linux_old1/sound/pci/cs46xx/dsp_spos.c

1897 lines
53 KiB
C

/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
/*
* 2002-07 Benny Sjostrand benny@hostmobility.com
*/
#include <sound/driver.h>
#include <asm/io.h>
#include <linux/delay.h>
#include <linux/pm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/mutex.h>
#include <sound/core.h>
#include <sound/control.h>
#include <sound/info.h>
#include <sound/asoundef.h>
#include <sound/cs46xx.h>
#include "cs46xx_lib.h"
#include "dsp_spos.h"
static int cs46xx_dsp_async_init (struct snd_cs46xx *chip,
struct dsp_scb_descriptor * fg_entry);
static enum wide_opcode wide_opcodes[] = {
WIDE_FOR_BEGIN_LOOP,
WIDE_FOR_BEGIN_LOOP2,
WIDE_COND_GOTO_ADDR,
WIDE_COND_GOTO_CALL,
WIDE_TBEQ_COND_GOTO_ADDR,
WIDE_TBEQ_COND_CALL_ADDR,
WIDE_TBEQ_NCOND_GOTO_ADDR,
WIDE_TBEQ_NCOND_CALL_ADDR,
WIDE_TBEQ_COND_GOTO1_ADDR,
WIDE_TBEQ_COND_CALL1_ADDR,
WIDE_TBEQ_NCOND_GOTOI_ADDR,
WIDE_TBEQ_NCOND_CALL1_ADDR
};
static int shadow_and_reallocate_code (struct snd_cs46xx * chip, u32 * data, u32 size,
u32 overlay_begin_address)
{
unsigned int i = 0, j, nreallocated = 0;
u32 hival,loval,address;
u32 mop_operands,mop_type,wide_op;
struct dsp_spos_instance * ins = chip->dsp_spos_instance;
snd_assert( ((size % 2) == 0), return -EINVAL);
while (i < size) {
loval = data[i++];
hival = data[i++];
if (ins->code.offset > 0) {
mop_operands = (hival >> 6) & 0x03fff;
mop_type = mop_operands >> 10;
/* check for wide type instruction */
if (mop_type == 0 &&
(mop_operands & WIDE_LADD_INSTR_MASK) == 0 &&
(mop_operands & WIDE_INSTR_MASK) != 0) {
wide_op = loval & 0x7f;
for (j = 0;j < ARRAY_SIZE(wide_opcodes); ++j) {
if (wide_opcodes[j] == wide_op) {
/* need to reallocate instruction */
address = (hival & 0x00FFF) << 5;
address |= loval >> 15;
snd_printdd("handle_wideop[1]: %05x:%05x addr %04x\n",hival,loval,address);
if ( !(address & 0x8000) ) {
address += (ins->code.offset / 2) - overlay_begin_address;
} else {
snd_printdd("handle_wideop[1]: ROM symbol not reallocated\n");
}
hival &= 0xFF000;
loval &= 0x07FFF;
hival |= ( (address >> 5) & 0x00FFF);
loval |= ( (address << 15) & 0xF8000);
address = (hival & 0x00FFF) << 5;
address |= loval >> 15;
snd_printdd("handle_wideop:[2] %05x:%05x addr %04x\n",hival,loval,address);
nreallocated ++;
} /* wide_opcodes[j] == wide_op */
} /* for */
} /* mod_type == 0 ... */
} /* ins->code.offset > 0 */
ins->code.data[ins->code.size++] = loval;
ins->code.data[ins->code.size++] = hival;
}
snd_printdd("dsp_spos: %d instructions reallocated\n",nreallocated);
return nreallocated;
}
static struct dsp_segment_desc * get_segment_desc (struct dsp_module_desc * module, int seg_type)
{
int i;
for (i = 0;i < module->nsegments; ++i) {
if (module->segments[i].segment_type == seg_type) {
return (module->segments + i);
}
}
return NULL;
};
static int find_free_symbol_index (struct dsp_spos_instance * ins)
{
int index = ins->symbol_table.nsymbols,i;
for (i = ins->symbol_table.highest_frag_index; i < ins->symbol_table.nsymbols; ++i) {
if (ins->symbol_table.symbols[i].deleted) {
index = i;
break;
}
}
return index;
}
static int add_symbols (struct snd_cs46xx * chip, struct dsp_module_desc * module)
{
int i;
struct dsp_spos_instance * ins = chip->dsp_spos_instance;
if (module->symbol_table.nsymbols > 0) {
if (!strcmp(module->symbol_table.symbols[0].symbol_name, "OVERLAYBEGINADDRESS") &&
module->symbol_table.symbols[0].symbol_type == SYMBOL_CONSTANT ) {
module->overlay_begin_address = module->symbol_table.symbols[0].address;
}
}
for (i = 0;i < module->symbol_table.nsymbols; ++i) {
if (ins->symbol_table.nsymbols == (DSP_MAX_SYMBOLS - 1)) {
snd_printk(KERN_ERR "dsp_spos: symbol table is full\n");
return -ENOMEM;
}
if (cs46xx_dsp_lookup_symbol(chip,
module->symbol_table.symbols[i].symbol_name,
module->symbol_table.symbols[i].symbol_type) == NULL) {
ins->symbol_table.symbols[ins->symbol_table.nsymbols] = module->symbol_table.symbols[i];
ins->symbol_table.symbols[ins->symbol_table.nsymbols].address += ((ins->code.offset / 2) - module->overlay_begin_address);
ins->symbol_table.symbols[ins->symbol_table.nsymbols].module = module;
ins->symbol_table.symbols[ins->symbol_table.nsymbols].deleted = 0;
if (ins->symbol_table.nsymbols > ins->symbol_table.highest_frag_index)
ins->symbol_table.highest_frag_index = ins->symbol_table.nsymbols;
ins->symbol_table.nsymbols++;
} else {
/* if (0) printk ("dsp_spos: symbol <%s> duplicated, probably nothing wrong with that (Cirrus?)\n",
module->symbol_table.symbols[i].symbol_name); */
}
}
return 0;
}
static struct dsp_symbol_entry *
add_symbol (struct snd_cs46xx * chip, char * symbol_name, u32 address, int type)
{
struct dsp_spos_instance * ins = chip->dsp_spos_instance;
struct dsp_symbol_entry * symbol = NULL;
int index;
if (ins->symbol_table.nsymbols == (DSP_MAX_SYMBOLS - 1)) {
snd_printk(KERN_ERR "dsp_spos: symbol table is full\n");
return NULL;
}
if (cs46xx_dsp_lookup_symbol(chip,
symbol_name,
type) != NULL) {
snd_printk(KERN_ERR "dsp_spos: symbol <%s> duplicated\n", symbol_name);
return NULL;
}
index = find_free_symbol_index (ins);
strcpy (ins->symbol_table.symbols[index].symbol_name, symbol_name);
ins->symbol_table.symbols[index].address = address;
ins->symbol_table.symbols[index].symbol_type = type;
ins->symbol_table.symbols[index].module = NULL;
ins->symbol_table.symbols[index].deleted = 0;
symbol = (ins->symbol_table.symbols + index);
if (index > ins->symbol_table.highest_frag_index)
ins->symbol_table.highest_frag_index = index;
if (index == ins->symbol_table.nsymbols)
ins->symbol_table.nsymbols++; /* no frag. in list */
return symbol;
}
struct dsp_spos_instance *cs46xx_dsp_spos_create (struct snd_cs46xx * chip)
{
struct dsp_spos_instance * ins = kzalloc(sizeof(struct dsp_spos_instance), GFP_KERNEL);
if (ins == NULL)
return NULL;
/* better to use vmalloc for this big table */
ins->symbol_table.nsymbols = 0;
ins->symbol_table.symbols = vmalloc(sizeof(struct dsp_symbol_entry) *
DSP_MAX_SYMBOLS);
ins->symbol_table.highest_frag_index = 0;
if (ins->symbol_table.symbols == NULL) {
cs46xx_dsp_spos_destroy(chip);
goto error;
}
ins->code.offset = 0;
ins->code.size = 0;
ins->code.data = kmalloc(DSP_CODE_BYTE_SIZE, GFP_KERNEL);
if (ins->code.data == NULL) {
cs46xx_dsp_spos_destroy(chip);
