linux_old1/arch/blackfin/mach-common/dpmc_modes.S

895 lines
17 KiB
ArmAsm

/*
* Copyright 2004-2008 Analog Devices Inc.
*
* Licensed under the GPL-2 or later.
*/
#include <linux/linkage.h>
#include <asm/blackfin.h>
#include <mach/irq.h>
#include <asm/dpmc.h>
.section .l1.text
ENTRY(_sleep_mode)
[--SP] = (R7:4, P5:3);
[--SP] = RETS;
call _set_sic_iwr;
P0.H = hi(PLL_CTL);
P0.L = lo(PLL_CTL);
R1 = W[P0](z);
BITSET (R1, 3);
W[P0] = R1.L;
CLI R2;
SSYNC;
IDLE;
STI R2;
call _test_pll_locked;
R0 = IWR_ENABLE(0);
R1 = IWR_DISABLE_ALL;
R2 = IWR_DISABLE_ALL;
call _set_sic_iwr;
P0.H = hi(PLL_CTL);
P0.L = lo(PLL_CTL);
R7 = w[p0](z);
BITCLR (R7, 3);
BITCLR (R7, 5);
w[p0] = R7.L;
IDLE;
call _test_pll_locked;
RETS = [SP++];
(R7:4, P5:3) = [SP++];
RTS;
ENDPROC(_sleep_mode)
/*
* This func never returns as it puts the part into hibernate, and
* is only called from do_hibernate, so we don't bother saving or
* restoring any of the normal C runtime state. When we wake up,
* the entry point will be in do_hibernate and not here.
*
* We accept just one argument -- the value to write to VR_CTL.
*/
ENTRY(_hibernate_mode)
/* Save/setup the regs we need early for minor pipeline optimization */
R4 = R0;
P3.H = hi(VR_CTL);
P3.L = lo(VR_CTL);
/* Disable all wakeup sources */
R0 = IWR_DISABLE_ALL;
R1 = IWR_DISABLE_ALL;
R2 = IWR_DISABLE_ALL;
call _set_sic_iwr;
call _set_dram_srfs;
SSYNC;
/* Finally, we climb into our cave to hibernate */
W[P3] = R4.L;
CLI R2;
IDLE;
.Lforever:
jump .Lforever;
ENDPROC(_hibernate_mode)
ENTRY(_sleep_deeper)
[--SP] = (R7:4, P5:3);
[--SP] = RETS;
CLI R4;
P3 = R0;
P4 = R1;
P5 = R2;
R0 = IWR_ENABLE(0);
R1 = IWR_DISABLE_ALL;
R2 = IWR_DISABLE_ALL;
call _set_sic_iwr;
call _set_dram_srfs; /* Set SDRAM Self Refresh */
P0.H = hi(PLL_DIV);
P0.L = lo(PLL_DIV);
R6 = W[P0](z);
R0.L = 0xF;
W[P0] = R0.l; /* Set Max VCO to SCLK divider */
P0.H = hi(PLL_CTL);
P0.L = lo(PLL_CTL);
R5 = W[P0](z);
R0.L = (CONFIG_MIN_VCO_HZ/CONFIG_CLKIN_HZ) << 9;
W[P0] = R0.l; /* Set Min CLKIN to VCO multiplier */
SSYNC;
IDLE;
call _test_pll_locked;
P0.H = hi(VR_CTL);
