4743 lines
134 KiB
C
4743 lines
134 KiB
C
/*******************************************************************************
|
|
|
|
|
|
Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
|
|
|
|
This program is free software; you can redistribute it and/or modify it
|
|
under the terms of the GNU General Public License as published by the Free
|
|
Software Foundation; either version 2 of the License, or (at your option)
|
|
any later version.
|
|
|
|
This program is distributed in the hope that it will be useful, but WITHOUT
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
more details.
|
|
|
|
You should have received a copy of the GNU General Public License along with
|
|
this program; if not, write to the Free Software Foundation, Inc., 59
|
|
Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|
|
|
The full GNU General Public License is included in this distribution in the
|
|
file called LICENSE.
|
|
|
|
Contact Information:
|
|
Linux NICS <linux.nics@intel.com>
|
|
Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
|
|
|
|
*******************************************************************************/
|
|
|
|
#include "e1000.h"
|
|
|
|
/* Change Log
|
|
* 6.3.9 12/16/2005
|
|
* o incorporate fix for recycled skbs from IBM LTC
|
|
* 6.3.7 11/18/2005
|
|
* o Honor eeprom setting for enabling/disabling Wake On Lan
|
|
* 6.3.5 11/17/2005
|
|
* o Fix memory leak in rx ring handling for PCI Express adapters
|
|
* 6.3.4 11/8/05
|
|
* o Patch from Jesper Juhl to remove redundant NULL checks for kfree
|
|
* 6.3.2 9/20/05
|
|
* o Render logic that sets/resets DRV_LOAD as inline functions to
|
|
* avoid code replication. If f/w is AMT then set DRV_LOAD only when
|
|
* network interface is open.
|
|
* o Handle DRV_LOAD set/reset in cases where AMT uses VLANs.
|
|
* o Adjust PBA partioning for Jumbo frames using MTU size and not
|
|
* rx_buffer_len
|
|
* 6.3.1 9/19/05
|
|
* o Use adapter->tx_timeout_factor in Tx Hung Detect logic
|
|
(e1000_clean_tx_irq)
|
|
* o Support for 8086:10B5 device (Quad Port)
|
|
* 6.2.14 9/15/05
|
|
* o In AMT enabled configurations, set/reset DRV_LOAD bit on interface
|
|
* open/close
|
|
* 6.2.13 9/14/05
|
|
* o Invoke e1000_check_mng_mode only for 8257x controllers since it
|
|
* accesses the FWSM that is not supported in other controllers
|
|
* 6.2.12 9/9/05
|
|
* o Add support for device id E1000_DEV_ID_82546GB_QUAD_COPPER
|
|
* o set RCTL:SECRC only for controllers newer than 82543.
|
|
* o When the n/w interface comes down reset DRV_LOAD bit to notify f/w.
|
|
* This code was moved from e1000_remove to e1000_close
|
|
* 6.2.10 9/6/05
|
|
* o Fix error in updating RDT in el1000_alloc_rx_buffers[_ps] -- one off.
|
|
* o Enable fc by default on 82573 controllers (do not read eeprom)
|
|
* o Fix rx_errors statistic not to include missed_packet_count
|
|
* o Fix rx_dropped statistic not to include missed_packet_count
|
|
(Padraig Brady)
|
|
* 6.2.9 8/30/05
|
|
* o Remove call to update statistics from the controller ib e1000_get_stats
|
|
* 6.2.8 8/30/05
|
|
* o Improved algorithm for rx buffer allocation/rdt update
|
|
* o Flow control watermarks relative to rx PBA size
|
|
* o Simplified 'Tx Hung' detect logic
|
|
* 6.2.7 8/17/05
|
|
* o Report rx buffer allocation failures and tx timeout counts in stats
|
|
* 6.2.6 8/16/05
|
|
* o Implement workaround for controller erratum -- linear non-tso packet
|
|
* following a TSO gets written back prematurely
|
|
* 6.2.5 8/15/05
|
|
* o Set netdev->tx_queue_len based on link speed/duplex settings.
|
|
* o Fix net_stats.rx_fifo_errors <p@draigBrady.com>
|
|
* o Do not power off PHY if SoL/IDER session is active
|
|
* 6.2.4 8/10/05
|
|
* o Fix loopback test setup/cleanup for 82571/3 controllers
|
|
* o Fix parsing of outgoing packets (e1000_transfer_dhcp_info) to treat
|
|
* all packets as raw
|
|
* o Prevent operations that will cause the PHY to be reset if SoL/IDER
|
|
* sessions are active and log a message
|
|
* 6.2.2 7/21/05
|
|
* o used fixed size descriptors for all MTU sizes, reduces memory load
|
|
* 6.1.2 4/13/05
|
|
* o Fixed ethtool diagnostics
|
|
* o Enabled flow control to take default eeprom settings
|
|
* o Added stats_lock around e1000_read_phy_reg commands to avoid concurrent
|
|
* calls, one from mii_ioctl and other from within update_stats while
|
|
* processing MIIREG ioctl.
|
|
*/
|
|
|
|
char e1000_driver_name[] = "e1000";
|
|
static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
|
|
#ifndef CONFIG_E1000_NAPI
|
|
#define DRIVERNAPI
|
|
#else
|
|
#define DRIVERNAPI "-NAPI"
|
|
#endif
|
|
#define DRV_VERSION "6.3.9-k2"DRIVERNAPI
|
|
char e1000_driver_version[] = DRV_VERSION;
|
|
static char e1000_copyright[] = "Copyright (c) 1999-2005 Intel Corporation.";
|
|
|
|
/* e1000_pci_tbl - PCI Device ID Table
|
|
*
|
|
* Last entry must be all 0s
|
|
*
|
|
* Macro expands to...
|
|
* {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
|
|
*/
|
|
static struct pci_device_id e1000_pci_tbl[] = {
|
|
INTEL_E1000_ETHERNET_DEVICE(0x1000),
|
|
INTEL_E1000_ETHERNET_DEVICE(0x1001),
|
|
INTEL_E1000_ETHERNET_DEVICE(0x1004),
|
|
INTEL_E1000_ETHERNET_DEVICE(0x1008),
|
|
INTEL_E1000_ETHERNET_DEVICE(0x1009),
|
|
INTEL_E1000_ETHERNET_DEVICE(0x100C),
|
|
INTEL_E1000_ETHERNET_DEVICE(0x100D),
|
|
INTEL_E1000_ETHERNET_DEVICE(0x100E),
|
|
INTEL_E1000_ETHERNET_DEVICE(0x100F),
|
|
INTEL_E1000_ETHERNET_DEVICE(0x1010),
|
|
INTEL_E1000_ETHERNET_DEVICE(0x1011),
|
|
INTEL_E1000_ETHERNET_DEVICE(0x1012),
|
|
INTEL_E1000_ETHERNET_DEVICE(0x1013),
|
|
INTEL_E1000_ETHERNET_DEVICE(0x1014),
|
|
INTEL_E1000_ETHERNET_DEVICE(0x1015),
|
|
INTEL_E1000_ETHERNET_DEVICE(0x1016),
|
|
INTEL_E1000_ETHERNET_DEVICE(0x1017),
|
|
INTEL_E1000_ETHERNET_DEVICE(0x1018),
|
|
INTEL_E1000_ETHERNET_DEVICE(0x1019),
|
|
INTEL_E1000_ETHERNET_DEVICE(0x101A),
|
|
INTEL_E1000_ETHERNET_DEVICE(0x101D),
|
|
INTEL_E1000_ETHERNET_DEVICE(0x101E),
|
|
INTEL_E1000_ETHERNET_DEVICE(0x1026),
|
|
INTEL_E1000_ETHERNET_DEVICE(0x1027),
|
|
INTEL_E1000_ETHERNET_DEVICE(0x1028),
|
|
INTEL_E1000_ETHERNET_DEVICE(0x105E),
|
|
INTEL_E1000_ETHERNET_DEVICE(0x105F),
|
|
INTEL_E1000_ETHERNET_DEVICE(0x1060),
|
|
INTEL_E1000_ETHERNET_DEVICE(0x1075),
|
|
INTEL_E1000_ETHERNET_DEVICE(0x1076),
|
|
INTEL_E1000_ETHERNET_DEVICE(0x1077),
|
|
INTEL_E1000_ETHERNET_DEVICE(0x1078),
|
|
INTEL_E1000_ETHERNET_DEVICE(0x1079),
|
|
INTEL_E1000_ETHERNET_DEVICE(0x107A),
|
|
INTEL_E1000_ETHERNET_DEVICE(0x107B),
|
|
INTEL_E1000_ETHERNET_DEVICE(0x107C),
|
|
INTEL_E1000_ETHERNET_DEVICE(0x107D),
|
|
INTEL_E1000_ETHERNET_DEVICE(0x107E),
|
|
INTEL_E1000_ETHERNET_DEVICE(0x107F),
|
|
INTEL_E1000_ETHERNET_DEVICE(0x108A),
|
|
INTEL_E1000_ETHERNET_DEVICE(0x108B),
|
|
INTEL_E1000_ETHERNET_DEVICE(0x108C),
|
|
INTEL_E1000_ETHERNET_DEVICE(0x1099),
|
|
INTEL_E1000_ETHERNET_DEVICE(0x109A),
|
|
INTEL_E1000_ETHERNET_DEVICE(0x10B5),
|
|
/* required last entry */
|
|
{0,}
|
|
};
|
|
|
|
MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
|
|
|
|
int e1000_up(struct e1000_adapter *adapter);
|
|
void e1000_down(struct e1000_adapter *adapter);
|
|
void e1000_reset(struct e1000_adapter *adapter);
|
|
int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
|
|
int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
|
|
int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
|
|
void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
|
|
void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
|
|
static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
|
|
struct e1000_tx_ring *txdr);
|
|
static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
|
|
struct e1000_rx_ring *rxdr);
|
|
static void e1000_free_tx_resources(struct e1000_adapter *adapter,
|
|
struct e1000_tx_ring *tx_ring);
|
|
static void e1000_free_rx_resources(struct e1000_adapter *adapter,
|
|
struct e1000_rx_ring *rx_ring);
|
|
void e1000_update_stats(struct e1000_adapter *adapter);
|
|
|
|
/* Local Function Prototypes */
|
|
|
|
static int e1000_init_module(void);
|
|
static void e1000_exit_module(void);
|
|
static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
|
|
static void __devexit e1000_remove(struct pci_dev *pdev);
|
|
static int e1000_alloc_queues(struct e1000_adapter *adapter);
|
|
#ifdef CONFIG_E1000_MQ
|
|
static void e1000_setup_queue_mapping(struct e1000_adapter *adapter);
|
|
#endif
|
|
static int e1000_sw_init(struct e1000_adapter *adapter);
|
|
static int e1000_open(struct net_device *netdev);
|
|
static int e1000_close(struct net_device *netdev);
|
|
static void e1000_configure_tx(struct e1000_adapter *adapter);
|
|
static void e1000_configure_rx(struct e1000_adapter *adapter);
|
|
static void e1000_setup_rctl(struct e1000_adapter *adapter);
|
|
static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
|
|
static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
|
|
static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
|
|
struct e1000_tx_ring *tx_ring);
|
|
static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
|
|
struct e1000_rx_ring *rx_ring);
|
|
static void e1000_set_multi(struct net_device *netdev);
|
|
static void e1000_update_phy_info(unsigned long data);
|
|
static void e1000_watchdog(unsigned long data);
|
|
static void e1000_watchdog_task(struct e1000_adapter *adapter);
|
|
static void e1000_82547_tx_fifo_stall(unsigned long data);
|
|
static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
|
|
static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
|
|
static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
|
|
static int e1000_set_mac(struct net_device *netdev, void *p);
|
|
static irqreturn_t e1000_intr(int irq, void *data, struct pt_regs *regs);
|
|
static boolean_t e1000_clean_tx_irq(struct e1000_adapter *adapter,
|
|
struct e1000_tx_ring *tx_ring);
|
|
#ifdef CONFIG_E1000_NAPI
|
|
static int e1000_clean(struct net_device *poll_dev, int *budget);
|
|
static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
|
|
struct e1000_rx_ring *rx_ring,
|
|
int *work_done, int work_to_do);
|
|
static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
|
|
struct e1000_rx_ring *rx_ring,
|
|
int *work_done, int work_to_do);
|
|
#else
|
|
static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
|
|
struct e1000_rx_ring *rx_ring);
|
|
static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
|
|
struct e1000_rx_ring *rx_ring);
|
|
#endif
|
|
static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
|
|
struct e1000_rx_ring *rx_ring,
|
|
int cleaned_count);
|
|
static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
|
|
struct e1000_rx_ring *rx_ring,
|
|
int cleaned_count);
|
|
static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
|
|
static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
|
|
int cmd);
|
|
void e1000_set_ethtool_ops(struct net_device *netdev);
|
|
static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
|
|
static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
|
|
static void e1000_tx_timeout(struct net_device *dev);
|
|
static void e1000_tx_timeout_task(struct net_device *dev);
|
|
static void e1000_smartspeed(struct e1000_adapter *adapter);
|
|
static inline int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
|
|
struct sk_buff *skb);
|
|
|
|
static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
|
|
static void e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid);
|
|
static void e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid);
|
|
static void e1000_restore_vlan(struct e1000_adapter *adapter);
|
|
|
|
#ifdef CONFIG_PM
|
|
static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
|
|
static int e1000_resume(struct pci_dev *pdev);
|
|
#endif
|
|
|
|
#ifdef CONFIG_NET_POLL_CONTROLLER
|
|
/* for netdump / net console */
|
|
static void e1000_netpoll (struct net_device *netdev);
|
|
#endif
|
|
|
|
#ifdef CONFIG_E1000_MQ
|
|
/* for multiple Rx queues */
|
|
void e1000_rx_schedule(void *data);
|
|
#endif
|
|
|
|
/* Exported from other modules */
|
|
|
|
extern void e1000_check_options(struct e1000_adapter *adapter);
|
|
|
|
static struct pci_driver e1000_driver = {
|
|
.name = e1000_driver_name,
|
|
.id_table = e1000_pci_tbl,
|
|
.probe = e1000_probe,
|
|
.remove = __devexit_p(e1000_remove),
|
|
/* Power Managment Hooks */
|
|
#ifdef CONFIG_PM
|
|
.suspend = e1000_suspend,
|
|
.resume = e1000_resume
|
|
#endif
|
|
};
|
|
|
|
MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
|
|
MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_VERSION(DRV_VERSION);
|
|
|
|
static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
|
|
module_param(debug, int, 0);
|
|
MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
|
|
|
|
/**
|
|
* e1000_init_module - Driver Registration Routine
|
|
*
|
|
* e1000_init_module is the first routine called when the driver is
|
|
* loaded. All it does is register with the PCI subsystem.
|
|
**/
|
|
|
|
static int __init
|
|
e1000_init_module(void)
|
|
{
|
|
int ret;
|
|
printk(KERN_INFO "%s - version %s\n",
|
|
e1000_driver_string, e1000_driver_version);
|
|
|
|
printk(KERN_INFO "%s\n", e1000_copyright);
|
|
|
|
ret = pci_module_init(&e1000_driver);
|
|
|
|
return ret;
|
|
}
|
|
|
|
module_init(e1000_init_module);
|
|
|
|
/**
|
|
* e1000_exit_module - Driver Exit Cleanup Routine
|
|
*
|
|
* e1000_exit_module is called just before the driver is removed
|
|
* from memory.
|
|
**/
|
|
|
|
static void __exit
|
|
e1000_exit_module(void)
|
|
{
|
|
pci_unregister_driver(&e1000_driver);
|
|
}
|
|
|
|
module_exit(e1000_exit_module);
|
|
|
|
/**
|
|
* e1000_irq_disable - Mask off interrupt generation on the NIC
|
|
* @adapter: board private structure
|
|
**/
|
|
|
|
static inline void
|
|
e1000_irq_disable(struct e1000_adapter *adapter)
|
|
{
|
|
atomic_inc(&adapter->irq_sem);
|
|
E1000_WRITE_REG(&adapter->hw, IMC, ~0);
|
|
E1000_WRITE_FLUSH(&adapter->hw);
|
|
synchronize_irq(adapter->pdev->irq);
|
|
}
|
|
|
|
/**
|
|
* e1000_irq_enable - Enable default interrupt generation settings
|
|
* @adapter: board private structure
|
|
**/
|
|
|
|
static inline void
|
|
e1000_irq_enable(struct e1000_adapter *adapter)
|
|
{
|
|
if (likely(atomic_dec_and_test(&adapter->irq_sem))) {
|
|
E1000_WRITE_REG(&adapter->hw, IMS, IMS_ENABLE_MASK);
|
|
E1000_WRITE_FLUSH(&adapter->hw);
|
|
}
|
|
}
|
|
|
|
static void
|
|
e1000_update_mng_vlan(struct e1000_adapter *adapter)
|
|
{
|
|
struct net_device *netdev = adapter->netdev;
|
|
uint16_t vid = adapter->hw.mng_cookie.vlan_id;
|
|
uint16_t old_vid = adapter->mng_vlan_id;
|
|
if (adapter->vlgrp) {
|
|
if (!adapter->vlgrp->vlan_devices[vid]) {
|
|
if (adapter->hw.mng_cookie.status &
|
|
E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
|
|
e1000_vlan_rx_add_vid(netdev, vid);
|
|
adapter->mng_vlan_id = vid;
|
|
} else
|
|
adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
|
|
|
|
if ((old_vid != (uint16_t)E1000_MNG_VLAN_NONE) &&
|
|
(vid != old_vid) &&
|
|
!adapter->vlgrp->vlan_devices[old_vid])
|
|
e1000_vlan_rx_kill_vid(netdev, old_vid);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* e1000_release_hw_control - release control of the h/w to f/w
|
|
* @adapter: address of board private structure
|
|
*
|
|
* e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
|
|
* For ASF and Pass Through versions of f/w this means that the
|
|
* driver is no longer loaded. For AMT version (only with 82573) i
|
|
* of the f/w this means that the netowrk i/f is closed.
|
|
*
|
|
**/
|
|
|
|
static inline void
|
|
e1000_release_hw_control(struct e1000_adapter *adapter)
|
|
{
|
|
uint32_t ctrl_ext;
|
|
uint32_t swsm;
|
|
|
|
/* Let firmware taken over control of h/w */
|
|
switch (adapter->hw.mac_type) {
|
|
case e1000_82571:
|
|
case e1000_82572:
|
|
ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
|
|
E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
|
|
ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
|
|
break;
|
|
case e1000_82573:
|
|
swsm = E1000_READ_REG(&adapter->hw, SWSM);
|
|
E1000_WRITE_REG(&adapter->hw, SWSM,
|
|
swsm & ~E1000_SWSM_DRV_LOAD);
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* e1000_get_hw_control - get control of the h/w from f/w
|
|
* @adapter: address of board private structure
|
|
*
|
|
* e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
|
|
* For ASF and Pass Through versions of f/w this means that
|
|
* the driver is loaded. For AMT version (only with 82573)
|
|
* of the f/w this means that the netowrk i/f is open.