goto error;
}
ins->nscb = 0;
ins->ntask = 0;
ins->nmodules = 0;
ins->modules = kmalloc(sizeof(struct dsp_module_desc) * DSP_MAX_MODULES, GFP_KERNEL);
if (ins->modules == NULL) {
cs46xx_dsp_spos_destroy(chip);
goto error;
}
/* default SPDIF input sample rate
to 48000 khz */
ins->spdif_in_sample_rate = 48000;
/* maximize volume */
ins->dac_volume_right = 0x8000;
ins->dac_volume_left = 0x8000;
ins->spdif_input_volume_right = 0x8000;
ins->spdif_input_volume_left = 0x8000;
/* set left and right validity bits and
default channel status */
ins->spdif_csuv_default =
ins->spdif_csuv_stream =
/* byte 0 */ ((unsigned int)_wrap_all_bits( (SNDRV_PCM_DEFAULT_CON_SPDIF & 0xff)) << 24) |
/* byte 1 */ ((unsigned int)_wrap_all_bits( ((SNDRV_PCM_DEFAULT_CON_SPDIF >> 8) & 0xff)) << 16) |
/* byte 3 */ (unsigned int)_wrap_all_bits( (SNDRV_PCM_DEFAULT_CON_SPDIF >> 24) & 0xff) |
/* left and right validity bits */ (1 << 13) | (1 << 12);
return ins;
error:
kfree(ins);
return NULL;
}
void cs46xx_dsp_spos_destroy (struct snd_cs46xx * chip)
{
int i;
struct dsp_spos_instance * ins = chip->dsp_spos_instance;
snd_assert(ins != NULL, return);
mutex_lock(&chip->spos_mutex);
for (i = 0; i < ins->nscb; ++i) {
if (ins->scbs[i].deleted) continue;
cs46xx_dsp_proc_free_scb_desc ( (ins->scbs + i) );
}
kfree(ins->code.data);
vfree(ins->symbol_table.symbols);
kfree(ins->modules);
kfree(ins);
mutex_unlock(&chip->spos_mutex);
}
int cs46xx_dsp_load_module (struct snd_cs46xx * chip, struct dsp_module_desc * module)
{
struct dsp_spos_instance * ins = chip->dsp_spos_instance;
struct dsp_segment_desc * code = get_segment_desc (module,SEGTYPE_SP_PROGRAM);
struct dsp_segment_desc * parameter = get_segment_desc (module,SEGTYPE_SP_PARAMETER);
struct dsp_segment_desc * sample = get_segment_desc (module,SEGTYPE_SP_SAMPLE);
u32 doffset, dsize;
if (ins->nmodules == DSP_MAX_MODULES - 1) {
snd_printk(KERN_ERR "dsp_spos: to many modules loaded into DSP\n");
return -ENOMEM;
}
snd_printdd("dsp_spos: loading module %s into DSP\n", module->module_name);
if (ins->nmodules == 0) {
snd_printdd("dsp_spos: clearing parameter area\n");
snd_cs46xx_clear_BA1(chip, DSP_PARAMETER_BYTE_OFFSET, DSP_PARAMETER_BYTE_SIZE);
}
if (parameter == NULL) {
snd_printdd("dsp_spos: module got no parameter segment\n");
} else {
if (ins->nmodules > 0) {
snd_printk(KERN_WARNING "dsp_spos: WARNING current parameter data may be overwriten!\n");
}
doffset = (parameter->offset * 4 + DSP_PARAMETER_BYTE_OFFSET);
dsize = parameter->size * 4;
snd_printdd("dsp_spos: downloading parameter data to chip (%08x-%08x)\n",
doffset,doffset + dsize);
if (snd_cs46xx_download (chip, parameter->data, doffset, dsize)) {
snd_printk(KERN_ERR "dsp_spos: failed to download parameter data to DSP\n");
return -EINVAL;
}
}
if (ins->nmodules == 0) {
snd_printdd("dsp_spos: clearing sample area\n");
snd_cs46xx_clear_BA1(chip, DSP_SAMPLE_BYTE_OFFSET, DSP_SAMPLE_BYTE_SIZE);
}
if (sample == NULL) {
snd_printdd("dsp_spos: module got no sample segment\n");
} else {
if (ins->nmodules > 0) {
snd_printk(KERN_WARNING "dsp_spos: WARNING current sample data may be overwriten\n");
}
doffset = (sample->offset * 4 + DSP_SAMPLE_BYTE_OFFSET);
dsize = sample->size * 4;
snd_printdd("dsp_spos: downloading sample data to chip (%08x-%08x)\n",
doffset,doffset + dsize);
if (snd_cs46xx_download (chip,sample->data,doffset,dsize)) {
snd_printk(KERN_ERR "dsp_spos: failed to sample data to DSP\n");
return -EINVAL;
}
}
if (ins->nmodules == 0) {
snd_printdd("dsp_spos: clearing code area\n");
snd_cs46xx_clear_BA1(chip, DSP_CODE_BYTE_OFFSET, DSP_CODE_BYTE_SIZE);
}
if (code == NULL) {
snd_printdd("dsp_spos: module got no code segment\n");
} else {
if (ins->code.offset + code->size > DSP_CODE_BYTE_SIZE) {
snd_printk(KERN_ERR "dsp_spos: no space available in DSP\n");
return -ENOMEM;
}
module->load_address = ins->code.offset;
module->overlay_begin_address = 0x000;
/* if module has a code segment it must have
symbol table */
snd_assert(module->symbol_table.symbols != NULL ,return -ENOMEM);
if (add_symbols(chip,module)) {
snd_printk(KERN_ERR "dsp_spos: failed to load symbol table\n");
return -ENOMEM;
}
doffset = (code->offset * 4 + ins->code.offset * 4 + DSP_CODE_BYTE_OFFSET);
dsize = code->size * 4;
snd_printdd("dsp_spos: downloading code to chip (%08x-%08x)\n",
doffset,doffset + dsize);
module->nfixups = shadow_and_reallocate_code(chip,code->data,code->size,module->overlay_begin_address);
if (snd_cs46xx_download (chip,(ins->code.data + ins->code.offset),doffset,dsize)) {
snd_printk(KERN_ERR "dsp_spos: failed to download code to DSP\n");
return -EINVAL;
}
ins->code.offset += code->size;
}
/* NOTE: module segments and symbol table must be
statically allocated. Case that module data is
not generated by the ospparser */
ins->modules[ins->nmodules] = *module;
ins->nmodules++;
return 0;
}
struct dsp_symbol_entry *
cs46xx_dsp_lookup_symbol (struct snd_cs46xx * chip, char * symbol_name, int symbol_type)
{
int i;
struct dsp_spos_instance * ins = chip->dsp_spos_instance;
for ( i = 0; i < ins->symbol_table.nsymbols; ++i ) {
if (ins->symbol_table.symbols[i].deleted)
continue;
if (!strcmp(ins->symbol_table.symbols[i].symbol_name,symbol_name) &&
ins->symbol_table.symbols[i].symbol_type == symbol_type) {
return (ins->symbol_table.symbols + i);
}
}
#if 0
printk ("dsp_spos: symbol <%s> type %02x not found\n",
symbol_name,symbol_type);
#endif
return NULL;
}
#ifdef CONFIG_PROC_FS
static struct dsp_symbol_entry *
cs46xx_dsp_lookup_symbol_addr (struct snd_cs46xx * chip, u32 address, int symbol_type)
{
int i;
struct dsp_spos_instance * ins = chip->dsp_spos_instance;
for ( i = 0; i < ins->symbol_table.nsymbols; ++i ) {
if (ins->symbol_table.symbols[i].deleted)
continue;
if (ins->symbol_table.symbols[i].address == address &&
ins->symbol_table.symbols[i].symbol_type == symbol_type) {
return (ins->symbol_table.symbols + i);
}
}
return NULL;
}
static void cs46xx_dsp_proc_symbol_table_read (struct snd_info_entry *entry,
struct snd_info_buffer *buffer)
{
struct snd_cs46xx *chip = entry->private_data;
struct dsp_spos_instance * ins = chip->dsp_spos_instance;
int i;
snd_iprintf(buffer, "SYMBOLS:\n");
for ( i = 0; i < ins->symbol_table.nsymbols; ++i ) {
char *module_str = "system";