P0.L = lo(VR_CTL);
R7 = W[P0](z);
R1 = 0x6;
R1 <<= 16;
R2 = 0x0404(Z);
R1 = R1|R2;
R2 = DEPOSIT(R7, R1);
W[P0] = R2; /* Set Min Core Voltage */
SSYNC;
IDLE;
call _test_pll_locked;
R0 = P3;
R1 = P4;
R3 = P5;
call _set_sic_iwr; /* Set Awake from IDLE */
P0.H = hi(PLL_CTL);
P0.L = lo(PLL_CTL);
R0 = W[P0](z);
BITSET (R0, 3);
W[P0] = R0.L; /* Turn CCLK OFF */
SSYNC;
IDLE;
call _test_pll_locked;
R0 = IWR_ENABLE(0);
R1 = IWR_DISABLE_ALL;
R2 = IWR_DISABLE_ALL;
call _set_sic_iwr; /* Set Awake from IDLE PLL */
P0.H = hi(VR_CTL);
P0.L = lo(VR_CTL);
W[P0]= R7;
SSYNC;
IDLE;
call _test_pll_locked;
P0.H = hi(PLL_DIV);
P0.L = lo(PLL_DIV);
W[P0]= R6; /* Restore CCLK and SCLK divider */
P0.H = hi(PLL_CTL);
P0.L = lo(PLL_CTL);
w[p0] = R5; /* Restore VCO multiplier */
IDLE;
call _test_pll_locked;
call _unset_dram_srfs; /* SDRAM Self Refresh Off */
STI R4;
RETS = [SP++];
(R7:4, P5:3) = [SP++];
RTS;
ENDPROC(_sleep_deeper)
ENTRY(_set_dram_srfs)
/* set the dram to self refresh mode */
SSYNC;
#if defined(EBIU_RSTCTL) /* DDR */
P0.H = hi(EBIU_RSTCTL);
P0.L = lo(EBIU_RSTCTL);
R2 = [P0];
BITSET(R2, 3); /* SRREQ enter self-refresh mode */
[P0] = R2;
SSYNC;
1:
R2 = [P0];
CC = BITTST(R2, 4);
if !CC JUMP 1b;
#else /* SDRAM */
P0.L = lo(EBIU_SDGCTL);
P0.H = hi(EBIU_SDGCTL);
P1.L = lo(EBIU_SDSTAT);
P1.H = hi(EBIU_SDSTAT);
R2 = [P0];
BITSET(R2, 24); /* SRFS enter self-refresh mode */
[P0] = R2;
SSYNC;
1:
R2 = w[P1];
SSYNC;
cc = BITTST(R2, 1); /* SDSRA poll self-refresh status */
if !cc jump 1b;
R2 = [P0];
BITCLR(R2, 0); /* SCTLE disable CLKOUT */
[P0] = R2;
#endif
RTS;
ENDPROC(_set_dram_srfs)
ENTRY(_unset_dram_srfs)
/* set the dram out of self refresh mode */
#if defined(EBIU_RSTCTL) /* DDR */
P0.H = hi(EBIU_RSTCTL);
P0.L = lo(EBIU_RSTCTL);
R2 = [P0];
BITCLR(R2, 3); /* clear SRREQ bit */
[P0] = R2;
#elif defined(EBIU_SDGCTL) /* SDRAM */
/* release CLKOUT from self-refresh */
P0.L = lo(EBIU_SDGCTL);
P0.H = hi(EBIU_SDGCTL);
R2 = [P0];
BITSET(R2, 0); /* SCTLE enable CLKOUT */
[P0] = R2
SSYNC;
/* release SDRAM from self-refresh */
R2 = [P0];
BITCLR(R2, 24); /* clear SRFS bit */