|
|
*
|
|
**/
|
|
|
|
static inline void
|
|
e1000_get_hw_control(struct e1000_adapter *adapter)
|
|
{
|
|
uint32_t ctrl_ext;
|
|
uint32_t swsm;
|
|
/* Let firmware know the driver has taken over */
|
|
switch (adapter->hw.mac_type) {
|
|
case e1000_82571:
|
|
case e1000_82572:
|
|
ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
|
|
E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
|
|
ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
|
|
break;
|
|
case e1000_82573:
|
|
swsm = E1000_READ_REG(&adapter->hw, SWSM);
|
|
E1000_WRITE_REG(&adapter->hw, SWSM,
|
|
swsm | E1000_SWSM_DRV_LOAD);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
int
|
|
e1000_up(struct e1000_adapter *adapter)
|
|
{
|
|
struct net_device *netdev = adapter->netdev;
|
|
int i, err;
|
|
|
|
/* hardware has been reset, we need to reload some things */
|
|
|
|
/* Reset the PHY if it was previously powered down */
|
|
if (adapter->hw.media_type == e1000_media_type_copper) {
|
|
uint16_t mii_reg;
|
|
e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
|
|
if (mii_reg & MII_CR_POWER_DOWN)
|
|
e1000_phy_reset(&adapter->hw);
|
|
}
|
|
|
|
e1000_set_multi(netdev);
|
|
|
|
e1000_restore_vlan(adapter);
|
|
|
|
e1000_configure_tx(adapter);
|
|
e1000_setup_rctl(adapter);
|
|
e1000_configure_rx(adapter);
|
|
/* call E1000_DESC_UNUSED which always leaves
|
|
* at least 1 descriptor unused to make sure
|
|
* next_to_use != next_to_clean */
|
|
for (i = 0; i < adapter->num_rx_queues; i++) {
|
|
struct e1000_rx_ring *ring = &adapter->rx_ring[i];
|
|
adapter->alloc_rx_buf(adapter, ring,
|
|
E1000_DESC_UNUSED(ring));
|
|
}
|
|
|
|
#ifdef CONFIG_PCI_MSI
|
|
if (adapter->hw.mac_type > e1000_82547_rev_2) {
|
|
adapter->have_msi = TRUE;
|
|
if ((err = pci_enable_msi(adapter->pdev))) {
|
|
DPRINTK(PROBE, ERR,
|
|
"Unable to allocate MSI interrupt Error: %d\n", err);
|
|
adapter->have_msi = FALSE;
|
|
}
|
|
}
|
|
#endif
|
|
if ((err = request_irq(adapter->pdev->irq, &e1000_intr,
|
|
SA_SHIRQ | SA_SAMPLE_RANDOM,
|
|
netdev->name, netdev))) {
|
|
DPRINTK(PROBE, ERR,
|
|
"Unable to allocate interrupt Error: %d\n", err);
|
|
return err;
|
|
}
|
|
|
|
#ifdef CONFIG_E1000_MQ
|
|
e1000_setup_queue_mapping(adapter);
|
|
#endif
|
|
|
|
adapter->tx_queue_len = netdev->tx_queue_len;
|
|
|
|
mod_timer(&adapter->watchdog_timer, jiffies);
|
|
|
|
#ifdef CONFIG_E1000_NAPI
|
|
netif_poll_enable(netdev);
|
|
#endif
|
|
e1000_irq_enable(adapter);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
e1000_down(struct e1000_adapter *adapter)
|
|
{
|
|
struct net_device *netdev = adapter->netdev;
|
|
boolean_t mng_mode_enabled = (adapter->hw.mac_type >= e1000_82571) &&
|
|
e1000_check_mng_mode(&adapter->hw);
|
|
|
|
e1000_irq_disable(adapter);
|
|
#ifdef CONFIG_E1000_MQ
|
|
while (atomic_read(&adapter->rx_sched_call_data.count) != 0);
|
|
#endif
|
|
free_irq(adapter->pdev->irq, netdev);
|
|
#ifdef CONFIG_PCI_MSI
|
|
if (adapter->hw.mac_type > e1000_82547_rev_2 &&
|
|
adapter->have_msi == TRUE)
|
|
pci_disable_msi(adapter->pdev);
|
|
#endif
|
|
del_timer_sync(&adapter->tx_fifo_stall_timer);
|
|
del_timer_sync(&adapter->watchdog_timer);
|
|
del_timer_sync(&adapter->phy_info_timer);
|
|
|
|
#ifdef CONFIG_E1000_NAPI
|
|
netif_poll_disable(netdev);
|
|
#endif
|
|
netdev->tx_queue_len = adapter->tx_queue_len;
|
|
adapter->link_speed = 0;
|
|
adapter->link_duplex = 0;
|
|
netif_carrier_off(netdev);
|
|
netif_stop_queue(netdev);
|
|
|
|
e1000_reset(adapter);
|
|
e1000_clean_all_tx_rings(adapter);
|
|
e1000_clean_all_rx_rings(adapter);
|
|
|
|
/* Power down the PHY so no link is implied when interface is down *
|
|
* The PHY cannot be powered down if any of the following is TRUE *
|
|
* (a) WoL is enabled
|
|
* (b) AMT is active
|
|
* (c) SoL/IDER session is active */
|
|
if (!adapter->wol && adapter->hw.mac_type >= e1000_82540 &&
|
|
adapter->hw.media_type == e1000_media_type_copper &&
|
|
!(E1000_READ_REG(&adapter->hw, MANC) & E1000_MANC_SMBUS_EN) &&
|
|
!mng_mode_enabled &&
|
|
!e1000_check_phy_reset_block(&adapter->hw)) {
|
|
uint16_t mii_reg;
|
|
e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
|
|
mii_reg |= MII_CR_POWER_DOWN;
|
|
e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
|
|
mdelay(1);
|
|
}
|
|
}
|
|
|
|
void
|
|
e1000_reset(struct e1000_adapter *adapter)
|
|
{
|
|
uint32_t pba, manc;
|
|
uint16_t fc_high_water_mark = E1000_FC_HIGH_DIFF;
|
|
|
|
/* Repartition Pba for greater than 9k mtu
|
|
* To take effect CTRL.RST is required.
|
|
*/
|
|
|
|
switch (adapter->hw.mac_type) {
|
|
case e1000_82547:
|
|
case e1000_82547_rev_2:
|
|
pba = E1000_PBA_30K;
|
|
break;
|
|
case e1000_82571:
|
|
case e1000_82572:
|
|
pba = E1000_PBA_38K;
|
|
break;
|
|
case e1000_82573:
|
|
pba = E1000_PBA_12K;
|
|
break;
|
|
default:
|
|
pba = E1000_PBA_48K;
|
|
break;
|
|
}
|
|
|
|
if ((adapter->hw.mac_type != e1000_82573) &&
|
|
(adapter->netdev->mtu > E1000_RXBUFFER_8192))
|
|
pba -= 8; /* allocate more FIFO for Tx */
|
|
|
|
|
|
if (adapter->hw.mac_type == e1000_82547) {
|
|
adapter->tx_fifo_head = 0;
|
|
adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
|
|
adapter->tx_fifo_size =
|
|
(E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
|
|
atomic_set(&adapter->tx_fifo_stall, 0);
|
|
}
|
|
|
|
E1000_WRITE_REG(&adapter->hw, PBA, pba);
|
|
|
|
/* flow control settings */
|
|
/* Set the FC high water mark to 90% of the FIFO size.
|
|
* Required to clear last 3 LSB */
|
|
fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8;
|
|
|
|
adapter->hw.fc_high_water = fc_high_water_mark;
|
|
adapter->hw.fc_low_water = fc_high_water_mark - 8;
|
|
adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME;
|
|
adapter->hw.fc_send_xon = 1;
|
|
adapter->hw.fc = adapter->hw.original_fc;
|
|
|
|
/* Allow time for pending master requests to run */
|
|
e1000_reset_hw(&adapter->hw);
|
|
if (adapter->hw.mac_type >= e1000_82544)
|
|
E1000_WRITE_REG(&adapter->hw, WUC, 0);
|
|
if (e1000_init_hw(&adapter->hw))
|
|
DPRINTK(PROBE, ERR, "Hardware Error\n");
|
|
e1000_update_mng_vlan(adapter);
|
|
/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
|
|
E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE);
|
|
|
|
e1000_reset_adaptive(&adapter->hw);
|
|
e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
|
|
if (adapter->en_mng_pt) {
|
|
manc = E1000_READ_REG(&adapter->hw, MANC);
|
|
manc |= (E1000_MANC_ARP_EN | E1000_MANC_EN_MNG2HOST);
|
|
E1000_WRITE_REG(&adapter->hw, MANC, manc);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* e1000_probe - Device Initialization Routine
|
|
* @pdev: PCI device information struct
|
|
* @ent: entry in e1000_pci_tbl
|
|
*
|
|
* Returns 0 on success, negative on failure
|
|
*
|
|
* e1000_probe initializes an adapter identified by a pci_dev structure.
|
|
* The OS initialization, configuring of the adapter private structure,
|
|
* and a hardware reset occur.
|
|
**/
|
|
|
|
static int __devinit
|
|
e1000_probe(struct pci_dev *pdev,
|
|
const struct pci_device_id *ent)
|
|
{
|
|
struct net_device *netdev;
|
|
struct e1000_adapter *adapter;
|
|
unsigned long mmio_start, mmio_len;
|
|
|
|
static int cards_found = 0;
|
|
int i, err, pci_using_dac;
|
|
uint16_t eeprom_data;
|
|
uint16_t eeprom_apme_mask = E1000_EEPROM_APME;
|
|
if ((err = pci_enable_device(pdev)))
|
|
return err;
|
|
|
|
if (!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK))) {
|
|
pci_using_dac = 1;
|
|
} else {
|
|
if ((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
|
|
E1000_ERR("No usable DMA configuration, aborting\n");
|
|
return err;
|
|
}
|
|
pci_using_dac = 0;
|
|
}
|
|
|
|
if ((err = pci_request_regions(pdev, e1000_driver_name)))
|
|
return err;
|
|
|
|
pci_set_master(pdev);
|
|
|
|
netdev = alloc_etherdev(sizeof(struct e1000_adapter));
|
|
if (!netdev) {
|
|
err = -ENOMEM;
|
|
goto err_alloc_etherdev;
|
|
}
|
|
|
|
SET_MODULE_OWNER(netdev);
|
|
SET_NETDEV_DEV(netdev, &pdev->dev);
|
|
|
|
pci_set_drvdata(pdev, netdev);
|
|
adapter = netdev_priv(netdev);
|
|
adapter->netdev = netdev;
|
|
adapter->pdev = pdev;
|
|
adapter->hw.back = adapter;
|
|
adapter->msg_enable = (1 << debug) - 1;
|
|
|
|
mmio_start = pci_resource_start(pdev, BAR_0);
|
|
mmio_len = pci_resource_len(pdev, BAR_0);
|
|
|
|
adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
|
|
if (!adapter->hw.hw_addr) {
|
|
err = -EIO;
|
|
goto err_ioremap;
|
|
}
|
|
|
|
for (i = BAR_1; i <= BAR_5; i++) {
|
|
if (pci_resource_len(pdev, i) == 0)
|
|
continue;
|
|
if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
|
|
adapter->hw.io_base = pci_resource_start(pdev, i);
|
|
break;
|
|
}
|
|
}
|
|
|
|
netdev->open = &e1000_open;
|
|
netdev->stop = &e1000_close;
|
|
netdev->hard_start_xmit = &e1000_xmit_frame;
|
|
netdev->get_stats = &e1000_get_stats;
|
|
netdev->set_multicast_list = &e1000_set_multi;
|
|
netdev->set_mac_address = &e1000_set_mac;
|
|
netdev->change_mtu = &e1000_change_mtu;
|
|
netdev->do_ioctl = &e1000_ioctl;
|
|
e1000_set_ethtool_ops(netdev);
|
|
netdev->tx_timeout = &e1000_tx_timeout;
|
|
netdev->watchdog_timeo = 5 * HZ;
|
|
#ifdef CONFIG_E1000_NAPI
|
|
netdev->poll = &e1000_clean;
|
|
netdev->weight = 64;
|
|
#endif
|
|
netdev->vlan_rx_register = e1000_vlan_rx_register;
|
|
netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
|
|
netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
|
|
#ifdef CONFIG_NET_POLL_CONTROLLER
|
|
netdev->poll_controller = e1000_netpoll;
|
|
#endif
|
|
strcpy(netdev->name, pci_name(pdev));
|
|
|
|
netdev->mem_start = mmio_start;
|
|
netdev->mem_end = mmio_start + mmio_len;
|
|
netdev->base_addr = adapter->hw.io_base;
|
|
|
|
adapter->bd_number = cards_found;
|
|
|
|
/* setup the private structure */
|
|
|
|
if ((err = e1000_sw_init(adapter)))
|
|
goto err_sw_init;
|
|
|
|
if ((err = e1000_check_phy_reset_block(&adapter->hw)))
|
|
DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
|
|
|
|
if (adapter->hw.mac_type >= e1000_82543) {
|
|
netdev->features = NETIF_F_SG |
|
|
NETIF_F_HW_CSUM |
|
|
NETIF_F_HW_VLAN_TX |
|
|
NETIF_F_HW_VLAN_RX |
|
|
NETIF_F_HW_VLAN_FILTER;
|
|
}
|
|
|
|
#ifdef NETIF_F_TSO
|
|
if ((adapter->hw.mac_type >= e1000_82544) &&
|
|
(adapter->hw.mac_type != e1000_82547))
|
|
netdev->features |= NETIF_F_TSO;
|
|
|
|
#ifdef NETIF_F_TSO_IPV6
|
|
if (adapter->hw.mac_type > e1000_82547_rev_2)
|
|
netdev->features |= NETIF_F_TSO_IPV6;
|
|
#endif
|
|
#endif
|
|
if (pci_using_dac)
|
|
netdev->features |= NETIF_F_HIGHDMA;
|
|
|
|
/* hard_start_xmit is safe against parallel locking */
|
|
netdev->features |= NETIF_F_LLTX;
|
|
|
|
adapter->en_mng_pt = e1000_enable_mng_pass_thru(&adapter->hw);
|
|
|
|
/* before reading the EEPROM, reset the controller to
|
|
* put the device in a known good starting state */
|
|
|
|
e1000_reset_hw(&adapter->hw);
|
|
|
|
/* make sure the EEPROM is good */
|
|
|
|
if (e1000_validate_eeprom_checksum(&adapter->hw) < 0) {
|
|
DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
|
|
err = -EIO;
|
|
goto err_eeprom;
|
|
}
|
|
|
|
/* copy the MAC address out of the EEPROM */
|
|
|
|
if (e1000_read_mac_addr(&adapter->hw))
|
|
DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
|
|
memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
|
|
memcpy(netdev->perm_addr, adapter->hw.mac_addr, netdev->addr_len);
|
|
|
|
if (!is_valid_ether_addr(netdev->perm_addr)) {
|
|
DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
|
|
err = -EIO;
|
|
goto err_eeprom;
|
|
}
|
|
|
|
e1000_read_part_num(&adapter->hw, &(adapter->part_num));
|
|
|
|
e1000_get_bus_info(&adapter->hw);
|
|
|
|
init_timer(&adapter->tx_fifo_stall_timer);
|
|
adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
|
|
adapter->tx_fifo_stall_timer.data = (unsigned long) adapter;
|
|
|
|
init_timer(&adapter->watchdog_timer);
|
|
adapter->watchdog_timer.function = &e1000_watchdog;
|
|
adapter->watchdog_timer.data = (unsigned long) adapter;
|
|
|
|
INIT_WORK(&adapter->watchdog_task,
|
|
(void (*)(void *))e1000_watchdog_task, adapter);
|
|
|
|
init_timer(&adapter->phy_info_timer);
|
|
adapter->phy_info_timer.function = &e1000_update_phy_info;
|
|
adapter->phy_info_timer.data = (unsigned long) adapter;
|
|
|
|
INIT_WORK(&adapter->tx_timeout_task,
|
|
(void (*)(void *))e1000_tx_timeout_task, netdev);
|
|
|
|
/* we're going to reset, so assume we have no link for now */
|
|
|
|
netif_carrier_off(netdev);
|
|
netif_stop_queue(netdev);
|
|
|
|
e1000_check_options(adapter);
|
|
|
|
/* Initial Wake on LAN setting
|
|
* If APM wake is enabled in the EEPROM,
|
|
* enable the ACPI Magic Packet filter
|
|
*/
|
|
|
|
switch (adapter->hw.mac_type) {
|
|
case e1000_82542_rev2_0:
|
|
case e1000_82542_rev2_1:
|
|
case e1000_82543:
|
|
break;
|
|
case e1000_82544:
|
|
e1000_read_eeprom(&adapter->hw,
|
|
EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
|
|
eeprom_apme_mask = E1000_EEPROM_82544_APM;
|
|
break;
|
|
case e1000_82546:
|
|
case e1000_82546_rev_3:
|
|
case e1000_82571:
|
|
if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1){
|
|
e1000_read_eeprom(&adapter->hw,
|
|
EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
|
|
break;
|
|
}
|
|
/* Fall Through */
|
|
default:
|
|
e1000_read_eeprom(&adapter->hw,
|
|
EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
|
|
break;
|
|
}
|
|
if (eeprom_data & eeprom_apme_mask)
|
|
adapter->wol |= E1000_WUFC_MAG;
|
|
|
|
/* print bus type/speed/width info */
|
|
{
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ",
|
|
((hw->bus_type == e1000_bus_type_pcix) ? "-X" :
|
|
(hw->bus_type == e1000_bus_type_pci_express ? " Express":"")),
|
|
((hw->bus_speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
|
|
(hw->bus_speed == e1000_bus_speed_133) ? "133MHz" :
|
|
(hw->bus_speed == e1000_bus_speed_120) ? "120MHz" :
|
|
(hw->bus_speed == e1000_bus_speed_100) ? "100MHz" :
|
|
(hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"),
|
|
((hw->bus_width == e1000_bus_width_64) ? "64-bit" :
|
|
(hw->bus_width == e1000_bus_width_pciex_4) ? "Width x4" :
|
|
(hw->bus_width == e1000_bus_width_pciex_1) ? "Width x1" :
|
|
"32-bit"));
|
|
}
|
|
|
|
for (i = 0; i < 6; i++)
|
|
printk("%2.2x%c", netdev->dev_addr[i], i == 5 ? '\n' : ':');
|
|
|
|
/* reset the hardware with the new settings */
|
|
e1000_reset(adapter);
|
|
|
|
/* If the controller is 82573 and f/w is AMT, do not set
|
|
* DRV_LOAD until the interface is up. For all other cases,
|
|
* let the f/w know that the h/w is now under the control
|
|
* of the driver. */
|
|
if (adapter->hw.mac_type != e1000_82573 ||
|
|
!e1000_check_mng_mode(&adapter->hw))
|
|
e1000_get_hw_control(adapter);
|
|
|
|
strcpy(netdev->name, "eth%d");
|
|
if ((err = register_netdev(netdev)))
|
|
goto err_register;
|
|
|
|
DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
|
|
|
|
cards_found++;
|
|
return 0;
|
|
|
|
err_register:
|
|
err_sw_init:
|
|
err_eeprom:
|
|
iounmap(adapter->hw.hw_addr);
|
|
err_ioremap:
|
|
free_netdev(netdev);
|
|
err_alloc_etherdev:
|
|
pci_release_regions(pdev);
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* e1000_remove - Device Removal Routine
|
|
* @pdev: PCI device information struct
|
|
*
|
|
* e1000_remove is called by the PCI subsystem to alert the driver
|
|
* that it should release a PCI device. The could be caused by a
|
|
* Hot-Plug event, or because the driver is going to be removed from
|
|
* memory.
