2074 lines
71 KiB
C
2074 lines
71 KiB
C
/*
|
|
* Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
|
|
*/
|
|
|
|
/*
|
|
* Written by Anatoly P. Pinchuk pap@namesys.botik.ru
|
|
* Programm System Institute
|
|
* Pereslavl-Zalessky Russia
|
|
*/
|
|
|
|
/*
|
|
* This file contains functions dealing with S+tree
|
|
*
|
|
* B_IS_IN_TREE
|
|
* copy_item_head
|
|
* comp_short_keys
|
|
* comp_keys
|
|
* comp_short_le_keys
|
|
* le_key2cpu_key
|
|
* comp_le_keys
|
|
* bin_search
|
|
* get_lkey
|
|
* get_rkey
|
|
* key_in_buffer
|
|
* decrement_bcount
|
|
* decrement_counters_in_path
|
|
* reiserfs_check_path
|
|
* pathrelse_and_restore
|
|
* pathrelse
|
|
* search_by_key_reada
|
|
* search_by_key
|
|
* search_for_position_by_key
|
|
* comp_items
|
|
* prepare_for_direct_item
|
|
* prepare_for_direntry_item
|
|
* prepare_for_delete_or_cut
|
|
* calc_deleted_bytes_number
|
|
* init_tb_struct
|
|
* padd_item
|
|
* reiserfs_delete_item
|
|
* reiserfs_delete_solid_item
|
|
* reiserfs_delete_object
|
|
* maybe_indirect_to_direct
|
|
* indirect_to_direct_roll_back
|
|
* reiserfs_cut_from_item
|
|
* truncate_directory
|
|
* reiserfs_do_truncate
|
|
* reiserfs_paste_into_item
|
|
* reiserfs_insert_item
|
|
*/
|
|
|
|
#include <linux/config.h>
|
|
#include <linux/time.h>
|
|
#include <linux/string.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/reiserfs_fs.h>
|
|
#include <linux/smp_lock.h>
|
|
#include <linux/buffer_head.h>
|
|
#include <linux/quotaops.h>
|
|
|
|
/* Does the buffer contain a disk block which is in the tree. */
|
|
inline int B_IS_IN_TREE (const struct buffer_head * p_s_bh)
|
|
{
|
|
|
|
RFALSE( B_LEVEL (p_s_bh) > MAX_HEIGHT,
|
|
"PAP-1010: block (%b) has too big level (%z)", p_s_bh, p_s_bh);
|
|
|
|
return ( B_LEVEL (p_s_bh) != FREE_LEVEL );
|
|
}
|
|
|
|
//
|
|
// to gets item head in le form
|
|
//
|
|
inline void copy_item_head(struct item_head * p_v_to,
|
|
const struct item_head * p_v_from)
|
|
{
|
|
memcpy (p_v_to, p_v_from, IH_SIZE);
|
|
}
|
|
|
|
|
|
/* k1 is pointer to on-disk structure which is stored in little-endian
|
|
form. k2 is pointer to cpu variable. For key of items of the same
|
|
object this returns 0.
|
|
Returns: -1 if key1 < key2
|
|
0 if key1 == key2
|
|
1 if key1 > key2 */
|
|
inline int comp_short_keys (const struct reiserfs_key * le_key,
|
|
const struct cpu_key * cpu_key)
|
|
{
|
|
__u32 n;
|
|
n = le32_to_cpu(le_key->k_dir_id);
|
|
if (n < cpu_key->on_disk_key.k_dir_id)
|
|
return -1;
|
|
if (n > cpu_key->on_disk_key.k_dir_id)
|
|
return 1;
|
|
n = le32_to_cpu(le_key->k_objectid);
|
|
if (n < cpu_key->on_disk_key.k_objectid)
|
|
return -1;
|
|
if (n > cpu_key->on_disk_key.k_objectid)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
/* k1 is pointer to on-disk structure which is stored in little-endian
|
|
form. k2 is pointer to cpu variable.
|
|
Compare keys using all 4 key fields.
|
|
Returns: -1 if key1 < key2 0
|
|
if key1 = key2 1 if key1 > key2 */
|
|
static inline int comp_keys (const struct reiserfs_key * le_key, const struct cpu_key * cpu_key)
|
|
{
|
|
int retval;
|
|
|
|
retval = comp_short_keys (le_key, cpu_key);
|
|
if (retval)
|
|
return retval;
|
|
if (le_key_k_offset (le_key_version(le_key), le_key) < cpu_key_k_offset (cpu_key))
|
|
return -1;
|
|
if (le_key_k_offset (le_key_version(le_key), le_key) > cpu_key_k_offset (cpu_key))
|
|
return 1;
|
|
|
|
if (cpu_key->key_length == 3)
|
|
return 0;
|
|
|
|
/* this part is needed only when tail conversion is in progress */
|
|
if (le_key_k_type (le_key_version(le_key), le_key) < cpu_key_k_type (cpu_key))
|
|
return -1;
|
|
|
|
if (le_key_k_type (le_key_version(le_key), le_key) > cpu_key_k_type (cpu_key))
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
inline int comp_short_le_keys (const struct reiserfs_key * key1, const struct reiserfs_key * key2)
|
|
{
|
|
__u32 * p_s_1_u32, * p_s_2_u32;
|
|
int n_key_length = REISERFS_SHORT_KEY_LEN;
|
|
|
|
p_s_1_u32 = (__u32 *)key1;
|
|
p_s_2_u32 = (__u32 *)key2;
|
|
for( ; n_key_length--; ++p_s_1_u32, ++p_s_2_u32 ) {
|
|
if ( le32_to_cpu (*p_s_1_u32) < le32_to_cpu (*p_s_2_u32) )
|
|
return -1;
|
|
if ( le32_to_cpu (*p_s_1_u32) > le32_to_cpu (*p_s_2_u32) )
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
inline void le_key2cpu_key (struct cpu_key * to, const struct reiserfs_key * from)
|
|
{
|
|
int version;
|
|
to->on_disk_key.k_dir_id = le32_to_cpu (from->k_dir_id);
|
|
to->on_disk_key.k_objectid = le32_to_cpu (from->k_objectid);
|
|
|
|
// find out version of the key
|
|
version = le_key_version (from);
|
|
to->version = version;
|
|
to->on_disk_key.k_offset = le_key_k_offset(version, from);
|
|
to->on_disk_key.k_type = le_key_k_type(version, from);
|
|
}
|
|
|
|
|
|
|
|
// this does not say which one is bigger, it only returns 1 if keys
|
|
// are not equal, 0 otherwise
|
|
inline int comp_le_keys (const struct reiserfs_key * k1, const struct reiserfs_key * k2)
|
|
{
|
|
return memcmp (k1, k2, sizeof (struct reiserfs_key));
|
|
}
|
|
|
|
/**************************************************************************
|
|
* Binary search toolkit function *
|
|
* Search for an item in the array by the item key *
|
|
* Returns: 1 if found, 0 if not found; *
|
|
* *p_n_pos = number of the searched element if found, else the *
|
|
* number of the first element that is larger than p_v_key. *
|
|
**************************************************************************/
|
|
/* For those not familiar with binary search: n_lbound is the leftmost item that it
|
|
could be, n_rbound the rightmost item that it could be. We examine the item
|
|
halfway between n_lbound and n_rbound, and that tells us either that we can increase
|
|
n_lbound, or decrease n_rbound, or that we have found it, or if n_lbound <= n_rbound that
|
|
there are no possible items, and we have not found it. With each examination we
|
|
cut the number of possible items it could be by one more than half rounded down,
|
|
or we find it. */
|
|
static inline int bin_search (
|
|
const void * p_v_key, /* Key to search for. */
|
|
const void * p_v_base,/* First item in the array. */
|
|
int p_n_num, /* Number of items in the array. */
|
|
int p_n_width, /* Item size in the array.
|
|
searched. Lest the reader be
|
|
confused, note that this is crafted
|
|
as a general function, and when it
|
|
is applied specifically to the array
|
|
of item headers in a node, p_n_width
|
|
is actually the item header size not
|
|
the item size. */
|
|
int * p_n_pos /* Number of the searched for element. */
|
|
) {
|
|
int n_rbound, n_lbound, n_j;
|
|
|
|
for ( n_j = ((n_rbound = p_n_num - 1) + (n_lbound = 0))/2; n_lbound <= n_rbound; n_j = (n_rbound + n_lbound)/2 )
|
|
switch( comp_keys((struct reiserfs_key *)((char * )p_v_base + n_j * p_n_width), (struct cpu_key *)p_v_key) ) {
|
|
case -1: n_lbound = n_j + 1; continue;
|
|
case 1: n_rbound = n_j - 1; continue;
|
|
case 0: *p_n_pos = n_j; return ITEM_FOUND; /* Key found in the array. */
|
|
}
|
|
|
|
/* bin_search did not find given key, it returns position of key,
|
|
that is minimal and greater than the given one. */
|
|
*p_n_pos = n_lbound;
|
|
return ITEM_NOT_FOUND;
|
|
}
|
|
|
|
#ifdef CONFIG_REISERFS_CHECK
|
|
extern struct tree_balance * cur_tb;
|
|
#endif
|
|
|
|
|
|
|
|
/* Minimal possible key. It is never in the tree. */
|
|
const struct reiserfs_key MIN_KEY = {0, 0, {{0, 0},}};
|
|
|
|
/* Maximal possible key. It is never in the tree. */
|
|
static const struct reiserfs_key MAX_KEY = {
|
|
__constant_cpu_to_le32(0xffffffff),
|
|
__constant_cpu_to_le32(0xffffffff),
|
|
{{__constant_cpu_to_le32(0xffffffff),
|
|
__constant_cpu_to_le32(0xffffffff)},}
|
|
};
|
|
|
|
|
|
/* Get delimiting key of the buffer by looking for it in the buffers in the path, starting from the bottom
|
|
of the path, and going upwards. We must check the path's validity at each step. If the key is not in
|
|
the path, there is no delimiting key in the tree (buffer is first or last buffer in tree), and in this
|
|
case we return a special key, either MIN_KEY or MAX_KEY. */
|
|
static inline const struct reiserfs_key * get_lkey (
|
|
const struct path * p_s_chk_path,
|
|
const struct super_block * p_s_sb
|
|
) {
|
|
int n_position, n_path_offset = p_s_chk_path->path_length;
|
|
struct buffer_head * p_s_parent;
|
|
|
|
RFALSE( n_path_offset < FIRST_PATH_ELEMENT_OFFSET,
|
|
"PAP-5010: invalid offset in the path");
|
|
|
|
/* While not higher in path than first element. */
|
|
while ( n_path_offset-- > FIRST_PATH_ELEMENT_OFFSET ) {
|
|
|
|
RFALSE( ! buffer_uptodate(PATH_OFFSET_PBUFFER(p_s_chk_path, n_path_offset)),
|
|
"PAP-5020: parent is not uptodate");
|
|
|
|
/* Parent at the path is not in the tree now. */
|
|
if ( ! B_IS_IN_TREE(p_s_parent = PATH_OFFSET_PBUFFER(p_s_chk_path, n_path_offset)) )
|
|
return &MAX_KEY;
|
|
/* Check whether position in the parent is correct. */
|
|
if ( (n_position = PATH_OFFSET_POSITION(p_s_chk_path, n_path_offset)) > B_NR_ITEMS(p_s_parent) )
|
|
return &MAX_KEY;
|
|
/* Check whether parent at the path really points to the child. */
|
|
if ( B_N_CHILD_NUM(p_s_parent, n_position) !=