[P0] = R2
#endif
SSYNC;
RTS;
ENDPROC(_unset_dram_srfs)
ENTRY(_set_sic_iwr)
#ifdef SIC_IWR0
P0.H = hi(SYSMMR_BASE);
P0.L = lo(SYSMMR_BASE);
[P0 + (SIC_IWR0 - SYSMMR_BASE)] = R0;
[P0 + (SIC_IWR1 - SYSMMR_BASE)] = R1;
# ifdef SIC_IWR2
[P0 + (SIC_IWR2 - SYSMMR_BASE)] = R2;
# endif
#else
P0.H = hi(SIC_IWR);
P0.L = lo(SIC_IWR);
[P0] = R0;
#endif
SSYNC;
RTS;
ENDPROC(_set_sic_iwr)
ENTRY(_test_pll_locked)
P0.H = hi(PLL_STAT);
P0.L = lo(PLL_STAT);
1:
R0 = W[P0] (Z);
CC = BITTST(R0,5);
IF !CC JUMP 1b;
RTS;
ENDPROC(_test_pll_locked)
.section .text
#define PM_REG0 R7
#define PM_REG1 R6
#define PM_REG2 R5
#define PM_REG3 R4
#define PM_REG4 R3
#define PM_REG5 R2
#define PM_REG6 R1
#define PM_REG7 R0
#define PM_REG8 P5
#define PM_REG9 P4
#define PM_REG10 P3
#define PM_REG11 P2
#define PM_REG12 P1
#define PM_REG13 P0
#define PM_REGSET0 R7:7
#define PM_REGSET1 R7:6
#define PM_REGSET2 R7:5
#define PM_REGSET3 R7:4
#define PM_REGSET4 R7:3
#define PM_REGSET5 R7:2
#define PM_REGSET6 R7:1
#define PM_REGSET7 R7:0
#define PM_REGSET8 R7:0, P5:5
#define PM_REGSET9 R7:0, P5:4
#define PM_REGSET10 R7:0, P5:3
#define PM_REGSET11 R7:0, P5:2
#define PM_REGSET12 R7:0, P5:1
#define PM_REGSET13 R7:0, P5:0
#define _PM_PUSH(n, x, w, base) PM_REG##n = w[FP + ((x) - (base))];
#define _PM_POP(n, x, w, base) w[FP + ((x) - (base))] = PM_REG##n;
#define PM_PUSH_SYNC(n) [--sp] = (PM_REGSET##n);
#define PM_POP_SYNC(n) (PM_REGSET##n) = [sp++];
#define PM_PUSH(n, x) PM_REG##n = [FP++];
#define PM_POP(n, x) [FP--] = PM_REG##n;
#define PM_CORE_PUSH(n, x) _PM_PUSH(n, x, , COREMMR_BASE)
#define PM_CORE_POP(n, x) _PM_POP(n, x, , COREMMR_BASE)
#define PM_SYS_PUSH(n, x) _PM_PUSH(n, x, , SYSMMR_BASE)
#define PM_SYS_POP(n, x) _PM_POP(n, x, , SYSMMR_BASE)
#define PM_SYS_PUSH16(n, x) _PM_PUSH(n, x, w, SYSMMR_BASE)
#define PM_SYS_POP16(n, x) _PM_POP(n, x, w, SYSMMR_BASE)
ENTRY(_do_hibernate)
/*
* Save the core regs early so we can blow them away when
* saving/restoring MMR states
*/
[--sp] = (R7:0, P5:0);
[--sp] = fp;
[--sp] = usp;
[--sp] = i0;
[--sp] = i1;
[--sp] = i2;
[--sp] = i3;