|
|
**/
|
|
|
|
static void __devexit
|
|
e1000_remove(struct pci_dev *pdev)
|
|
{
|
|
struct net_device *netdev = pci_get_drvdata(pdev);
|
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
|
uint32_t manc;
|
|
#ifdef CONFIG_E1000_NAPI
|
|
int i;
|
|
#endif
|
|
|
|
flush_scheduled_work();
|
|
|
|
if (adapter->hw.mac_type >= e1000_82540 &&
|
|
adapter->hw.media_type == e1000_media_type_copper) {
|
|
manc = E1000_READ_REG(&adapter->hw, MANC);
|
|
if (manc & E1000_MANC_SMBUS_EN) {
|
|
manc |= E1000_MANC_ARP_EN;
|
|
E1000_WRITE_REG(&adapter->hw, MANC, manc);
|
|
}
|
|
}
|
|
|
|
/* Release control of h/w to f/w. If f/w is AMT enabled, this
|
|
* would have already happened in close and is redundant. */
|
|
e1000_release_hw_control(adapter);
|
|
|
|
unregister_netdev(netdev);
|
|
#ifdef CONFIG_E1000_NAPI
|
|
for (i = 0; i < adapter->num_rx_queues; i++)
|
|
__dev_put(&adapter->polling_netdev[i]);
|
|
#endif
|
|
|
|
if (!e1000_check_phy_reset_block(&adapter->hw))
|
|
e1000_phy_hw_reset(&adapter->hw);
|
|
|
|
kfree(adapter->tx_ring);
|
|
kfree(adapter->rx_ring);
|
|
#ifdef CONFIG_E1000_NAPI
|
|
kfree(adapter->polling_netdev);
|
|
#endif
|
|
|
|
iounmap(adapter->hw.hw_addr);
|
|
pci_release_regions(pdev);
|
|
|
|
#ifdef CONFIG_E1000_MQ
|
|
free_percpu(adapter->cpu_netdev);
|
|
free_percpu(adapter->cpu_tx_ring);
|
|
#endif
|
|
free_netdev(netdev);
|
|
|
|
pci_disable_device(pdev);
|
|
}
|
|
|
|
/**
|
|
* e1000_sw_init - Initialize general software structures (struct e1000_adapter)
|
|
* @adapter: board private structure to initialize
|
|
*
|
|
* e1000_sw_init initializes the Adapter private data structure.
|
|
* Fields are initialized based on PCI device information and
|
|
* OS network device settings (MTU size).
|
|
**/
|
|
|
|
static int __devinit
|
|
e1000_sw_init(struct e1000_adapter *adapter)
|
|
{
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
struct net_device *netdev = adapter->netdev;
|
|
struct pci_dev *pdev = adapter->pdev;
|
|
#ifdef CONFIG_E1000_NAPI
|
|
int i;
|
|
#endif
|
|
|
|
/* PCI config space info */
|
|
|
|
hw->vendor_id = pdev->vendor;
|
|
hw->device_id = pdev->device;
|
|
hw->subsystem_vendor_id = pdev->subsystem_vendor;
|
|
hw->subsystem_id = pdev->subsystem_device;
|
|
|
|
pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
|
|
|
|
pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
|
|
|
|
adapter->rx_buffer_len = E1000_RXBUFFER_2048;
|
|
adapter->rx_ps_bsize0 = E1000_RXBUFFER_256;
|
|
hw->max_frame_size = netdev->mtu +
|
|
ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
|
|
hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
|
|
|
|
/* identify the MAC */
|
|
|
|
if (e1000_set_mac_type(hw)) {
|
|
DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
|
|
return -EIO;
|
|
}
|
|
|
|
/* initialize eeprom parameters */
|
|
|
|
if (e1000_init_eeprom_params(hw)) {
|
|
E1000_ERR("EEPROM initialization failed\n");
|
|
return -EIO;
|
|
}
|
|
|
|
switch (hw->mac_type) {
|
|
default:
|
|
break;
|
|
case e1000_82541:
|
|
case e1000_82547:
|
|
case e1000_82541_rev_2:
|
|
case e1000_82547_rev_2:
|
|
hw->phy_init_script = 1;
|
|
break;
|
|
}
|
|
|
|
e1000_set_media_type(hw);
|
|
|
|
hw->wait_autoneg_complete = FALSE;
|
|
hw->tbi_compatibility_en = TRUE;
|
|
hw->adaptive_ifs = TRUE;
|
|
|
|
/* Copper options */
|
|
|
|
if (hw->media_type == e1000_media_type_copper) {
|
|
hw->mdix = AUTO_ALL_MODES;
|
|
hw->disable_polarity_correction = FALSE;
|
|
hw->master_slave = E1000_MASTER_SLAVE;
|
|
}
|
|
|
|
#ifdef CONFIG_E1000_MQ
|
|
/* Number of supported queues */
|
|
switch (hw->mac_type) {
|
|
case e1000_82571:
|
|
case e1000_82572:
|
|
/* These controllers support 2 tx queues, but with a single
|
|
* qdisc implementation, multiple tx queues aren't quite as
|
|
* interesting. If we can find a logical way of mapping
|
|
* flows to a queue, then perhaps we can up the num_tx_queue
|
|
* count back to its default. Until then, we run the risk of
|
|
* terrible performance due to SACK overload. */
|
|
adapter->num_tx_queues = 1;
|
|
adapter->num_rx_queues = 2;
|
|
break;
|
|
default:
|
|
adapter->num_tx_queues = 1;
|
|
adapter->num_rx_queues = 1;
|
|
break;
|
|
}
|
|
adapter->num_rx_queues = min(adapter->num_rx_queues, num_online_cpus());
|
|
adapter->num_tx_queues = min(adapter->num_tx_queues, num_online_cpus());
|
|
DPRINTK(DRV, INFO, "Multiqueue Enabled: Rx Queue count = %u %s\n",
|
|
adapter->num_rx_queues,
|
|
((adapter->num_rx_queues == 1)
|
|
? ((num_online_cpus() > 1)
|
|
? "(due to unsupported feature in current adapter)"
|
|
: "(due to unsupported system configuration)")
|
|
: ""));
|
|
DPRINTK(DRV, INFO, "Multiqueue Enabled: Tx Queue count = %u\n",
|
|
adapter->num_tx_queues);
|
|
#else
|
|
adapter->num_tx_queues = 1;
|
|
adapter->num_rx_queues = 1;
|
|
#endif
|
|
|
|
if (e1000_alloc_queues(adapter)) {
|
|
DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
#ifdef CONFIG_E1000_NAPI
|
|
for (i = 0; i < adapter->num_rx_queues; i++) {
|
|
adapter->polling_netdev[i].priv = adapter;
|
|
adapter->polling_netdev[i].poll = &e1000_clean;
|
|
adapter->polling_netdev[i].weight = 64;
|
|
dev_hold(&adapter->polling_netdev[i]);
|
|
set_bit(__LINK_STATE_START, &adapter->polling_netdev[i].state);
|
|
}
|
|
spin_lock_init(&adapter->tx_queue_lock);
|
|
#endif
|
|
|
|
atomic_set(&adapter->irq_sem, 1);
|
|
spin_lock_init(&adapter->stats_lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* e1000_alloc_queues - Allocate memory for all rings
|
|
* @adapter: board private structure to initialize
|
|
*
|
|
* We allocate one ring per queue at run-time since we don't know the
|
|
* number of queues at compile-time. The polling_netdev array is
|
|
* intended for Multiqueue, but should work fine with a single queue.
|
|
**/
|
|
|
|
static int __devinit
|
|
e1000_alloc_queues(struct e1000_adapter *adapter)
|
|
{
|
|
int size;
|
|
|
|
size = sizeof(struct e1000_tx_ring) * adapter->num_tx_queues;
|
|
adapter->tx_ring = kmalloc(size, GFP_KERNEL);
|
|
if (!adapter->tx_ring)
|
|
return -ENOMEM;
|
|
memset(adapter->tx_ring, 0, size);
|
|
|
|
size = sizeof(struct e1000_rx_ring) * adapter->num_rx_queues;
|
|
adapter->rx_ring = kmalloc(size, GFP_KERNEL);
|
|
if (!adapter->rx_ring) {
|
|
kfree(adapter->tx_ring);
|
|
return -ENOMEM;
|
|
}
|
|
memset(adapter->rx_ring, 0, size);
|
|
|
|
#ifdef CONFIG_E1000_NAPI
|
|
size = sizeof(struct net_device) * adapter->num_rx_queues;
|
|
adapter->polling_netdev = kmalloc(size, GFP_KERNEL);
|
|
if (!adapter->polling_netdev) {
|
|
kfree(adapter->tx_ring);
|
|
kfree(adapter->rx_ring);
|
|
return -ENOMEM;
|
|
}
|
|
memset(adapter->polling_netdev, 0, size);
|
|
#endif
|
|
|
|
#ifdef CONFIG_E1000_MQ
|
|
adapter->rx_sched_call_data.func = e1000_rx_schedule;
|
|
adapter->rx_sched_call_data.info = adapter->netdev;
|
|
|
|
adapter->cpu_netdev = alloc_percpu(struct net_device *);
|
|
adapter->cpu_tx_ring = alloc_percpu(struct e1000_tx_ring *);
|
|
#endif
|
|
|
|
return E1000_SUCCESS;
|
|
}
|
|
|
|
#ifdef CONFIG_E1000_MQ
|
|
static void __devinit
|
|
e1000_setup_queue_mapping(struct e1000_adapter *adapter)
|
|
{
|
|
int i, cpu;
|
|
|
|
adapter->rx_sched_call_data.func = e1000_rx_schedule;
|
|
adapter->rx_sched_call_data.info = adapter->netdev;
|
|
cpus_clear(adapter->rx_sched_call_data.cpumask);
|
|
|
|
adapter->cpu_netdev = alloc_percpu(struct net_device *);
|
|
adapter->cpu_tx_ring = alloc_percpu(struct e1000_tx_ring *);
|
|
|
|
lock_cpu_hotplug();
|
|
i = 0;
|
|
for_each_online_cpu(cpu) {
|
|
*per_cpu_ptr(adapter->cpu_tx_ring, cpu) = &adapter->tx_ring[i % adapter->num_tx_queues];
|
|
/* This is incomplete because we'd like to assign separate
|
|
* physical cpus to these netdev polling structures and
|
|
* avoid saturating a subset of cpus.
|
|
*/
|
|
if (i < adapter->num_rx_queues) {
|
|
*per_cpu_ptr(adapter->cpu_netdev, cpu) = &adapter->polling_netdev[i];
|
|
adapter->rx_ring[i].cpu = cpu;
|
|
cpu_set(cpu, adapter->cpumask);
|
|
} else
|
|
*per_cpu_ptr(adapter->cpu_netdev, cpu) = NULL;
|
|
|
|
i++;
|
|
}
|
|
unlock_cpu_hotplug();
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* e1000_open - Called when a network interface is made active
|
|
* @netdev: network interface device structure
|
|
*
|
|
* Returns 0 on success, negative value on failure
|
|
*
|
|
* The open entry point is called when a network interface is made
|
|
* active by the system (IFF_UP). At this point all resources needed
|
|
* for transmit and receive operations are allocated, the interrupt
|
|
* handler is registered with the OS, the watchdog timer is started,
|
|
* and the stack is notified that the interface is ready.
|
|
**/
|
|
|
|
static int
|
|
e1000_open(struct net_device *netdev)
|
|
{
|
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
|
int err;
|
|
|
|
/* allocate transmit descriptors */
|
|
|
|
if ((err = e1000_setup_all_tx_resources(adapter)))
|
|
goto err_setup_tx;
|
|
|
|
/* allocate receive descriptors */
|
|
|
|
if ((err = e1000_setup_all_rx_resources(adapter)))
|
|
goto err_setup_rx;
|
|
|
|
if ((err = e1000_up(adapter)))
|
|
goto err_up;
|
|
adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
|
|
if ((adapter->hw.mng_cookie.status &
|
|
E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
|
|
e1000_update_mng_vlan(adapter);
|
|
}
|
|
|
|
/* If AMT is enabled, let the firmware know that the network
|
|
* interface is now open */
|
|
if (adapter->hw.mac_type == e1000_82573 &&
|
|
e1000_check_mng_mode(&adapter->hw))
|
|
e1000_get_hw_control(adapter);
|
|
|
|
return E1000_SUCCESS;
|
|
|
|
err_up:
|
|
e1000_free_all_rx_resources(adapter);
|
|
err_setup_rx:
|
|
e1000_free_all_tx_resources(adapter);
|
|
err_setup_tx:
|
|
e1000_reset(adapter);
|
|
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* e1000_close - Disables a network interface
|
|
* @netdev: network interface device structure
|
|
*
|
|
* Returns 0, this is not allowed to fail
|
|
*
|
|
* The close entry point is called when an interface is de-activated
|
|
* by the OS. The hardware is still under the drivers control, but
|
|
* needs to be disabled. A global MAC reset is issued to stop the
|
|
* hardware, and all transmit and receive resources are freed.
|
|
**/
|
|
|
|
static int
|
|
e1000_close(struct net_device *netdev)
|
|
{
|
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
|
|
|
e1000_down(adapter);
|
|
|
|
e1000_free_all_tx_resources(adapter);
|
|
e1000_free_all_rx_resources(adapter);
|
|
|
|
if ((adapter->hw.mng_cookie.status &
|
|
E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
|
|
e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
|
|
}
|
|
|
|
/* If AMT is enabled, let the firmware know that the network
|
|
* interface is now closed */
|
|
if (adapter->hw.mac_type == e1000_82573 &&
|
|
e1000_check_mng_mode(&adapter->hw))
|
|
e1000_release_hw_control(adapter);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
|
|
* @adapter: address of board private structure
|
|
* @start: address of beginning of memory
|
|
* @len: length of memory
|
|
**/
|
|
static inline boolean_t
|
|
e1000_check_64k_bound(struct e1000_adapter *adapter,
|
|
void *start, unsigned long len)
|
|
{
|
|
unsigned long begin = (unsigned long) start;
|
|
unsigned long end = begin + len;
|
|
|
|
/* First rev 82545 and 82546 need to not allow any memory
|
|
* write location to cross 64k boundary due to errata 23 */
|
|
if (adapter->hw.mac_type == e1000_82545 ||
|
|
adapter->hw.mac_type == e1000_82546) {
|
|
return ((begin ^ (end - 1)) >> 16) != 0 ? FALSE : TRUE;
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/**
|
|
* e1000_setup_tx_resources - allocate Tx resources (Descriptors)
|
|
* @adapter: board private structure
|
|
* @txdr: tx descriptor ring (for a specific queue) to setup
|
|
*
|
|
* Return 0 on success, negative on failure
|
|
**/
|
|
|
|
static int
|
|
e1000_setup_tx_resources(struct e1000_adapter *adapter,
|
|
struct e1000_tx_ring *txdr)
|
|
{
|
|
struct pci_dev *pdev = adapter->pdev;
|
|
int size;
|
|
|
|
size = sizeof(struct e1000_buffer) * txdr->count;
|
|
|
|
txdr->buffer_info = vmalloc_node(size, pcibus_to_node(pdev->bus));
|
|
if (!txdr->buffer_info) {
|
|
DPRINTK(PROBE, ERR,
|
|
"Unable to allocate memory for the transmit descriptor ring\n");
|
|
return -ENOMEM;
|
|
}
|
|
memset(txdr->buffer_info, 0, size);
|
|
|
|
/* round up to nearest 4K */
|
|
|
|
txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
|
|
E1000_ROUNDUP(txdr->size, 4096);
|
|
|
|
txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
|
|
if (!txdr->desc) {
|
|
setup_tx_desc_die:
|
|
vfree(txdr->buffer_info);
|
|
DPRINTK(PROBE, ERR,
|
|
"Unable to allocate memory for the transmit descriptor ring\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* Fix for errata 23, can't cross 64kB boundary */
|
|
if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
|
|
void *olddesc = txdr->desc;
|
|
dma_addr_t olddma = txdr->dma;
|
|
DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
|
|
"at %p\n", txdr->size, txdr->desc);
|
|
/* Try again, without freeing the previous */
|
|
txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
|
|
/* Failed allocation, critical failure */
|
|
if (!txdr->desc) {
|
|
pci_free_consistent(pdev, txdr->size, olddesc, olddma);
|
|
goto setup_tx_desc_die;
|
|
}
|
|
|
|
if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
|
|
/* give up */
|
|
pci_free_consistent(pdev, txdr->size, txdr->desc,
|
|
txdr->dma);
|
|
pci_free_consistent(pdev, txdr->size, olddesc, olddma);
|
|
DPRINTK(PROBE, ERR,
|
|
"Unable to allocate aligned memory "
|
|
"for the transmit descriptor ring\n");
|
|
vfree(txdr->buffer_info);
|
|
return -ENOMEM;
|
|
} else {
|
|
/* Free old allocation, new allocation was successful */
|
|
pci_free_consistent(pdev, txdr->size, olddesc, olddma);
|
|
}
|
|
}
|
|
memset(txdr->desc, 0, txdr->size);
|
|
|
|
txdr->next_to_use = 0;
|
|
txdr->next_to_clean = 0;
|
|
spin_lock_init(&txdr->tx_lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* e1000_setup_all_tx_resources - wrapper to allocate Tx resources
|
|
* (Descriptors) for all queues
|
|
* @adapter: board private structure
|
|
*
|
|
* If this function returns with an error, then it's possible one or
|
|
* more of the rings is populated (while the rest are not). It is the
|
|
* callers duty to clean those orphaned rings.
|
|
*
|
|
* Return 0 on success, negative on failure
|
|
**/
|
|
|
|
int
|
|
e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
|
|
{
|
|
int i, err = 0;
|
|
|
|
for (i = 0; i < adapter->num_tx_queues; i++) {
|
|
err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
|
|
if (err) {
|
|
DPRINTK(PROBE, ERR,
|
|
"Allocation for Tx Queue %u failed\n", i);
|
|
break;
|
|
}
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* e1000_configure_tx - Configure 8254x Transmit Unit after Reset
|
|
* @adapter: board private structure
|
|
*
|
|
* Configure the Tx unit of the MAC after a reset.