if (ins->symbol_table.symbols[i].deleted)
continue;
if (ins->symbol_table.symbols[i].module != NULL) {
module_str = ins->symbol_table.symbols[i].module->module_name;
}
snd_iprintf(buffer, "%04X <%02X> %s [%s]\n",
ins->symbol_table.symbols[i].address,
ins->symbol_table.symbols[i].symbol_type,
ins->symbol_table.symbols[i].symbol_name,
module_str);
}
}
static void cs46xx_dsp_proc_modules_read (struct snd_info_entry *entry,
struct snd_info_buffer *buffer)
{
struct snd_cs46xx *chip = entry->private_data;
struct dsp_spos_instance * ins = chip->dsp_spos_instance;
int i,j;
mutex_lock(&chip->spos_mutex);
snd_iprintf(buffer, "MODULES:\n");
for ( i = 0; i < ins->nmodules; ++i ) {
snd_iprintf(buffer, "\n%s:\n", ins->modules[i].module_name);
snd_iprintf(buffer, " %d symbols\n", ins->modules[i].symbol_table.nsymbols);
snd_iprintf(buffer, " %d fixups\n", ins->modules[i].nfixups);
for (j = 0; j < ins->modules[i].nsegments; ++ j) {
struct dsp_segment_desc * desc = (ins->modules[i].segments + j);
snd_iprintf(buffer, " segment %02x offset %08x size %08x\n",
desc->segment_type,desc->offset, desc->size);
}
}
mutex_unlock(&chip->spos_mutex);
}
static void cs46xx_dsp_proc_task_tree_read (struct snd_info_entry *entry,
struct snd_info_buffer *buffer)
{
struct snd_cs46xx *chip = entry->private_data;
struct dsp_spos_instance * ins = chip->dsp_spos_instance;
int i, j, col;
void __iomem *dst = chip->region.idx[1].remap_addr + DSP_PARAMETER_BYTE_OFFSET;
mutex_lock(&chip->spos_mutex);
snd_iprintf(buffer, "TASK TREES:\n");
for ( i = 0; i < ins->ntask; ++i) {
snd_iprintf(buffer,"\n%04x %s:\n",ins->tasks[i].address,ins->tasks[i].task_name);
for (col = 0,j = 0;j < ins->tasks[i].size; j++,col++) {
u32 val;
if (col == 4) {
snd_iprintf(buffer,"\n");
col = 0;
}
val = readl(dst + (ins->tasks[i].address + j) * sizeof(u32));
snd_iprintf(buffer,"%08x ",val);
}
}
snd_iprintf(buffer,"\n");
mutex_unlock(&chip->spos_mutex);
}
static void cs46xx_dsp_proc_scb_read (struct snd_info_entry *entry,
struct snd_info_buffer *buffer)
{
struct snd_cs46xx *chip = entry->private_data;
struct dsp_spos_instance * ins = chip->dsp_spos_instance;
int i;
mutex_lock(&chip->spos_mutex);
snd_iprintf(buffer, "SCB's:\n");
for ( i = 0; i < ins->nscb; ++i) {
if (ins->scbs[i].deleted)
continue;
snd_iprintf(buffer,"\n%04x %s:\n\n",ins->scbs[i].address,ins->scbs[i].scb_name);
if (ins->scbs[i].parent_scb_ptr != NULL) {
snd_iprintf(buffer,"parent [%s:%04x] ",
ins->scbs[i].parent_scb_ptr->scb_name,
ins->scbs[i].parent_scb_ptr->address);
} else snd_iprintf(buffer,"parent [none] ");
snd_iprintf(buffer,"sub_list_ptr [%s:%04x]\nnext_scb_ptr [%s:%04x] task_entry [%s:%04x]\n",
ins->scbs[i].sub_list_ptr->scb_name,
ins->scbs[i].sub_list_ptr->address,
ins->scbs[i].next_scb_ptr->scb_name,
ins->scbs[i].next_scb_ptr->address,
ins->scbs[i].task_entry->symbol_name,
ins->scbs[i].task_entry->address);
}
snd_iprintf(buffer,"\n");
mutex_unlock(&chip->spos_mutex);
}
static void cs46xx_dsp_proc_parameter_dump_read (struct snd_info_entry *entry,
struct snd_info_buffer *buffer)
{
struct snd_cs46xx *chip = entry->private_data;
/*struct dsp_spos_instance * ins = chip->dsp_spos_instance; */
unsigned int i, col = 0;
void __iomem *dst = chip->region.idx[1].remap_addr + DSP_PARAMETER_BYTE_OFFSET;
struct dsp_symbol_entry * symbol;
for (i = 0;i < DSP_PARAMETER_BYTE_SIZE; i += sizeof(u32),col ++) {
if (col == 4) {
snd_iprintf(buffer,"\n");
col = 0;
}
if ( (symbol = cs46xx_dsp_lookup_symbol_addr (chip,i / sizeof(u32), SYMBOL_PARAMETER)) != NULL) {
col = 0;
snd_iprintf (buffer,"\n%s:\n",symbol->symbol_name);
}
if (col == 0) {
snd_iprintf(buffer, "%04X ", i / (unsigned int)sizeof(u32));
}
snd_iprintf(buffer,"%08X ",readl(dst + i));
}
}
static void cs46xx_dsp_proc_sample_dump_read (struct snd_info_entry *entry,
struct snd_info_buffer *buffer)
{
struct snd_cs46xx *chip = entry->private_data;
int i,col = 0;
void __iomem *dst = chip->region.idx[2].remap_addr;
snd_iprintf(buffer,"PCMREADER:\n");
for (i = PCM_READER_BUF1;i < PCM_READER_BUF1 + 0x30; i += sizeof(u32),col ++) {
if (col == 4) {
snd_iprintf(buffer,"\n");
col = 0;
}
if (col == 0) {
snd_iprintf(buffer, "%04X ",i);
}
snd_iprintf(buffer,"%08X ",readl(dst + i));
}
snd_iprintf(buffer,"\nMIX_SAMPLE_BUF1:\n");
col = 0;
for (i = MIX_SAMPLE_BUF1;i < MIX_SAMPLE_BUF1 + 0x40; i += sizeof(u32),col ++) {
if (col == 4) {
snd_iprintf(buffer,"\n");
col = 0;
}
if (col == 0) {
snd_iprintf(buffer, "%04X ",i);
}
snd_iprintf(buffer,"%08X ",readl(dst + i));
}
snd_iprintf(buffer,"\nSRC_TASK_SCB1:\n");
col = 0;
for (i = 0x2480 ; i < 0x2480 + 0x40 ; i += sizeof(u32),col ++) {
if (col == 4) {
snd_iprintf(buffer,"\n");
col = 0;
}
if (col == 0) {
snd_iprintf(buffer, "%04X ",i);
}
snd_iprintf(buffer,"%08X ",readl(dst + i));
}
snd_iprintf(buffer,"\nSPDIFO_BUFFER:\n");
col = 0;
for (i = SPDIFO_IP_OUTPUT_BUFFER1;i < SPDIFO_IP_OUTPUT_BUFFER1 + 0x30; i += sizeof(u32),col ++) {
if (col == 4) {
snd_iprintf(buffer,"\n");
col = 0;
}
if (col == 0) {
snd_iprintf(buffer, "%04X ",i);
}
snd_iprintf(buffer,"%08X ",readl(dst + i));
}
snd_iprintf(buffer,"\n...\n");
col = 0;
for (i = SPDIFO_IP_OUTPUT_BUFFER1+0xD0;i < SPDIFO_IP_OUTPUT_BUFFER1 + 0x110; i += sizeof(u32),col ++) {
if (col == 4) {
snd_iprintf(buffer,"\n");
col = 0;
}
if (col == 0) {
snd_iprintf(buffer, "%04X ",i);
}
snd_iprintf(buffer,"%08X ",readl(dst + i));
}
snd_iprintf(buffer,"\nOUTPUT_SNOOP:\n");
col = 0;
for (i = OUTPUT_SNOOP_BUFFER;i < OUTPUT_SNOOP_BUFFER + 0x40; i += sizeof(u32),col ++) {
if (col == 4) {
snd_iprintf(buffer,"\n");
col = 0;
}
if (col == 0) {
snd_iprintf(buffer, "%04X ",i);
}
snd_iprintf(buffer,"%08X ",readl(dst + i));
}
snd_iprintf(buffer,"\nCODEC_INPUT_BUF1: \n");
col = 0;
for (i = CODEC_INPUT_BUF1;i < CODEC_INPUT_BUF1 + 0x40; i += sizeof(u32),col ++) {
if (col == 4) {
snd_iprintf(buffer,"\n");
col = 0;
}
if (col == 0) {
snd_iprintf(buffer, "%04X ",i);
}
snd_iprintf(buffer,"%08X ",readl(dst + i));
}
#if 0
snd_iprintf(buffer,"\nWRITE_BACK_BUF1: \n");
col = 0;
for (i = WRITE_BACK_BUF1;i < WRITE_BACK_BUF1 + 0x40; i += sizeof(u32),col ++) {
if (col == 4) {
snd_iprintf(buffer,"\n");
col = 0;
}
if (col == 0) {
snd_iprintf(buffer, "%04X ",i);
}
snd_iprintf(buffer,"%08X ",readl(dst + i));
}
#endif
snd_iprintf(buffer,"\nSPDIFI_IP_OUTPUT_BUFFER1: \n");