[--sp] = m0;
[--sp] = m1;
[--sp] = m2;
[--sp] = m3;
[--sp] = l0;
[--sp] = l1;
[--sp] = l2;
[--sp] = l3;
[--sp] = b0;
[--sp] = b1;
[--sp] = b2;
[--sp] = b3;
[--sp] = a0.x;
[--sp] = a0.w;
[--sp] = a1.x;
[--sp] = a1.w;
[--sp] = LC0;
[--sp] = LC1;
[--sp] = LT0;
[--sp] = LT1;
[--sp] = LB0;
[--sp] = LB1;
/* We can't push RETI directly as that'll change IPEND[4] */
r7 = RETI;
[--sp] = RETS;
[--sp] = ASTAT;
[--sp] = CYCLES;
[--sp] = CYCLES2;
[--sp] = SYSCFG;
[--sp] = RETX;
[--sp] = SEQSTAT;
[--sp] = r7;
/* Save first func arg in M3 */
M3 = R0;
/* Save system MMRs */
FP.H = hi(SYSMMR_BASE);
FP.L = lo(SYSMMR_BASE);
#ifdef SIC_IMASK0
PM_SYS_PUSH(0, SIC_IMASK0)
PM_SYS_PUSH(1, SIC_IMASK1)
# ifdef SIC_IMASK2
PM_SYS_PUSH(2, SIC_IMASK2)
# endif
#else
PM_SYS_PUSH(0, SIC_IMASK)
#endif
#ifdef SIC_IAR0
PM_SYS_PUSH(3, SIC_IAR0)
PM_SYS_PUSH(4, SIC_IAR1)
PM_SYS_PUSH(5, SIC_IAR2)
#endif
#ifdef SIC_IAR3
PM_SYS_PUSH(6, SIC_IAR3)
#endif
#ifdef SIC_IAR4
PM_SYS_PUSH(7, SIC_IAR4)
PM_SYS_PUSH(8, SIC_IAR5)
PM_SYS_PUSH(9, SIC_IAR6)
#endif
#ifdef SIC_IAR7
PM_SYS_PUSH(10, SIC_IAR7)
#endif
#ifdef SIC_IAR8
PM_SYS_PUSH(11, SIC_IAR8)
PM_SYS_PUSH(12, SIC_IAR9)
PM_SYS_PUSH(13, SIC_IAR10)
#endif
PM_PUSH_SYNC(13)
#ifdef SIC_IAR11
PM_SYS_PUSH(0, SIC_IAR11)
#endif
#ifdef SIC_IWR
PM_SYS_PUSH(1, SIC_IWR)
#endif
#ifdef SIC_IWR0
PM_SYS_PUSH(1, SIC_IWR0)
#endif
#ifdef SIC_IWR1
PM_SYS_PUSH(2, SIC_IWR1)
#endif
#ifdef SIC_IWR2
PM_SYS_PUSH(3, SIC_IWR2)
#endif
#ifdef PINT0_ASSIGN
PM_SYS_PUSH(4, PINT0_MASK_SET)
PM_SYS_PUSH(5, PINT1_MASK_SET)
PM_SYS_PUSH(6, PINT2_MASK_SET)
PM_SYS_PUSH(7, PINT3_MASK_SET)
PM_SYS_PUSH(8, PINT0_ASSIGN)
PM_SYS_PUSH(9, PINT1_ASSIGN)
PM_SYS_PUSH(10, PINT2_ASSIGN)
PM_SYS_PUSH(11, PINT3_ASSIGN)
PM_SYS_PUSH(12, PINT0_INVERT_SET)
PM_SYS_PUSH(13, PINT1_INVERT_SET)
PM_PUSH_SYNC(13)
PM_SYS_PUSH(0, PINT2_INVERT_SET)
PM_SYS_PUSH(1, PINT3_INVERT_SET)
PM_SYS_PUSH(2, PINT0_EDGE_SET)
PM_SYS_PUSH(3, PINT1_EDGE_SET)
PM_SYS_PUSH(4, PINT2_EDGE_SET)
PM_SYS_PUSH(5, PINT3_EDGE_SET)
#endif
PM_SYS_PUSH16(6, SYSCR)
PM_SYS_PUSH16(7, EBIU_AMGCTL)
PM_SYS_PUSH(8, EBIU_AMBCTL0)