|
|
**/
|
|
|
|
static void
|
|
e1000_configure_tx(struct e1000_adapter *adapter)
|
|
{
|
|
uint64_t tdba;
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
uint32_t tdlen, tctl, tipg, tarc;
|
|
uint32_t ipgr1, ipgr2;
|
|
|
|
/* Setup the HW Tx Head and Tail descriptor pointers */
|
|
|
|
switch (adapter->num_tx_queues) {
|
|
case 2:
|
|
tdba = adapter->tx_ring[1].dma;
|
|
tdlen = adapter->tx_ring[1].count *
|
|
sizeof(struct e1000_tx_desc);
|
|
E1000_WRITE_REG(hw, TDBAL1, (tdba & 0x00000000ffffffffULL));
|
|
E1000_WRITE_REG(hw, TDBAH1, (tdba >> 32));
|
|
E1000_WRITE_REG(hw, TDLEN1, tdlen);
|
|
E1000_WRITE_REG(hw, TDH1, 0);
|
|
E1000_WRITE_REG(hw, TDT1, 0);
|
|
adapter->tx_ring[1].tdh = E1000_TDH1;
|
|
adapter->tx_ring[1].tdt = E1000_TDT1;
|
|
/* Fall Through */
|
|
case 1:
|
|
default:
|
|
tdba = adapter->tx_ring[0].dma;
|
|
tdlen = adapter->tx_ring[0].count *
|
|
sizeof(struct e1000_tx_desc);
|
|
E1000_WRITE_REG(hw, TDBAL, (tdba & 0x00000000ffffffffULL));
|
|
E1000_WRITE_REG(hw, TDBAH, (tdba >> 32));
|
|
E1000_WRITE_REG(hw, TDLEN, tdlen);
|
|
E1000_WRITE_REG(hw, TDH, 0);
|
|
E1000_WRITE_REG(hw, TDT, 0);
|
|
adapter->tx_ring[0].tdh = E1000_TDH;
|
|
adapter->tx_ring[0].tdt = E1000_TDT;
|
|
break;
|
|
}
|
|
|
|
/* Set the default values for the Tx Inter Packet Gap timer */
|
|
|
|
if (hw->media_type == e1000_media_type_fiber ||
|
|
hw->media_type == e1000_media_type_internal_serdes)
|
|
tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
|
|
else
|
|
tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
|
|
|
|
switch (hw->mac_type) {
|
|
case e1000_82542_rev2_0:
|
|
case e1000_82542_rev2_1:
|
|
tipg = DEFAULT_82542_TIPG_IPGT;
|
|
ipgr1 = DEFAULT_82542_TIPG_IPGR1;
|
|
ipgr2 = DEFAULT_82542_TIPG_IPGR2;
|
|
break;
|
|
default:
|
|
ipgr1 = DEFAULT_82543_TIPG_IPGR1;
|
|
ipgr2 = DEFAULT_82543_TIPG_IPGR2;
|
|
break;
|
|
}
|
|
tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
|
|
tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
|
|
E1000_WRITE_REG(hw, TIPG, tipg);
|
|
|
|
/* Set the Tx Interrupt Delay register */
|
|
|
|
E1000_WRITE_REG(hw, TIDV, adapter->tx_int_delay);
|
|
if (hw->mac_type >= e1000_82540)
|
|
E1000_WRITE_REG(hw, TADV, adapter->tx_abs_int_delay);
|
|
|
|
/* Program the Transmit Control Register */
|
|
|
|
tctl = E1000_READ_REG(hw, TCTL);
|
|
|
|
tctl &= ~E1000_TCTL_CT;
|
|
tctl |= E1000_TCTL_EN | E1000_TCTL_PSP | E1000_TCTL_RTLC |
|
|
(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
|
|
|
|
E1000_WRITE_REG(hw, TCTL, tctl);
|
|
|
|
if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
|
|
tarc = E1000_READ_REG(hw, TARC0);
|
|
tarc |= ((1 << 25) | (1 << 21));
|
|
E1000_WRITE_REG(hw, TARC0, tarc);
|
|
tarc = E1000_READ_REG(hw, TARC1);
|
|
tarc |= (1 << 25);
|
|
if (tctl & E1000_TCTL_MULR)
|
|
tarc &= ~(1 << 28);
|
|
else
|
|
tarc |= (1 << 28);
|
|
E1000_WRITE_REG(hw, TARC1, tarc);
|
|
}
|
|
|
|
e1000_config_collision_dist(hw);
|
|
|
|
/* Setup Transmit Descriptor Settings for eop descriptor */
|
|
adapter->txd_cmd = E1000_TXD_CMD_IDE | E1000_TXD_CMD_EOP |
|
|
E1000_TXD_CMD_IFCS;
|
|
|
|
if (hw->mac_type < e1000_82543)
|
|
adapter->txd_cmd |= E1000_TXD_CMD_RPS;
|
|
else
|
|
adapter->txd_cmd |= E1000_TXD_CMD_RS;
|
|
|
|
/* Cache if we're 82544 running in PCI-X because we'll
|
|
* need this to apply a workaround later in the send path. */
|
|
if (hw->mac_type == e1000_82544 &&
|
|
hw->bus_type == e1000_bus_type_pcix)
|
|
adapter->pcix_82544 = 1;
|
|
}
|
|
|
|
/**
|
|
* e1000_setup_rx_resources - allocate Rx resources (Descriptors)
|
|
* @adapter: board private structure
|
|
* @rxdr: rx descriptor ring (for a specific queue) to setup
|
|
*
|
|
* Returns 0 on success, negative on failure
|
|
**/
|
|
|
|
static int
|
|
e1000_setup_rx_resources(struct e1000_adapter *adapter,
|
|
struct e1000_rx_ring *rxdr)
|
|
{
|
|
struct pci_dev *pdev = adapter->pdev;
|
|
int size, desc_len;
|
|
|
|
size = sizeof(struct e1000_buffer) * rxdr->count;
|
|
rxdr->buffer_info = vmalloc_node(size, pcibus_to_node(pdev->bus));
|
|
if (!rxdr->buffer_info) {
|
|
DPRINTK(PROBE, ERR,
|
|
"Unable to allocate memory for the receive descriptor ring\n");
|
|
return -ENOMEM;
|
|
}
|
|
memset(rxdr->buffer_info, 0, size);
|
|
|
|
size = sizeof(struct e1000_ps_page) * rxdr->count;
|
|
rxdr->ps_page = kmalloc(size, GFP_KERNEL);
|
|
if (!rxdr->ps_page) {
|
|
vfree(rxdr->buffer_info);
|
|
DPRINTK(PROBE, ERR,
|
|
"Unable to allocate memory for the receive descriptor ring\n");
|
|
return -ENOMEM;
|
|
}
|
|
memset(rxdr->ps_page, 0, size);
|
|
|
|
size = sizeof(struct e1000_ps_page_dma) * rxdr->count;
|
|
rxdr->ps_page_dma = kmalloc(size, GFP_KERNEL);
|
|
if (!rxdr->ps_page_dma) {
|
|
vfree(rxdr->buffer_info);
|
|
kfree(rxdr->ps_page);
|
|
DPRINTK(PROBE, ERR,
|
|
"Unable to allocate memory for the receive descriptor ring\n");
|
|
return -ENOMEM;
|
|
}
|
|
memset(rxdr->ps_page_dma, 0, size);
|
|
|
|
if (adapter->hw.mac_type <= e1000_82547_rev_2)
|
|
desc_len = sizeof(struct e1000_rx_desc);
|
|
else
|
|
desc_len = sizeof(union e1000_rx_desc_packet_split);
|
|
|
|
/* Round up to nearest 4K */
|
|
|
|
rxdr->size = rxdr->count * desc_len;
|
|
E1000_ROUNDUP(rxdr->size, 4096);
|
|
|
|
rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
|
|
|
|
if (!rxdr->desc) {
|
|
DPRINTK(PROBE, ERR,
|
|
"Unable to allocate memory for the receive descriptor ring\n");
|
|
setup_rx_desc_die:
|
|
vfree(rxdr->buffer_info);
|
|
kfree(rxdr->ps_page);
|
|
kfree(rxdr->ps_page_dma);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* Fix for errata 23, can't cross 64kB boundary */
|
|
if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
|
|
void *olddesc = rxdr->desc;
|
|
dma_addr_t olddma = rxdr->dma;
|
|
DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
|
|
"at %p\n", rxdr->size, rxdr->desc);
|
|
/* Try again, without freeing the previous */
|
|
rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
|
|
/* Failed allocation, critical failure */
|
|
if (!rxdr->desc) {
|
|
pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
|
|
DPRINTK(PROBE, ERR,
|
|
"Unable to allocate memory "
|
|
"for the receive descriptor ring\n");
|
|
goto setup_rx_desc_die;
|
|
}
|
|
|
|
if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
|
|
/* give up */
|
|
pci_free_consistent(pdev, rxdr->size, rxdr->desc,
|
|
rxdr->dma);
|
|
pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
|
|
DPRINTK(PROBE, ERR,
|
|
"Unable to allocate aligned memory "
|
|
"for the receive descriptor ring\n");
|
|
goto setup_rx_desc_die;
|
|
} else {
|
|
/* Free old allocation, new allocation was successful */
|
|
pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
|
|
}
|
|
}
|
|
memset(rxdr->desc, 0, rxdr->size);
|
|
|
|
rxdr->next_to_clean = 0;
|
|
rxdr->next_to_use = 0;
|
|
rxdr->rx_skb_top = NULL;
|
|
rxdr->rx_skb_prev = NULL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* e1000_setup_all_rx_resources - wrapper to allocate Rx resources
|
|
* (Descriptors) for all queues
|
|
* @adapter: board private structure
|
|
*
|
|
* If this function returns with an error, then it's possible one or
|
|
* more of the rings is populated (while the rest are not). It is the
|
|
* callers duty to clean those orphaned rings.
|
|
*
|
|
* Return 0 on success, negative on failure
|
|
**/
|
|
|
|
int
|
|
e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
|
|
{
|
|
int i, err = 0;
|
|
|
|
for (i = 0; i < adapter->num_rx_queues; i++) {
|
|
err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
|
|
if (err) {
|
|
DPRINTK(PROBE, ERR,
|
|
"Allocation for Rx Queue %u failed\n", i);
|
|
break;
|
|
}
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* e1000_setup_rctl - configure the receive control registers
|
|
* @adapter: Board private structure
|
|
**/
|
|
#define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
|
|
(((S) & (PAGE_SIZE - 1)) ? 1 : 0))
|
|
static void
|
|
e1000_setup_rctl(struct e1000_adapter *adapter)
|
|
{
|
|
uint32_t rctl, rfctl;
|
|
uint32_t psrctl = 0;
|
|
#ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
|
|
uint32_t pages = 0;
|
|
#endif
|
|
|
|
rctl = E1000_READ_REG(&adapter->hw, RCTL);
|
|
|
|
rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
|
|
|
|
rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
|
|
E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
|
|
(adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
|
|
|
|
if (adapter->hw.mac_type > e1000_82543)
|
|
rctl |= E1000_RCTL_SECRC;
|
|
|
|
if (adapter->hw.tbi_compatibility_on == 1)
|
|
rctl |= E1000_RCTL_SBP;
|
|
else
|
|
rctl &= ~E1000_RCTL_SBP;
|
|
|
|
if (adapter->netdev->mtu <= ETH_DATA_LEN)
|
|
rctl &= ~E1000_RCTL_LPE;
|
|
else
|
|
rctl |= E1000_RCTL_LPE;
|
|
|
|
/* Setup buffer sizes */
|
|
if (adapter->hw.mac_type >= e1000_82571) {
|
|
/* We can now specify buffers in 1K increments.
|
|
* BSIZE and BSEX are ignored in this case. */
|
|
rctl |= adapter->rx_buffer_len << 0x11;
|
|
} else {
|
|
rctl &= ~E1000_RCTL_SZ_4096;
|
|
rctl &= ~E1000_RCTL_BSEX;
|
|
rctl |= E1000_RCTL_SZ_2048;
|
|
}
|
|
|
|
#ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
|
|
/* 82571 and greater support packet-split where the protocol
|
|
* header is placed in skb->data and the packet data is
|
|
* placed in pages hanging off of skb_shinfo(skb)->nr_frags.
|
|
* In the case of a non-split, skb->data is linearly filled,
|
|
* followed by the page buffers. Therefore, skb->data is
|
|
* sized to hold the largest protocol header.
|
|
*/
|
|
pages = PAGE_USE_COUNT(adapter->netdev->mtu);
|
|
if ((adapter->hw.mac_type > e1000_82547_rev_2) && (pages <= 3) &&
|
|
PAGE_SIZE <= 16384)
|
|
adapter->rx_ps_pages = pages;
|
|
else
|
|
adapter->rx_ps_pages = 0;
|
|
#endif
|
|
if (adapter->rx_ps_pages) {
|
|
/* Configure extra packet-split registers */
|
|
rfctl = E1000_READ_REG(&adapter->hw, RFCTL);
|
|
rfctl |= E1000_RFCTL_EXTEN;
|
|
/* disable IPv6 packet split support */
|
|
rfctl |= E1000_RFCTL_IPV6_DIS;
|
|
E1000_WRITE_REG(&adapter->hw, RFCTL, rfctl);
|
|
|
|
rctl |= E1000_RCTL_DTYP_PS | E1000_RCTL_SECRC;
|
|
|
|
psrctl |= adapter->rx_ps_bsize0 >>
|
|
E1000_PSRCTL_BSIZE0_SHIFT;
|
|
|
|
switch (adapter->rx_ps_pages) {
|
|
case 3:
|
|
psrctl |= PAGE_SIZE <<
|
|
E1000_PSRCTL_BSIZE3_SHIFT;
|
|
case 2:
|
|
psrctl |= PAGE_SIZE <<
|
|
E1000_PSRCTL_BSIZE2_SHIFT;
|
|
case 1:
|
|
psrctl |= PAGE_SIZE >>
|
|
E1000_PSRCTL_BSIZE1_SHIFT;
|
|
break;
|
|
}
|
|
|
|
E1000_WRITE_REG(&adapter->hw, PSRCTL, psrctl);
|
|
}
|
|
|
|
E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
|
|
}
|
|
|
|
/**
|
|
* e1000_configure_rx - Configure 8254x Receive Unit after Reset
|
|
* @adapter: board private structure
|
|
*
|
|
* Configure the Rx unit of the MAC after a reset.