col = 0;
for (i = SPDIFI_IP_OUTPUT_BUFFER1;i < SPDIFI_IP_OUTPUT_BUFFER1 + 0x80; i += sizeof(u32),col ++) {
if (col == 4) {
snd_iprintf(buffer,"\n");
col = 0;
}
if (col == 0) {
snd_iprintf(buffer, "%04X ",i);
}
snd_iprintf(buffer,"%08X ",readl(dst + i));
}
snd_iprintf(buffer,"\n");
}
int cs46xx_dsp_proc_init (struct snd_card *card, struct snd_cs46xx *chip)
{
struct snd_info_entry *entry;
struct dsp_spos_instance * ins = chip->dsp_spos_instance;
int i;
ins->snd_card = card;
if ((entry = snd_info_create_card_entry(card, "dsp", card->proc_root)) != NULL) {
entry->content = SNDRV_INFO_CONTENT_TEXT;
entry->mode = S_IFDIR | S_IRUGO | S_IXUGO;
if (snd_info_register(entry) < 0) {
snd_info_free_entry(entry);
entry = NULL;
}
}
ins->proc_dsp_dir = entry;
if (!ins->proc_dsp_dir)
return -ENOMEM;
if ((entry = snd_info_create_card_entry(card, "spos_symbols", ins->proc_dsp_dir)) != NULL) {
entry->content = SNDRV_INFO_CONTENT_TEXT;
entry->private_data = chip;
entry->mode = S_IFREG | S_IRUGO | S_IWUSR;
entry->c.text.read = cs46xx_dsp_proc_symbol_table_read;
if (snd_info_register(entry) < 0) {
snd_info_free_entry(entry);
entry = NULL;
}
}
ins->proc_sym_info_entry = entry;
if ((entry = snd_info_create_card_entry(card, "spos_modules", ins->proc_dsp_dir)) != NULL) {
entry->content = SNDRV_INFO_CONTENT_TEXT;
entry->private_data = chip;
entry->mode = S_IFREG | S_IRUGO | S_IWUSR;
entry->c.text.read = cs46xx_dsp_proc_modules_read;
if (snd_info_register(entry) < 0) {
snd_info_free_entry(entry);
entry = NULL;
}
}
ins->proc_modules_info_entry = entry;
if ((entry = snd_info_create_card_entry(card, "parameter", ins->proc_dsp_dir)) != NULL) {
entry->content = SNDRV_INFO_CONTENT_TEXT;
entry->private_data = chip;
entry->mode = S_IFREG | S_IRUGO | S_IWUSR;
entry->c.text.read = cs46xx_dsp_proc_parameter_dump_read;
if (snd_info_register(entry) < 0) {
snd_info_free_entry(entry);
entry = NULL;
}
}
ins->proc_parameter_dump_info_entry = entry;
if ((entry = snd_info_create_card_entry(card, "sample", ins->proc_dsp_dir)) != NULL) {
entry->content = SNDRV_INFO_CONTENT_TEXT;
entry->private_data = chip;
entry->mode = S_IFREG | S_IRUGO | S_IWUSR;
entry->c.text.read = cs46xx_dsp_proc_sample_dump_read;
if (snd_info_register(entry) < 0) {
snd_info_free_entry(entry);
entry = NULL;
}
}
ins->proc_sample_dump_info_entry = entry;
if ((entry = snd_info_create_card_entry(card, "task_tree", ins->proc_dsp_dir)) != NULL) {
entry->content = SNDRV_INFO_CONTENT_TEXT;
entry->private_data = chip;
entry->mode = S_IFREG | S_IRUGO | S_IWUSR;
entry->c.text.read = cs46xx_dsp_proc_task_tree_read;
if (snd_info_register(entry) < 0) {
snd_info_free_entry(entry);
entry = NULL;
}
}
ins->proc_task_info_entry = entry;
if ((entry = snd_info_create_card_entry(card, "scb_info", ins->proc_dsp_dir)) != NULL) {
entry->content = SNDRV_INFO_CONTENT_TEXT;
entry->private_data = chip;
entry->mode = S_IFREG | S_IRUGO | S_IWUSR;
entry->c.text.read = cs46xx_dsp_proc_scb_read;
if (snd_info_register(entry) < 0) {
snd_info_free_entry(entry);
entry = NULL;
}
}
ins->proc_scb_info_entry = entry;
mutex_lock(&chip->spos_mutex);
/* register/update SCB's entries on proc */
for (i = 0; i < ins->nscb; ++i) {
if (ins->scbs[i].deleted) continue;
cs46xx_dsp_proc_register_scb_desc (chip, (ins->scbs + i));
}
mutex_unlock(&chip->spos_mutex);
return 0;
}
int cs46xx_dsp_proc_done (struct snd_cs46xx *chip)
{
struct dsp_spos_instance * ins = chip->dsp_spos_instance;
int i;
snd_info_free_entry(ins->proc_sym_info_entry);
ins->proc_sym_info_entry = NULL;
snd_info_free_entry(ins->proc_modules_info_entry);
ins->proc_modules_info_entry = NULL;
snd_info_free_entry(ins->proc_parameter_dump_info_entry);
ins->proc_parameter_dump_info_entry = NULL;
snd_info_free_entry(ins->proc_sample_dump_info_entry);
ins->proc_sample_dump_info_entry = NULL;
snd_info_free_entry(ins->proc_scb_info_entry);
ins->proc_scb_info_entry = NULL;
snd_info_free_entry(ins->proc_task_info_entry);
ins->proc_task_info_entry = NULL;
mutex_lock(&chip->spos_mutex);
for (i = 0; i < ins->nscb; ++i) {
if (ins->scbs[i].deleted) continue;
cs46xx_dsp_proc_free_scb_desc ( (ins->scbs + i) );
}
mutex_unlock(&chip->spos_mutex);
snd_info_free_entry(ins->proc_dsp_dir);
ins->proc_dsp_dir = NULL;
return 0;
}
#endif /* CONFIG_PROC_FS */
static int debug_tree;
static void _dsp_create_task_tree (struct snd_cs46xx *chip, u32 * task_data,
u32 dest, int size)
{
void __iomem *spdst = chip->region.idx[1].remap_addr +
DSP_PARAMETER_BYTE_OFFSET + dest * sizeof(u32);
int i;
for (i = 0; i < size; ++i) {
if (debug_tree) printk ("addr %p, val %08x\n",spdst,task_data[i]);
writel(task_data[i],spdst);
spdst += sizeof(u32);
}
}
static int debug_scb;
static void _dsp_create_scb (struct snd_cs46xx *chip, u32 * scb_data, u32 dest)
{
void __iomem *spdst = chip->region.idx[1].remap_addr +
DSP_PARAMETER_BYTE_OFFSET + dest * sizeof(u32);
int i;
for (i = 0; i < 0x10; ++i) {
if (debug_scb) printk ("addr %p, val %08x\n",spdst,scb_data[i]);
writel(scb_data[i],spdst);
spdst += sizeof(u32);
}
}
static int find_free_scb_index (struct dsp_spos_instance * ins)
{
int index = ins->nscb, i;
for (i = ins->scb_highest_frag_index; i < ins->nscb; ++i) {
if (ins->scbs[i].deleted) {
index = i;
break;
}
}
return index;
}
static struct dsp_scb_descriptor * _map_scb (struct snd_cs46xx *chip, char * name, u32 dest)
{
struct dsp_spos_instance * ins = chip->dsp_spos_instance;
struct dsp_scb_descriptor * desc = NULL;
int index;
if (ins->nscb == DSP_MAX_SCB_DESC - 1) {
snd_printk(KERN_ERR "dsp_spos: got no place for other SCB\n");
return NULL;
}
index = find_free_scb_index (ins);
strcpy(ins->scbs[index].scb_name, name);
ins->scbs[index].address = dest;
ins->scbs[index].index = index;
ins->scbs[index].proc_info = NULL;
ins->scbs[index].ref_count = 1;
ins->scbs[index].deleted = 0;
spin_lock_init(&ins->scbs[index].lock);
desc = (ins->scbs + index);
ins->scbs[index].scb_symbol = add_symbol (chip, name, dest, SYMBOL_PARAMETER);
if (index > ins->scb_highest_frag_index)
ins->scb_highest_frag_index = index;
if (index == ins->nscb)
ins->nscb++;
return desc;
}
static struct dsp_task_descriptor *
_map_task_tree (struct snd_cs46xx *chip, char * name, u32 dest, u32 size)
{
struct dsp_spos_instance * ins = chip->dsp_spos_instance;