PM_SYS_PUSH(9, EBIU_AMBCTL1)
#ifdef EBIU_FCTL
PM_SYS_PUSH(10, EBIU_MBSCTL)
PM_SYS_PUSH(11, EBIU_MODE)
PM_SYS_PUSH(12, EBIU_FCTL)
PM_PUSH_SYNC(12)
#else
PM_PUSH_SYNC(9)
#endif
/* Save Core MMRs */
I0.H = hi(COREMMR_BASE);
I0.L = lo(COREMMR_BASE);
I1 = I0;
I2 = I0;
I3 = I0;
B0 = I0;
B1 = I0;
B2 = I0;
B3 = I0;
I1.L = lo(DCPLB_ADDR0);
I2.L = lo(DCPLB_DATA0);
I3.L = lo(ICPLB_ADDR0);
B0.L = lo(ICPLB_DATA0);
B1.L = lo(EVT2);
B2.L = lo(IMASK);
B3.L = lo(TCNTL);
/* DCPLB Addr */
FP = I1;
PM_PUSH(0, DCPLB_ADDR0)
PM_PUSH(1, DCPLB_ADDR1)
PM_PUSH(2, DCPLB_ADDR2)
PM_PUSH(3, DCPLB_ADDR3)
PM_PUSH(4, DCPLB_ADDR4)
PM_PUSH(5, DCPLB_ADDR5)
PM_PUSH(6, DCPLB_ADDR6)
PM_PUSH(7, DCPLB_ADDR7)
PM_PUSH(8, DCPLB_ADDR8)
PM_PUSH(9, DCPLB_ADDR9)
PM_PUSH(10, DCPLB_ADDR10)
PM_PUSH(11, DCPLB_ADDR11)
PM_PUSH(12, DCPLB_ADDR12)
PM_PUSH(13, DCPLB_ADDR13)
PM_PUSH_SYNC(13)
PM_PUSH(0, DCPLB_ADDR14)
PM_PUSH(1, DCPLB_ADDR15)
/* DCPLB Data */
FP = I2;
PM_PUSH(2, DCPLB_DATA0)
PM_PUSH(3, DCPLB_DATA1)
PM_PUSH(4, DCPLB_DATA2)
PM_PUSH(5, DCPLB_DATA3)
PM_PUSH(6, DCPLB_DATA4)
PM_PUSH(7, DCPLB_DATA5)
PM_PUSH(8, DCPLB_DATA6)
PM_PUSH(9, DCPLB_DATA7)
PM_PUSH(10, DCPLB_DATA8)
PM_PUSH(11, DCPLB_DATA9)
PM_PUSH(12, DCPLB_DATA10)
PM_PUSH(13, DCPLB_DATA11)
PM_PUSH_SYNC(13)
PM_PUSH(0, DCPLB_DATA12)
PM_PUSH(1, DCPLB_DATA13)
PM_PUSH(2, DCPLB_DATA14)
PM_PUSH(3, DCPLB_DATA15)
/* ICPLB Addr */
FP = I3;
PM_PUSH(4, ICPLB_ADDR0)
PM_PUSH(5, ICPLB_ADDR1)
PM_PUSH(6, ICPLB_ADDR2)
PM_PUSH(7, ICPLB_ADDR3)
PM_PUSH(8, ICPLB_ADDR4)
PM_PUSH(9, ICPLB_ADDR5)
PM_PUSH(10, ICPLB_ADDR6)
PM_PUSH(11, ICPLB_ADDR7)
PM_PUSH(12, ICPLB_ADDR8)
PM_PUSH(13, ICPLB_ADDR9)
PM_PUSH_SYNC(13)
PM_PUSH(0, ICPLB_ADDR10)
PM_PUSH(1, ICPLB_ADDR11)
PM_PUSH(2, ICPLB_ADDR12)
PM_PUSH(3, ICPLB_ADDR13)
PM_PUSH(4, ICPLB_ADDR14)
PM_PUSH(5, ICPLB_ADDR15)
/* ICPLB Data */
FP = B0;
PM_PUSH(6, ICPLB_DATA0)
PM_PUSH(7, ICPLB_DATA1)
PM_PUSH(8, ICPLB_DATA2)
PM_PUSH(9, ICPLB_DATA3)
PM_PUSH(10, ICPLB_DATA4)
PM_PUSH(11, ICPLB_DATA5)
PM_PUSH(12, ICPLB_DATA6)
PM_PUSH(13, ICPLB_DATA7)
PM_PUSH_SYNC(13)
PM_PUSH(0, ICPLB_DATA8)
PM_PUSH(1, ICPLB_DATA9)
PM_PUSH(2, ICPLB_DATA10)