|
|
**/
|
|
|
|
static void
|
|
e1000_configure_rx(struct e1000_adapter *adapter)
|
|
{
|
|
uint64_t rdba;
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
uint32_t rdlen, rctl, rxcsum, ctrl_ext;
|
|
#ifdef CONFIG_E1000_MQ
|
|
uint32_t reta, mrqc;
|
|
int i;
|
|
#endif
|
|
|
|
if (adapter->rx_ps_pages) {
|
|
rdlen = adapter->rx_ring[0].count *
|
|
sizeof(union e1000_rx_desc_packet_split);
|
|
adapter->clean_rx = e1000_clean_rx_irq_ps;
|
|
adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
|
|
} else {
|
|
rdlen = adapter->rx_ring[0].count *
|
|
sizeof(struct e1000_rx_desc);
|
|
adapter->clean_rx = e1000_clean_rx_irq;
|
|
adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
|
|
}
|
|
|
|
/* disable receives while setting up the descriptors */
|
|
rctl = E1000_READ_REG(hw, RCTL);
|
|
E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
|
|
|
|
/* set the Receive Delay Timer Register */
|
|
E1000_WRITE_REG(hw, RDTR, adapter->rx_int_delay);
|
|
|
|
if (hw->mac_type >= e1000_82540) {
|
|
E1000_WRITE_REG(hw, RADV, adapter->rx_abs_int_delay);
|
|
if (adapter->itr > 1)
|
|
E1000_WRITE_REG(hw, ITR,
|
|
1000000000 / (adapter->itr * 256));
|
|
}
|
|
|
|
if (hw->mac_type >= e1000_82571) {
|
|
ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
|
|
/* Reset delay timers after every interrupt */
|
|
ctrl_ext |= E1000_CTRL_EXT_CANC;
|
|
#ifdef CONFIG_E1000_NAPI
|
|
/* Auto-Mask interrupts upon ICR read. */
|
|
ctrl_ext |= E1000_CTRL_EXT_IAME;
|
|
#endif
|
|
E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
|
|
E1000_WRITE_REG(hw, IAM, ~0);
|
|
E1000_WRITE_FLUSH(hw);
|
|
}
|
|
|
|
/* Setup the HW Rx Head and Tail Descriptor Pointers and
|
|
* the Base and Length of the Rx Descriptor Ring */
|
|
switch (adapter->num_rx_queues) {
|
|
#ifdef CONFIG_E1000_MQ
|
|
case 2:
|
|
rdba = adapter->rx_ring[1].dma;
|
|
E1000_WRITE_REG(hw, RDBAL1, (rdba & 0x00000000ffffffffULL));
|
|
E1000_WRITE_REG(hw, RDBAH1, (rdba >> 32));
|
|
E1000_WRITE_REG(hw, RDLEN1, rdlen);
|
|
E1000_WRITE_REG(hw, RDH1, 0);
|
|
E1000_WRITE_REG(hw, RDT1, 0);
|
|
adapter->rx_ring[1].rdh = E1000_RDH1;
|
|
adapter->rx_ring[1].rdt = E1000_RDT1;
|
|
/* Fall Through */
|
|
#endif
|
|
case 1:
|
|
default:
|
|
rdba = adapter->rx_ring[0].dma;
|
|
E1000_WRITE_REG(hw, RDBAL, (rdba & 0x00000000ffffffffULL));
|
|
E1000_WRITE_REG(hw, RDBAH, (rdba >> 32));
|
|
E1000_WRITE_REG(hw, RDLEN, rdlen);
|
|
E1000_WRITE_REG(hw, RDH, 0);
|
|
E1000_WRITE_REG(hw, RDT, 0);
|
|
adapter->rx_ring[0].rdh = E1000_RDH;
|
|
adapter->rx_ring[0].rdt = E1000_RDT;
|
|
break;
|
|
}
|
|
|
|
#ifdef CONFIG_E1000_MQ
|
|
if (adapter->num_rx_queues > 1) {
|
|
uint32_t random[10];
|
|
|
|
get_random_bytes(&random[0], 40);
|
|
|
|
if (hw->mac_type <= e1000_82572) {
|
|
E1000_WRITE_REG(hw, RSSIR, 0);
|
|
E1000_WRITE_REG(hw, RSSIM, 0);
|
|
}
|
|
|
|
switch (adapter->num_rx_queues) {
|
|
case 2:
|
|
default:
|
|
reta = 0x00800080;
|
|
mrqc = E1000_MRQC_ENABLE_RSS_2Q;
|
|
break;
|
|
}
|
|
|
|
/* Fill out redirection table */
|
|
for (i = 0; i < 32; i++)
|
|
E1000_WRITE_REG_ARRAY(hw, RETA, i, reta);
|
|
/* Fill out hash function seeds */
|
|
for (i = 0; i < 10; i++)
|
|
E1000_WRITE_REG_ARRAY(hw, RSSRK, i, random[i]);
|
|
|
|
mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
|
|
E1000_MRQC_RSS_FIELD_IPV4_TCP);
|
|
E1000_WRITE_REG(hw, MRQC, mrqc);
|
|
}
|
|
|
|
/* Multiqueue and packet checksumming are mutually exclusive. */
|
|
if (hw->mac_type >= e1000_82571) {
|
|
rxcsum = E1000_READ_REG(hw, RXCSUM);
|
|
rxcsum |= E1000_RXCSUM_PCSD;
|
|
E1000_WRITE_REG(hw, RXCSUM, rxcsum);
|
|
}
|
|
|
|
#else
|
|
|
|
/* Enable 82543 Receive Checksum Offload for TCP and UDP */
|
|
if (hw->mac_type >= e1000_82543) {
|
|
rxcsum = E1000_READ_REG(hw, RXCSUM);
|
|
if (adapter->rx_csum == TRUE) {
|
|
rxcsum |= E1000_RXCSUM_TUOFL;
|
|
|
|
/* Enable 82571 IPv4 payload checksum for UDP fragments
|
|
* Must be used in conjunction with packet-split. */
|
|
if ((hw->mac_type >= e1000_82571) &&
|
|
(adapter->rx_ps_pages)) {
|
|
rxcsum |= E1000_RXCSUM_IPPCSE;
|
|
}
|
|
} else {
|
|
rxcsum &= ~E1000_RXCSUM_TUOFL;
|
|
/* don't need to clear IPPCSE as it defaults to 0 */
|
|
}
|
|
E1000_WRITE_REG(hw, RXCSUM, rxcsum);
|
|
}
|
|
#endif /* CONFIG_E1000_MQ */
|
|
|
|
if (hw->mac_type == e1000_82573)
|
|
E1000_WRITE_REG(hw, ERT, 0x0100);
|
|
|
|
/* Enable Receives */
|
|
E1000_WRITE_REG(hw, RCTL, rctl);
|
|
}
|
|
|
|
/**
|
|
* e1000_free_tx_resources - Free Tx Resources per Queue
|
|
* @adapter: board private structure
|
|
* @tx_ring: Tx descriptor ring for a specific queue
|
|
*
|
|
* Free all transmit software resources
|
|
**/
|
|
|
|
static void
|
|
e1000_free_tx_resources(struct e1000_adapter *adapter,
|
|
struct e1000_tx_ring *tx_ring)
|
|
{
|
|
struct pci_dev *pdev = adapter->pdev;
|
|
|
|
e1000_clean_tx_ring(adapter, tx_ring);
|
|
|
|
vfree(tx_ring->buffer_info);
|
|
tx_ring->buffer_info = NULL;
|
|
|
|
pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
|
|
|
|
tx_ring->desc = NULL;
|
|
}
|
|
|
|
/**
|
|
* e1000_free_all_tx_resources - Free Tx Resources for All Queues
|
|
* @adapter: board private structure
|
|
*
|
|
* Free all transmit software resources
|
|
**/
|
|
|
|
void
|
|
e1000_free_all_tx_resources(struct e1000_adapter *adapter)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < adapter->num_tx_queues; i++)
|
|
e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
|
|
}
|
|
|
|
static inline void
|
|
e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
|
|
struct e1000_buffer *buffer_info)
|
|
{
|
|
if (buffer_info->dma) {
|
|
pci_unmap_page(adapter->pdev,
|
|
buffer_info->dma,
|
|
buffer_info->length,
|
|
PCI_DMA_TODEVICE);
|
|
}
|
|
if (buffer_info->skb)
|
|
dev_kfree_skb_any(buffer_info->skb);
|
|
memset(buffer_info, 0, sizeof(struct e1000_buffer));
|
|
}
|
|
|
|
/**
|
|
* e1000_clean_tx_ring - Free Tx Buffers
|
|
* @adapter: board private structure
|
|
* @tx_ring: ring to be cleaned
|
|
**/
|
|
|
|
static void
|
|
e1000_clean_tx_ring(struct e1000_adapter *adapter,
|
|
struct e1000_tx_ring *tx_ring)
|
|
{
|
|
struct e1000_buffer *buffer_info;
|
|
unsigned long size;
|
|
unsigned int i;
|
|
|
|
/* Free all the Tx ring sk_buffs */
|
|
|
|
for (i = 0; i < tx_ring->count; i++) {
|
|
buffer_info = &tx_ring->buffer_info[i];
|
|
e1000_unmap_and_free_tx_resource(adapter, buffer_info);
|
|
}
|
|
|
|
size = sizeof(struct e1000_buffer) * tx_ring->count;
|
|
memset(tx_ring->buffer_info, 0, size);
|
|
|
|
/* Zero out the descriptor ring */
|
|
|
|
memset(tx_ring->desc, 0, tx_ring->size);
|
|
|
|
tx_ring->next_to_use = 0;
|
|
tx_ring->next_to_clean = 0;
|
|
tx_ring->last_tx_tso = 0;
|
|
|
|
writel(0, adapter->hw.hw_addr + tx_ring->tdh);
|
|
writel(0, adapter->hw.hw_addr + tx_ring->tdt);
|
|
}
|
|
|
|
/**
|
|
* e1000_clean_all_tx_rings - Free Tx Buffers for all queues
|
|
* @adapter: board private structure
|
|
**/
|
|
|
|
static void
|
|
e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < adapter->num_tx_queues; i++)
|
|
e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
|
|
}
|
|
|
|
/**
|
|
* e1000_free_rx_resources - Free Rx Resources
|
|
* @adapter: board private structure
|
|
* @rx_ring: ring to clean the resources from
|
|
*
|
|
* Free all receive software resources
|
|
**/
|
|
|
|
static void
|
|
e1000_free_rx_resources(struct e1000_adapter *adapter,
|
|
struct e1000_rx_ring *rx_ring)
|
|
{
|
|
struct pci_dev *pdev = adapter->pdev;
|
|
|
|
e1000_clean_rx_ring(adapter, rx_ring);
|
|
|
|
vfree(rx_ring->buffer_info);
|
|
rx_ring->buffer_info = NULL;
|
|
kfree(rx_ring->ps_page);
|
|
rx_ring->ps_page = NULL;
|
|
kfree(rx_ring->ps_page_dma);
|
|
rx_ring->ps_page_dma = NULL;
|
|
|
|
pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
|
|
|
|
rx_ring->desc = NULL;
|
|
}
|
|
|
|
/**
|
|
* e1000_free_all_rx_resources - Free Rx Resources for All Queues
|
|
* @adapter: board private structure
|
|
*
|
|
* Free all receive software resources
|
|
**/
|
|
|
|
void
|
|
e1000_free_all_rx_resources(struct e1000_adapter *adapter)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < adapter->num_rx_queues; i++)
|
|
e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
|
|
}
|
|
|
|
/**
|
|
* e1000_clean_rx_ring - Free Rx Buffers per Queue
|
|
* @adapter: board private structure
|
|
* @rx_ring: ring to free buffers from
|
|
**/
|
|
|
|
static void
|
|
e1000_clean_rx_ring(struct e1000_adapter *adapter,
|
|
struct e1000_rx_ring *rx_ring)
|
|
{
|
|
struct e1000_buffer *buffer_info;
|
|
struct e1000_ps_page *ps_page;
|
|
struct e1000_ps_page_dma *ps_page_dma;
|
|
struct pci_dev *pdev = adapter->pdev;
|
|
unsigned long size;
|
|
unsigned int i, j;
|
|
|
|
/* Free all the Rx ring sk_buffs */
|
|
for (i = 0; i < rx_ring->count; i++) {
|
|
buffer_info = &rx_ring->buffer_info[i];
|
|
if (buffer_info->skb) {
|
|
pci_unmap_single(pdev,
|
|
buffer_info->dma,
|
|
buffer_info->length,
|
|
PCI_DMA_FROMDEVICE);
|
|
|
|
dev_kfree_skb(buffer_info->skb);
|
|
buffer_info->skb = NULL;
|
|
}
|
|
ps_page = &rx_ring->ps_page[i];
|
|
ps_page_dma = &rx_ring->ps_page_dma[i];
|
|
for (j = 0; j < adapter->rx_ps_pages; j++) {
|
|
if (!ps_page->ps_page[j]) break;
|
|
pci_unmap_page(pdev,
|
|
ps_page_dma->ps_page_dma[j],
|
|
PAGE_SIZE, PCI_DMA_FROMDEVICE);
|
|
ps_page_dma->ps_page_dma[j] = 0;
|
|
put_page(ps_page->ps_page[j]);
|
|
ps_page->ps_page[j] = NULL;
|
|
}
|
|
}
|
|
|
|
/* there also may be some cached data in our adapter */
|
|
if (rx_ring->rx_skb_top) {
|
|
dev_kfree_skb(rx_ring->rx_skb_top);
|
|
|
|
/* rx_skb_prev will be wiped out by rx_skb_top */
|
|
rx_ring->rx_skb_top = NULL;
|
|
rx_ring->rx_skb_prev = NULL;
|
|
}
|
|
|
|
|
|
size = sizeof(struct e1000_buffer) * rx_ring->count;
|
|
memset(rx_ring->buffer_info, 0, size);
|
|
size = sizeof(struct e1000_ps_page) * rx_ring->count;
|
|
memset(rx_ring->ps_page, 0, size);
|
|
size = sizeof(struct e1000_ps_page_dma) * rx_ring->count;
|
|
memset(rx_ring->ps_page_dma, 0, size);
|
|
|
|
/* Zero out the descriptor ring */
|
|
|
|
memset(rx_ring->desc, 0, rx_ring->size);
|
|
|
|
rx_ring->next_to_clean = 0;
|
|
rx_ring->next_to_use = 0;
|
|
|
|
writel(0, adapter->hw.hw_addr + rx_ring->rdh);
|
|
writel(0, adapter->hw.hw_addr + rx_ring->rdt);
|
|
}
|
|
|
|
/**
|
|
* e1000_clean_all_rx_rings - Free Rx Buffers for all queues
|
|
* @adapter: board private structure
|
|
**/
|
|
|
|
static void
|
|
e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < adapter->num_rx_queues; i++)
|
|
e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
|
|
}
|
|
|
|
/* The 82542 2.0 (revision 2) needs to have the receive unit in reset
|
|
* and memory write and invalidate disabled for certain operations
|
|
*/
|
|
static void
|
|
e1000_enter_82542_rst(struct e1000_adapter *adapter)
|
|
{
|
|
struct net_device *netdev = adapter->netdev;
|
|
uint32_t rctl;
|
|
|
|
e1000_pci_clear_mwi(&adapter->hw);
|
|
|
|
rctl = E1000_READ_REG(&adapter->hw, RCTL);
|
|
rctl |= E1000_RCTL_RST;
|
|
E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
|
|
E1000_WRITE_FLUSH(&adapter->hw);
|
|
mdelay(5);
|
|
|
|
if (netif_running(netdev))
|
|
e1000_clean_all_rx_rings(adapter);
|
|
}
|
|
|
|
static void
|
|
e1000_leave_82542_rst(struct e1000_adapter *adapter)
|
|
{
|
|
struct net_device *netdev = adapter->netdev;
|
|
uint32_t rctl;
|
|
|
|
rctl = E1000_READ_REG(&adapter->hw, RCTL);
|
|
rctl &= ~E1000_RCTL_RST;
|
|
E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
|
|
E1000_WRITE_FLUSH(&adapter->hw);
|
|
mdelay(5);
|
|
|
|
if (adapter->hw.pci_cmd_word & PCI_COMMAND_INVALIDATE)
|
|
e1000_pci_set_mwi(&adapter->hw);
|
|
|
|
if (netif_running(netdev)) {
|
|
/* No need to loop, because 82542 supports only 1 queue */
|
|
struct e1000_rx_ring *ring = &adapter->rx_ring[0];
|
|
e1000_configure_rx(adapter);
|
|
adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
|
|
}
|
|
}
|
|
|
|
/**
|
|
* e1000_set_mac - Change the Ethernet Address of the NIC
|
|
* @netdev: network interface device structure
|
|
* @p: pointer to an address structure
|
|
*
|
|
* Returns 0 on success, negative on failure
|
|
**/
|
|
|
|
static int
|
|
e1000_set_mac(struct net_device *netdev, void *p)
|
|
{
|
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
|
struct sockaddr *addr = p;
|
|
|
|
if (!is_valid_ether_addr(addr->sa_data))
|
|
return -EADDRNOTAVAIL;
|
|
|
|
/* 82542 2.0 needs to be in reset to write receive address registers */
|
|
|
|
if (adapter->hw.mac_type == e1000_82542_rev2_0)
|
|
e1000_enter_82542_rst(adapter);
|
|
|
|
memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
|
|
memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
|
|
|
|
e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
|
|
|
|
/* With 82571 controllers, LAA may be overwritten (with the default)
|
|
* due to controller reset from the other port. */
|
|
if (adapter->hw.mac_type == e1000_82571) {
|
|
/* activate the work around */
|
|
adapter->hw.laa_is_present = 1;
|
|
|
|
/* Hold a copy of the LAA in RAR[14] This is done so that
|
|
* between the time RAR[0] gets clobbered and the time it
|
|
* gets fixed (in e1000_watchdog), the actual LAA is in one
|
|
* of the RARs and no incoming packets directed to this port
|
|
* are dropped. Eventaully the LAA will be in RAR[0] and
|
|
* RAR[14] */
|
|
e1000_rar_set(&adapter->hw, adapter->hw.mac_addr,
|
|
E1000_RAR_ENTRIES - 1);
|
|
}
|
|
|
|
if (adapter->hw.mac_type == e1000_82542_rev2_0)
|
|
e1000_leave_82542_rst(adapter);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* e1000_set_multi - Multicast and Promiscuous mode set
|
|
* @netdev: network interface device structure
|
|
*
|
|
* The set_multi entry point is called whenever the multicast address
|
|
* list or the network interface flags are updated. This routine is
|
|
* responsible for configuring the hardware for proper multicast,
|
|
* promiscuous mode, and all-multi behavior.
|
|
**/
|
|
|
|
static void
|
|
e1000_set_multi(struct net_device *netdev)
|
|
{
|
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
struct dev_mc_list *mc_ptr;
|
|
uint32_t rctl;
|
|
uint32_t hash_value;
|
|
int i, rar_entries = E1000_RAR_ENTRIES;
|
|
|
|
/* reserve RAR[14] for LAA over-write work-around */
|
|
if (adapter->hw.mac_type == e1000_82571)
|
|
rar_entries--;
|
|
|
|
/* Check for Promiscuous and All Multicast modes */
|
|
|
|
rctl = E1000_READ_REG(hw, RCTL);
|
|
|
|
if (netdev->flags & IFF_PROMISC) {
|
|
rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
|
|
} else if (netdev->flags & IFF_ALLMULTI) {
|
|
rctl |= E1000_RCTL_MPE;
|
|
rctl &= ~E1000_RCTL_UPE;
|
|
} else {
|
|
rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
|
|
}
|
|
|
|
E1000_WRITE_REG(hw, RCTL, rctl);
|
|
|
|
/* 82542 2.0 needs to be in reset to write receive address registers */
|
|
|
|
if (hw->mac_type == e1000_82542_rev2_0)
|
|
e1000_enter_82542_rst(adapter);
|
|
|
|
/* load the first 14 multicast address into the exact filters 1-14
|
|
* RAR 0 is used for the station MAC adddress
|
|
* if there are not 14 addresses, go ahead and clear the filters
|
|
* -- with 82571 controllers only 0-13 entries are filled here
|
|
*/
|
|
mc_ptr = netdev->mc_list;
|
|
|
|
for (i = 1; i < rar_entries; i++) {
|
|
if (mc_ptr) {
|
|
e1000_rar_set(hw, mc_ptr->dmi_addr, i);
|
|
mc_ptr = mc_ptr->next;
|
|
} else {
|
|
E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
|
|
E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
|
|
}
|
|
}
|
|
|
|
/* clear the old settings from the multicast hash table */
|
|
|
|
for (i = 0; i < E1000_NUM_MTA_REGISTERS; i++)
|
|
E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
|
|
|
|
/* load any remaining addresses into the hash table */
|
|
|
|
for (; mc_ptr; mc_ptr = mc_ptr->next) {
|
|
hash_value = e1000_hash_mc_addr(hw, mc_ptr->dmi_addr);
|
|
e1000_mta_set(hw, hash_value);
|
|
}
|
|
|
|
if (hw->mac_type == e1000_82542_rev2_0)
|
|
e1000_leave_82542_rst(adapter);
|
|
}
|
|
|
|
/* Need to wait a few seconds after link up to get diagnostic information from
|
|
* the phy */
|
|
|
|
static void
|
|
e1000_update_phy_info(unsigned long data)
|
|
{
|
|
struct e1000_adapter *adapter = (struct e1000_adapter *) data;
|
|
e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
|
|
}
|
|
|
|
/**
|
|
* e1000_82547_tx_fifo_stall - Timer Call-back
|
|
* @data: pointer to adapter cast into an unsigned long
|
|
**/
|
|
|
|
static void
|
|
e1000_82547_tx_fifo_stall(unsigned long data)
|
|
{
|
|
struct e1000_adapter *adapter = (struct e1000_adapter *) data;
|
|
struct net_device *netdev = adapter->netdev;
|
|
uint32_t tctl;
|
|
|
|
if (atomic_read(&adapter->tx_fifo_stall)) {
|
|
if ((E1000_READ_REG(&adapter->hw, TDT) ==
|
|
E1000_READ_REG(&adapter->hw, TDH)) &&
|
|
(E1000_READ_REG(&adapter->hw, TDFT) ==
|
|
E1000_READ_REG(&adapter->hw, TDFH)) &&
|
|
(E1000_READ_REG(&adapter->hw, TDFTS) ==
|
|
E1000_READ_REG(&adapter->hw, TDFHS))) {
|
|
tctl = E1000_READ_REG(&adapter->hw, TCTL);
|
|
E1000_WRITE_REG(&adapter->hw, TCTL,
|
|
tctl & ~E1000_TCTL_EN);
|
|
E1000_WRITE_REG(&adapter->hw, TDFT,
|
|
adapter->tx_head_addr);
|
|
E1000_WRITE_REG(&adapter->hw, TDFH,
|
|
adapter->tx_head_addr);
|
|
E1000_WRITE_REG(&adapter->hw, TDFTS,
|
|
adapter->tx_head_addr);
|
|
E1000_WRITE_REG(&adapter->hw, TDFHS,
|
|
adapter->tx_head_addr);
|
|
E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
|
|
E1000_WRITE_FLUSH(&adapter->hw);
|
|
|
|
adapter->tx_fifo_head = 0;
|
|
atomic_set(&adapter->tx_fifo_stall, 0);
|
|
netif_wake_queue(netdev);
|
|
} else {
|
|
mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* e1000_watchdog - Timer Call-back
|
|
* @data: pointer to adapter cast into an unsigned long
|
|
**/
|
|
static void
|
|
e1000_watchdog(unsigned long data)
|
|
{
|
|
struct e1000_adapter *adapter = (struct e1000_adapter *) data;
|
|
|
|
/* Do the rest outside of interrupt context */
|
|
schedule_work(&adapter->watchdog_task);
|
|
}
|
|
|
|
static void
|
|
e1000_watchdog_task(struct e1000_adapter *adapter)
|
|
{
|
|
struct net_device *netdev = adapter->netdev;
|
|
struct e1000_tx_ring *txdr = adapter->tx_ring;
|
|
uint32_t link;
|
|
|
|
e1000_check_for_link(&adapter->hw);
|
|
if (adapter->hw.mac_type == e1000_82573) {
|
|
e1000_enable_tx_pkt_filtering(&adapter->hw);
|
|
if (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)
|
|
e1000_update_mng_vlan(adapter);
|
|
}
|
|
|
|
if ((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
|
|
!(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE))
|
|
link = !adapter->hw.serdes_link_down;
|
|
else
|
|
link = E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU;
|
|
|
|
if (link) {
|
|
if (!netif_carrier_ok(netdev)) {
|
|
e1000_get_speed_and_duplex(&adapter->hw,
|
|
&adapter->link_speed,
|
|
&adapter->link_duplex);
|
|
|
|
DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s\n",
|
|
adapter->link_speed,
|
|
adapter->link_duplex == FULL_DUPLEX ?