struct dsp_task_descriptor * desc = NULL;
if (ins->ntask == DSP_MAX_TASK_DESC - 1) {
snd_printk(KERN_ERR "dsp_spos: got no place for other TASK\n");
return NULL;
}
strcpy(ins->tasks[ins->ntask].task_name,name);
ins->tasks[ins->ntask].address = dest;
ins->tasks[ins->ntask].size = size;
/* quick find in list */
ins->tasks[ins->ntask].index = ins->ntask;
desc = (ins->tasks + ins->ntask);
ins->ntask++;
add_symbol (chip,name,dest,SYMBOL_PARAMETER);
return desc;
}
struct dsp_scb_descriptor *
cs46xx_dsp_create_scb (struct snd_cs46xx *chip, char * name, u32 * scb_data, u32 dest)
{
struct dsp_scb_descriptor * desc;
desc = _map_scb (chip,name,dest);
if (desc) {
_dsp_create_scb(chip,scb_data,dest);
} else {
snd_printk(KERN_ERR "dsp_spos: failed to map SCB\n");
}
return desc;
}
static struct dsp_task_descriptor *
cs46xx_dsp_create_task_tree (struct snd_cs46xx *chip, char * name, u32 * task_data,
u32 dest, int size)
{
struct dsp_task_descriptor * desc;
desc = _map_task_tree (chip,name,dest,size);
if (desc) {
_dsp_create_task_tree(chip,task_data,dest,size);
} else {
snd_printk(KERN_ERR "dsp_spos: failed to map TASK\n");
}
return desc;
}
int cs46xx_dsp_scb_and_task_init (struct snd_cs46xx *chip)
{
struct dsp_spos_instance * ins = chip->dsp_spos_instance;
struct dsp_symbol_entry * fg_task_tree_header_code;
struct dsp_symbol_entry * task_tree_header_code;
struct dsp_symbol_entry * task_tree_thread;
struct dsp_symbol_entry * null_algorithm;
struct dsp_symbol_entry * magic_snoop_task;
struct dsp_scb_descriptor * timing_master_scb;
struct dsp_scb_descriptor * codec_out_scb;
struct dsp_scb_descriptor * codec_in_scb;
struct dsp_scb_descriptor * src_task_scb;
struct dsp_scb_descriptor * master_mix_scb;
struct dsp_scb_descriptor * rear_mix_scb;
struct dsp_scb_descriptor * record_mix_scb;
struct dsp_scb_descriptor * write_back_scb;
struct dsp_scb_descriptor * vari_decimate_scb;
struct dsp_scb_descriptor * rear_codec_out_scb;
struct dsp_scb_descriptor * clfe_codec_out_scb;
struct dsp_scb_descriptor * magic_snoop_scb;
int fifo_addr, fifo_span, valid_slots;
static struct dsp_spos_control_block sposcb = {
/* 0 */ HFG_TREE_SCB,HFG_STACK,
/* 1 */ SPOSCB_ADDR,BG_TREE_SCB_ADDR,
/* 2 */ DSP_SPOS_DC,0,
/* 3 */ DSP_SPOS_DC,DSP_SPOS_DC,
/* 4 */ 0,0,
/* 5 */ DSP_SPOS_UU,0,
/* 6 */ FG_TASK_HEADER_ADDR,0,
/* 7 */ 0,0,
/* 8 */ DSP_SPOS_UU,DSP_SPOS_DC,
/* 9 */ 0,
/* A */ 0,HFG_FIRST_EXECUTE_MODE,
/* B */ DSP_SPOS_UU,DSP_SPOS_UU,
/* C */ DSP_SPOS_DC_DC,
/* D */ DSP_SPOS_DC_DC,
/* E */ DSP_SPOS_DC_DC,
/* F */ DSP_SPOS_DC_DC
};
cs46xx_dsp_create_task_tree(chip, "sposCB", (u32 *)&sposcb, SPOSCB_ADDR, 0x10);
null_algorithm = cs46xx_dsp_lookup_symbol(chip, "NULLALGORITHM", SYMBOL_CODE);
if (null_algorithm == NULL) {
snd_printk(KERN_ERR "dsp_spos: symbol NULLALGORITHM not found\n");
return -EIO;
}
fg_task_tree_header_code = cs46xx_dsp_lookup_symbol(chip, "FGTASKTREEHEADERCODE", SYMBOL_CODE);
if (fg_task_tree_header_code == NULL) {
snd_printk(KERN_ERR "dsp_spos: symbol FGTASKTREEHEADERCODE not found\n");
return -EIO;
}
task_tree_header_code = cs46xx_dsp_lookup_symbol(chip, "TASKTREEHEADERCODE", SYMBOL_CODE);
if (task_tree_header_code == NULL) {
snd_printk(KERN_ERR "dsp_spos: symbol TASKTREEHEADERCODE not found\n");
return -EIO;
}
task_tree_thread = cs46xx_dsp_lookup_symbol(chip, "TASKTREETHREAD", SYMBOL_CODE);
if (task_tree_thread == NULL) {
snd_printk(KERN_ERR "dsp_spos: symbol TASKTREETHREAD not found\n");
return -EIO;
}
magic_snoop_task = cs46xx_dsp_lookup_symbol(chip, "MAGICSNOOPTASK", SYMBOL_CODE);
if (magic_snoop_task == NULL) {
snd_printk(KERN_ERR "dsp_spos: symbol MAGICSNOOPTASK not found\n");
return -EIO;
}
{
/* create the null SCB */
static struct dsp_generic_scb null_scb = {
{ 0, 0, 0, 0 },
{ 0, 0, 0, 0, 0 },
NULL_SCB_ADDR, NULL_SCB_ADDR,
0, 0, 0, 0, 0,
{
0,0,
0,0,
}
};
null_scb.entry_point = null_algorithm->address;
ins->the_null_scb = cs46xx_dsp_create_scb(chip, "nullSCB", (u32 *)&null_scb, NULL_SCB_ADDR);
ins->the_null_scb->task_entry = null_algorithm;
ins->the_null_scb->sub_list_ptr = ins->the_null_scb;
ins->the_null_scb->next_scb_ptr = ins->the_null_scb;
ins->the_null_scb->parent_scb_ptr = NULL;
cs46xx_dsp_proc_register_scb_desc (chip,ins->the_null_scb);
}
{
/* setup foreground task tree */
static struct dsp_task_tree_control_block fg_task_tree_hdr = {
{ FG_TASK_HEADER_ADDR | (DSP_SPOS_DC << 0x10),
DSP_SPOS_DC_DC,
DSP_SPOS_DC_DC,
0x0000,DSP_SPOS_DC,
DSP_SPOS_DC, DSP_SPOS_DC,
DSP_SPOS_DC_DC,
DSP_SPOS_DC_DC,
DSP_SPOS_DC_DC,
DSP_SPOS_DC,DSP_SPOS_DC },
{
BG_TREE_SCB_ADDR,TIMINGMASTER_SCB_ADDR,
0,
FG_TASK_HEADER_ADDR + TCBData,
},
{
4,0,
1,0,
2,SPOSCB_ADDR + HFGFlags,
0,0,
FG_TASK_HEADER_ADDR + TCBContextBlk,FG_STACK
},
{
DSP_SPOS_DC,0,
DSP_SPOS_DC,DSP_SPOS_DC,
DSP_SPOS_DC,DSP_SPOS_DC,
DSP_SPOS_DC,DSP_SPOS_DC,
DSP_SPOS_DC,DSP_SPOS_DC,
DSP_SPOS_DCDC,
DSP_SPOS_UU,1,
DSP_SPOS_DCDC,
DSP_SPOS_DCDC,
DSP_SPOS_DCDC,
DSP_SPOS_DCDC,
DSP_SPOS_DCDC,
DSP_SPOS_DCDC,
DSP_SPOS_DCDC,
DSP_SPOS_DCDC,
DSP_SPOS_DCDC,
DSP_SPOS_DCDC,
DSP_SPOS_DCDC,
DSP_SPOS_DCDC,
DSP_SPOS_DCDC,
DSP_SPOS_DCDC,
DSP_SPOS_DCDC,
DSP_SPOS_DCDC,
DSP_SPOS_DCDC,
DSP_SPOS_DCDC,
DSP_SPOS_DCDC,
DSP_SPOS_DCDC,
DSP_SPOS_DCDC,
DSP_SPOS_DCDC,
DSP_SPOS_DCDC,
DSP_SPOS_DCDC,
DSP_SPOS_DCDC,
DSP_SPOS_DCDC,
DSP_SPOS_DCDC,
DSP_SPOS_DCDC
},
{
FG_INTERVAL_TIMER_PERIOD,DSP_SPOS_UU,
0,0
}
};
fg_task_tree_hdr.links.entry_point = fg_task_tree_header_code->address;
fg_task_tree_hdr.context_blk.stack0 = task_tree_thread->address;
cs46xx_dsp_create_task_tree(chip,"FGtaskTreeHdr",(u32 *)&fg_task_tree_hdr,FG_TASK_HEADER_ADDR,0x35);
}
{
/* setup foreground task tree */
static struct dsp_task_tree_control_block bg_task_tree_hdr = {
{ DSP_SPOS_DC_DC,
DSP_SPOS_DC_DC,
DSP_SPOS_DC_DC,
DSP_SPOS_DC, DSP_SPOS_DC,
DSP_SPOS_DC, DSP_SPOS_DC,
DSP_SPOS_DC_DC,
DSP_SPOS_DC_DC,
DSP_SPOS_DC_DC,
DSP_SPOS_DC,DSP_SPOS_DC },
{
NULL_SCB_ADDR,NULL_SCB_ADDR, /* Set up the background to do nothing */
0,
BG_TREE_SCB_ADDR + TCBData,
},
{
9999,0,
0,1,
0,SPOSCB_ADDR + HFGFlags,
0,0,
BG_TREE_SCB_ADDR + TCBContextBlk,BG_STACK
},
{
DSP_SPOS_DC,0,
DSP_SPOS_DC,DSP_SPOS_DC,
DSP_SPOS_DC,DSP_SPOS_DC,
DSP_SPOS_DC,DSP_SPOS_DC,
DSP_SPOS_DC,DSP_SPOS_DC,
DSP_SPOS_DCDC,
DSP_SPOS_UU,1,
DSP_SPOS_DCDC,
DSP_SPOS_DCDC,
DSP_SPOS_DCDC,
DSP_SPOS_DCDC,
DSP_SPOS_DCDC,
DSP_SPOS_DCDC,