|
|
PATH_OFFSET_PBUFFER(p_s_chk_path, n_path_offset + 1)->b_blocknr )
|
|
return &MAX_KEY;
|
|
/* Return delimiting key if position in the parent is not equal to zero. */
|
|
if ( n_position )
|
|
return B_N_PDELIM_KEY(p_s_parent, n_position - 1);
|
|
}
|
|
/* Return MIN_KEY if we are in the root of the buffer tree. */
|
|
if ( PATH_OFFSET_PBUFFER(p_s_chk_path, FIRST_PATH_ELEMENT_OFFSET)->b_blocknr ==
|
|
SB_ROOT_BLOCK (p_s_sb) )
|
|
return &MIN_KEY;
|
|
return &MAX_KEY;
|
|
}
|
|
|
|
|
|
/* Get delimiting key of the buffer at the path and its right neighbor. */
|
|
inline const struct reiserfs_key * get_rkey (
|
|
const struct path * p_s_chk_path,
|
|
const struct super_block * p_s_sb
|
|
) {
|
|
int n_position,
|
|
n_path_offset = p_s_chk_path->path_length;
|
|
struct buffer_head * p_s_parent;
|
|
|
|
RFALSE( n_path_offset < FIRST_PATH_ELEMENT_OFFSET,
|
|
"PAP-5030: invalid offset in the path");
|
|
|
|
while ( n_path_offset-- > FIRST_PATH_ELEMENT_OFFSET ) {
|
|
|
|
RFALSE( ! buffer_uptodate(PATH_OFFSET_PBUFFER(p_s_chk_path, n_path_offset)),
|
|
"PAP-5040: parent is not uptodate");
|
|
|
|
/* Parent at the path is not in the tree now. */
|
|
if ( ! B_IS_IN_TREE(p_s_parent = PATH_OFFSET_PBUFFER(p_s_chk_path, n_path_offset)) )
|
|
return &MIN_KEY;
|
|
/* Check whether position in the parent is correct. */
|
|
if ( (n_position = PATH_OFFSET_POSITION(p_s_chk_path, n_path_offset)) > B_NR_ITEMS(p_s_parent) )
|
|
return &MIN_KEY;
|
|
/* Check whether parent at the path really points to the child. */
|
|
if ( B_N_CHILD_NUM(p_s_parent, n_position) !=
|
|
PATH_OFFSET_PBUFFER(p_s_chk_path, n_path_offset + 1)->b_blocknr )
|
|
return &MIN_KEY;
|
|
/* Return delimiting key if position in the parent is not the last one. */
|
|
if ( n_position != B_NR_ITEMS(p_s_parent) )
|
|
return B_N_PDELIM_KEY(p_s_parent, n_position);
|
|
}
|
|
/* Return MAX_KEY if we are in the root of the buffer tree. */
|
|
if ( PATH_OFFSET_PBUFFER(p_s_chk_path, FIRST_PATH_ELEMENT_OFFSET)->b_blocknr ==
|
|
SB_ROOT_BLOCK (p_s_sb) )
|
|
return &MAX_KEY;
|
|
return &MIN_KEY;
|
|
}
|
|
|
|
|
|
/* Check whether a key is contained in the tree rooted from a buffer at a path. */
|
|
/* This works by looking at the left and right delimiting keys for the buffer in the last path_element in
|
|
the path. These delimiting keys are stored at least one level above that buffer in the tree. If the
|
|
buffer is the first or last node in the tree order then one of the delimiting keys may be absent, and in
|
|
this case get_lkey and get_rkey return a special key which is MIN_KEY or MAX_KEY. */
|
|
static inline int key_in_buffer (
|
|
struct path * p_s_chk_path, /* Path which should be checked. */
|
|
const struct cpu_key * p_s_key, /* Key which should be checked. */
|
|
struct super_block * p_s_sb /* Super block pointer. */
|
|
) {
|
|
|
|
RFALSE( ! p_s_key || p_s_chk_path->path_length < FIRST_PATH_ELEMENT_OFFSET ||
|
|
p_s_chk_path->path_length > MAX_HEIGHT,
|
|
"PAP-5050: pointer to the key(%p) is NULL or invalid path length(%d)",
|
|
p_s_key, p_s_chk_path->path_length);
|
|
RFALSE( !PATH_PLAST_BUFFER(p_s_chk_path)->b_bdev,
|
|
"PAP-5060: device must not be NODEV");
|
|
|
|
if ( comp_keys(get_lkey(p_s_chk_path, p_s_sb), p_s_key) == 1 )
|
|
/* left delimiting key is bigger, that the key we look for */
|
|
return 0;
|
|
// if ( comp_keys(p_s_key, get_rkey(p_s_chk_path, p_s_sb)) != -1 )
|
|
if ( comp_keys(get_rkey(p_s_chk_path, p_s_sb), p_s_key) != 1 )
|
|
/* p_s_key must be less than right delimitiing key */
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
|
|
inline void decrement_bcount(
|
|
struct buffer_head * p_s_bh
|
|
) {
|
|
if ( p_s_bh ) {
|
|
if ( atomic_read (&(p_s_bh->b_count)) ) {
|
|
put_bh(p_s_bh) ;
|
|
return;
|
|
}
|
|
reiserfs_panic(NULL, "PAP-5070: decrement_bcount: trying to free free buffer %b", p_s_bh);
|
|
}
|
|
}
|
|
|
|
|
|
/* Decrement b_count field of the all buffers in the path. */
|
|
void decrement_counters_in_path (
|
|
struct path * p_s_search_path
|
|
) {
|
|
int n_path_offset = p_s_search_path->path_length;
|
|
|
|
RFALSE( n_path_offset < ILLEGAL_PATH_ELEMENT_OFFSET ||
|
|
n_path_offset > EXTENDED_MAX_HEIGHT - 1,
|
|
"PAP-5080: invalid path offset of %d", n_path_offset);
|
|
|
|
while ( n_path_offset > ILLEGAL_PATH_ELEMENT_OFFSET ) {
|
|
struct buffer_head * bh;
|
|
|
|
bh = PATH_OFFSET_PBUFFER(p_s_search_path, n_path_offset--);
|
|
decrement_bcount (bh);
|
|
}
|
|
p_s_search_path->path_length = ILLEGAL_PATH_ELEMENT_OFFSET;
|
|
}
|
|
|
|
|
|
int reiserfs_check_path(struct path *p) {
|
|
RFALSE( p->path_length != ILLEGAL_PATH_ELEMENT_OFFSET,
|
|
"path not properly relsed") ;
|
|
return 0 ;
|
|
}
|
|
|
|
|
|
/* Release all buffers in the path. Restore dirty bits clean
|
|
** when preparing the buffer for the log
|
|
**
|
|
** only called from fix_nodes()
|
|
*/
|
|
void pathrelse_and_restore (
|
|
struct super_block *s,
|
|
struct path * p_s_search_path
|
|
) {
|
|
int n_path_offset = p_s_search_path->path_length;
|
|
|
|
RFALSE( n_path_offset < ILLEGAL_PATH_ELEMENT_OFFSET,
|
|
"clm-4000: invalid path offset");
|
|
|
|
while ( n_path_offset > ILLEGAL_PATH_ELEMENT_OFFSET ) {
|
|
reiserfs_restore_prepared_buffer(s, PATH_OFFSET_PBUFFER(p_s_search_path,
|
|
n_path_offset));
|
|
brelse(PATH_OFFSET_PBUFFER(p_s_search_path, n_path_offset--));
|
|
}
|
|
p_s_search_path->path_length = ILLEGAL_PATH_ELEMENT_OFFSET;
|
|
}
|
|
|
|
/* Release all buffers in the path. */
|
|
void pathrelse (
|
|
struct path * p_s_search_path
|
|
) {
|
|
int n_path_offset = p_s_search_path->path_length;
|
|
|
|
RFALSE( n_path_offset < ILLEGAL_PATH_ELEMENT_OFFSET,
|
|
"PAP-5090: invalid path offset");
|
|
|
|
while ( n_path_offset > ILLEGAL_PATH_ELEMENT_OFFSET )
|
|
brelse(PATH_OFFSET_PBUFFER(p_s_search_path, n_path_offset--));
|
|
|
|
p_s_search_path->path_length = ILLEGAL_PATH_ELEMENT_OFFSET;
|
|
}
|
|
|
|
|
|
|
|
static int is_leaf (char * buf, int blocksize, struct buffer_head * bh)
|
|
{
|
|
struct block_head * blkh;
|
|
struct item_head * ih;
|
|
int used_space;
|
|
int prev_location;
|
|
int i;
|
|
int nr;
|
|
|
|
blkh = (struct block_head *)buf;
|
|
if ( blkh_level(blkh) != DISK_LEAF_NODE_LEVEL) {
|
|
reiserfs_warning (NULL, "is_leaf: this should be caught earlier");
|
|
return 0;
|
|
}
|
|
|
|
nr = blkh_nr_item(blkh);
|
|
if (nr < 1 || nr > ((blocksize - BLKH_SIZE) / (IH_SIZE + MIN_ITEM_LEN))) {
|
|
/* item number is too big or too small */
|
|
reiserfs_warning (NULL, "is_leaf: nr_item seems wrong: %z", bh);
|
|
return 0;
|
|
}
|
|
ih = (struct item_head *)(buf + BLKH_SIZE) + nr - 1;
|
|
used_space = BLKH_SIZE + IH_SIZE * nr + (blocksize - ih_location (ih));
|
|
if (used_space != blocksize - blkh_free_space(blkh)) {
|
|
/* free space does not match to calculated amount of use space */
|
|
reiserfs_warning (NULL, "is_leaf: free space seems wrong: %z", bh);
|
|
return 0;
|
|
}
|
|
|
|
// FIXME: it is_leaf will hit performance too much - we may have
|
|
// return 1 here
|
|
|
|
/* check tables of item heads */
|
|
ih = (struct item_head *)(buf + BLKH_SIZE);
|
|
prev_location = blocksize;
|
|
for (i = 0; i < nr; i ++, ih ++) {
|
|
if ( le_ih_k_type(ih) == TYPE_ANY) {
|
|
reiserfs_warning (NULL, "is_leaf: wrong item type for item %h",ih);
|
|
return 0;
|
|
}
|
|
if (ih_location (ih) >= blocksize || ih_location (ih) < IH_SIZE * nr) {
|
|
reiserfs_warning (NULL, "is_leaf: item location seems wrong: %h", ih);
|
|
return 0;
|
|
}
|
|
if (ih_item_len (ih) < 1 || ih_item_len (ih) > MAX_ITEM_LEN (blocksize)) {
|
|
reiserfs_warning (NULL, "is_leaf: item length seems wrong: %h", ih);
|
|
return 0;
|
|
}
|
|
if (prev_location - ih_location (ih) != ih_item_len (ih)) {
|
|
reiserfs_warning (NULL, "is_leaf: item location seems wrong (second one): %h", ih);
|
|
return 0;
|
|
}
|
|
prev_location = ih_location (ih);
|
|
}
|
|
|
|
// one may imagine much more checks
|
|
return 1;
|
|
}
|
|
|
|
|
|
/* returns 1 if buf looks like an internal node, 0 otherwise */
|
|
static int is_internal (char * buf, int blocksize, struct buffer_head * bh)
|
|
{
|
|
struct block_head * blkh;
|
|
int nr;
|
|
int used_space;
|
|
|
|
blkh = (struct block_head *)buf;
|
|
nr = blkh_level(blkh);
|
|
if (nr <= DISK_LEAF_NODE_LEVEL || nr > MAX_HEIGHT) {
|
|
/* this level is not possible for internal nodes */
|
|
reiserfs_warning (NULL, "is_internal: this should be caught earlier");
|
|
return 0;
|
|
}
|
|
|
|
nr = blkh_nr_item(blkh);
|
|
if (nr > (blocksize - BLKH_SIZE - DC_SIZE) / (KEY_SIZE + DC_SIZE)) {
|
|
/* for internal which is not root we might check min number of keys */
|
|
reiserfs_warning (NULL, "is_internal: number of key seems wrong: %z", bh);
|
|
return 0;
|
|
}
|
|
|
|
used_space = BLKH_SIZE + KEY_SIZE * nr + DC_SIZE * (nr + 1);
|
|
if (used_space != blocksize - blkh_free_space(blkh)) {
|
|
reiserfs_warning (NULL, "is_internal: free space seems wrong: %z", bh);
|
|
return 0;
|
|
}
|
|
|
|
// one may imagine much more checks
|
|
return 1;
|
|
}
|
|
|
|
|
|
// make sure that bh contains formatted node of reiserfs tree of
|
|
// 'level'-th level
|
|
static int is_tree_node (struct buffer_head * bh, int level)