|
|
"Full Duplex" : "Half Duplex");
|
|
|
|
/* tweak tx_queue_len according to speed/duplex */
|
|
netdev->tx_queue_len = adapter->tx_queue_len;
|
|
adapter->tx_timeout_factor = 1;
|
|
if (adapter->link_duplex == HALF_DUPLEX) {
|
|
switch (adapter->link_speed) {
|
|
case SPEED_10:
|
|
netdev->tx_queue_len = 10;
|
|
adapter->tx_timeout_factor = 8;
|
|
break;
|
|
case SPEED_100:
|
|
netdev->tx_queue_len = 100;
|
|
break;
|
|
}
|
|
}
|
|
|
|
netif_carrier_on(netdev);
|
|
netif_wake_queue(netdev);
|
|
mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
|
|
adapter->smartspeed = 0;
|
|
}
|
|
} else {
|
|
if (netif_carrier_ok(netdev)) {
|
|
adapter->link_speed = 0;
|
|
adapter->link_duplex = 0;
|
|
DPRINTK(LINK, INFO, "NIC Link is Down\n");
|
|
netif_carrier_off(netdev);
|
|
netif_stop_queue(netdev);
|
|
mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
|
|
}
|
|
|
|
e1000_smartspeed(adapter);
|
|
}
|
|
|
|
e1000_update_stats(adapter);
|
|
|
|
adapter->hw.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
|
|
adapter->tpt_old = adapter->stats.tpt;
|
|
adapter->hw.collision_delta = adapter->stats.colc - adapter->colc_old;
|
|
adapter->colc_old = adapter->stats.colc;
|
|
|
|
adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
|
|
adapter->gorcl_old = adapter->stats.gorcl;
|
|
adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
|
|
adapter->gotcl_old = adapter->stats.gotcl;
|
|
|
|
e1000_update_adaptive(&adapter->hw);
|
|
|
|
#ifdef CONFIG_E1000_MQ
|
|
txdr = *per_cpu_ptr(adapter->cpu_tx_ring, smp_processor_id());
|
|
#endif
|
|
if (!netif_carrier_ok(netdev)) {
|
|
if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
|
|
/* We've lost link, so the controller stops DMA,
|
|
* but we've got queued Tx work that's never going
|
|
* to get done, so reset controller to flush Tx.
|
|
* (Do the reset outside of interrupt context). */
|
|
schedule_work(&adapter->tx_timeout_task);
|
|
}
|
|
}
|
|
|
|
/* Dynamic mode for Interrupt Throttle Rate (ITR) */
|
|
if (adapter->hw.mac_type >= e1000_82540 && adapter->itr == 1) {
|
|
/* Symmetric Tx/Rx gets a reduced ITR=2000; Total
|
|
* asymmetrical Tx or Rx gets ITR=8000; everyone
|
|
* else is between 2000-8000. */
|
|
uint32_t goc = (adapter->gotcl + adapter->gorcl) / 10000;
|
|
uint32_t dif = (adapter->gotcl > adapter->gorcl ?
|
|
adapter->gotcl - adapter->gorcl :
|
|
adapter->gorcl - adapter->gotcl) / 10000;
|
|
uint32_t itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
|
|
E1000_WRITE_REG(&adapter->hw, ITR, 1000000000 / (itr * 256));
|
|
}
|
|
|
|
/* Cause software interrupt to ensure rx ring is cleaned */
|
|
E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_RXDMT0);
|
|
|
|
/* Force detection of hung controller every watchdog period */
|
|
adapter->detect_tx_hung = TRUE;
|
|
|
|
/* With 82571 controllers, LAA may be overwritten due to controller
|
|
* reset from the other port. Set the appropriate LAA in RAR[0] */
|
|
if (adapter->hw.mac_type == e1000_82571 && adapter->hw.laa_is_present)
|
|
e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
|
|
|
|
/* Reset the timer */
|
|
mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
|
|
}
|
|
|
|
#define E1000_TX_FLAGS_CSUM 0x00000001
|
|
#define E1000_TX_FLAGS_VLAN 0x00000002
|
|
#define E1000_TX_FLAGS_TSO 0x00000004
|
|
#define E1000_TX_FLAGS_IPV4 0x00000008
|
|
#define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
|
|
#define E1000_TX_FLAGS_VLAN_SHIFT 16
|
|
|
|
static inline int
|
|
e1000_tso(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
|
|
struct sk_buff *skb)
|
|
{
|
|
#ifdef NETIF_F_TSO
|
|
struct e1000_context_desc *context_desc;
|
|
struct e1000_buffer *buffer_info;
|
|
unsigned int i;
|
|
uint32_t cmd_length = 0;
|
|
uint16_t ipcse = 0, tucse, mss;
|
|
uint8_t ipcss, ipcso, tucss, tucso, hdr_len;
|
|
int err;
|
|
|
|
if (skb_shinfo(skb)->tso_size) {
|
|
if (skb_header_cloned(skb)) {
|
|
err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
|
|
mss = skb_shinfo(skb)->tso_size;
|
|
if (skb->protocol == ntohs(ETH_P_IP)) {
|
|
skb->nh.iph->tot_len = 0;
|
|
skb->nh.iph->check = 0;
|
|
skb->h.th->check =
|
|
~csum_tcpudp_magic(skb->nh.iph->saddr,
|
|
skb->nh.iph->daddr,
|
|
0,
|
|
IPPROTO_TCP,
|
|
0);
|
|
cmd_length = E1000_TXD_CMD_IP;
|
|
ipcse = skb->h.raw - skb->data - 1;
|
|
#ifdef NETIF_F_TSO_IPV6
|
|
} else if (skb->protocol == ntohs(ETH_P_IPV6)) {
|
|
skb->nh.ipv6h->payload_len = 0;
|
|
skb->h.th->check =
|
|
~csum_ipv6_magic(&skb->nh.ipv6h->saddr,
|
|
&skb->nh.ipv6h->daddr,
|
|
0,
|
|
IPPROTO_TCP,
|
|
0);
|
|
ipcse = 0;
|
|
#endif
|
|
}
|
|
ipcss = skb->nh.raw - skb->data;
|
|
ipcso = (void *)&(skb->nh.iph->check) - (void *)skb->data;
|
|
tucss = skb->h.raw - skb->data;
|
|
tucso = (void *)&(skb->h.th->check) - (void *)skb->data;
|
|
tucse = 0;
|
|
|
|
cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
|
|
E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
|
|
|
|
i = tx_ring->next_to_use;
|
|
context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
|
|
buffer_info = &tx_ring->buffer_info[i];
|
|
|
|
context_desc->lower_setup.ip_fields.ipcss = ipcss;
|
|
context_desc->lower_setup.ip_fields.ipcso = ipcso;
|
|
context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
|
|
context_desc->upper_setup.tcp_fields.tucss = tucss;
|
|
context_desc->upper_setup.tcp_fields.tucso = tucso;
|
|
context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
|
|
context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
|
|
context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
|
|
context_desc->cmd_and_length = cpu_to_le32(cmd_length);
|
|
|
|
buffer_info->time_stamp = jiffies;
|
|
|
|
if (++i == tx_ring->count) i = 0;
|
|
tx_ring->next_to_use = i;
|
|
|
|
return TRUE;
|
|
}
|
|
#endif
|
|
|
|
return FALSE;
|
|
}
|
|
|
|
static inline boolean_t
|
|
e1000_tx_csum(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
|
|
struct sk_buff *skb)
|
|
{
|
|
struct e1000_context_desc *context_desc;
|
|
struct e1000_buffer *buffer_info;
|
|
unsigned int i;
|
|
uint8_t css;
|
|
|
|
if (likely(skb->ip_summed == CHECKSUM_HW)) {
|
|
css = skb->h.raw - skb->data;
|
|
|
|
i = tx_ring->next_to_use;
|
|
buffer_info = &tx_ring->buffer_info[i];
|
|
context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
|
|
|
|
context_desc->upper_setup.tcp_fields.tucss = css;
|
|
context_desc->upper_setup.tcp_fields.tucso = css + skb->csum;
|
|
context_desc->upper_setup.tcp_fields.tucse = 0;
|
|
context_desc->tcp_seg_setup.data = 0;
|
|
context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
|
|
|
|
buffer_info->time_stamp = jiffies;
|
|
|
|
if (unlikely(++i == tx_ring->count)) i = 0;
|
|
tx_ring->next_to_use = i;
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
return FALSE;
|
|
}
|
|
|
|
#define E1000_MAX_TXD_PWR 12
|
|
#define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
|
|
|
|
static inline int
|
|
e1000_tx_map(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
|
|
struct sk_buff *skb, unsigned int first, unsigned int max_per_txd,
|
|
unsigned int nr_frags, unsigned int mss)
|
|
{
|
|
struct e1000_buffer *buffer_info;
|
|
unsigned int len = skb->len;
|
|
unsigned int offset = 0, size, count = 0, i;
|
|
unsigned int f;
|
|
len -= skb->data_len;
|
|
|
|
i = tx_ring->next_to_use;
|
|
|
|
while (len) {
|
|
buffer_info = &tx_ring->buffer_info[i];
|
|
size = min(len, max_per_txd);
|
|
#ifdef NETIF_F_TSO
|
|
/* Workaround for Controller erratum --
|
|
* descriptor for non-tso packet in a linear SKB that follows a
|
|
* tso gets written back prematurely before the data is fully
|
|
* DMAd to the controller */
|
|
if (!skb->data_len && tx_ring->last_tx_tso &&
|
|
!skb_shinfo(skb)->tso_size) {
|
|
tx_ring->last_tx_tso = 0;
|
|
size -= 4;
|
|
}
|
|
|
|
/* Workaround for premature desc write-backs
|
|
* in TSO mode. Append 4-byte sentinel desc */
|
|
if (unlikely(mss && !nr_frags && size == len && size > 8))
|
|
size -= 4;
|
|
#endif
|
|
/* work-around for errata 10 and it applies
|
|
* to all controllers in PCI-X mode
|
|
* The fix is to make sure that the first descriptor of a
|
|
* packet is smaller than 2048 - 16 - 16 (or 2016) bytes
|
|
*/
|
|
if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
|
|
(size > 2015) && count == 0))
|
|
size = 2015;
|
|
|
|
/* Workaround for potential 82544 hang in PCI-X. Avoid
|
|
* terminating buffers within evenly-aligned dwords. */
|
|
if (unlikely(adapter->pcix_82544 &&
|
|
!((unsigned long)(skb->data + offset + size - 1) & 4) &&
|
|
size > 4))
|
|
size -= 4;
|
|
|
|
buffer_info->length = size;
|
|
buffer_info->dma =
|
|
pci_map_single(adapter->pdev,
|
|
skb->data + offset,
|
|
size,
|
|
PCI_DMA_TODEVICE);
|
|
buffer_info->time_stamp = jiffies;
|
|
|
|
len -= size;
|
|
offset += size;
|
|
count++;
|
|
if (unlikely(++i == tx_ring->count)) i = 0;
|
|
}
|
|
|
|
for (f = 0; f < nr_frags; f++) {
|
|
struct skb_frag_struct *frag;
|
|
|
|
frag = &skb_shinfo(skb)->frags[f];
|
|
len = frag->size;
|
|
offset = frag->page_offset;
|
|
|
|
while (len) {
|
|
buffer_info = &tx_ring->buffer_info[i];
|
|
size = min(len, max_per_txd);
|
|
#ifdef NETIF_F_TSO
|
|
/* Workaround for premature desc write-backs
|
|
* in TSO mode. Append 4-byte sentinel desc */
|
|
if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
|
|
size -= 4;
|
|
#endif
|
|
/* Workaround for potential 82544 hang in PCI-X.
|
|
* Avoid terminating buffers within evenly-aligned
|
|
* dwords. */
|
|
if (unlikely(adapter->pcix_82544 &&
|
|
!((unsigned long)(frag->page+offset+size-1) & 4) &&
|
|
size > 4))
|
|
size -= 4;
|
|
|
|
buffer_info->length = size;
|
|
buffer_info->dma =
|
|
pci_map_page(adapter->pdev,
|
|
frag->page,
|
|
offset,
|
|
size,
|
|
PCI_DMA_TODEVICE);
|
|
buffer_info->time_stamp = jiffies;
|
|
|
|
len -= size;
|
|
offset += size;
|
|
count++;
|
|
if (unlikely(++i == tx_ring->count)) i = 0;
|
|
}
|
|
}
|
|
|
|
i = (i == 0) ? tx_ring->count - 1 : i - 1;
|
|
tx_ring->buffer_info[i].skb = skb;
|
|
tx_ring->buffer_info[first].next_to_watch = i;
|
|
|
|
return count;
|
|
}
|
|
|
|
static inline void
|
|
e1000_tx_queue(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
|
|
int tx_flags, int count)
|
|
{
|
|
struct e1000_tx_desc *tx_desc = NULL;
|
|
struct e1000_buffer *buffer_info;
|
|
uint32_t txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
|
|
unsigned int i;
|
|
|
|
if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
|
|
txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
|
|
E1000_TXD_CMD_TSE;
|
|
txd_upper |= E1000_TXD_POPTS_TXSM << 8;
|
|
|
|
if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
|
|
txd_upper |= E1000_TXD_POPTS_IXSM << 8;
|
|
}
|
|
|
|
if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
|
|
txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
|
|
txd_upper |= E1000_TXD_POPTS_TXSM << 8;
|
|
}
|
|
|
|
if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
|
|
txd_lower |= E1000_TXD_CMD_VLE;
|
|
txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
|
|
}
|
|
|
|
i = tx_ring->next_to_use;
|
|
|
|
while (count--) {
|
|
buffer_info = &tx_ring->buffer_info[i];
|
|
tx_desc = E1000_TX_DESC(*tx_ring, i);
|
|
tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
|
|
tx_desc->lower.data =
|
|
cpu_to_le32(txd_lower | buffer_info->length);
|
|
tx_desc->upper.data = cpu_to_le32(txd_upper);
|
|
if (unlikely(++i == tx_ring->count)) i = 0;
|
|
}
|
|
|
|
tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
|
|
|
|
/* Force memory writes to complete before letting h/w
|
|
* know there are new descriptors to fetch. (Only
|
|
* applicable for weak-ordered memory model archs,
|
|
* such as IA-64). */
|
|
wmb();
|
|
|
|
tx_ring->next_to_use = i;
|
|
writel(i, adapter->hw.hw_addr + tx_ring->tdt);
|
|
}
|
|
|
|
/**
|
|
* 82547 workaround to avoid controller hang in half-duplex environment.
|
|
* The workaround is to avoid queuing a large packet that would span
|
|
* the internal Tx FIFO ring boundary by notifying the stack to resend
|
|
* the packet at a later time. This gives the Tx FIFO an opportunity to
|
|
* flush all packets. When that occurs, we reset the Tx FIFO pointers
|
|
* to the beginning of the Tx FIFO.