PM_PUSH(3, ICPLB_DATA11)
PM_PUSH(4, ICPLB_DATA12)
PM_PUSH(5, ICPLB_DATA13)
PM_PUSH(6, ICPLB_DATA14)
PM_PUSH(7, ICPLB_DATA15)
/* Event Vectors */
FP = B1;
PM_PUSH(8, EVT2)
PM_PUSH(9, EVT3)
FP += 4; /* EVT4 */
PM_PUSH(10, EVT5)
PM_PUSH(11, EVT6)
PM_PUSH(12, EVT7)
PM_PUSH(13, EVT8)
PM_PUSH_SYNC(13)
PM_PUSH(0, EVT9)
PM_PUSH(1, EVT10)
PM_PUSH(2, EVT11)
PM_PUSH(3, EVT12)
PM_PUSH(4, EVT13)
PM_PUSH(5, EVT14)
PM_PUSH(6, EVT15)
/* CEC */
FP = B2;
PM_PUSH(7, IMASK)
FP += 4; /* IPEND */
PM_PUSH(8, ILAT)
PM_PUSH(9, IPRIO)
/* Core Timer */
FP = B3;
PM_PUSH(10, TCNTL)
PM_PUSH(11, TPERIOD)
PM_PUSH(12, TSCALE)
PM_PUSH(13, TCOUNT)
PM_PUSH_SYNC(13)
/* Misc non-contiguous registers */
FP = I0;
PM_CORE_PUSH(0, DMEM_CONTROL);
PM_CORE_PUSH(1, IMEM_CONTROL);
PM_CORE_PUSH(2, TBUFCTL);
PM_PUSH_SYNC(2)
/* Setup args to hibernate mode early for pipeline optimization */
R0 = M3;
P1.H = _hibernate_mode;
P1.L = _hibernate_mode;
/* Save Magic, return address and Stack Pointer */
P0 = 0;
R1.H = 0xDEAD; /* Hibernate Magic */
R1.L = 0xBEEF;
R2.H = .Lpm_resume_here;
R2.L = .Lpm_resume_here;
[P0++] = R1; /* Store Hibernate Magic */
[P0++] = R2; /* Save Return Address */
[P0++] = SP; /* Save Stack Pointer */
/* Must use an indirect call as we need to jump to L1 */
call (P1); /* Goodbye */
.Lpm_resume_here:
/* Restore Core MMRs */
I0.H = hi(COREMMR_BASE);
I0.L = lo(COREMMR_BASE);
I1 = I0;
I2 = I0;
I3 = I0;
B0 = I0;
B1 = I0;
B2 = I0;
B3 = I0;
I1.L = lo(DCPLB_ADDR15);
I2.L = lo(DCPLB_DATA15);
I3.L = lo(ICPLB_ADDR15);
B0.L = lo(ICPLB_DATA15);
B1.L = lo(EVT15);
B2.L = lo(IPRIO);
B3.L = lo(TCOUNT);
/* Misc non-contiguous registers */
FP = I0;
PM_POP_SYNC(2)
PM_CORE_POP(2, TBUFCTL)
PM_CORE_POP(1, IMEM_CONTROL)
PM_CORE_POP(0, DMEM_CONTROL)
/* Core Timer */
PM_POP_SYNC(13)
FP = B3;
PM_POP(13, TCOUNT)
PM_POP(12, TSCALE)
PM_POP(11, TPERIOD)
PM_POP(10, TCNTL)
/* CEC */
FP = B2;
PM_POP(9, IPRIO)
PM_POP(8, ILAT)
FP += -4; /* IPEND */
PM_POP(7, IMASK)
/* Event Vectors */
FP = B1;
PM_POP(6, EVT15)
PM_POP(5, EVT14)
PM_POP(4, EVT13)
PM_POP(3, EVT12)
PM_POP(2, EVT11)
PM_POP(1, EVT10)