|
|
{
|
|
if (B_LEVEL (bh) != level) {
|
|
reiserfs_warning (NULL, "is_tree_node: node level %d does not match to the expected one %d",
|
|
B_LEVEL (bh), level);
|
|
return 0;
|
|
}
|
|
if (level == DISK_LEAF_NODE_LEVEL)
|
|
return is_leaf (bh->b_data, bh->b_size, bh);
|
|
|
|
return is_internal (bh->b_data, bh->b_size, bh);
|
|
}
|
|
|
|
|
|
|
|
#define SEARCH_BY_KEY_READA 16
|
|
|
|
/* The function is NOT SCHEDULE-SAFE! */
|
|
static void search_by_key_reada (struct super_block * s,
|
|
struct buffer_head **bh,
|
|
unsigned long *b, int num)
|
|
{
|
|
int i,j;
|
|
|
|
for (i = 0 ; i < num ; i++) {
|
|
bh[i] = sb_getblk (s, b[i]);
|
|
}
|
|
for (j = 0 ; j < i ; j++) {
|
|
/*
|
|
* note, this needs attention if we are getting rid of the BKL
|
|
* you have to make sure the prepared bit isn't set on this buffer
|
|
*/
|
|
if (!buffer_uptodate(bh[j]))
|
|
ll_rw_block(READA, 1, bh + j);
|
|
brelse(bh[j]);
|
|
}
|
|
}
|
|
|
|
/**************************************************************************
|
|
* Algorithm SearchByKey *
|
|
* look for item in the Disk S+Tree by its key *
|
|
* Input: p_s_sb - super block *
|
|
* p_s_key - pointer to the key to search *
|
|
* Output: ITEM_FOUND, ITEM_NOT_FOUND or IO_ERROR *
|
|
* p_s_search_path - path from the root to the needed leaf *
|
|
**************************************************************************/
|
|
|
|
/* This function fills up the path from the root to the leaf as it
|
|
descends the tree looking for the key. It uses reiserfs_bread to
|
|
try to find buffers in the cache given their block number. If it
|
|
does not find them in the cache it reads them from disk. For each
|
|
node search_by_key finds using reiserfs_bread it then uses
|
|
bin_search to look through that node. bin_search will find the
|
|
position of the block_number of the next node if it is looking
|
|
through an internal node. If it is looking through a leaf node
|
|
bin_search will find the position of the item which has key either
|
|
equal to given key, or which is the maximal key less than the given
|
|
key. search_by_key returns a path that must be checked for the
|
|
correctness of the top of the path but need not be checked for the
|
|
correctness of the bottom of the path */
|
|
/* The function is NOT SCHEDULE-SAFE! */
|
|
int search_by_key (struct super_block * p_s_sb,
|
|
const struct cpu_key * p_s_key, /* Key to search. */
|
|
struct path * p_s_search_path, /* This structure was
|
|
allocated and initialized
|
|
by the calling
|
|
function. It is filled up
|
|
by this function. */
|
|
int n_stop_level /* How far down the tree to search. To
|
|
stop at leaf level - set to
|
|
DISK_LEAF_NODE_LEVEL */
|
|
) {
|
|
int n_block_number;
|
|
int expected_level;
|
|
struct buffer_head * p_s_bh;
|
|
struct path_element * p_s_last_element;
|
|
int n_node_level, n_retval;
|
|
int right_neighbor_of_leaf_node;
|
|
int fs_gen;
|
|
struct buffer_head *reada_bh[SEARCH_BY_KEY_READA];
|
|
unsigned long reada_blocks[SEARCH_BY_KEY_READA];
|
|
int reada_count = 0;
|
|
|
|
#ifdef CONFIG_REISERFS_CHECK
|
|
int n_repeat_counter = 0;
|
|
#endif
|
|
|
|
PROC_INFO_INC( p_s_sb, search_by_key );
|
|
|
|
/* As we add each node to a path we increase its count. This means that
|
|
we must be careful to release all nodes in a path before we either
|
|
discard the path struct or re-use the path struct, as we do here. */
|
|
|
|
decrement_counters_in_path(p_s_search_path);
|
|
|
|
right_neighbor_of_leaf_node = 0;
|
|
|
|
/* With each iteration of this loop we search through the items in the
|
|
current node, and calculate the next current node(next path element)
|
|
for the next iteration of this loop.. */
|
|
n_block_number = SB_ROOT_BLOCK (p_s_sb);
|
|
expected_level = -1;
|
|
while ( 1 ) {
|
|
|
|
#ifdef CONFIG_REISERFS_CHECK
|
|
if ( !(++n_repeat_counter % 50000) )
|
|
reiserfs_warning (p_s_sb, "PAP-5100: search_by_key: %s:"
|
|
"there were %d iterations of while loop "
|
|
"looking for key %K",
|
|
current->comm, n_repeat_counter, p_s_key);
|
|
#endif
|
|
|
|
/* prep path to have another element added to it. */
|
|
p_s_last_element = PATH_OFFSET_PELEMENT(p_s_search_path, ++p_s_search_path->path_length);
|
|
fs_gen = get_generation (p_s_sb);
|
|
|
|
/* Read the next tree node, and set the last element in the path to
|
|
have a pointer to it. */
|
|
if ((p_s_bh = p_s_last_element->pe_buffer =
|
|
sb_getblk(p_s_sb, n_block_number)) ) {
|
|
if (!buffer_uptodate(p_s_bh) && reada_count > 1) {
|
|
search_by_key_reada (p_s_sb, reada_bh,
|
|
reada_blocks, reada_count);
|
|
}
|
|
ll_rw_block(READ, 1, &p_s_bh);
|
|
wait_on_buffer(p_s_bh);
|
|
if (!buffer_uptodate(p_s_bh))
|
|
goto io_error;
|
|
} else {
|
|
io_error:
|
|
p_s_search_path->path_length --;
|
|
pathrelse(p_s_search_path);
|
|
return IO_ERROR;
|
|
}
|
|
reada_count = 0;
|
|
if (expected_level == -1)
|
|
expected_level = SB_TREE_HEIGHT (p_s_sb);
|
|
expected_level --;
|
|
|
|
/* It is possible that schedule occurred. We must check whether the key
|
|
to search is still in the tree rooted from the current buffer. If
|
|
not then repeat search from the root. */
|
|
if ( fs_changed (fs_gen, p_s_sb) &&
|
|
(!B_IS_IN_TREE (p_s_bh) ||
|
|
B_LEVEL(p_s_bh) != expected_level ||
|
|
!key_in_buffer(p_s_search_path, p_s_key, p_s_sb))) {
|
|
PROC_INFO_INC( p_s_sb, search_by_key_fs_changed );
|
|
PROC_INFO_INC( p_s_sb, search_by_key_restarted );
|
|
PROC_INFO_INC( p_s_sb, sbk_restarted[ expected_level - 1 ] );
|
|
decrement_counters_in_path(p_s_search_path);
|
|
|
|
/* Get the root block number so that we can repeat the search
|
|
starting from the root. */
|
|
n_block_number = SB_ROOT_BLOCK (p_s_sb);
|
|
expected_level = -1;
|
|
right_neighbor_of_leaf_node = 0;
|
|
|
|
/* repeat search from the root */
|
|
continue;
|
|
}
|
|
|
|
/* only check that the key is in the buffer if p_s_key is not
|
|
equal to the MAX_KEY. Latter case is only possible in
|
|
"finish_unfinished()" processing during mount. */
|
|
RFALSE( comp_keys( &MAX_KEY, p_s_key ) &&
|
|
! key_in_buffer(p_s_search_path, p_s_key, p_s_sb),
|
|
"PAP-5130: key is not in the buffer");
|
|
#ifdef CONFIG_REISERFS_CHECK
|
|
if ( cur_tb ) {
|
|
print_cur_tb ("5140");
|
|
reiserfs_panic(p_s_sb, "PAP-5140: search_by_key: schedule occurred in do_balance!");
|
|
}
|
|
#endif
|
|
|
|
// make sure, that the node contents look like a node of
|
|
// certain level
|
|
if (!is_tree_node (p_s_bh, expected_level)) {
|
|
reiserfs_warning (p_s_sb, "vs-5150: search_by_key: "
|
|
"invalid format found in block %ld. Fsck?",
|
|
p_s_bh->b_blocknr);
|
|
pathrelse (p_s_search_path);
|
|
return IO_ERROR;
|
|
}
|
|
|
|
/* ok, we have acquired next formatted node in the tree */
|
|
n_node_level = B_LEVEL (p_s_bh);
|
|
|
|
PROC_INFO_BH_STAT( p_s_sb, p_s_bh, n_node_level - 1 );
|
|
|
|
RFALSE( n_node_level < n_stop_level,
|
|
"vs-5152: tree level (%d) is less than stop level (%d)",
|
|
n_node_level, n_stop_level);
|
|
|
|
n_retval = bin_search( p_s_key, B_N_PITEM_HEAD(p_s_bh, 0),
|
|
B_NR_ITEMS(p_s_bh),
|
|
( n_node_level == DISK_LEAF_NODE_LEVEL ) ? IH_SIZE : KEY_SIZE,
|
|
&(p_s_last_element->pe_position));
|
|
if (n_node_level == n_stop_level) {
|
|
return n_retval;
|
|
}
|
|
|
|
/* we are not in the stop level */
|
|
if (n_retval == ITEM_FOUND)
|
|
/* item has been found, so we choose the pointer which is to the right of the found one */
|
|
p_s_last_element->pe_position++;
|
|
|
|
/* if item was not found we choose the position which is to
|
|
the left of the found item. This requires no code,
|
|
bin_search did it already.*/
|
|
|
|
/* So we have chosen a position in the current node which is
|
|
an internal node. Now we calculate child block number by
|
|
position in the node. */
|
|
n_block_number = B_N_CHILD_NUM(p_s_bh, p_s_last_element->pe_position);
|
|
|
|
/* if we are going to read leaf nodes, try for read ahead as well */
|
|
if ((p_s_search_path->reada & PATH_READA) &&
|
|
n_node_level == DISK_LEAF_NODE_LEVEL + 1)
|
|
{
|
|
int pos = p_s_last_element->pe_position;
|
|
int limit = B_NR_ITEMS(p_s_bh);
|
|
struct reiserfs_key *le_key;
|
|
|
|
if (p_s_search_path->reada & PATH_READA_BACK)
|
|
limit = 0;
|
|
while(reada_count < SEARCH_BY_KEY_READA) {
|
|
if (pos == limit)
|
|
break;
|
|
reada_blocks[reada_count++] = B_N_CHILD_NUM(p_s_bh, pos);
|
|
if (p_s_search_path->reada & PATH_READA_BACK)
|
|
pos--;
|
|
else
|
|
pos++;
|
|
|
|
/*
|
|
* check to make sure we're in the same object
|
|
*/
|
|
le_key = B_N_PDELIM_KEY(p_s_bh, pos);
|
|
if (le32_to_cpu(le_key->k_objectid) !=
|
|
p_s_key->on_disk_key.k_objectid)
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* Form the path to an item and position in this item which contains
|
|
file byte defined by p_s_key. If there is no such item
|
|
corresponding to the key, we point the path to the item with
|
|
maximal key less than p_s_key, and *p_n_pos_in_item is set to one
|
|
past the last entry/byte in the item. If searching for entry in a
|
|
directory item, and it is not found, *p_n_pos_in_item is set to one
|
|
entry more than the entry with maximal key which is less than the
|
|
sought key.