DSP_SPOS_DCDC,
DSP_SPOS_DCDC,
DSP_SPOS_DCDC,
DSP_SPOS_DCDC,
DSP_SPOS_DCDC,
DSP_SPOS_DCDC,
DSP_SPOS_DCDC,
DSP_SPOS_DCDC,
DSP_SPOS_DCDC,
DSP_SPOS_DCDC,
DSP_SPOS_DCDC,
DSP_SPOS_DCDC,
DSP_SPOS_DCDC,
DSP_SPOS_DCDC,
DSP_SPOS_DCDC,
DSP_SPOS_DCDC,
DSP_SPOS_DCDC,
DSP_SPOS_DCDC,
DSP_SPOS_DCDC,
DSP_SPOS_DCDC,
DSP_SPOS_DCDC,
DSP_SPOS_DCDC
},
{
BG_INTERVAL_TIMER_PERIOD,DSP_SPOS_UU,
0,0
}
};
bg_task_tree_hdr.links.entry_point = task_tree_header_code->address;
bg_task_tree_hdr.context_blk.stack0 = task_tree_thread->address;
cs46xx_dsp_create_task_tree(chip,"BGtaskTreeHdr",(u32 *)&bg_task_tree_hdr,BG_TREE_SCB_ADDR,0x35);
}
/* create timing master SCB */
timing_master_scb = cs46xx_dsp_create_timing_master_scb(chip);
/* create the CODEC output task */
codec_out_scb = cs46xx_dsp_create_codec_out_scb(chip,"CodecOutSCB_I",0x0010,0x0000,
MASTERMIX_SCB_ADDR,
CODECOUT_SCB_ADDR,timing_master_scb,
SCB_ON_PARENT_SUBLIST_SCB);
if (!codec_out_scb) goto _fail_end;
/* create the master mix SCB */
master_mix_scb = cs46xx_dsp_create_mix_only_scb(chip,"MasterMixSCB",
MIX_SAMPLE_BUF1,MASTERMIX_SCB_ADDR,
codec_out_scb,
SCB_ON_PARENT_SUBLIST_SCB);
ins->master_mix_scb = master_mix_scb;
if (!master_mix_scb) goto _fail_end;
/* create codec in */
codec_in_scb = cs46xx_dsp_create_codec_in_scb(chip,"CodecInSCB",0x0010,0x00A0,
CODEC_INPUT_BUF1,
CODECIN_SCB_ADDR,codec_out_scb,
SCB_ON_PARENT_NEXT_SCB);
if (!codec_in_scb) goto _fail_end;
ins->codec_in_scb = codec_in_scb;
/* create write back scb */
write_back_scb = cs46xx_dsp_create_mix_to_ostream_scb(chip,"WriteBackSCB",
WRITE_BACK_BUF1,WRITE_BACK_SPB,
WRITEBACK_SCB_ADDR,
timing_master_scb,
SCB_ON_PARENT_NEXT_SCB);
if (!write_back_scb) goto _fail_end;
{
static struct dsp_mix2_ostream_spb mix2_ostream_spb = {
0x00020000,
0x0000ffff
};
/* dirty hack ... */
_dsp_create_task_tree (chip,(u32 *)&mix2_ostream_spb,WRITE_BACK_SPB,2);
}
/* input sample converter */
vari_decimate_scb = cs46xx_dsp_create_vari_decimate_scb(chip,"VariDecimateSCB",
VARI_DECIMATE_BUF0,
VARI_DECIMATE_BUF1,
VARIDECIMATE_SCB_ADDR,
write_back_scb,
SCB_ON_PARENT_SUBLIST_SCB);
if (!vari_decimate_scb) goto _fail_end;
/* create the record mixer SCB */
record_mix_scb = cs46xx_dsp_create_mix_only_scb(chip,"RecordMixerSCB",
MIX_SAMPLE_BUF2,
RECORD_MIXER_SCB_ADDR,
vari_decimate_scb,
SCB_ON_PARENT_SUBLIST_SCB);
ins->record_mixer_scb = record_mix_scb;
if (!record_mix_scb) goto _fail_end;
valid_slots = snd_cs46xx_peekBA0(chip, BA0_ACOSV);
snd_assert (chip->nr_ac97_codecs == 1 || chip->nr_ac97_codecs == 2);
if (chip->nr_ac97_codecs == 1) {
/* output on slot 5 and 11
on primary CODEC */
fifo_addr = 0x20;
fifo_span = 0x60;
/* enable slot 5 and 11 */
valid_slots |= ACOSV_SLV5 | ACOSV_SLV11;
} else {
/* output on slot 7 and 8
on secondary CODEC */
fifo_addr = 0x40;
fifo_span = 0x10;
/* enable slot 7 and 8 */
valid_slots |= ACOSV_SLV7 | ACOSV_SLV8;
}
/* create CODEC tasklet for rear speakers output*/
rear_codec_out_scb = cs46xx_dsp_create_codec_out_scb(chip,"CodecOutSCB_Rear",fifo_span,fifo_addr,
REAR_MIXER_SCB_ADDR,
REAR_CODECOUT_SCB_ADDR,codec_in_scb,
SCB_ON_PARENT_NEXT_SCB);
if (!rear_codec_out_scb) goto _fail_end;
/* create the rear PCM channel mixer SCB */
rear_mix_scb = cs46xx_dsp_create_mix_only_scb(chip,"RearMixerSCB",
MIX_SAMPLE_BUF3,
REAR_MIXER_SCB_ADDR,
rear_codec_out_scb,
SCB_ON_PARENT_SUBLIST_SCB);
ins->rear_mix_scb = rear_mix_scb;
if (!rear_mix_scb) goto _fail_end;
if (chip->nr_ac97_codecs == 2) {
/* create CODEC tasklet for rear Center/LFE output
slot 6 and 9 on seconadry CODEC */
clfe_codec_out_scb = cs46xx_dsp_create_codec_out_scb(chip,"CodecOutSCB_CLFE",0x0030,0x0030,
CLFE_MIXER_SCB_ADDR,
CLFE_CODEC_SCB_ADDR,
rear_codec_out_scb,
SCB_ON_PARENT_NEXT_SCB);
if (!clfe_codec_out_scb) goto _fail_end;
/* create the rear PCM channel mixer SCB */
ins->center_lfe_mix_scb = cs46xx_dsp_create_mix_only_scb(chip,"CLFEMixerSCB",
MIX_SAMPLE_BUF4,
CLFE_MIXER_SCB_ADDR,
clfe_codec_out_scb,
SCB_ON_PARENT_SUBLIST_SCB);
if (!ins->center_lfe_mix_scb) goto _fail_end;
/* enable slot 6 and 9 */
valid_slots |= ACOSV_SLV6 | ACOSV_SLV9;
} else {
clfe_codec_out_scb = rear_codec_out_scb;
ins->center_lfe_mix_scb = rear_mix_scb;
}
/* enable slots depending on CODEC configuration */
snd_cs46xx_pokeBA0(chip, BA0_ACOSV, valid_slots);
/* the magic snooper */
magic_snoop_scb = cs46xx_dsp_create_magic_snoop_scb (chip,"MagicSnoopSCB_I",OUTPUTSNOOP_SCB_ADDR,
OUTPUT_SNOOP_BUFFER,
codec_out_scb,
clfe_codec_out_scb,
SCB_ON_PARENT_NEXT_SCB);
if (!magic_snoop_scb) goto _fail_end;
ins->ref_snoop_scb = magic_snoop_scb;
/* SP IO access */
if (!cs46xx_dsp_create_spio_write_scb(chip,"SPIOWriteSCB",SPIOWRITE_SCB_ADDR,
magic_snoop_scb,
SCB_ON_PARENT_NEXT_SCB))
goto _fail_end;
/* SPDIF input sampel rate converter */
src_task_scb = cs46xx_dsp_create_src_task_scb(chip,"SrcTaskSCB_SPDIFI",
ins->spdif_in_sample_rate,
SRC_OUTPUT_BUF1,
SRC_DELAY_BUF1,SRCTASK_SCB_ADDR,
master_mix_scb,
SCB_ON_PARENT_SUBLIST_SCB,1);
if (!src_task_scb) goto _fail_end;
cs46xx_src_unlink(chip,src_task_scb);
/* NOTE: when we now how to detect the SPDIF input
sample rate we will use this SRC to adjust it */
ins->spdif_in_src = src_task_scb;
cs46xx_dsp_async_init(chip,timing_master_scb);
return 0;
_fail_end:
snd_printk(KERN_ERR "dsp_spos: failed to setup SCB's in DSP\n");
return -EINVAL;
}
static int cs46xx_dsp_async_init (struct snd_cs46xx *chip,
struct dsp_scb_descriptor * fg_entry)
{
struct dsp_spos_instance * ins = chip->dsp_spos_instance;
struct dsp_symbol_entry * s16_async_codec_input_task;
struct dsp_symbol_entry * spdifo_task;
struct dsp_symbol_entry * spdifi_task;
struct dsp_scb_descriptor * spdifi_scb_desc, * spdifo_scb_desc, * async_codec_scb_desc;
s16_async_codec_input_task = cs46xx_dsp_lookup_symbol(chip, "S16_ASYNCCODECINPUTTASK", SYMBOL_CODE);
if (s16_async_codec_input_task == NULL) {
snd_printk(KERN_ERR "dsp_spos: symbol S16_ASYNCCODECINPUTTASK not found\n");
return -EIO;
}
spdifo_task = cs46xx_dsp_lookup_symbol(chip, "SPDIFOTASK", SYMBOL_CODE);
if (spdifo_task == NULL) {
snd_printk(KERN_ERR "dsp_spos: symbol SPDIFOTASK not found\n");
return -EIO;
}
spdifi_task = cs46xx_dsp_lookup_symbol(chip, "SPDIFITASK", SYMBOL_CODE);
if (spdifi_task == NULL) {
snd_printk(KERN_ERR "dsp_spos: symbol SPDIFITASK not found\n");