PM_POP(0, EVT9)
PM_POP_SYNC(13)
PM_POP(13, EVT8)
PM_POP(12, EVT7)
PM_POP(11, EVT6)
PM_POP(10, EVT5)
FP += -4; /* EVT4 */
PM_POP(9, EVT3)
PM_POP(8, EVT2)
/* ICPLB Data */
FP = B0;
PM_POP(7, ICPLB_DATA15)
PM_POP(6, ICPLB_DATA14)
PM_POP(5, ICPLB_DATA13)
PM_POP(4, ICPLB_DATA12)
PM_POP(3, ICPLB_DATA11)
PM_POP(2, ICPLB_DATA10)
PM_POP(1, ICPLB_DATA9)
PM_POP(0, ICPLB_DATA8)
PM_POP_SYNC(13)
PM_POP(13, ICPLB_DATA7)
PM_POP(12, ICPLB_DATA6)
PM_POP(11, ICPLB_DATA5)
PM_POP(10, ICPLB_DATA4)
PM_POP(9, ICPLB_DATA3)
PM_POP(8, ICPLB_DATA2)
PM_POP(7, ICPLB_DATA1)
PM_POP(6, ICPLB_DATA0)
/* ICPLB Addr */
FP = I3;
PM_POP(5, ICPLB_ADDR15)
PM_POP(4, ICPLB_ADDR14)
PM_POP(3, ICPLB_ADDR13)
PM_POP(2, ICPLB_ADDR12)
PM_POP(1, ICPLB_ADDR11)
PM_POP(0, ICPLB_ADDR10)
PM_POP_SYNC(13)
PM_POP(13, ICPLB_ADDR9)
PM_POP(12, ICPLB_ADDR8)
PM_POP(11, ICPLB_ADDR7)
PM_POP(10, ICPLB_ADDR6)
PM_POP(9, ICPLB_ADDR5)
PM_POP(8, ICPLB_ADDR4)
PM_POP(7, ICPLB_ADDR3)
PM_POP(6, ICPLB_ADDR2)
PM_POP(5, ICPLB_ADDR1)
PM_POP(4, ICPLB_ADDR0)
/* DCPLB Data */
FP = I2;
PM_POP(3, DCPLB_DATA15)
PM_POP(2, DCPLB_DATA14)
PM_POP(1, DCPLB_DATA13)
PM_POP(0, DCPLB_DATA12)
PM_POP_SYNC(13)
PM_POP(13, DCPLB_DATA11)
PM_POP(12, DCPLB_DATA10)
PM_POP(11, DCPLB_DATA9)
PM_POP(10, DCPLB_DATA8)
PM_POP(9, DCPLB_DATA7)
PM_POP(8, DCPLB_DATA6)
PM_POP(7, DCPLB_DATA5)
PM_POP(6, DCPLB_DATA4)
PM_POP(5, DCPLB_DATA3)
PM_POP(4, DCPLB_DATA2)
PM_POP(3, DCPLB_DATA1)
PM_POP(2, DCPLB_DATA0)
/* DCPLB Addr */
FP = I1;
PM_POP(1, DCPLB_ADDR15)
PM_POP(0, DCPLB_ADDR14)
PM_POP_SYNC(13)
PM_POP(13, DCPLB_ADDR13)
PM_POP(12, DCPLB_ADDR12)
PM_POP(11, DCPLB_ADDR11)
PM_POP(10, DCPLB_ADDR10)
PM_POP(9, DCPLB_ADDR9)
PM_POP(8, DCPLB_ADDR8)
PM_POP(7, DCPLB_ADDR7)
PM_POP(6, DCPLB_ADDR6)
PM_POP(5, DCPLB_ADDR5)
PM_POP(4, DCPLB_ADDR4)
PM_POP(3, DCPLB_ADDR3)
PM_POP(2, DCPLB_ADDR2)
PM_POP(1, DCPLB_ADDR1)
PM_POP(0, DCPLB_ADDR0)
/* Restore System MMRs */
FP.H = hi(SYSMMR_BASE);
FP.L = lo(SYSMMR_BASE);
#ifdef EBIU_FCTL
PM_POP_SYNC(12)
PM_SYS_POP(12, EBIU_FCTL)
PM_SYS_POP(11, EBIU_MODE)
PM_SYS_POP(10, EBIU_MBSCTL)
#else
PM_POP_SYNC(9)
#endif
PM_SYS_POP(9, EBIU_AMBCTL1)