|
|
|
|
Note that if there is no entry in this same node which is one more,
|
|
then we point to an imaginary entry. for direct items, the
|
|
position is in units of bytes, for indirect items the position is
|
|
in units of blocknr entries, for directory items the position is in
|
|
units of directory entries. */
|
|
|
|
/* The function is NOT SCHEDULE-SAFE! */
|
|
int search_for_position_by_key (struct super_block * p_s_sb, /* Pointer to the super block. */
|
|
const struct cpu_key * p_cpu_key, /* Key to search (cpu variable) */
|
|
struct path * p_s_search_path /* Filled up by this function. */
|
|
) {
|
|
struct item_head * p_le_ih; /* pointer to on-disk structure */
|
|
int n_blk_size;
|
|
loff_t item_offset, offset;
|
|
struct reiserfs_dir_entry de;
|
|
int retval;
|
|
|
|
/* If searching for directory entry. */
|
|
if ( is_direntry_cpu_key (p_cpu_key) )
|
|
return search_by_entry_key (p_s_sb, p_cpu_key, p_s_search_path, &de);
|
|
|
|
/* If not searching for directory entry. */
|
|
|
|
/* If item is found. */
|
|
retval = search_item (p_s_sb, p_cpu_key, p_s_search_path);
|
|
if (retval == IO_ERROR)
|
|
return retval;
|
|
if ( retval == ITEM_FOUND ) {
|
|
|
|
RFALSE( ! ih_item_len(
|
|
B_N_PITEM_HEAD(PATH_PLAST_BUFFER(p_s_search_path),
|
|
PATH_LAST_POSITION(p_s_search_path))),
|
|
"PAP-5165: item length equals zero");
|
|
|
|
pos_in_item(p_s_search_path) = 0;
|
|
return POSITION_FOUND;
|
|
}
|
|
|
|
RFALSE( ! PATH_LAST_POSITION(p_s_search_path),
|
|
"PAP-5170: position equals zero");
|
|
|
|
/* Item is not found. Set path to the previous item. */
|
|
p_le_ih = B_N_PITEM_HEAD(PATH_PLAST_BUFFER(p_s_search_path), --PATH_LAST_POSITION(p_s_search_path));
|
|
n_blk_size = p_s_sb->s_blocksize;
|
|
|
|
if (comp_short_keys (&(p_le_ih->ih_key), p_cpu_key)) {
|
|
return FILE_NOT_FOUND;
|
|
}
|
|
|
|
// FIXME: quite ugly this far
|
|
|
|
item_offset = le_ih_k_offset (p_le_ih);
|
|
offset = cpu_key_k_offset (p_cpu_key);
|
|
|
|
/* Needed byte is contained in the item pointed to by the path.*/
|
|
if (item_offset <= offset &&
|
|
item_offset + op_bytes_number (p_le_ih, n_blk_size) > offset) {
|
|
pos_in_item (p_s_search_path) = offset - item_offset;
|
|
if ( is_indirect_le_ih(p_le_ih) ) {
|
|
pos_in_item (p_s_search_path) /= n_blk_size;
|
|
}
|
|
return POSITION_FOUND;
|
|
}
|
|
|
|
/* Needed byte is not contained in the item pointed to by the
|
|
path. Set pos_in_item out of the item. */
|
|
if ( is_indirect_le_ih (p_le_ih) )
|
|
pos_in_item (p_s_search_path) = ih_item_len(p_le_ih) / UNFM_P_SIZE;
|
|
else
|
|
pos_in_item (p_s_search_path) = ih_item_len( p_le_ih );
|
|
|
|
return POSITION_NOT_FOUND;
|
|
}
|
|
|
|
|
|
/* Compare given item and item pointed to by the path. */
|
|
int comp_items (const struct item_head * stored_ih, const struct path * p_s_path)
|
|
{
|
|
struct buffer_head * p_s_bh;
|
|
struct item_head * ih;
|
|
|
|
/* Last buffer at the path is not in the tree. */
|
|
if ( ! B_IS_IN_TREE(p_s_bh = PATH_PLAST_BUFFER(p_s_path)) )
|
|
return 1;
|
|
|
|
/* Last path position is invalid. */
|
|
if ( PATH_LAST_POSITION(p_s_path) >= B_NR_ITEMS(p_s_bh) )
|
|
return 1;
|
|
|
|
/* we need only to know, whether it is the same item */
|
|
ih = get_ih (p_s_path);
|
|
return memcmp (stored_ih, ih, IH_SIZE);
|
|
}
|
|
|
|
|
|
/* unformatted nodes are not logged anymore, ever. This is safe
|
|
** now
|
|
*/
|
|
#define held_by_others(bh) (atomic_read(&(bh)->b_count) > 1)
|
|
|
|
// block can not be forgotten as it is in I/O or held by someone
|
|
#define block_in_use(bh) (buffer_locked(bh) || (held_by_others(bh)))
|
|
|
|
|
|
|
|
// prepare for delete or cut of direct item
|
|
static inline int prepare_for_direct_item (struct path * path,
|
|
struct item_head * le_ih,
|
|
struct inode * inode,
|
|
loff_t new_file_length,
|
|
int * cut_size)
|
|
{
|
|
loff_t round_len;
|
|
|
|
|
|
if ( new_file_length == max_reiserfs_offset (inode) ) {
|
|
/* item has to be deleted */
|
|
*cut_size = -(IH_SIZE + ih_item_len(le_ih));
|
|
return M_DELETE;
|
|
}
|
|
|
|
// new file gets truncated
|
|
if (get_inode_item_key_version (inode) == KEY_FORMAT_3_6) {
|
|
//
|
|
round_len = ROUND_UP (new_file_length);
|
|
/* this was n_new_file_length < le_ih ... */
|
|
if ( round_len < le_ih_k_offset (le_ih) ) {
|
|
*cut_size = -(IH_SIZE + ih_item_len(le_ih));
|
|
return M_DELETE; /* Delete this item. */
|
|
}
|
|
/* Calculate first position and size for cutting from item. */
|
|
pos_in_item (path) = round_len - (le_ih_k_offset (le_ih) - 1);
|
|
*cut_size = -(ih_item_len(le_ih) - pos_in_item(path));
|
|
|
|
return M_CUT; /* Cut from this item. */
|
|
}
|
|
|
|
|
|
// old file: items may have any length
|
|
|
|
if ( new_file_length < le_ih_k_offset (le_ih) ) {
|
|
*cut_size = -(IH_SIZE + ih_item_len(le_ih));
|
|
return M_DELETE; /* Delete this item. */
|
|
}
|
|
/* Calculate first position and size for cutting from item. */
|
|
*cut_size = -(ih_item_len(le_ih) -
|
|
(pos_in_item (path) = new_file_length + 1 - le_ih_k_offset (le_ih)));
|
|
return M_CUT; /* Cut from this item. */
|
|
}
|
|
|
|
|
|
static inline int prepare_for_direntry_item (struct path * path,
|
|
struct item_head * le_ih,
|
|
struct inode * inode,
|
|
loff_t new_file_length,
|
|
int * cut_size)
|
|
{
|
|
if (le_ih_k_offset (le_ih) == DOT_OFFSET &&
|
|
new_file_length == max_reiserfs_offset (inode)) {
|
|
RFALSE( ih_entry_count (le_ih) != 2,
|
|
"PAP-5220: incorrect empty directory item (%h)", le_ih);
|
|
*cut_size = -(IH_SIZE + ih_item_len(le_ih));
|
|
return M_DELETE; /* Delete the directory item containing "." and ".." entry. */
|
|
}
|
|
|
|
if ( ih_entry_count (le_ih) == 1 ) {
|
|
/* Delete the directory item such as there is one record only
|
|
in this item*/
|
|
*cut_size = -(IH_SIZE + ih_item_len(le_ih));
|
|
return M_DELETE;
|
|
}
|
|
|
|
/* Cut one record from the directory item. */
|
|
*cut_size = -(DEH_SIZE + entry_length (get_last_bh (path), le_ih, pos_in_item (path)));
|
|
return M_CUT;
|
|
}
|
|
|
|
|
|
/* If the path points to a directory or direct item, calculate mode and the size cut, for balance.
|
|
If the path points to an indirect item, remove some number of its unformatted nodes.
|
|
In case of file truncate calculate whether this item must be deleted/truncated or last
|
|
unformatted node of this item will be converted to a direct item.
|
|
This function returns a determination of what balance mode the calling function should employ. */
|
|
static char prepare_for_delete_or_cut(
|
|
struct reiserfs_transaction_handle *th,
|
|
struct inode * inode,
|
|
struct path * p_s_path,
|
|
const struct cpu_key * p_s_item_key,
|
|
int * p_n_removed, /* Number of unformatted nodes which were removed
|
|
from end of the file. */
|
|
int * p_n_cut_size,
|
|
unsigned long long n_new_file_length /* MAX_KEY_OFFSET in case of delete. */
|
|
) {
|
|
struct super_block * p_s_sb = inode->i_sb;
|
|
struct item_head * p_le_ih = PATH_PITEM_HEAD(p_s_path);
|
|
struct buffer_head * p_s_bh = PATH_PLAST_BUFFER(p_s_path);
|
|
|
|
BUG_ON (!th->t_trans_id);
|
|
|
|
/* Stat_data item. */
|
|
if ( is_statdata_le_ih (p_le_ih) ) {
|
|
|
|
RFALSE( n_new_file_length != max_reiserfs_offset (inode),
|
|
"PAP-5210: mode must be M_DELETE");
|
|
|
|
*p_n_cut_size = -(IH_SIZE + ih_item_len(p_le_ih));
|
|
return M_DELETE;
|
|
}
|
|
|
|
|
|
/* Directory item. */
|
|
if ( is_direntry_le_ih (p_le_ih) )
|
|
return prepare_for_direntry_item (p_s_path, p_le_ih, inode, n_new_file_length, p_n_cut_size);
|
|
|
|
/* Direct item. */
|
|
if ( is_direct_le_ih (p_le_ih) )
|
|
return prepare_for_direct_item (p_s_path, p_le_ih, inode, n_new_file_length, p_n_cut_size);
|
|
|
|
|
|
/* Case of an indirect item. */
|
|
{
|
|
int n_unfm_number, /* Number of the item unformatted nodes. */
|
|
n_counter,
|
|
n_blk_size;
|
|
__le32 * p_n_unfm_pointer; /* Pointer to the unformatted node number. */
|
|
__u32 tmp;
|
|
struct item_head s_ih; /* Item header. */
|
|
char c_mode; /* Returned mode of the balance. */
|
|
int need_research;
|
|
|
|
|
|
n_blk_size = p_s_sb->s_blocksize;
|
|
|
|
/* Search for the needed object indirect item until there are no unformatted nodes to be removed. */
|
|
do {
|
|
need_research = 0;
|
|
p_s_bh = PATH_PLAST_BUFFER(p_s_path);
|
|
/* Copy indirect item header to a temp variable. */
|
|
copy_item_head(&s_ih, PATH_PITEM_HEAD(p_s_path));
|
|
/* Calculate number of unformatted nodes in this item. */
|
|
n_unfm_number = I_UNFM_NUM(&s_ih);
|
|
|
|
RFALSE( ! is_indirect_le_ih(&s_ih) || ! n_unfm_number ||
|
|
pos_in_item (p_s_path) + 1 != n_unfm_number,
|
|
"PAP-5240: invalid item %h "
|
|
"n_unfm_number = %d *p_n_pos_in_item = %d",
|
|
&s_ih, n_unfm_number, pos_in_item (p_s_path));
|
|
|
|
/* Calculate balance mode and position in the item to remove unformatted nodes. */
|
|
if ( n_new_file_length == max_reiserfs_offset (inode) ) {/* Case of delete. */
|
|
pos_in_item (p_s_path) = 0;
|
|
*p_n_cut_size = -(IH_SIZE + ih_item_len(&s_ih));
|
|
c_mode = M_DELETE;
|
|
}
|
|
else { /* Case of truncate. */
|
|
if ( n_new_file_length < le_ih_k_offset (&s_ih) ) {
|
|
pos_in_item (p_s_path) = 0;
|
|
*p_n_cut_size = -(IH_SIZE + ih_item_len(&s_ih));
|
|
c_mode = M_DELETE; /* Delete this item. */
|
|
}
|
|
else {
|
|
/* indirect item must be truncated starting from *p_n_pos_in_item-th position */
|
|
pos_in_item (p_s_path) = (n_new_file_length + n_blk_size - le_ih_k_offset (&s_ih) ) >> p_s_sb->s_blocksize_bits;
|
|
|
|
RFALSE( pos_in_item (p_s_path) > n_unfm_number,
|
|
"PAP-5250: invalid position in the item");
|
|
|
|
/* Either convert last unformatted node of indirect item to direct item or increase
|
|
its free space. */
|
|
if ( pos_in_item (p_s_path) == n_unfm_number ) {