return -EIO;
}
{
/* 0xBC0 */
struct dsp_spdifoscb spdifo_scb = {
/* 0 */ DSP_SPOS_UUUU,
{
/* 1 */ 0xb0,
/* 2 */ 0,
/* 3 */ 0,
/* 4 */ 0,
},
/* NOTE: the SPDIF output task read samples in mono
format, the AsynchFGTxSCB task writes to buffer
in stereo format
*/
/* 5 */ RSCONFIG_SAMPLE_16MONO + RSCONFIG_MODULO_256,
/* 6 */ ( SPDIFO_IP_OUTPUT_BUFFER1 << 0x10 ) | 0xFFFC,
/* 7 */ 0,0,
/* 8 */ 0,
/* 9 */ FG_TASK_HEADER_ADDR, NULL_SCB_ADDR,
/* A */ spdifo_task->address,
SPDIFO_SCB_INST + SPDIFOFIFOPointer,
{
/* B */ 0x0040, /*DSP_SPOS_UUUU,*/
/* C */ 0x20ff, /*DSP_SPOS_UUUU,*/
},
/* D */ 0x804c,0, /* SPDIFOFIFOPointer:SPDIFOStatRegAddr; */
/* E */ 0x0108,0x0001, /* SPDIFOStMoFormat:SPDIFOFIFOBaseAddr; */
/* F */ DSP_SPOS_UUUU /* SPDIFOFree; */
};
/* 0xBB0 */
struct dsp_spdifiscb spdifi_scb = {
/* 0 */ DSP_SPOS_UULO,DSP_SPOS_UUHI,
/* 1 */ 0,
/* 2 */ 0,
/* 3 */ 1,4000, /* SPDIFICountLimit SPDIFICount */
/* 4 */ DSP_SPOS_UUUU, /* SPDIFIStatusData */
/* 5 */ 0,DSP_SPOS_UUHI, /* StatusData, Free4 */
/* 6 */ DSP_SPOS_UUUU, /* Free3 */
/* 7 */ DSP_SPOS_UU,DSP_SPOS_DC, /* Free2 BitCount*/
/* 8 */ DSP_SPOS_UUUU, /* TempStatus */
/* 9 */ SPDIFO_SCB_INST, NULL_SCB_ADDR,
/* A */ spdifi_task->address,
SPDIFI_SCB_INST + SPDIFIFIFOPointer,
/* NOTE: The SPDIF input task write the sample in mono
format from the HW FIFO, the AsynchFGRxSCB task reads
them in stereo
*/
/* B */ RSCONFIG_SAMPLE_16MONO + RSCONFIG_MODULO_128,
/* C */ (SPDIFI_IP_OUTPUT_BUFFER1 << 0x10) | 0xFFFC,
/* D */ 0x8048,0,
/* E */ 0x01f0,0x0001,
/* F */ DSP_SPOS_UUUU /* SPDIN_STATUS monitor */
};
/* 0xBA0 */
struct dsp_async_codec_input_scb async_codec_input_scb = {
/* 0 */ DSP_SPOS_UUUU,
/* 1 */ 0,
/* 2 */ 0,
/* 3 */ 1,4000,
/* 4 */ 0x0118,0x0001,
/* 5 */ RSCONFIG_SAMPLE_16MONO + RSCONFIG_MODULO_64,
/* 6 */ (ASYNC_IP_OUTPUT_BUFFER1 << 0x10) | 0xFFFC,
/* 7 */ DSP_SPOS_UU,0x3,
/* 8 */ DSP_SPOS_UUUU,
/* 9 */ SPDIFI_SCB_INST,NULL_SCB_ADDR,
/* A */ s16_async_codec_input_task->address,
HFG_TREE_SCB + AsyncCIOFIFOPointer,
/* B */ RSCONFIG_SAMPLE_16STEREO + RSCONFIG_MODULO_64,
/* C */ (ASYNC_IP_OUTPUT_BUFFER1 << 0x10), /*(ASYNC_IP_OUTPUT_BUFFER1 << 0x10) | 0xFFFC,*/
#ifdef UseASER1Input
/* short AsyncCIFIFOPointer:AsyncCIStatRegAddr;
Init. 0000:8042: for ASER1
0000:8044: for ASER2 */
/* D */ 0x8042,0,
/* short AsyncCIStMoFormat:AsyncCIFIFOBaseAddr;
Init 1 stero:8050 ASER1
Init 0 mono:8070 ASER2
Init 1 Stereo : 0100 ASER1 (Set by script) */
/* E */ 0x0100,0x0001,
#endif
#ifdef UseASER2Input
/* short AsyncCIFIFOPointer:AsyncCIStatRegAddr;
Init. 0000:8042: for ASER1
0000:8044: for ASER2 */
/* D */ 0x8044,0,
/* short AsyncCIStMoFormat:AsyncCIFIFOBaseAddr;
Init 1 stero:8050 ASER1
Init 0 mono:8070 ASER2
Init 1 Stereo : 0100 ASER1 (Set by script) */
/* E */ 0x0110,0x0001,
#endif
/* short AsyncCIOutputBufModulo:AsyncCIFree;
AsyncCIOutputBufModulo: The modulo size for
the output buffer of this task */
/* F */ 0, /* DSP_SPOS_UUUU */
};
spdifo_scb_desc = cs46xx_dsp_create_scb(chip,"SPDIFOSCB",(u32 *)&spdifo_scb,SPDIFO_SCB_INST);
snd_assert(spdifo_scb_desc, return -EIO);
spdifi_scb_desc = cs46xx_dsp_create_scb(chip,"SPDIFISCB",(u32 *)&spdifi_scb,SPDIFI_SCB_INST);
snd_assert(spdifi_scb_desc, return -EIO);
async_codec_scb_desc = cs46xx_dsp_create_scb(chip,"AsynCodecInputSCB",(u32 *)&async_codec_input_scb, HFG_TREE_SCB);
snd_assert(async_codec_scb_desc, return -EIO);
async_codec_scb_desc->parent_scb_ptr = NULL;
async_codec_scb_desc->next_scb_ptr = spdifi_scb_desc;
async_codec_scb_desc->sub_list_ptr = ins->the_null_scb;
async_codec_scb_desc->task_entry = s16_async_codec_input_task;
spdifi_scb_desc->parent_scb_ptr = async_codec_scb_desc;
spdifi_scb_desc->next_scb_ptr = spdifo_scb_desc;
spdifi_scb_desc->sub_list_ptr = ins->the_null_scb;
spdifi_scb_desc->task_entry = spdifi_task;
spdifo_scb_desc->parent_scb_ptr = spdifi_scb_desc;
spdifo_scb_desc->next_scb_ptr = fg_entry;
spdifo_scb_desc->sub_list_ptr = ins->the_null_scb;
spdifo_scb_desc->task_entry = spdifo_task;
/* this one is faked, as the parnet of SPDIFO task
is the FG task tree */
fg_entry->parent_scb_ptr = spdifo_scb_desc;
/* for proc fs */
cs46xx_dsp_proc_register_scb_desc (chip,spdifo_scb_desc);
cs46xx_dsp_proc_register_scb_desc (chip,spdifi_scb_desc);
cs46xx_dsp_proc_register_scb_desc (chip,async_codec_scb_desc);
/* Async MASTER ENABLE, affects both SPDIF input and output */
snd_cs46xx_pokeBA0(chip, BA0_ASER_MASTER, 0x1 );
}
return 0;
}
static void cs46xx_dsp_disable_spdif_hw (struct snd_cs46xx *chip)
{
struct dsp_spos_instance * ins = chip->dsp_spos_instance;
/* set SPDIF output FIFO slot */
snd_cs46xx_pokeBA0(chip, BA0_ASER_FADDR, 0);
/* SPDIF output MASTER ENABLE */
cs46xx_poke_via_dsp (chip,SP_SPDOUT_CONTROL, 0);
/* right and left validate bit */
/*cs46xx_poke_via_dsp (chip,SP_SPDOUT_CSUV, ins->spdif_csuv_default);*/
cs46xx_poke_via_dsp (chip,SP_SPDOUT_CSUV, 0x0);
/* clear fifo pointer */
cs46xx_poke_via_dsp (chip,SP_SPDIN_FIFOPTR, 0x0);
/* monitor state */
ins->spdif_status_out &= ~DSP_SPDIF_STATUS_HW_ENABLED;
}
int cs46xx_dsp_enable_spdif_hw (struct snd_cs46xx *chip)
{
struct dsp_spos_instance * ins = chip->dsp_spos_instance;
/* if hw-ctrl already enabled, turn off to reset logic ... */
cs46xx_dsp_disable_spdif_hw (chip);
udelay(50);
/* set SPDIF output FIFO slot */
snd_cs46xx_pokeBA0(chip, BA0_ASER_FADDR, ( 0x8000 | ((SP_SPDOUT_FIFO >> 4) << 4) ));
/* SPDIF output MASTER ENABLE */
cs46xx_poke_via_dsp (chip,SP_SPDOUT_CONTROL, 0x80000000);
/* right and left validate bit */
cs46xx_poke_via_dsp (chip,SP_SPDOUT_CSUV, ins->spdif_csuv_default);
/* monitor state */
ins->spdif_status_out |= DSP_SPDIF_STATUS_HW_ENABLED;
return 0;
}
int cs46xx_dsp_enable_spdif_in (struct snd_cs46xx *chip)
{
struct dsp_spos_instance * ins = chip->dsp_spos_instance;
/* turn on amplifier */
chip->active_ctrl(chip, 1);
chip->amplifier_ctrl(chip, 1);
snd_assert (ins->asynch_rx_scb == NULL,return -EINVAL);
snd_assert (ins->spdif_in_src != NULL,return -EINVAL);
mutex_lock(&chip->spos_mutex);
if ( ! (ins->spdif_status_out & DSP_SPDIF_STATUS_INPUT_CTRL_ENABLED) ) {
/* time countdown enable */
cs46xx_poke_via_dsp (chip,SP_ASER_COUNTDOWN, 0x80000005);
/* NOTE: 80000005 value is just magic. With all values
that I've tested this one seem to give the best result.
