR_CIR);
if (firmware->soc.model)
printk(KERN_INFO
"qe-firmware: firmware '%s' for %u V%u.%u\n",
firmware->id, be16_to_cpu(firmware->soc.model),
firmware->soc.major, firmware->soc.minor);
else
printk(KERN_INFO "qe-firmware: firmware '%s'\n",
firmware->id);
/*
* The QE only supports one microcode per RISC, so clear out all the
* saved microcode information and put in the new.
*/
memset(&qe_firmware_info, 0, sizeof(qe_firmware_info));
strlcpy(qe_firmware_info.id, firmware->id, sizeof(qe_firmware_info.id));
qe_firmware_info.extended_modes = firmware->extended_modes;
memcpy(qe_firmware_info.vtraps, firmware->vtraps,
sizeof(firmware->vtraps));
/* Loop through each microcode. */
for (i = 0; i < firmware->count; i++) {
const struct qe_microcode *ucode = &firmware->microcode[i];
/* Upload a microcode if it's present */
if (ucode->code_offset)
qe_upload_microcode(firmware, ucode);
/* Program the traps for this processor */
for (j = 0; j < 16; j++) {
u32 trap = be32_to_cpu(ucode->traps[j]);
if (trap)
out_be32(&qe_immr->rsp[i].tibcr[j], trap);
}
/* Enable traps */
out_be32(&qe_immr->rsp[i].eccr, be32_to_cpu(ucode->eccr));
}
qe_firmware_uploaded = 1;
return 0;
}
EXPORT_SYMBOL(qe_upload_firmware);
/*
* Get info on the currently-loaded firmware
*
* This function also checks the device tree to see if the boot loader has
* uploaded a firmware already.
*/
struct qe_firmware_info *qe_get_firmware_info(void)
{
static int initialized;
struct property *prop;
struct device_node *qe;
struct device_node *fw = NULL;
const char *sprop;
unsigned int i;
/*
* If we haven't checked yet, and a driver hasn't uploaded a firmware
* yet, then check the device tree for information.
*/
if (qe_firmware_uploaded)
return &qe_firmware_info;
if (initialized)
return NULL;
initialized = 1;
/*
* Newer device trees have an "fsl,qe" compatible property for the QE
* node, but we still need to support older device trees.
*/
qe = of_find_compatible_node(NULL, NULL, "fsl,qe");
if (!qe) {
qe = of_find_node_by_type(NULL, "qe");
if (!qe)
return NULL;
}
/* Find the 'firmware' child node */
fw = of_get_child_by_name(qe, "firmware");
of_node_put(qe);
/* Did we find the 'firmware' node? */
if (!fw)
return NULL;
qe_firmware_uploaded = 1;
/* Copy the data into qe_firmware_info*/
sprop = of_get_property(fw, "id", NULL);
if (sprop)
strlcpy(qe_firmware_info.id, sprop,
sizeof(qe_firmware_info.id));
prop = of_find_property(fw, "extended-modes", NULL);
if (prop && (prop->length == sizeof(u64))) {
const u64 *iprop = prop->value;
qe_firmware_info.extended_modes = *iprop;
}
prop = of_find_property(fw, "virtual-traps", NULL);
if (prop && (prop->length == 32)) {
const u32 *iprop = prop->value;
for (i = 0; i < ARRAY_SIZE(qe_firmware_info.vtraps); i++)
qe_firmware_info.vtraps[i] = iprop[i];
}
of_node_put(fw);
return &qe_firmware_info;
}
EXPORT_SYMBOL(qe_get_firmware_info);
unsigned int qe_get_num_of_risc(void)
{
struct device_node *qe;
int size;
unsigned int num_of_risc = 0;
const u32 *prop;
qe = of_find_compatible_node(NULL, NULL, "fsl,qe");
if (!qe) {
/* Older devices trees did not have an "fsl,qe"
* compatible property, so we need to look for
* the QE node by name.
*/
qe = of_find_node_by_type(NULL, "qe");
if (!qe)
return num_of_risc;
}
prop = of_get_property(qe, "fsl,qe-num-riscs", &size);
if (prop && size == sizeof(*prop))
num_of_risc = *prop;
of_node_put(qe);
return num_of_risc;
}
EXPORT_SYMBOL(qe_get_num_of_risc);
unsigned int qe_get_num_of_snums(void)
{
struct device_node *qe;
int size;
unsigned int num_of_snums;
const u32 *prop;
num_of_snums = 28; /* The default number of snum for threads is 28 */
qe = of_find_compatible_node(NULL, NULL, "fsl,qe");
if (!qe) {
/* Older devices trees did not have an "fsl,qe"
* compatible property, so we need to look for
* the QE node by name.
*/
qe = of_find_node_by_type(NULL, "qe");
if (!qe)
return num_of_snums;
}
prop = of_get_property(qe, "fsl,qe-num-snums", &size);
if (prop && size == sizeof(*prop)) {
num_of_snums = *prop;
if ((num_of_snums < 28) || (num_of_snums > QE_NUM_OF_SNUM)) {
/* No QE ever has fewer than 28 SNUMs */
pr_err("QE: number of snum is invalid\n");
of_node_put(qe);
return -EINVAL;
}
}
of_node_put(qe);
return num_of_snums;
}
EXPORT_SYMBOL(qe_get_num_of_snums);
static int __init qe_init(void)
{
struct device_node *np;
np = of_find_compatible_node(NULL, NULL, "fsl,qe");
if (!np)
return -ENODEV;
qe_reset();
of_node_put(np);
return 0;
}
subsys_initcall(qe_init);
#if defined(CONFIG_SUSPEND) && defined(CONFIG_PPC_85xx)
static int qe_resume(struct platform_device *ofdev)
{
if (!qe_alive_during_sleep())
qe_reset();
return 0;
}
static int qe_probe(struct platform_device *ofdev)
{
return 0;
}
static const struct of_device_id qe_ids[] = {
{ .compatible = "fsl,qe", },
{ },
};
static struct platform_driver qe_driver = {
.driver = {
.name = "fsl-qe",
.of_match_table = qe_ids,
},
.probe = qe_probe,
.resume = qe_resume,
};
builtin_platform_driver(qe_driver);
#endif /* defined(CONFIG_SUSPEND) && defined(CONFIG_PPC_85xx) */