|
|
*p_n_cut_size = 0; /* Nothing to cut. */
|
|
return M_CONVERT; /* Maybe convert last unformatted node to the direct item. */
|
|
}
|
|
/* Calculate size to cut. */
|
|
*p_n_cut_size = -(ih_item_len(&s_ih) - pos_in_item(p_s_path) * UNFM_P_SIZE);
|
|
|
|
c_mode = M_CUT; /* Cut from this indirect item. */
|
|
}
|
|
}
|
|
|
|
RFALSE( n_unfm_number <= pos_in_item (p_s_path),
|
|
"PAP-5260: invalid position in the indirect item");
|
|
|
|
/* pointers to be cut */
|
|
n_unfm_number -= pos_in_item (p_s_path);
|
|
/* Set pointer to the last unformatted node pointer that is to be cut. */
|
|
p_n_unfm_pointer = (__le32 *)B_I_PITEM(p_s_bh, &s_ih) + I_UNFM_NUM(&s_ih) - 1 - *p_n_removed;
|
|
|
|
|
|
/* We go through the unformatted nodes pointers of the indirect
|
|
item and look for the unformatted nodes in the cache. If we
|
|
found some of them we free it, zero corresponding indirect item
|
|
entry and log buffer containing that indirect item. For this we
|
|
need to prepare last path element for logging. If some
|
|
unformatted node has b_count > 1 we must not free this
|
|
unformatted node since it is in use. */
|
|
reiserfs_prepare_for_journal(p_s_sb, p_s_bh, 1);
|
|
// note: path could be changed, first line in for loop takes care
|
|
// of it
|
|
|
|
for (n_counter = *p_n_removed;
|
|
n_counter < n_unfm_number; n_counter++, p_n_unfm_pointer-- ) {
|
|
|
|
cond_resched();
|
|
if (item_moved (&s_ih, p_s_path)) {
|
|
need_research = 1 ;
|
|
break;
|
|
}
|
|
RFALSE( p_n_unfm_pointer < (__le32 *)B_I_PITEM(p_s_bh, &s_ih) ||
|
|
p_n_unfm_pointer > (__le32 *)B_I_PITEM(p_s_bh, &s_ih) + I_UNFM_NUM(&s_ih) - 1,
|
|
"vs-5265: pointer out of range");
|
|
|
|
/* Hole, nothing to remove. */
|
|
if ( ! get_block_num(p_n_unfm_pointer,0) ) {
|
|
(*p_n_removed)++;
|
|
continue;
|
|
}
|
|
|
|
(*p_n_removed)++;
|
|
|
|
tmp = get_block_num(p_n_unfm_pointer,0);
|
|
put_block_num(p_n_unfm_pointer, 0, 0);
|
|
journal_mark_dirty (th, p_s_sb, p_s_bh);
|
|
reiserfs_free_block(th, inode, tmp, 1);
|
|
if ( item_moved (&s_ih, p_s_path) ) {
|
|
need_research = 1;
|
|
break ;
|
|
}
|
|
}
|
|
|
|
/* a trick. If the buffer has been logged, this
|
|
** will do nothing. If we've broken the loop without
|
|
** logging it, it will restore the buffer
|
|
**
|
|
*/
|
|
reiserfs_restore_prepared_buffer(p_s_sb, p_s_bh);
|
|
|
|
/* This loop can be optimized. */
|
|
} while ( (*p_n_removed < n_unfm_number || need_research) &&
|
|
search_for_position_by_key(p_s_sb, p_s_item_key, p_s_path) == POSITION_FOUND );
|
|
|
|
RFALSE( *p_n_removed < n_unfm_number,
|
|
"PAP-5310: indirect item is not found");
|
|
RFALSE( item_moved (&s_ih, p_s_path),
|
|
"after while, comp failed, retry") ;
|
|
|
|
if (c_mode == M_CUT)
|
|
pos_in_item (p_s_path) *= UNFM_P_SIZE;
|
|
return c_mode;
|
|
}
|
|
}
|
|
|
|
/* Calculate number of bytes which will be deleted or cut during balance */
|
|
static int calc_deleted_bytes_number(
|
|
struct tree_balance * p_s_tb,
|
|
char c_mode
|
|
) {
|
|
int n_del_size;
|
|
struct item_head * p_le_ih = PATH_PITEM_HEAD(p_s_tb->tb_path);
|
|
|
|
if ( is_statdata_le_ih (p_le_ih) )
|
|
return 0;
|
|
|
|
n_del_size = ( c_mode == M_DELETE ) ? ih_item_len(p_le_ih) : -p_s_tb->insert_size[0];
|
|
if ( is_direntry_le_ih (p_le_ih) ) {
|
|
// return EMPTY_DIR_SIZE; /* We delete emty directoris only. */
|
|
// we can't use EMPTY_DIR_SIZE, as old format dirs have a different
|
|
// empty size. ick. FIXME, is this right?
|
|
//
|
|
return n_del_size ;
|
|
}
|
|
|
|
if ( is_indirect_le_ih (p_le_ih) )
|
|
n_del_size = (n_del_size/UNFM_P_SIZE)*
|
|
(PATH_PLAST_BUFFER(p_s_tb->tb_path)->b_size);// - get_ih_free_space (p_le_ih);
|
|
return n_del_size;
|
|
}
|
|
|
|
static void init_tb_struct(
|
|
struct reiserfs_transaction_handle *th,
|
|
struct tree_balance * p_s_tb,
|
|
struct super_block * p_s_sb,
|
|
struct path * p_s_path,
|
|
int n_size
|
|
) {
|
|
|
|
BUG_ON (!th->t_trans_id);
|
|
|
|
memset (p_s_tb,'\0',sizeof(struct tree_balance));
|
|
p_s_tb->transaction_handle = th ;
|
|
p_s_tb->tb_sb = p_s_sb;
|
|
p_s_tb->tb_path = p_s_path;
|
|
PATH_OFFSET_PBUFFER(p_s_path, ILLEGAL_PATH_ELEMENT_OFFSET) = NULL;
|
|
PATH_OFFSET_POSITION(p_s_path, ILLEGAL_PATH_ELEMENT_OFFSET) = 0;
|
|
p_s_tb->insert_size[0] = n_size;
|
|
}
|
|
|
|
|
|
|
|
void padd_item (char * item, int total_length, int length)
|
|
{
|
|
int i;
|
|
|
|
for (i = total_length; i > length; )
|
|
item [--i] = 0;
|
|
}
|
|
|
|
#ifdef REISERQUOTA_DEBUG
|
|
char key2type(struct reiserfs_key *ih)
|
|
{
|
|
if (is_direntry_le_key(2, ih))
|
|
return 'd';
|
|
if (is_direct_le_key(2, ih))
|
|
return 'D';
|
|
if (is_indirect_le_key(2, ih))
|
|
return 'i';
|
|
if (is_statdata_le_key(2, ih))
|
|
return 's';
|
|
return 'u';
|
|
}
|
|
|
|
char head2type(struct item_head *ih)
|
|
{
|
|
if (is_direntry_le_ih(ih))
|
|
return 'd';
|
|
if (is_direct_le_ih(ih))
|
|
return 'D';
|
|
if (is_indirect_le_ih(ih))
|
|
return 'i';
|
|
if (is_statdata_le_ih(ih))
|
|
return 's';
|
|
return 'u';
|
|
}
|
|
#endif
|
|
|
|
/* Delete object item. */
|
|
int reiserfs_delete_item (struct reiserfs_transaction_handle *th,
|
|
struct path * p_s_path, /* Path to the deleted item. */
|
|
const struct cpu_key * p_s_item_key, /* Key to search for the deleted item. */
|
|
struct inode * p_s_inode,/* inode is here just to update i_blocks and quotas */
|
|
struct buffer_head * p_s_un_bh) /* NULL or unformatted node pointer. */
|
|
{
|
|
struct super_block * p_s_sb = p_s_inode->i_sb;
|
|
struct tree_balance s_del_balance;
|
|
struct item_head s_ih;
|
|
struct item_head *q_ih;
|
|
int quota_cut_bytes;
|
|
int n_ret_value,
|
|
n_del_size,
|
|
n_removed;
|
|
|
|
#ifdef CONFIG_REISERFS_CHECK
|
|
char c_mode;
|
|
int n_iter = 0;
|
|
#endif
|
|
|
|
BUG_ON (!th->t_trans_id);
|
|
|
|
init_tb_struct(th, &s_del_balance, p_s_sb, p_s_path, 0/*size is unknown*/);
|
|
|
|
while ( 1 ) {
|
|
n_removed = 0;
|
|
|
|
#ifdef CONFIG_REISERFS_CHECK
|
|
n_iter++;
|
|
c_mode =
|
|
#endif
|
|
prepare_for_delete_or_cut(th, p_s_inode, p_s_path, p_s_item_key, &n_removed, &n_del_size, max_reiserfs_offset (p_s_inode));
|
|
|
|
RFALSE( c_mode != M_DELETE, "PAP-5320: mode must be M_DELETE");
|
|
|
|
copy_item_head(&s_ih, PATH_PITEM_HEAD(p_s_path));
|
|
s_del_balance.insert_size[0] = n_del_size;
|
|
|
|
n_ret_value = fix_nodes(M_DELETE, &s_del_balance, NULL, NULL);
|
|
if ( n_ret_value != REPEAT_SEARCH )
|
|
break;
|
|
|
|
PROC_INFO_INC( p_s_sb, delete_item_restarted );
|
|
|
|
// file system changed, repeat search
|
|
n_ret_value = search_for_position_by_key(p_s_sb, p_s_item_key, p_s_path);
|
|
if (n_ret_value == IO_ERROR)
|
|
break;
|
|
if (n_ret_value == FILE_NOT_FOUND) {
|
|
reiserfs_warning (p_s_sb, "vs-5340: reiserfs_delete_item: "
|
|
"no items of the file %K found", p_s_item_key);
|
|
break;
|
|
}
|
|
} /* while (1) */
|
|
|
|
if ( n_ret_value != CARRY_ON ) {
|
|
unfix_nodes(&s_del_balance);
|
|
return 0;
|
|
}
|
|
|
|
// reiserfs_delete_item returns item length when success
|
|
n_ret_value = calc_deleted_bytes_number(&s_del_balance, M_DELETE);
|
|
q_ih = get_ih(p_s_path) ;
|
|
quota_cut_bytes = ih_item_len(q_ih) ;
|
|
|
|
/* hack so the quota code doesn't have to guess if the file
|
|
** has a tail. On tail insert, we allocate quota for 1 unformatted node.
|
|
** We test the offset because the tail might have been
|
|
** split into multiple items, and we only want to decrement for
|
|
** the unfm node once
|
|
*/
|
|
if (!S_ISLNK (p_s_inode->i_mode) && is_direct_le_ih(q_ih)) {
|
|
if ((le_ih_k_offset(q_ih) & (p_s_sb->s_blocksize - 1)) == 1) {
|
|
quota_cut_bytes = p_s_sb->s_blocksize + UNFM_P_SIZE;
|
|
} else {
|
|
quota_cut_bytes = 0 ;
|
|
}
|
|
}
|
|
|
|
if ( p_s_un_bh ) {
|
|
int off;
|
|
char *data ;
|
|
|
|
/* We are in direct2indirect conversion, so move tail contents
|
|
to the unformatted node */
|
|
/* note, we do the copy before preparing the buffer because we
|
|
** don't care about the contents of the unformatted node yet.
|
|
** the only thing we really care about is the direct item's data
|
|
** is in the unformatted node.
|
|
**
|
|
** Otherwise, we would have to call reiserfs_prepare_for_journal on
|
|
** the unformatted node, which might schedule, meaning we'd have to
|
|
** loop all the way back up to the start of the while loop.
|
|
**
|
|
** The unformatted node must be dirtied later on. We can't be
|
|
** sure here if the entire tail has been deleted yet.
|
|
**
|
|
** p_s_un_bh is from the page cache (all unformatted nodes are
|
|
** from the page cache) and might be a highmem page. So, we
|
|
** can't use p_s_un_bh->b_data.
|
|
** -clm
|
|
*/
|
|
|
|
data = kmap_atomic(p_s_un_bh->b_page, KM_USER0);
|
|
off = ((le_ih_k_offset (&s_ih) - 1) & (PAGE_CACHE_SIZE - 1));
|
|
memcpy(data + off,
|
|
B_I_PITEM(PATH_PLAST_BUFFER(p_s_path), &s_ih), n_ret_value);
|
|
kunmap_atomic(data, KM_USER0);
|
|
}
|
|
/* Perform balancing after all resources have been collected at once. */
|
|
do_balance(&s_del_balance, NULL, NULL, M_DELETE);
|
|
|
|
#ifdef REISERQUOTA_DEBUG
|
|
reiserfs_debug (p_s_sb, REISERFS_DEBUG_CODE, "reiserquota delete_item(): freeing %u, id=%u type=%c", quota_cut_bytes, p_s_inode->i_uid, head2type(&s_ih));
|
|
#endif
|
|
DQUOT_FREE_SPACE_NODIRTY(p_s_inode, quota_cut_bytes);
|
|
|
|
/* Return deleted body length */
|
|
return n_ret_value;
|
|
}
|
|
|
|
|
|
/* Summary Of Mechanisms For Handling Collisions Between Processes:
|
|
|
|
deletion of the body of the object is performed by iput(), with the
|
|
result that if multiple processes are operating on a file, the
|
|
deletion of the body of the file is deferred until the last process
|
|
that has an open inode performs its iput().