PM_SYS_POP(8, EBIU_AMBCTL0)
PM_SYS_POP16(7, EBIU_AMGCTL)
PM_SYS_POP16(6, SYSCR)
#ifdef PINT0_ASSIGN
PM_SYS_POP(5, PINT3_EDGE_SET)
PM_SYS_POP(4, PINT2_EDGE_SET)
PM_SYS_POP(3, PINT1_EDGE_SET)
PM_SYS_POP(2, PINT0_EDGE_SET)
PM_SYS_POP(1, PINT3_INVERT_SET)
PM_SYS_POP(0, PINT2_INVERT_SET)
PM_POP_SYNC(13)
PM_SYS_POP(13, PINT1_INVERT_SET)
PM_SYS_POP(12, PINT0_INVERT_SET)
PM_SYS_POP(11, PINT3_ASSIGN)
PM_SYS_POP(10, PINT2_ASSIGN)
PM_SYS_POP(9, PINT1_ASSIGN)
PM_SYS_POP(8, PINT0_ASSIGN)
PM_SYS_POP(7, PINT3_MASK_SET)
PM_SYS_POP(6, PINT2_MASK_SET)
PM_SYS_POP(5, PINT1_MASK_SET)
PM_SYS_POP(4, PINT0_MASK_SET)
#endif
#ifdef SIC_IWR2
PM_SYS_POP(3, SIC_IWR2)
#endif
#ifdef SIC_IWR1
PM_SYS_POP(2, SIC_IWR1)
#endif
#ifdef SIC_IWR0
PM_SYS_POP(1, SIC_IWR0)
#endif
#ifdef SIC_IWR
PM_SYS_POP(1, SIC_IWR)
#endif
#ifdef SIC_IAR11
PM_SYS_POP(0, SIC_IAR11)
#endif
PM_POP_SYNC(13)
#ifdef SIC_IAR8
PM_SYS_POP(13, SIC_IAR10)
PM_SYS_POP(12, SIC_IAR9)
PM_SYS_POP(11, SIC_IAR8)
#endif
#ifdef SIC_IAR7
PM_SYS_POP(10, SIC_IAR7)
#endif
#ifdef SIC_IAR6
PM_SYS_POP(9, SIC_IAR6)
PM_SYS_POP(8, SIC_IAR5)
PM_SYS_POP(7, SIC_IAR4)
#endif
#ifdef SIC_IAR3
PM_SYS_POP(6, SIC_IAR3)
#endif
#ifdef SIC_IAR0
PM_SYS_POP(5, SIC_IAR2)
PM_SYS_POP(4, SIC_IAR1)
PM_SYS_POP(3, SIC_IAR0)
#endif
#ifdef SIC_IMASK0
# ifdef SIC_IMASK2
PM_SYS_POP(2, SIC_IMASK2)
# endif
PM_SYS_POP(1, SIC_IMASK1)
PM_SYS_POP(0, SIC_IMASK0)
#else
PM_SYS_POP(0, SIC_IMASK)
#endif
/* Restore Core Registers */
RETI = [sp++];
SEQSTAT = [sp++];
RETX = [sp++];
SYSCFG = [sp++];
CYCLES2 = [sp++];
CYCLES = [sp++];
ASTAT = [sp++];
RETS = [sp++];
LB1 = [sp++];
LB0 = [sp++];
LT1 = [sp++];
LT0 = [sp++];
LC1 = [sp++];
LC0 = [sp++];
a1.w = [sp++];
a1.x = [sp++];
a0.w = [sp++];
a0.x = [sp++];
b3 = [sp++];
b2 = [sp++];
b1 = [sp++];
b0 = [sp++];
l3 = [sp++];
l2 = [sp++];
l1 = [sp++];
l0 = [sp++];
m3 = [sp++];
m2 = [sp++];
m1 = [sp++];
m0 = [sp++];
i3 = [sp++];
i2 = [sp++];
i1 = [sp++];
i0 = [sp++];
usp = [sp++];
fp = [sp++];
(R7:0, P5:0) = [sp++];
[--sp] = RETI; /* Clear Global Interrupt Disable */
SP += 4;
RTS;
ENDPROC(_do_hibernate)