|
|
**/
|
|
|
|
#define E1000_FIFO_HDR 0x10
|
|
#define E1000_82547_PAD_LEN 0x3E0
|
|
|
|
static inline int
|
|
e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb)
|
|
{
|
|
uint32_t fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
|
|
uint32_t skb_fifo_len = skb->len + E1000_FIFO_HDR;
|
|
|
|
E1000_ROUNDUP(skb_fifo_len, E1000_FIFO_HDR);
|
|
|
|
if (adapter->link_duplex != HALF_DUPLEX)
|
|
goto no_fifo_stall_required;
|
|
|
|
if (atomic_read(&adapter->tx_fifo_stall))
|
|
return 1;
|
|
|
|
if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
|
|
atomic_set(&adapter->tx_fifo_stall, 1);
|
|
return 1;
|
|
}
|
|
|
|
no_fifo_stall_required:
|
|
adapter->tx_fifo_head += skb_fifo_len;
|
|
if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
|
|
adapter->tx_fifo_head -= adapter->tx_fifo_size;
|
|
return 0;
|
|
}
|
|
|
|
#define MINIMUM_DHCP_PACKET_SIZE 282
|
|
static inline int
|
|
e1000_transfer_dhcp_info(struct e1000_adapter *adapter, struct sk_buff *skb)
|
|
{
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
uint16_t length, offset;
|
|
if (vlan_tx_tag_present(skb)) {
|
|
if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
|
|
( adapter->hw.mng_cookie.status &
|
|
E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
|
|
return 0;
|
|
}
|
|
if ((skb->len > MINIMUM_DHCP_PACKET_SIZE) && (!skb->protocol)) {
|
|
struct ethhdr *eth = (struct ethhdr *) skb->data;
|
|
if ((htons(ETH_P_IP) == eth->h_proto)) {
|
|
const struct iphdr *ip =
|
|
(struct iphdr *)((uint8_t *)skb->data+14);
|
|
if (IPPROTO_UDP == ip->protocol) {
|
|
struct udphdr *udp =
|
|
(struct udphdr *)((uint8_t *)ip +
|
|
(ip->ihl << 2));
|
|
if (ntohs(udp->dest) == 67) {
|
|
offset = (uint8_t *)udp + 8 - skb->data;
|
|
length = skb->len - offset;
|
|
|
|
return e1000_mng_write_dhcp_info(hw,
|
|
(uint8_t *)udp + 8,
|
|
length);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
|
|
static int
|
|
e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
|
|
{
|
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
|
struct e1000_tx_ring *tx_ring;
|
|
unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
|
|
unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
|
|
unsigned int tx_flags = 0;
|
|
unsigned int len = skb->len;
|
|
unsigned long flags;
|
|
unsigned int nr_frags = 0;
|
|
unsigned int mss = 0;
|
|
int count = 0;
|
|
int tso;
|
|
unsigned int f;
|
|
len -= skb->data_len;
|
|
|
|
#ifdef CONFIG_E1000_MQ
|
|
tx_ring = *per_cpu_ptr(adapter->cpu_tx_ring, smp_processor_id());
|
|
#else
|
|
tx_ring = adapter->tx_ring;
|
|
#endif
|
|
|
|
if (unlikely(skb->len <= 0)) {
|
|
dev_kfree_skb_any(skb);
|
|
return NETDEV_TX_OK;
|
|
}
|
|
|
|
#ifdef NETIF_F_TSO
|
|
mss = skb_shinfo(skb)->tso_size;
|
|
/* The controller does a simple calculation to
|
|
* make sure there is enough room in the FIFO before
|
|
* initiating the DMA for each buffer. The calc is:
|
|
* 4 = ceil(buffer len/mss). To make sure we don't
|
|
* overrun the FIFO, adjust the max buffer len if mss
|
|
* drops. */
|
|
if (mss) {
|
|
uint8_t hdr_len;
|
|
max_per_txd = min(mss << 2, max_per_txd);
|
|
max_txd_pwr = fls(max_per_txd) - 1;
|
|
|
|
/* TSO Workaround for 82571/2 Controllers -- if skb->data
|
|
* points to just header, pull a few bytes of payload from
|
|
* frags into skb->data */
|
|
hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
|
|
if (skb->data_len && (hdr_len == (skb->len - skb->data_len)) &&
|
|
(adapter->hw.mac_type == e1000_82571 ||
|
|
adapter->hw.mac_type == e1000_82572)) {
|
|
unsigned int pull_size;
|
|
pull_size = min((unsigned int)4, skb->data_len);
|
|
if (!__pskb_pull_tail(skb, pull_size)) {
|
|
printk(KERN_ERR "__pskb_pull_tail failed.\n");
|
|
dev_kfree_skb_any(skb);
|
|
return -EFAULT;
|
|
}
|
|
len = skb->len - skb->data_len;
|
|
}
|
|
}
|
|
|
|
/* reserve a descriptor for the offload context */
|
|
if ((mss) || (skb->ip_summed == CHECKSUM_HW))
|
|
count++;
|
|
count++;
|
|
#else
|
|
if (skb->ip_summed == CHECKSUM_HW)
|
|
count++;
|
|
#endif
|
|
|
|
#ifdef NETIF_F_TSO
|
|
/* Controller Erratum workaround */
|
|
if (!skb->data_len && tx_ring->last_tx_tso &&
|
|
!skb_shinfo(skb)->tso_size)
|
|
count++;
|
|
#endif
|
|
|
|
count += TXD_USE_COUNT(len, max_txd_pwr);
|
|
|
|
if (adapter->pcix_82544)
|
|
count++;
|
|
|
|
/* work-around for errata 10 and it applies to all controllers
|
|
* in PCI-X mode, so add one more descriptor to the count
|
|
*/
|
|
if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
|
|
(len > 2015)))
|
|
count++;
|
|
|
|
nr_frags = skb_shinfo(skb)->nr_frags;
|
|
for (f = 0; f < nr_frags; f++)
|
|
count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
|
|
max_txd_pwr);
|
|
if (adapter->pcix_82544)
|
|
count += nr_frags;
|
|
|
|
if (adapter->hw.tx_pkt_filtering && (adapter->hw.mac_type == e1000_82573) )
|
|
e1000_transfer_dhcp_info(adapter, skb);
|
|
|
|
local_irq_save(flags);
|
|
if (!spin_trylock(&tx_ring->tx_lock)) {
|
|
/* Collision - tell upper layer to requeue */
|
|
local_irq_restore(flags);
|
|
return NETDEV_TX_LOCKED;
|
|
}
|
|
|
|
/* need: count + 2 desc gap to keep tail from touching
|
|
* head, otherwise try next time */
|
|
if (unlikely(E1000_DESC_UNUSED(tx_ring) < count + 2)) {
|
|
netif_stop_queue(netdev);
|
|
spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
|
|
return NETDEV_TX_BUSY;
|
|
}
|
|
|
|
if (unlikely(adapter->hw.mac_type == e1000_82547)) {
|
|
if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
|
|
netif_stop_queue(netdev);
|
|
mod_timer(&adapter->tx_fifo_stall_timer, jiffies);
|
|
spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
|
|
return NETDEV_TX_BUSY;
|
|
}
|
|
}
|
|
|
|
if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
|
|
tx_flags |= E1000_TX_FLAGS_VLAN;
|
|
tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
|
|
}
|
|
|
|
first = tx_ring->next_to_use;
|
|
|
|
tso = e1000_tso(adapter, tx_ring, skb);
|
|
if (tso < 0) {
|
|
dev_kfree_skb_any(skb);
|
|
spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
|
|
return NETDEV_TX_OK;
|
|
}
|
|
|
|
if (likely(tso)) {
|
|
tx_ring->last_tx_tso = 1;
|
|
tx_flags |= E1000_TX_FLAGS_TSO;
|
|
} else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
|
|
tx_flags |= E1000_TX_FLAGS_CSUM;
|
|
|
|
/* Old method was to assume IPv4 packet by default if TSO was enabled.
|
|
* 82571 hardware supports TSO capabilities for IPv6 as well...
|
|
* no longer assume, we must. */
|
|
if (likely(skb->protocol == ntohs(ETH_P_IP)))
|
|
tx_flags |= E1000_TX_FLAGS_IPV4;
|
|
|
|
e1000_tx_queue(adapter, tx_ring, tx_flags,
|
|
e1000_tx_map(adapter, tx_ring, skb, first,
|
|
max_per_txd, nr_frags, mss));
|
|
|
|
netdev->trans_start = jiffies;
|
|
|
|
/* Make sure there is space in the ring for the next send. */
|
|
if (unlikely(E1000_DESC_UNUSED(tx_ring) < MAX_SKB_FRAGS + 2))
|
|
netif_stop_queue(netdev);
|
|
|
|
spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
|
|
return NETDEV_TX_OK;
|
|
}
|
|
|
|
/**
|
|
* e1000_tx_timeout - Respond to a Tx Hang
|
|
* @netdev: network interface device structure
|
|
**/
|
|
|
|
static void
|
|
e1000_tx_timeout(struct net_device *netdev)
|
|
{
|
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
|
|
|
/* Do the reset outside of interrupt context */
|
|
schedule_work(&adapter->tx_timeout_task);
|
|
}
|
|
|
|
static void
|
|
e1000_tx_timeout_task(struct net_device *netdev)
|
|
{
|
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
|
|
|
adapter->tx_timeout_count++;
|
|
e1000_down(adapter);
|
|
e1000_up(adapter);
|
|
}
|
|
|
|
/**
|
|
* e1000_get_stats - Get System Network Statistics
|
|
* @netdev: network interface device structure
|
|
*
|
|
* Returns the address of the device statistics structure.
|
|
* The statistics are actually updated from the timer callback.
|
|
**/
|
|
|
|
static struct net_device_stats *
|
|
e1000_get_stats(struct net_device *netdev)
|
|
{
|
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
|
|
|
/* only return the current stats */
|
|
return &adapter->net_stats;
|
|
}
|
|
|
|
/**
|
|
* e1000_change_mtu - Change the Maximum Transfer Unit
|
|
* @netdev: network interface device structure
|
|
* @new_mtu: new value for maximum frame size
|
|
*
|
|
* Returns 0 on success, negative on failure
|
|
**/
|
|
|
|
static int
|
|
e1000_change_mtu(struct net_device *netdev, int new_mtu)
|
|
{
|
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
|
int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
|
|
|
|
if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
|
|
(max_frame > MAX_JUMBO_FRAME_SIZE)) {
|
|
DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Adapter-specific max frame size limits. */
|
|
switch (adapter->hw.mac_type) {
|
|
case e1000_82542_rev2_0:
|
|
case e1000_82542_rev2_1:
|
|
case e1000_82573:
|
|
if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
|
|
DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n");
|
|
return -EINVAL;
|
|
}
|
|
break;
|
|
case e1000_82571:
|
|
case e1000_82572:
|
|
#define MAX_STD_JUMBO_FRAME_SIZE 9234
|
|
if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
|
|
DPRINTK(PROBE, ERR, "MTU > 9216 not supported.\n");
|
|
return -EINVAL;
|
|
}
|
|
break;
|
|
default:
|
|
/* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
|
|
break;
|
|
}
|
|
|
|
/* since the driver code now supports splitting a packet across
|
|
* multiple descriptors, most of the fifo related limitations on
|
|
* jumbo frame traffic have gone away.
|
|
* simply use 2k descriptors for everything.
|
|
*
|
|
* NOTE: dev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
|
|
* means we reserve 2 more, this pushes us to allocate from the next
|
|
* larger slab size
|
|
* i.e. RXBUFFER_2048 --> size-4096 slab */
|
|
|
|
/* recent hardware supports 1KB granularity */
|
|
if (adapter->hw.mac_type > e1000_82547_rev_2) {
|
|
adapter->rx_buffer_len =
|
|
((max_frame < E1000_RXBUFFER_2048) ?
|
|
max_frame : E1000_RXBUFFER_2048);
|
|
E1000_ROUNDUP(adapter->rx_buffer_len, 1024);
|
|
} else
|
|
adapter->rx_buffer_len = E1000_RXBUFFER_2048;
|
|
|
|
netdev->mtu = new_mtu;
|
|
|
|
if (netif_running(netdev)) {
|
|
e1000_down(adapter);
|
|
e1000_up(adapter);
|
|
}
|
|
|
|
adapter->hw.max_frame_size = max_frame;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* e1000_update_stats - Update the board statistics counters
|
|
* @adapter: board private structure
|
|
**/
|
|
|
|
void
|
|
e1000_update_stats(struct e1000_adapter *adapter)
|
|
{
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
unsigned long flags;
|
|
uint16_t phy_tmp;
|
|
|
|
#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
|
|
|
|
spin_lock_irqsave(&adapter->stats_lock, flags);
|
|
|
|
/* these counters are modified from e1000_adjust_tbi_stats,
|
|
* called from the interrupt context, so they must only
|
|
* be written while holding adapter->stats_lock
|
|
*/
|
|
|
|
adapter->stats.crcerrs += E1000_READ_REG(hw, CRCERRS);
|
|
adapter->stats.gprc += E1000_READ_REG(hw, GPRC);
|
|
adapter->stats.gorcl += E1000_READ_REG(hw, GORCL);
|
|
adapter->stats.gorch += E1000_READ_REG(hw, GORCH);
|
|
adapter->stats.bprc += E1000_READ_REG(hw, BPRC);
|
|
adapter->stats.mprc += E1000_READ_REG(hw, MPRC);
|
|
adapter->stats.roc += E1000_READ_REG(hw, ROC);
|
|
adapter->stats.prc64 += E1000_READ_REG(hw, PRC64);
|
|
adapter->stats.prc127 += E1000_READ_REG(hw, PRC127);
|
|
adapter->stats.prc255 += E1000_READ_REG(hw, PRC255);
|
|
adapter->stats.prc511 += E1000_READ_REG(hw, PRC511);
|
|
adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023);
|
|
adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522);
|
|
|
|
adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS);
|
|
adapter->stats.mpc += E1000_READ_REG(hw, MPC);
|
|
adapter->stats.scc += E1000_READ_REG(hw, SCC);
|
|
adapter->stats.ecol += E1000_READ_REG(hw, ECOL);
|
|
adapter->stats.mcc += E1000_READ_REG(hw, MCC);
|
|
adapter->stats.latecol += E1000_READ_REG(hw, LATECOL);
|
|
adapter->stats.dc += E1000_READ_REG(hw, DC);
|
|
adapter->stats.sec += E1000_READ_REG(hw, SEC);
|
|
adapter->stats.rlec += E1000_READ_REG(hw, RLEC);
|
|
adapter->stats.xonrxc += E1000_READ_REG(hw, XONRXC);
|
|
adapter->stats.xontxc += E1000_READ_REG(hw, XONTXC);
|
|
adapter->stats.xoffrxc += E1000_READ_REG(hw, XOFFRXC);
|
|
adapter->stats.xofftxc += E1000_READ_REG(hw, XOFFTXC);
|
|
adapter->stats.fcruc += E1000_READ_REG(hw, FCRUC);
|
|
adapter->stats.gptc += E1000_READ_REG(hw, GPTC);
|
|
adapter->stats.gotcl += E1000_READ_REG(hw, GOTCL);
|
|
adapter->stats.gotch += E1000_READ_REG(hw, GOTCH);
|
|
adapter->stats.rnbc += E1000_READ_REG(hw, RNBC);
|
|
adapter->stats.ruc += E1000_READ_REG(hw, RUC);
|
|
adapter->stats.rfc += E1000_READ_REG(hw, RFC);
|
|
adapter->stats.rjc += E1000_READ_REG(hw, RJC);
|
|
adapter->stats.torl += E1000_READ_REG(hw, TORL);
|
|
adapter->stats.torh += E1000_READ_REG(hw, TORH);
|
|
adapter->stats.totl += E1000_READ_REG(hw, TOTL);
|
|
adapter->stats.toth += E1000_READ_REG(hw, TOTH);
|
|
adapter->stats.tpr += E1000_READ_REG(hw, TPR);
|
|
adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64);
|
|
adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127);
|
|
adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255);
|
|
adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511);
|
|
adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023);
|
|
adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522);
|
|
adapter->stats.mptc += E1000_READ_REG(hw, MPTC);
|
|
adapter->stats.bptc += E1000_READ_REG(hw, BPTC);
|
|
|
|
/* used for adaptive IFS */
|
|
|
|
hw->tx_packet_delta = E1000_READ_REG(hw, TPT);
|
|
adapter->stats.tpt += hw->tx_packet_delta;
|
|
hw->collision_delta = E1000_READ_REG(hw, COLC);
|
|
adapter->stats.colc += hw->collision_delta;
|
|
|
|
if (hw->mac_type >= e1000_82543) {
|
|
adapter->stats.algnerrc += E1000_READ_REG(hw, ALGNERRC);
|
|
adapter->stats.rxerrc += E1000_READ_REG(hw, RXERRC);
|
|
adapter->stats.tncrs += E1000_READ_REG(hw, TNCRS);
|
|
adapter->stats.cexterr += E1000_READ_REG(hw, CEXTERR);
|
|
adapter->stats.tsctc += E1000_READ_REG(hw, TSCTC);
|
|
adapter->stats.tsctfc += E1000_READ_REG(hw, TSCTFC);
|
|
}
|
|
if (hw->mac_type > e1000_82547_rev_2) {
|
|
adapter->stats.iac += E1000_READ_REG(hw, IAC);
|
|
adapter->stats.icrxoc += E1000_READ_REG(hw, ICRXOC);
|
|
adapter->stats.icrxptc += E1000_READ_REG(hw, ICRXPTC);
|
|
adapter->stats.icrxatc += E1000_READ_REG(hw, ICRXATC);
|
|
adapter->stats.ictxptc += E1000_READ_REG(hw, ICTXPTC);
|
|
adapter->stats.ictxatc += E1000_READ_REG(hw, ICTXATC);
|
|
adapter->stats.ictxqec += E1000_READ_REG(hw, ICTXQEC);
|
|
adapter->stats.ictxqmtc += E1000_READ_REG(hw, ICTXQMTC);
|
|
adapter->stats.icrxdmtc += E1000_READ_REG(hw, ICRXDMTC);
|
|
}
|
|
|
|
/* Fill out the OS statistics structure */
|
|
|
|
adapter->net_stats.rx_packets = adapter->stats.gprc;
|
|
adapter->net_stats.tx_packets = adapter->stats.gptc;
|
|
adapter->net_stats.rx_bytes = adapter->stats.gorcl;
|
|
adapter->net_stats.tx_bytes = adapter->stats.gotcl;
|
|
adapter->net_stats.multicast = adapter->stats.mprc;
|
|
adapter->net_stats.collisions = adapter->stats.colc;
|
|
|
|
/* Rx Errors */
|
|
|
|
adapter->net_stats.rx_errors = adapter->stats.rxerrc +
|
|
adapter->stats.crcerrs + adapter->stats.algnerrc +
|
|
adapter->stats.rlec + adapter->stats.cexterr;
|
|
adapter->net_stats.rx_dropped = 0;
|
|
adapter->net_stats.rx_length_errors = adapter->stats.rlec;
|
|
adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
|
|
adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
|
|
adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
|
|
|
|
/* Tx Errors */
|
|
|
|
adapter->net_stats.tx_errors = adapter->stats.ecol +
|
|
adapter->stats.latecol;
|
|
adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
|
|
adapter->net_stats.tx_window_errors = adapter->stats.latecol;
|
|
adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
|
|
|
|
/* Tx Dropped needs to be maintained elsewhere */
|
|
|
|
/* Phy Stats */
|
|
|
|
if (hw->media_type == e1000_media_type_copper) {
|
|
if ((adapter->link_speed == SPEED_1000) &&
|
|
(!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
|
|
phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
|
|
adapter->phy_stats.idle_errors += phy_tmp;
|
|
}
|
|
|
|
if ((hw->mac_type <= e1000_82546) &&
|
|
(hw->phy_type == e1000_phy_m88) &&
|
|
!e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
|
|
adapter->phy_stats.receive_errors += phy_tmp;
|
|
}
|
|
|
|
spin_unlock_irqrestore(&adapter->stats_lock, flags);
|
|
}
|
|
|
|
#ifdef CONFIG_E1000_MQ
|
|
void
|
|
e1000_rx_schedule(void *data)
|
|
{
|
|
struct net_device *poll_dev, *netdev = data;
|
|
struct e1000_adapter *adapter = netdev->priv;
|
|
int this_cpu = get_cpu();
|
|
|
|
poll_dev = *per_cpu_ptr(adapter->cpu_netdev, this_cpu);
|
|
if (poll_dev == NULL) {
|
|
put_cpu();
|
|
return;
|
|
}
|
|
|
|
if (likely(netif_rx_schedule_prep(poll_dev)))
|
|
__netif_rx_schedule(poll_dev);
|
|
else
|
|
e1000_irq_enable(adapter);
|
|
|
|
put_cpu();
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* e1000_intr - Interrupt Handler
|
|
* @irq: interrupt number
|
|
* @data: pointer to a network interface device structure
|
|
* @pt_regs: CPU registers structure
|
|
**/
|
|
|
|
static irqreturn_t
|
|
e1000_intr(int irq, void *data, struct pt_regs *regs)
|
|
{
|
|
struct net_device *netdev = data;
|
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
uint32_t icr = E1000_READ_REG(hw, ICR);
|
|
#ifndef CONFIG_E1000_NAPI
|
|
int i;
|
|
#else
|
|
/* Interrupt Auto-Mask...upon reading ICR,
|
|
* interrupts are masked. No need for the
|
|
* IMC write, but it does mean we should
|
|
* account for it ASAP. */
|
|
if (likely(hw->mac_type >= e1000_82571))
|
|
atomic_inc(&adapter->irq_sem);
|
|
#endif
|
|
|
|
if (unlikely(!icr)) {
|
|
#ifdef CONFIG_E1000_NAPI
|
|
if (hw->mac_type >= e1000_82571)
|
|
e1000_irq_enable(adapter);
|
|
#endif
|
|
return IRQ_NONE; /* Not our interrupt */
|
|
}
|
|
|
|
if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
|
|
hw->get_link_status = 1;
|
|
mod_timer(&adapter->watchdog_timer, jiffies);
|
|
}
|
|
|
|
#ifdef CONFIG_E1000_NAPI
|
|
if (unlikely(hw->mac_type < e1000_82571)) {
|
|
atomic_inc(&adapter->irq_sem);
|
|
E1000_WRITE_REG(hw, IMC, ~0);
|
|
E1000_WRITE_FLUSH(hw);
|
|
}
|
|
#ifdef CONFIG_E1000_MQ
|
|
if (atomic_read(&adapter->rx_sched_call_data.count) == 0) {
|
|
/* We must setup the cpumask once count == 0 since
|
|
* each cpu bit is cleared when the work is done. */
|
|
adapter->rx_sched_call_data.cpumask = adapter->cpumask;
|
|
atomic_add(adapter->num_rx_queues - 1, &adapter->irq_sem);
|
|
atomic_set(&adapter->rx_sched_call_data.count,
|
|
adapter->num_rx_queues);
|
|
smp_call_async_mask(&adapter->rx_sched_call_data);
|
|
} else {
|
|
printk("call_data.count == %u\n", atomic_read(&adapter->rx_sched_call_data.count));
|
|
}
|
|
#else /* if !CONFIG_E1000_MQ */
|
|
if (likely(netif_rx_schedule_prep(&adapter->polling_netdev[0])))
|
|
__netif_rx_schedule(&adapter->polling_netdev[0]);
|
|
else
|
|
e1000_irq_enable(adapter);
|
|
#endif /* CONFIG_E1000_MQ */
|
|
|
|
#else /* if !CONFIG_E1000_NAPI */
|
|
/* Writing IMC and IMS is needed for 82547.