|
|
|
|
writes and truncates are protected from collisions by use of
|
|
semaphores.
|
|
|
|
creates, linking, and mknod are protected from collisions with other
|
|
processes by making the reiserfs_add_entry() the last step in the
|
|
creation, and then rolling back all changes if there was a collision.
|
|
- Hans
|
|
*/
|
|
|
|
|
|
/* this deletes item which never gets split */
|
|
void reiserfs_delete_solid_item (struct reiserfs_transaction_handle *th,
|
|
struct inode *inode,
|
|
struct reiserfs_key * key)
|
|
{
|
|
struct tree_balance tb;
|
|
INITIALIZE_PATH (path);
|
|
int item_len = 0;
|
|
int tb_init = 0 ;
|
|
struct cpu_key cpu_key;
|
|
int retval;
|
|
int quota_cut_bytes = 0;
|
|
|
|
BUG_ON (!th->t_trans_id);
|
|
|
|
le_key2cpu_key (&cpu_key, key);
|
|
|
|
while (1) {
|
|
retval = search_item (th->t_super, &cpu_key, &path);
|
|
if (retval == IO_ERROR) {
|
|
reiserfs_warning (th->t_super,
|
|
"vs-5350: reiserfs_delete_solid_item: "
|
|
"i/o failure occurred trying to delete %K",
|
|
&cpu_key);
|
|
break;
|
|
}
|
|
if (retval != ITEM_FOUND) {
|
|
pathrelse (&path);
|
|
// No need for a warning, if there is just no free space to insert '..' item into the newly-created subdir
|
|
if ( !( (unsigned long long) GET_HASH_VALUE (le_key_k_offset (le_key_version (key), key)) == 0 && \
|
|
(unsigned long long) GET_GENERATION_NUMBER (le_key_k_offset (le_key_version (key), key)) == 1 ) )
|
|
reiserfs_warning (th->t_super, "vs-5355: reiserfs_delete_solid_item: %k not found", key);
|
|
break;
|
|
}
|
|
if (!tb_init) {
|
|
tb_init = 1 ;
|
|
item_len = ih_item_len( PATH_PITEM_HEAD(&path) );
|
|
init_tb_struct (th, &tb, th->t_super, &path, - (IH_SIZE + item_len));
|
|
}
|
|
quota_cut_bytes = ih_item_len(PATH_PITEM_HEAD(&path)) ;
|
|
|
|
retval = fix_nodes (M_DELETE, &tb, NULL, NULL);
|
|
if (retval == REPEAT_SEARCH) {
|
|
PROC_INFO_INC( th -> t_super, delete_solid_item_restarted );
|
|
continue;
|
|
}
|
|
|
|
if (retval == CARRY_ON) {
|
|
do_balance (&tb, NULL, NULL, M_DELETE);
|
|
if (inode) { /* Should we count quota for item? (we don't count quotas for save-links) */
|
|
#ifdef REISERQUOTA_DEBUG
|
|
reiserfs_debug (th->t_super, REISERFS_DEBUG_CODE, "reiserquota delete_solid_item(): freeing %u id=%u type=%c", quota_cut_bytes, inode->i_uid, key2type(key));
|
|
#endif
|
|
DQUOT_FREE_SPACE_NODIRTY(inode, quota_cut_bytes);
|
|
}
|
|
break;
|
|
}
|
|
|
|
// IO_ERROR, NO_DISK_SPACE, etc
|
|
reiserfs_warning (th->t_super, "vs-5360: reiserfs_delete_solid_item: "
|
|
"could not delete %K due to fix_nodes failure", &cpu_key);
|
|
unfix_nodes (&tb);
|
|
break;
|
|
}
|
|
|
|
reiserfs_check_path(&path) ;
|
|
}
|
|
|
|
|
|
int reiserfs_delete_object (struct reiserfs_transaction_handle *th, struct inode * inode)
|
|
{
|
|
int err;
|
|
inode->i_size = 0;
|
|
BUG_ON (!th->t_trans_id);
|
|
|
|
/* for directory this deletes item containing "." and ".." */
|
|
err = reiserfs_do_truncate (th, inode, NULL, 0/*no timestamp updates*/);
|
|
if (err)
|
|
return err;
|
|
|
|
#if defined( USE_INODE_GENERATION_COUNTER )
|
|
if( !old_format_only ( th -> t_super ) )
|
|
{
|
|
__le32 *inode_generation;
|
|
|
|
inode_generation =
|
|
&REISERFS_SB(th -> t_super) -> s_rs -> s_inode_generation;
|
|
*inode_generation = cpu_to_le32( le32_to_cpu( *inode_generation ) + 1 );
|
|
}
|
|
/* USE_INODE_GENERATION_COUNTER */
|
|
#endif
|
|
reiserfs_delete_solid_item (th, inode, INODE_PKEY (inode));
|
|
|
|
return err;
|
|
}
|
|
|
|
static void
|
|
unmap_buffers(struct page *page, loff_t pos) {
|
|
struct buffer_head *bh ;
|
|
struct buffer_head *head ;
|
|
struct buffer_head *next ;
|
|
unsigned long tail_index ;
|
|
unsigned long cur_index ;
|
|
|
|
if (page) {
|
|
if (page_has_buffers(page)) {
|
|
tail_index = pos & (PAGE_CACHE_SIZE - 1) ;
|
|
cur_index = 0 ;
|
|
head = page_buffers(page) ;
|
|
bh = head ;
|
|
do {
|
|
next = bh->b_this_page ;
|
|
|
|
/* we want to unmap the buffers that contain the tail, and
|
|
** all the buffers after it (since the tail must be at the
|
|
** end of the file). We don't want to unmap file data
|
|
** before the tail, since it might be dirty and waiting to
|
|
** reach disk
|
|
*/
|
|
cur_index += bh->b_size ;
|
|
if (cur_index > tail_index) {
|
|
reiserfs_unmap_buffer(bh) ;
|
|
}
|
|
bh = next ;
|
|
} while (bh != head) ;
|
|
if ( PAGE_SIZE == bh->b_size ) {
|
|
clear_page_dirty(page);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static int maybe_indirect_to_direct (struct reiserfs_transaction_handle *th,
|
|
struct inode * p_s_inode,
|
|
struct page *page,
|
|
struct path * p_s_path,
|
|
const struct cpu_key * p_s_item_key,
|
|
loff_t n_new_file_size,
|
|
char * p_c_mode
|
|
) {
|
|
struct super_block * p_s_sb = p_s_inode->i_sb;
|
|
int n_block_size = p_s_sb->s_blocksize;
|
|
int cut_bytes;
|
|
BUG_ON (!th->t_trans_id);
|
|
|
|
if (n_new_file_size != p_s_inode->i_size)
|
|
BUG ();
|
|
|
|
/* the page being sent in could be NULL if there was an i/o error
|
|
** reading in the last block. The user will hit problems trying to
|
|
** read the file, but for now we just skip the indirect2direct
|
|
*/
|
|
if (atomic_read(&p_s_inode->i_count) > 1 ||
|
|
!tail_has_to_be_packed (p_s_inode) ||
|
|
!page || (REISERFS_I(p_s_inode)->i_flags & i_nopack_mask)) {
|
|
// leave tail in an unformatted node
|
|
*p_c_mode = M_SKIP_BALANCING;
|
|
cut_bytes = n_block_size - (n_new_file_size & (n_block_size - 1));
|
|
pathrelse(p_s_path);
|
|
return cut_bytes;
|
|
}
|
|
/* Permorm the conversion to a direct_item. */
|
|
/*return indirect_to_direct (p_s_inode, p_s_path, p_s_item_key, n_new_file_size, p_c_mode);*/
|
|
return indirect2direct (th, p_s_inode, page, p_s_path, p_s_item_key, n_new_file_size, p_c_mode);
|
|
}
|
|
|
|
|
|
/* we did indirect_to_direct conversion. And we have inserted direct
|
|
item successesfully, but there were no disk space to cut unfm
|
|
pointer being converted. Therefore we have to delete inserted
|
|
direct item(s) */
|
|
static void indirect_to_direct_roll_back (struct reiserfs_transaction_handle *th, struct inode * inode, struct path * path)
|
|
{
|
|
struct cpu_key tail_key;
|
|
int tail_len;
|
|
int removed;
|
|
BUG_ON (!th->t_trans_id);
|
|
|
|
make_cpu_key (&tail_key, inode, inode->i_size + 1, TYPE_DIRECT, 4);// !!!!
|
|
tail_key.key_length = 4;
|
|
|
|
tail_len = (cpu_key_k_offset (&tail_key) & (inode->i_sb->s_blocksize - 1)) - 1;
|
|
while (tail_len) {
|
|
/* look for the last byte of the tail */
|
|
if (search_for_position_by_key (inode->i_sb, &tail_key, path) == POSITION_NOT_FOUND)
|
|
reiserfs_panic (inode->i_sb, "vs-5615: indirect_to_direct_roll_back: found invalid item");
|
|
RFALSE( path->pos_in_item != ih_item_len(PATH_PITEM_HEAD (path)) - 1,
|
|
"vs-5616: appended bytes found");
|
|
PATH_LAST_POSITION (path) --;
|
|
|
|
removed = reiserfs_delete_item (th, path, &tail_key, inode, NULL/*unbh not needed*/);
|
|
RFALSE( removed <= 0 || removed > tail_len,
|
|
"vs-5617: there was tail %d bytes, removed item length %d bytes",
|
|
tail_len, removed);
|
|
tail_len -= removed;
|
|
set_cpu_key_k_offset (&tail_key, cpu_key_k_offset (&tail_key) - removed);
|
|
}
|
|
reiserfs_warning (inode->i_sb, "indirect_to_direct_roll_back: indirect_to_direct conversion has been rolled back due to lack of disk space");
|
|
//mark_file_without_tail (inode);
|
|
mark_inode_dirty (inode);
|
|
}
|
|
|
|
|
|
/* (Truncate or cut entry) or delete object item. Returns < 0 on failure */
|
|
int reiserfs_cut_from_item (struct reiserfs_transaction_handle *th,
|
|
struct path * p_s_path,
|
|
struct cpu_key * p_s_item_key,
|
|
struct inode * p_s_inode,
|
|
struct page *page,
|
|
loff_t n_new_file_size)
|
|
{
|
|
struct super_block * p_s_sb = p_s_inode->i_sb;
|
|
/* Every function which is going to call do_balance must first
|
|
create a tree_balance structure. Then it must fill up this
|
|
structure by using the init_tb_struct and fix_nodes functions.