Got no explication why. (Benny) */
/* SPDIF input MASTER ENABLE */
cs46xx_poke_via_dsp (chip,SP_SPDIN_CONTROL, 0x800003ff);
ins->spdif_status_out |= DSP_SPDIF_STATUS_INPUT_CTRL_ENABLED;
}
/* create and start the asynchronous receiver SCB */
ins->asynch_rx_scb = cs46xx_dsp_create_asynch_fg_rx_scb(chip,"AsynchFGRxSCB",
ASYNCRX_SCB_ADDR,
SPDIFI_SCB_INST,
SPDIFI_IP_OUTPUT_BUFFER1,
ins->spdif_in_src,
SCB_ON_PARENT_SUBLIST_SCB);
spin_lock_irq(&chip->reg_lock);
/* reset SPDIF input sample buffer pointer */
/*snd_cs46xx_poke (chip, (SPDIFI_SCB_INST + 0x0c) << 2,
(SPDIFI_IP_OUTPUT_BUFFER1 << 0x10) | 0xFFFC);*/
/* reset FIFO ptr */
/*cs46xx_poke_via_dsp (chip,SP_SPDIN_FIFOPTR, 0x0);*/
cs46xx_src_link(chip,ins->spdif_in_src);
/* unmute SRC volume */
cs46xx_dsp_scb_set_volume (chip,ins->spdif_in_src,0x7fff,0x7fff);
spin_unlock_irq(&chip->reg_lock);
/* set SPDIF input sample rate and unmute
NOTE: only 48khz support for SPDIF input this time */
/* cs46xx_dsp_set_src_sample_rate(chip,ins->spdif_in_src,48000); */
/* monitor state */
ins->spdif_status_in = 1;
mutex_unlock(&chip->spos_mutex);
return 0;
}
int cs46xx_dsp_disable_spdif_in (struct snd_cs46xx *chip)
{
struct dsp_spos_instance * ins = chip->dsp_spos_instance;
snd_assert (ins->asynch_rx_scb != NULL, return -EINVAL);
snd_assert (ins->spdif_in_src != NULL,return -EINVAL);
mutex_lock(&chip->spos_mutex);
/* Remove the asynchronous receiver SCB */
cs46xx_dsp_remove_scb (chip,ins->asynch_rx_scb);
ins->asynch_rx_scb = NULL;
cs46xx_src_unlink(chip,ins->spdif_in_src);
/* monitor state */
ins->spdif_status_in = 0;
mutex_unlock(&chip->spos_mutex);
/* restore amplifier */
chip->active_ctrl(chip, -1);
chip->amplifier_ctrl(chip, -1);
return 0;
}
int cs46xx_dsp_enable_pcm_capture (struct snd_cs46xx *chip)
{
struct dsp_spos_instance * ins = chip->dsp_spos_instance;
snd_assert (ins->pcm_input == NULL,return -EINVAL);
snd_assert (ins->ref_snoop_scb != NULL,return -EINVAL);
mutex_lock(&chip->spos_mutex);
ins->pcm_input = cs46xx_add_record_source(chip,ins->ref_snoop_scb,PCMSERIALIN_PCM_SCB_ADDR,
"PCMSerialInput_Wave");
mutex_unlock(&chip->spos_mutex);
return 0;
}
int cs46xx_dsp_disable_pcm_capture (struct snd_cs46xx *chip)
{
struct dsp_spos_instance * ins = chip->dsp_spos_instance;
snd_assert (ins->pcm_input != NULL,return -EINVAL);
mutex_lock(&chip->spos_mutex);
cs46xx_dsp_remove_scb (chip,ins->pcm_input);
ins->pcm_input = NULL;
mutex_unlock(&chip->spos_mutex);
return 0;
}
int cs46xx_dsp_enable_adc_capture (struct snd_cs46xx *chip)
{
struct dsp_spos_instance * ins = chip->dsp_spos_instance;
snd_assert (ins->adc_input == NULL,return -EINVAL);
snd_assert (ins->codec_in_scb != NULL,return -EINVAL);
mutex_lock(&chip->spos_mutex);
ins->adc_input = cs46xx_add_record_source(chip,ins->codec_in_scb,PCMSERIALIN_SCB_ADDR,
"PCMSerialInput_ADC");
mutex_unlock(&chip->spos_mutex);
return 0;
}
int cs46xx_dsp_disable_adc_capture (struct snd_cs46xx *chip)
{
struct dsp_spos_instance * ins = chip->dsp_spos_instance;
snd_assert (ins->adc_input != NULL,return -EINVAL);
mutex_lock(&chip->spos_mutex);
cs46xx_dsp_remove_scb (chip,ins->adc_input);
ins->adc_input = NULL;
mutex_unlock(&chip->spos_mutex);
return 0;
}
int cs46xx_poke_via_dsp (struct snd_cs46xx *chip, u32 address, u32 data)
{
u32 temp;
int i;
/* santiy check the parameters. (These numbers are not 100% correct. They are
a rough guess from looking at the controller spec.) */
if (address < 0x8000 || address >= 0x9000)
return -EINVAL;
/* initialize the SP_IO_WRITE SCB with the data. */
temp = ( address << 16 ) | ( address & 0x0000FFFF); /* offset 0 <-- address2 : address1 */
snd_cs46xx_poke(chip,( SPIOWRITE_SCB_ADDR << 2), temp);
snd_cs46xx_poke(chip,((SPIOWRITE_SCB_ADDR + 1) << 2), data); /* offset 1 <-- data1 */
snd_cs46xx_poke(chip,((SPIOWRITE_SCB_ADDR + 2) << 2), data); /* offset 1 <-- data2 */
/* Poke this location to tell the task to start */
snd_cs46xx_poke(chip,((SPIOWRITE_SCB_ADDR + 6) << 2), SPIOWRITE_SCB_ADDR << 0x10);
/* Verify that the task ran */
for (i=0; i<25; i++) {
udelay(125);
temp = snd_cs46xx_peek(chip,((SPIOWRITE_SCB_ADDR + 6) << 2));
if (temp == 0x00000000)
break;
}
if (i == 25) {
snd_printk(KERN_ERR "dsp_spos: SPIOWriteTask not responding\n");
return -EBUSY;
}
return 0;
}
int cs46xx_dsp_set_dac_volume (struct snd_cs46xx * chip, u16 left, u16 right)
{
struct dsp_spos_instance * ins = chip->dsp_spos_instance;
struct dsp_scb_descriptor * scb;
mutex_lock(&chip->spos_mutex);
/* main output */
scb = ins->master_mix_scb->sub_list_ptr;
while (scb != ins->the_null_scb) {
cs46xx_dsp_scb_set_volume (chip,scb,left,right);
scb = scb->next_scb_ptr;
}
/* rear output */
scb = ins->rear_mix_scb->sub_list_ptr;
while (scb != ins->the_null_scb) {
cs46xx_dsp_scb_set_volume (chip,scb,left,right);
scb = scb->next_scb_ptr;
}
ins->dac_volume_left = left;
ins->dac_volume_right = right;
mutex_unlock(&chip->spos_mutex);
return 0;
}
int cs46xx_dsp_set_iec958_volume (struct snd_cs46xx * chip, u16 left, u16 right)
{
struct dsp_spos_instance * ins = chip->dsp_spos_instance;
mutex_lock(&chip->spos_mutex);
if (ins->asynch_rx_scb != NULL)
cs46xx_dsp_scb_set_volume (chip,ins->asynch_rx_scb,
left,right);
ins->spdif_input_volume_left = left;
ins->spdif_input_volume_right = right;
mutex_unlock(&chip->spos_mutex);
return 0;
}