|
|
After that we can make tree balancing. */
|
|
struct tree_balance s_cut_balance;
|
|
struct item_head *p_le_ih;
|
|
int n_cut_size = 0, /* Amount to be cut. */
|
|
n_ret_value = CARRY_ON,
|
|
n_removed = 0, /* Number of the removed unformatted nodes. */
|
|
n_is_inode_locked = 0;
|
|
char c_mode; /* Mode of the balance. */
|
|
int retval2 = -1;
|
|
int quota_cut_bytes;
|
|
loff_t tail_pos = 0;
|
|
|
|
BUG_ON (!th->t_trans_id);
|
|
|
|
init_tb_struct(th, &s_cut_balance, p_s_inode->i_sb, p_s_path, n_cut_size);
|
|
|
|
|
|
/* Repeat this loop until we either cut the item without needing
|
|
to balance, or we fix_nodes without schedule occurring */
|
|
while ( 1 ) {
|
|
/* Determine the balance mode, position of the first byte to
|
|
be cut, and size to be cut. In case of the indirect item
|
|
free unformatted nodes which are pointed to by the cut
|
|
pointers. */
|
|
|
|
c_mode = prepare_for_delete_or_cut(th, p_s_inode, p_s_path, p_s_item_key, &n_removed,
|
|
&n_cut_size, n_new_file_size);
|
|
if ( c_mode == M_CONVERT ) {
|
|
/* convert last unformatted node to direct item or leave
|
|
tail in the unformatted node */
|
|
RFALSE( n_ret_value != CARRY_ON, "PAP-5570: can not convert twice");
|
|
|
|
n_ret_value = maybe_indirect_to_direct (th, p_s_inode, page, p_s_path, p_s_item_key,
|
|
n_new_file_size, &c_mode);
|
|
if ( c_mode == M_SKIP_BALANCING )
|
|
/* tail has been left in the unformatted node */
|
|
return n_ret_value;
|
|
|
|
n_is_inode_locked = 1;
|
|
|
|
/* removing of last unformatted node will change value we
|
|
have to return to truncate. Save it */
|
|
retval2 = n_ret_value;
|
|
/*retval2 = p_s_sb->s_blocksize - (n_new_file_size & (p_s_sb->s_blocksize - 1));*/
|
|
|
|
/* So, we have performed the first part of the conversion:
|
|
inserting the new direct item. Now we are removing the
|
|
last unformatted node pointer. Set key to search for
|
|
it. */
|
|
set_cpu_key_k_type (p_s_item_key, TYPE_INDIRECT);
|
|
p_s_item_key->key_length = 4;
|
|
n_new_file_size -= (n_new_file_size & (p_s_sb->s_blocksize - 1));
|
|
tail_pos = n_new_file_size;
|
|
set_cpu_key_k_offset (p_s_item_key, n_new_file_size + 1);
|
|
if ( search_for_position_by_key(p_s_sb, p_s_item_key, p_s_path) == POSITION_NOT_FOUND ){
|
|
print_block (PATH_PLAST_BUFFER (p_s_path), 3, PATH_LAST_POSITION (p_s_path) - 1, PATH_LAST_POSITION (p_s_path) + 1);
|
|
reiserfs_panic(p_s_sb, "PAP-5580: reiserfs_cut_from_item: item to convert does not exist (%K)", p_s_item_key);
|
|
}
|
|
continue;
|
|
}
|
|
if (n_cut_size == 0) {
|
|
pathrelse (p_s_path);
|
|
return 0;
|
|
}
|
|
|
|
s_cut_balance.insert_size[0] = n_cut_size;
|
|
|
|
n_ret_value = fix_nodes(c_mode, &s_cut_balance, NULL, NULL);
|
|
if ( n_ret_value != REPEAT_SEARCH )
|
|
break;
|
|
|
|
PROC_INFO_INC( p_s_sb, cut_from_item_restarted );
|
|
|
|
n_ret_value = search_for_position_by_key(p_s_sb, p_s_item_key, p_s_path);
|
|
if (n_ret_value == POSITION_FOUND)
|
|
continue;
|
|
|
|
reiserfs_warning (p_s_sb, "PAP-5610: reiserfs_cut_from_item: item %K not found", p_s_item_key);
|
|
unfix_nodes (&s_cut_balance);
|
|
return (n_ret_value == IO_ERROR) ? -EIO : -ENOENT;
|
|
} /* while */
|
|
|
|
// check fix_nodes results (IO_ERROR or NO_DISK_SPACE)
|
|
if ( n_ret_value != CARRY_ON ) {
|
|
if ( n_is_inode_locked ) {
|
|
// FIXME: this seems to be not needed: we are always able
|
|
// to cut item
|
|
indirect_to_direct_roll_back (th, p_s_inode, p_s_path);
|
|
}
|
|
if (n_ret_value == NO_DISK_SPACE)
|
|
reiserfs_warning (p_s_sb, "NO_DISK_SPACE");
|
|
unfix_nodes (&s_cut_balance);
|
|
return -EIO;
|
|
}
|
|
|
|
/* go ahead and perform balancing */
|
|
|
|
RFALSE( c_mode == M_PASTE || c_mode == M_INSERT, "invalid mode");
|
|
|
|
/* Calculate number of bytes that need to be cut from the item. */
|
|
quota_cut_bytes = ( c_mode == M_DELETE ) ? ih_item_len(get_ih(p_s_path)) : -s_cut_balance.insert_size[0];
|
|
if (retval2 == -1)
|
|
n_ret_value = calc_deleted_bytes_number(&s_cut_balance, c_mode);
|
|
else
|
|
n_ret_value = retval2;
|
|
|
|
|
|
/* For direct items, we only change the quota when deleting the last
|
|
** item.
|
|
*/
|
|
p_le_ih = PATH_PITEM_HEAD (s_cut_balance.tb_path);
|
|
if (!S_ISLNK (p_s_inode->i_mode) && is_direct_le_ih(p_le_ih)) {
|
|
if (c_mode == M_DELETE &&
|
|
(le_ih_k_offset (p_le_ih) & (p_s_sb->s_blocksize - 1)) == 1 ) {
|
|
// FIXME: this is to keep 3.5 happy
|
|
REISERFS_I(p_s_inode)->i_first_direct_byte = U32_MAX;
|
|
quota_cut_bytes = p_s_sb->s_blocksize + UNFM_P_SIZE ;
|
|
} else {
|
|
quota_cut_bytes = 0 ;
|
|
}
|
|
}
|
|
#ifdef CONFIG_REISERFS_CHECK
|
|
if (n_is_inode_locked) {
|
|
struct item_head * le_ih = PATH_PITEM_HEAD (s_cut_balance.tb_path);
|
|
/* we are going to complete indirect2direct conversion. Make
|
|
sure, that we exactly remove last unformatted node pointer
|
|
of the item */
|
|
if (!is_indirect_le_ih (le_ih))
|
|
reiserfs_panic (p_s_sb, "vs-5652: reiserfs_cut_from_item: "
|
|
"item must be indirect %h", le_ih);
|
|
|
|
if (c_mode == M_DELETE && ih_item_len(le_ih) != UNFM_P_SIZE)
|
|
reiserfs_panic (p_s_sb, "vs-5653: reiserfs_cut_from_item: "
|
|
"completing indirect2direct conversion indirect item %h "
|
|
"being deleted must be of 4 byte long", le_ih);
|
|
|
|
if (c_mode == M_CUT && s_cut_balance.insert_size[0] != -UNFM_P_SIZE) {
|
|
reiserfs_panic (p_s_sb, "vs-5654: reiserfs_cut_from_item: "
|
|
"can not complete indirect2direct conversion of %h (CUT, insert_size==%d)",
|
|
le_ih, s_cut_balance.insert_size[0]);
|
|
}
|
|
/* it would be useful to make sure, that right neighboring
|
|
item is direct item of this file */
|
|
}
|
|
#endif
|
|
|
|
do_balance(&s_cut_balance, NULL, NULL, c_mode);
|
|
if ( n_is_inode_locked ) {
|
|
/* we've done an indirect->direct conversion. when the data block
|
|
** was freed, it was removed from the list of blocks that must
|
|
** be flushed before the transaction commits, make sure to
|
|
** unmap and invalidate it
|
|
*/
|
|
unmap_buffers(page, tail_pos);
|
|
REISERFS_I(p_s_inode)->i_flags &= ~i_pack_on_close_mask ;
|
|
}
|
|
#ifdef REISERQUOTA_DEBUG
|
|
reiserfs_debug (p_s_inode->i_sb, REISERFS_DEBUG_CODE, "reiserquota cut_from_item(): freeing %u id=%u type=%c", quota_cut_bytes, p_s_inode->i_uid, '?');
|
|
#endif
|
|
DQUOT_FREE_SPACE_NODIRTY(p_s_inode, quota_cut_bytes);
|
|
return n_ret_value;
|
|
}
|
|
|
|
static void truncate_directory (struct reiserfs_transaction_handle *th, struct inode * inode)
|
|
{
|
|
BUG_ON (!th->t_trans_id);
|
|
if (inode->i_nlink)
|
|
reiserfs_warning (inode->i_sb,
|
|
"vs-5655: truncate_directory: link count != 0");
|
|
|
|
set_le_key_k_offset (KEY_FORMAT_3_5, INODE_PKEY (inode), DOT_OFFSET);
|
|
set_le_key_k_type (KEY_FORMAT_3_5, INODE_PKEY (inode), TYPE_DIRENTRY);
|
|
reiserfs_delete_solid_item (th, inode, INODE_PKEY (inode));
|
|
reiserfs_update_sd(th, inode) ;
|
|
set_le_key_k_offset (KEY_FORMAT_3_5, INODE_PKEY (inode), SD_OFFSET);
|
|
set_le_key_k_type (KEY_FORMAT_3_5, INODE_PKEY (inode), TYPE_STAT_DATA);
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Truncate file to the new size. Note, this must be called with a transaction
|
|
already started */
|
|
int reiserfs_do_truncate (struct reiserfs_transaction_handle *th,
|
|
struct inode * p_s_inode, /* ->i_size contains new
|
|
size */
|
|
struct page *page, /* up to date for last block */
|
|
int update_timestamps /* when it is called by
|
|
file_release to convert
|
|
the tail - no timestamps
|
|
should be updated */
|
|
) {
|
|
INITIALIZE_PATH (s_search_path); /* Path to the current object item. */
|
|
struct item_head * p_le_ih; /* Pointer to an item header. */
|
|
struct cpu_key s_item_key; /* Key to search for a previous file item. */
|
|
loff_t n_file_size, /* Old file size. */
|
|
n_new_file_size;/* New file size. */
|
|
int n_deleted; /* Number of deleted or truncated bytes. */
|
|
int retval;
|
|
int err = 0;
|
|
|
|
BUG_ON (!th->t_trans_id);
|
|
if ( ! (S_ISREG(p_s_inode->i_mode) || S_ISDIR(p_s_inode->i_mode) || S_ISLNK(p_s_inode->i_mode)) )
|
|
return 0;
|
|
|
|
if (S_ISDIR(p_s_inode->i_mode)) {
|
|
// deletion of directory - no need to update timestamps
|
|
truncate_directory (th, p_s_inode);
|
|
return 0;
|
|
}
|
|
|
|
/* Get new file size. */
|
|
n_new_file_size = p_s_inode->i_size;
|
|
|
|
// FIXME: note, that key type is unimportant here
|
|
make_cpu_key (&s_item_key, p_s_inode, max_reiserfs_offset (p_s_inode), TYPE_DIRECT, 3);
|
|
|
|
retval = search_for_position_by_key(p_s_inode->i_sb, &s_item_key, &s_search_path);
|
|
if (retval == IO_ERROR) {
|
|
reiserfs_warning (p_s_inode->i_sb, "vs-5657: reiserfs_do_truncate: "
|
|
"i/o failure occurred trying to truncate %K", &s_item_key);
|
|
err = -EIO;
|
|
goto out;
|
|
}
|
|
if (retval == POSITION_FOUND || retval == FILE_NOT_FOUND) {
|
|
reiserfs_warning (p_s_inode->i_sb, "PAP-5660: reiserfs_do_truncate: "
|
|
"wrong result %d of search for %K", retval, &s_item_key);
|
|
|
|
err = -EIO;
|
|
goto out;
|
|
}
|
|
|
|
s_search_path.pos_in_item --;
|
|
|
|
/* Get real file size (total length of all file items) */
|
|
p_le_ih = PATH_PITEM_HEAD(&s_search_path);
|
|
if ( is_statdata_le_ih (p_le_ih) )
|
|
n_file_size = 0;
|
|
else {
|
|
loff_t offset = le_ih_k_offset (p_le_ih);
|
|
int bytes = op_bytes_number (p_le_ih,p_s_inode->i_sb->s_blocksize);
|
|
|
|
/* this may mismatch with real file size: if last direct item
|
|
had no padding zeros and last unformatted node had no free
|
|
space, this file would have this file size */
|
|
n_file_size = offset + bytes - 1;
|
|
}
|
|
/*
|
|
* are we doing a full truncate or delete, if so
|
|
* kick in the reada code
|
|
*/
|
|
if (n_new_file_size == 0)
|
|
s_search_path.reada = PATH_READA | PATH_READA_BACK;
|
|
|
|
if ( n_file_size == 0 || n_file_size < n_new_file_size ) {
|
|
goto update_and_out ;
|
|
}
|
|
|
|
/* Update key to search for the last file item. */
|
|
set_cpu_key_k_offset (&s_item_key, n_file_size);
|
|
|
|
do {
|
|
/* Cut or delete file item. */
|
|
n_deleted = reiserfs_cut_from_item(th, &s_search_path, &s_item_key, p_s_inode, page, n_new_file_size);
|
|
if (n_deleted < 0) {
|
|
reiserfs_warning (p_s_inode->i_sb, "vs-5665: reiserfs_do_truncate: reiserfs_cut_from_item failed");
|
|
reiserfs_check_path(&s_search_path) ;
|
|
return 0;
|
|
}
|
|
|
|
RFALSE( n_deleted > n_file_size,
|
|
"PAP-5670: reiserfs_cut_from_item: too many bytes deleted: deleted %d, file_size %lu, item_key %K",
|
|
n_deleted, n_file_size, &s_item_key);
|
|
|
|
/* Change key to search the last file item. */
|
|
n_file_size -= n_deleted;
|
|
|
|
set_cpu_key_k_offset (&s_item_key, n_file_size);
|
|
|
|
/* While there are bytes to truncate and previous file item is presented in the tree. */
|
|
|
|
/*
|
|
** This loop could take a really long time, and could log
|
|
** many more blocks than a transaction can hold. So, we do a polite
|
|
** journal end here, and if the transaction needs ending, we make
|
|
** sure the file is consistent before ending the current trans
|
|
** and starting a new one
|
|
*/
|
|
if (journal_transaction_should_end(th, th->t_blocks_allocated)) {
|
|
int orig_len_alloc = th->t_blocks_allocated ;
|
|
decrement_counters_in_path(&s_search_path) ;
|
|
|
|
if (update_timestamps) {
|
|
p_s_inode->i_mtime = p_s_inode->i_ctime = CURRENT_TIME_SEC;
|
|
}
|
|
reiserfs_update_sd(th, p_s_inode) ;
|
|
|
|
err = journal_end(th, p_s_inode->i_sb, orig_len_alloc) ;
|
|
if (err)
|
|
goto out;
|
|
err = journal_begin (th, p_s_inode->i_sb,
|
|
JOURNAL_PER_BALANCE_CNT * 6);
|
|
if (err)
|
|
goto out;
|
|
reiserfs_update_inode_transaction(p_s_inode) ;
|
|
}
|
|
} while ( n_file_size > ROUND_UP (n_new_file_size) &&
|
|
search_for_position_by_key(p_s_inode->i_sb, &s_item_key, &s_search_path) == POSITION_FOUND ) ;
|
|
|
|
RFALSE( n_file_size > ROUND_UP (n_new_file_size),
|
|
"PAP-5680: truncate did not finish: new_file_size %Ld, current %Ld, oid %d",
|
|
n_new_file_size, n_file_size, s_item_key.on_disk_key.k_objectid);
|
|
|
|
update_and_out:
|
|
if (update_timestamps) {
|
|
// this is truncate, not file closing
|
|
p_s_inode->i_mtime = p_s_inode->i_ctime = CURRENT_TIME_SEC;
|
|
}
|
|
reiserfs_update_sd (th, p_s_inode);
|
|
|
|
out:
|
|
pathrelse(&s_search_path) ;
|
|
return err;
|
|
}
|
|
|
|
|
|
#ifdef CONFIG_REISERFS_CHECK
|
|
// this makes sure, that we __append__, not overwrite or add holes
|
|
static void check_research_for_paste (struct path * path,
|
|
const struct cpu_key * p_s_key)
|
|
{
|
|
struct item_head * found_ih = get_ih (path);
|
|
|
|
if (is_direct_le_ih (found_ih)) {
|
|
if (le_ih_k_offset (found_ih) + op_bytes_number (found_ih, get_last_bh (path)->b_size) !=
|
|
cpu_key_k_offset (p_s_key) ||
|
|
op_bytes_number (found_ih, get_last_bh (path)->b_size) != pos_in_item (path))
|
|
reiserfs_panic (NULL, "PAP-5720: check_research_for_paste: "
|
|
"found direct item %h or position (%d) does not match to key %K",
|
|
found_ih, pos_in_item (path), p_s_key);
|
|
}
|
|
if (is_indirect_le_ih (found_ih)) {
|
|
if (le_ih_k_offset (found_ih) + op_bytes_number (found_ih, get_last_bh (path)->b_size) != cpu_key_k_offset (p_s_key) ||
|
|
I_UNFM_NUM (found_ih) != pos_in_item (path) ||
|
|
get_ih_free_space (found_ih) != 0)
|
|
reiserfs_panic (NULL, "PAP-5730: check_research_for_paste: "
|
|
"found indirect item (%h) or position (%d) does not match to key (%K)",
|
|
found_ih, pos_in_item (path), p_s_key);
|
|
}
|
|
}
|
|
#endif /* config reiserfs check */
|
|
|
|
|
|
/* Paste bytes to the existing item. Returns bytes number pasted into the item. */
|
|
int reiserfs_paste_into_item (struct reiserfs_transaction_handle *th,
|
|
struct path * p_s_search_path, /* Path to the pasted item. */
|
|
const struct cpu_key * p_s_key, /* Key to search for the needed item.*/
|
|
struct inode * inode, /* Inode item belongs to */
|
|
const char * p_c_body, /* Pointer to the bytes to paste. */
|
|
int n_pasted_size) /* Size of pasted bytes. */
|
|
{
|
|
struct tree_balance s_paste_balance;
|
|
int retval;
|
|
int fs_gen;
|
|
|
|
BUG_ON (!th->t_trans_id);
|
|
|
|
fs_gen = get_generation(inode->i_sb) ;
|
|
|
|
#ifdef REISERQUOTA_DEBUG
|
|
reiserfs_debug (inode->i_sb, REISERFS_DEBUG_CODE, "reiserquota paste_into_item(): allocating %u id=%u type=%c", n_pasted_size, inode->i_uid, key2type(&(p_s_key->on_disk_key)));
|
|
#endif
|
|
|
|
if (DQUOT_ALLOC_SPACE_NODIRTY(inode, n_pasted_size)) {
|
|
pathrelse(p_s_search_path);
|
|
return -EDQUOT;
|
|
}
|
|
init_tb_struct(th, &s_paste_balance, th->t_super, p_s_search_path, n_pasted_size);
|
|
#ifdef DISPLACE_NEW_PACKING_LOCALITIES
|
|
s_paste_balance.key = p_s_key->on_disk_key;
|
|
#endif
|
|
|
|
/* DQUOT_* can schedule, must check before the fix_nodes */
|
|
if (fs_changed(fs_gen, inode->i_sb)) {
|
|
goto search_again;
|
|
}
|
|
|
|
while ((retval = fix_nodes(M_PASTE, &s_paste_balance, NULL, p_c_body)) ==
|
|
REPEAT_SEARCH ) {
|
|
search_again:
|
|
/* file system changed while we were in the fix_nodes */
|
|
PROC_INFO_INC( th -> t_super, paste_into_item_restarted );
|
|
retval = search_for_position_by_key (th->t_super, p_s_key, p_s_search_path);
|
|
if (retval == IO_ERROR) {
|
|
retval = -EIO ;
|
|
goto error_out ;
|
|
}
|
|
if (retval == POSITION_FOUND) {
|
|
reiserfs_warning (inode->i_sb, "PAP-5710: reiserfs_paste_into_item: entry or pasted byte (%K) exists", p_s_key);
|
|
retval = -EEXIST ;
|
|
goto error_out ;
|
|
}
|
|
|
|
#ifdef CONFIG_REISERFS_CHECK
|
|
check_research_for_paste (p_s_search_path, p_s_key);
|
|
#endif
|
|
}
|
|
|
|
/* Perform balancing after all resources are collected by fix_nodes, and
|
|
accessing them will not risk triggering schedule. */
|
|
if ( retval == CARRY_ON ) {
|
|
do_balance(&s_paste_balance, NULL/*ih*/, p_c_body, M_PASTE);
|
|
return 0;
|
|
}
|
|
retval = (retval == NO_DISK_SPACE) ? -ENOSPC : -EIO;
|
|
error_out:
|
|
/* this also releases the path */
|
|
unfix_nodes(&s_paste_balance);
|
|
#ifdef REISERQUOTA_DEBUG
|
|
reiserfs_debug (inode->i_sb, REISERFS_DEBUG_CODE, "reiserquota paste_into_item(): freeing %u id=%u type=%c", n_pasted_size, inode->i_uid, key2type(&(p_s_key->on_disk_key)));
|
|
#endif
|
|
DQUOT_FREE_SPACE_NODIRTY(inode, n_pasted_size);
|
|
return retval ;
|
|
}
|
|
|
|
|
|
/* Insert new item into the buffer at the path. */
|
|
int reiserfs_insert_item(struct reiserfs_transaction_handle *th,
|
|
struct path * p_s_path, /* Path to the inserteded item. */
|
|
const struct cpu_key * key,
|
|
struct item_head * p_s_ih, /* Pointer to the item header to insert.*/
|
|
struct inode * inode,
|
|
const char * p_c_body) /* Pointer to the bytes to insert. */
|
|
{
|
|
struct tree_balance s_ins_balance;
|
|
int retval;
|
|
int fs_gen = 0 ;
|
|
int quota_bytes = 0 ;
|
|
|
|
BUG_ON (!th->t_trans_id);
|
|
|
|
if (inode) { /* Do we count quotas for item? */
|
|
fs_gen = get_generation(inode->i_sb);
|
|
quota_bytes = ih_item_len(p_s_ih);
|
|
|
|
/* hack so the quota code doesn't have to guess if the file has
|
|
** a tail, links are always tails, so there's no guessing needed
|
|
*/
|
|
if (!S_ISLNK (inode->i_mode) && is_direct_le_ih(p_s_ih)) {
|
|
quota_bytes = inode->i_sb->s_blocksize + UNFM_P_SIZE ;
|
|
}
|
|
#ifdef REISERQUOTA_DEBUG
|
|
reiserfs_debug (inode->i_sb, REISERFS_DEBUG_CODE, "reiserquota insert_item(): allocating %u id=%u type=%c", quota_bytes, inode->i_uid, head2type(p_s_ih));
|
|
#endif
|
|
/* We can't dirty inode here. It would be immediately written but
|
|
* appropriate stat item isn't inserted yet... */
|
|
if (DQUOT_ALLOC_SPACE_NODIRTY(inode, quota_bytes)) {
|
|
pathrelse(p_s_path);
|
|
return -EDQUOT;
|
|
}
|
|
}
|
|
init_tb_struct(th, &s_ins_balance, th->t_super, p_s_path, IH_SIZE + ih_item_len(p_s_ih));
|
|
#ifdef DISPLACE_NEW_PACKING_LOCALITIES
|
|
s_ins_balance.key = key->on_disk_key;
|
|
#endif
|
|
/* DQUOT_* can schedule, must check to be sure calling fix_nodes is safe */
|
|
if (inode && fs_changed(fs_gen, inode->i_sb)) {
|
|
goto search_again;
|
|
}
|
|
|
|
while ( (retval = fix_nodes(M_INSERT, &s_ins_balance, p_s_ih, p_c_body)) == REPEAT_SEARCH) {
|
|
search_again:
|
|
/* file system changed while we were in the fix_nodes */
|
|
PROC_INFO_INC( th -> t_super, insert_item_restarted );
|
|
retval = search_item (th->t_super, key, p_s_path);
|
|
if (retval == IO_ERROR) {
|
|
retval = -EIO;
|
|
goto error_out ;
|
|
}
|
|
if (retval == ITEM_FOUND) {
|
|
reiserfs_warning (th->t_super, "PAP-5760: reiserfs_insert_item: "
|
|
"key %K already exists in the tree", key);
|
|
retval = -EEXIST ;
|
|
goto error_out;
|
|
}
|
|
}
|
|
|
|
/* make balancing after all resources will be collected at a time */
|
|
if ( retval == CARRY_ON ) {
|
|
do_balance (&s_ins_balance, p_s_ih, p_c_body, M_INSERT);
|
|
return 0;
|
|
}
|
|
|
|
retval = (retval == NO_DISK_SPACE) ? -ENOSPC : -EIO;
|
|
error_out:
|
|
/* also releases the path */
|
|
unfix_nodes(&s_ins_balance);
|
|
#ifdef REISERQUOTA_DEBUG
|
|
reiserfs_debug (th->t_super, REISERFS_DEBUG_CODE, "reiserquota insert_item(): freeing %u id=%u type=%c", quota_bytes, inode->i_uid, head2type(p_s_ih));
|
|
#endif
|
|
if (inode)
|
|
DQUOT_FREE_SPACE_NODIRTY(inode, quota_bytes) ;
|
|
return retval;
|
|
}
|
|
|
|
|
|
|
|
|