|
|
* Due to Hub Link bus being occupied, an interrupt
|
|
* de-assertion message is not able to be sent.
|
|
* When an interrupt assertion message is generated later,
|
|
* two messages are re-ordered and sent out.
|
|
* That causes APIC to think 82547 is in de-assertion
|
|
* state, while 82547 is in assertion state, resulting
|
|
* in dead lock. Writing IMC forces 82547 into
|
|
* de-assertion state.
|
|
*/
|
|
if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2) {
|
|
atomic_inc(&adapter->irq_sem);
|
|
E1000_WRITE_REG(hw, IMC, ~0);
|
|
}
|
|
|
|
for (i = 0; i < E1000_MAX_INTR; i++)
|
|
if (unlikely(!adapter->clean_rx(adapter, adapter->rx_ring) &
|
|
!e1000_clean_tx_irq(adapter, adapter->tx_ring)))
|
|
break;
|
|
|
|
if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2)
|
|
e1000_irq_enable(adapter);
|
|
|
|
#endif /* CONFIG_E1000_NAPI */
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
#ifdef CONFIG_E1000_NAPI
|
|
/**
|
|
* e1000_clean - NAPI Rx polling callback
|
|
* @adapter: board private structure
|
|
**/
|
|
|
|
static int
|
|
e1000_clean(struct net_device *poll_dev, int *budget)
|
|
{
|
|
struct e1000_adapter *adapter;
|
|
int work_to_do = min(*budget, poll_dev->quota);
|
|
int tx_cleaned = 0, i = 0, work_done = 0;
|
|
|
|
/* Must NOT use netdev_priv macro here. */
|
|
adapter = poll_dev->priv;
|
|
|
|
/* Keep link state information with original netdev */
|
|
if (!netif_carrier_ok(adapter->netdev))
|
|
goto quit_polling;
|
|
|
|
while (poll_dev != &adapter->polling_netdev[i]) {
|
|
i++;
|
|
if (unlikely(i == adapter->num_rx_queues))
|
|
BUG();
|
|
}
|
|
|
|
if (likely(adapter->num_tx_queues == 1)) {
|
|
/* e1000_clean is called per-cpu. This lock protects
|
|
* tx_ring[0] from being cleaned by multiple cpus
|
|
* simultaneously. A failure obtaining the lock means
|
|
* tx_ring[0] is currently being cleaned anyway. */
|
|
if (spin_trylock(&adapter->tx_queue_lock)) {
|
|
tx_cleaned = e1000_clean_tx_irq(adapter,
|
|
&adapter->tx_ring[0]);
|
|
spin_unlock(&adapter->tx_queue_lock);
|
|
}
|
|
} else
|
|
tx_cleaned = e1000_clean_tx_irq(adapter, &adapter->tx_ring[i]);
|
|
|
|
adapter->clean_rx(adapter, &adapter->rx_ring[i],
|
|
&work_done, work_to_do);
|
|
|
|
*budget -= work_done;
|
|
poll_dev->quota -= work_done;
|
|
|
|
/* If no Tx and not enough Rx work done, exit the polling mode */
|
|
if ((!tx_cleaned && (work_done == 0)) ||
|
|
!netif_running(adapter->netdev)) {
|
|
quit_polling:
|
|
netif_rx_complete(poll_dev);
|
|
e1000_irq_enable(adapter);
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
#endif
|
|
/**
|
|
* e1000_clean_tx_irq - Reclaim resources after transmit completes
|
|
* @adapter: board private structure
|
|
**/
|
|
|
|
static boolean_t
|
|
e1000_clean_tx_irq(struct e1000_adapter *adapter,
|
|
struct e1000_tx_ring *tx_ring)
|
|
{
|
|
struct net_device *netdev = adapter->netdev;
|
|
struct e1000_tx_desc *tx_desc, *eop_desc;
|
|
struct e1000_buffer *buffer_info;
|
|
unsigned int i, eop;
|
|
boolean_t cleaned = FALSE;
|
|
|
|
i = tx_ring->next_to_clean;
|
|
eop = tx_ring->buffer_info[i].next_to_watch;
|
|
eop_desc = E1000_TX_DESC(*tx_ring, eop);
|
|
|
|
while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
|
|
for (cleaned = FALSE; !cleaned; ) {
|
|
tx_desc = E1000_TX_DESC(*tx_ring, i);
|
|
buffer_info = &tx_ring->buffer_info[i];
|
|
cleaned = (i == eop);
|
|
|
|
#ifdef CONFIG_E1000_MQ
|
|
tx_ring->tx_stats.bytes += buffer_info->length;
|
|
#endif
|
|
e1000_unmap_and_free_tx_resource(adapter, buffer_info);
|
|
memset(tx_desc, 0, sizeof(struct e1000_tx_desc));
|
|
|
|
if (unlikely(++i == tx_ring->count)) i = 0;
|
|
}
|
|
|
|
#ifdef CONFIG_E1000_MQ
|
|
tx_ring->tx_stats.packets++;
|
|
#endif
|
|
|
|
eop = tx_ring->buffer_info[i].next_to_watch;
|
|
eop_desc = E1000_TX_DESC(*tx_ring, eop);
|
|
}
|
|
|
|
tx_ring->next_to_clean = i;
|
|
|
|
spin_lock(&tx_ring->tx_lock);
|
|
|
|
if (unlikely(cleaned && netif_queue_stopped(netdev) &&
|
|
netif_carrier_ok(netdev)))
|
|
netif_wake_queue(netdev);
|
|
|
|
spin_unlock(&tx_ring->tx_lock);
|
|
|
|
if (adapter->detect_tx_hung) {
|
|
/* Detect a transmit hang in hardware, this serializes the
|
|
* check with the clearing of time_stamp and movement of i */
|
|
adapter->detect_tx_hung = FALSE;
|
|
if (tx_ring->buffer_info[eop].dma &&
|
|
time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
|
|
adapter->tx_timeout_factor * HZ)
|
|
&& !(E1000_READ_REG(&adapter->hw, STATUS) &
|
|
E1000_STATUS_TXOFF)) {
|
|
|
|
/* detected Tx unit hang */
|
|
DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
|
|
" Tx Queue <%lu>\n"
|
|
" TDH <%x>\n"
|
|
" TDT <%x>\n"
|
|
" next_to_use <%x>\n"
|
|
" next_to_clean <%x>\n"
|
|
"buffer_info[next_to_clean]\n"
|
|
" time_stamp <%lx>\n"
|
|
" next_to_watch <%x>\n"
|
|
" jiffies <%lx>\n"
|
|
" next_to_watch.status <%x>\n",
|
|
(unsigned long)((tx_ring - adapter->tx_ring) /
|
|
sizeof(struct e1000_tx_ring)),
|
|
readl(adapter->hw.hw_addr + tx_ring->tdh),
|
|
readl(adapter->hw.hw_addr + tx_ring->tdt),
|
|
tx_ring->next_to_use,
|
|
tx_ring->next_to_clean,
|
|
tx_ring->buffer_info[eop].time_stamp,
|
|
eop,
|
|
jiffies,
|
|
eop_desc->upper.fields.status);
|
|
netif_stop_queue(netdev);
|
|
}
|
|
}
|
|
return cleaned;
|
|
}
|
|
|
|
/**
|
|
* e1000_rx_checksum - Receive Checksum Offload for 82543
|
|
* @adapter: board private structure
|
|
* @status_err: receive descriptor status and error fields
|
|
* @csum: receive descriptor csum field
|
|
* @sk_buff: socket buffer with received data
|
|
**/
|
|
|
|
static inline void
|
|
e1000_rx_checksum(struct e1000_adapter *adapter,
|
|
uint32_t status_err, uint32_t csum,
|
|
struct sk_buff *skb)
|
|
{
|
|
uint16_t status = (uint16_t)status_err;
|
|
uint8_t errors = (uint8_t)(status_err >> 24);
|
|
skb->ip_summed = CHECKSUM_NONE;
|
|
|
|
/* 82543 or newer only */
|
|
if (unlikely(adapter->hw.mac_type < e1000_82543)) return;
|
|
/* Ignore Checksum bit is set */
|
|
if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
|
|
/* TCP/UDP checksum error bit is set */
|
|
if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
|
|
/* let the stack verify checksum errors */
|
|
adapter->hw_csum_err++;
|
|
return;
|
|
}
|
|
/* TCP/UDP Checksum has not been calculated */
|
|
if (adapter->hw.mac_type <= e1000_82547_rev_2) {
|
|
if (!(status & E1000_RXD_STAT_TCPCS))
|
|
return;
|
|
} else {
|
|
if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
|
|
return;
|
|
}
|
|
/* It must be a TCP or UDP packet with a valid checksum */
|
|
if (likely(status & E1000_RXD_STAT_TCPCS)) {
|
|
/* TCP checksum is good */
|
|
skb->ip_summed = CHECKSUM_UNNECESSARY;
|
|
} else if (adapter->hw.mac_type > e1000_82547_rev_2) {
|
|
/* IP fragment with UDP payload */
|
|
/* Hardware complements the payload checksum, so we undo it
|
|
* and then put the value in host order for further stack use.
|
|
*/
|
|
csum = ntohl(csum ^ 0xFFFF);
|
|
skb->csum = csum;
|
|
skb->ip_summed = CHECKSUM_HW;
|
|
}
|
|
adapter->hw_csum_good++;
|
|
}
|
|
|
|
/**
|
|
* e1000_clean_rx_irq - Send received data up the network stack; legacy
|
|
* @adapter: board private structure
|
|
**/
|
|
|
|
static boolean_t
|
|
#ifdef CONFIG_E1000_NAPI
|
|
e1000_clean_rx_irq(struct e1000_adapter *adapter,
|
|
struct e1000_rx_ring *rx_ring,
|
|
int *work_done, int work_to_do)
|
|
#else
|
|
e1000_clean_rx_irq(struct e1000_adapter *adapter,
|
|
struct e1000_rx_ring *rx_ring)
|
|
#endif
|
|
{
|
|
struct net_device *netdev = adapter->netdev;
|
|
struct pci_dev *pdev = adapter->pdev;
|
|
struct e1000_rx_desc *rx_desc, *next_rxd;
|
|
struct e1000_buffer *buffer_info, *next_buffer;
|
|
unsigned long flags;
|
|
uint32_t length;
|
|
uint8_t last_byte;
|
|
unsigned int i;
|
|
int cleaned_count = 0;
|
|
boolean_t cleaned = FALSE, multi_descriptor = FALSE;
|
|
|
|
i = rx_ring->next_to_clean;
|
|
rx_desc = E1000_RX_DESC(*rx_ring, i);
|
|
buffer_info = &rx_ring->buffer_info[i];
|
|
|
|
while (rx_desc->status & E1000_RXD_STAT_DD) {
|
|
struct sk_buff *skb, *next_skb;
|
|
u8 status;
|
|
#ifdef CONFIG_E1000_NAPI
|
|
if (*work_done >= work_to_do)
|
|
break;
|
|
(*work_done)++;
|
|
#endif
|
|
status = rx_desc->status;
|
|
skb = buffer_info->skb;
|
|
buffer_info->skb = NULL;
|
|
|
|
if (++i == rx_ring->count) i = 0;
|
|
next_rxd = E1000_RX_DESC(*rx_ring, i);
|
|
next_buffer = &rx_ring->buffer_info[i];
|
|
next_skb = next_buffer->skb;
|
|
|
|
cleaned = TRUE;
|
|
cleaned_count++;
|
|
pci_unmap_single(pdev,
|
|
buffer_info->dma,
|
|
buffer_info->length,
|
|
PCI_DMA_FROMDEVICE);
|
|
|
|
length = le16_to_cpu(rx_desc->length);
|
|
|
|
skb_put(skb, length);
|
|
|
|
if (!(status & E1000_RXD_STAT_EOP)) {
|
|
if (!rx_ring->rx_skb_top) {
|
|
rx_ring->rx_skb_top = skb;
|
|
rx_ring->rx_skb_top->len = length;
|
|
rx_ring->rx_skb_prev = skb;
|
|
} else {
|
|
if (skb_shinfo(rx_ring->rx_skb_top)->frag_list) {
|
|
rx_ring->rx_skb_prev->next = skb;
|
|
skb->prev = rx_ring->rx_skb_prev;
|
|
} else {
|
|
skb_shinfo(rx_ring->rx_skb_top)->frag_list = skb;
|
|
}
|
|
rx_ring->rx_skb_prev = skb;
|
|
rx_ring->rx_skb_top->data_len += length;
|
|
}
|
|
goto next_desc;
|
|
} else {
|
|
if (rx_ring->rx_skb_top) {
|
|
if (skb_shinfo(rx_ring->rx_skb_top)
|
|
->frag_list) {
|
|
rx_ring->rx_skb_prev->next = skb;
|
|
skb->prev = rx_ring->rx_skb_prev;
|
|
} else
|
|
skb_shinfo(rx_ring->rx_skb_top)
|
|
->frag_list = skb;
|
|
|
|
rx_ring->rx_skb_top->data_len += length;
|
|
rx_ring->rx_skb_top->len +=
|
|
rx_ring->rx_skb_top->data_len;
|
|
|
|
skb = rx_ring->rx_skb_top;
|
|
multi_descriptor = TRUE;
|
|
rx_ring->rx_skb_top = NULL;
|
|
rx_ring->rx_skb_prev = NULL;
|
|
}
|
|
}
|
|
|
|
if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
|
|
last_byte = *(skb->data + length - 1);
|
|
if (TBI_ACCEPT(&adapter->hw, status,
|
|
rx_desc->errors, length, last_byte)) {
|
|
spin_lock_irqsave(&adapter->stats_lock, flags);
|
|
e1000_tbi_adjust_stats(&adapter->hw,
|
|
&adapter->stats,
|
|
length, skb->data);
|
|
spin_unlock_irqrestore(&adapter->stats_lock,
|
|
flags);
|
|
length--;
|
|
} else {
|
|
dev_kfree_skb_irq(skb);
|
|
goto next_desc;
|
|
}
|
|
}
|
|
|
|
/* code added for copybreak, this should improve
|
|
* performance for small packets with large amounts
|
|
* of reassembly being done in the stack */
|
|
#define E1000_CB_LENGTH 256
|
|
if ((length < E1000_CB_LENGTH) &&
|
|
!rx_ring->rx_skb_top &&
|
|
/* or maybe (status & E1000_RXD_STAT_EOP) && */
|
|
!multi_descriptor) {
|
|
struct sk_buff *new_skb =
|
|
dev_alloc_skb(length + NET_IP_ALIGN);
|
|
if (new_skb) {
|
|
skb_reserve(new_skb, NET_IP_ALIGN);
|
|
new_skb->dev = netdev;
|
|
memcpy(new_skb->data - NET_IP_ALIGN,
|
|
skb->data - NET_IP_ALIGN,
|
|
length + NET_IP_ALIGN);
|
|
/* save the skb in buffer_info as good */
|
|
buffer_info->skb = skb;
|
|
skb = new_skb;
|
|
skb_put(skb, length);
|
|
}
|
|
}
|
|
|
|
/* end copybreak code */
|
|
|
|
/* Receive Checksum Offload */
|
|
e1000_rx_checksum(adapter,
|
|
(uint32_t)(status) |
|
|
((uint32_t)(rx_desc->errors) << 24),
|
|
rx_desc->csum, skb);
|
|
|
|
skb->protocol = eth_type_trans(skb, netdev);
|
|
#ifdef CONFIG_E1000_NAPI
|
|
if (unlikely(adapter->vlgrp &&
|
|
(status & E1000_RXD_STAT_VP))) {
|
|
vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
|
|
le16_to_cpu(rx_desc->special) &
|
|
E1000_RXD_SPC_VLAN_MASK);
|
|
} else {
|
|
netif_receive_skb(skb);
|
|
}
|
|
#else /* CONFIG_E1000_NAPI */
|
|
if (unlikely(adapter->vlgrp &&
|
|
(status & E1000_RXD_STAT_VP))) {
|
|
vlan_hwaccel_rx(skb, adapter->vlgrp,
|
|
le16_to_cpu(rx_desc->special) &
|
|
E1000_RXD_SPC_VLAN_MASK);
|
|
} else {
|
|
netif_rx(skb);
|
|
}
|
|
#endif /* CONFIG_E1000_NAPI */
|
|
netdev->last_rx = jiffies;
|
|
#ifdef CONFIG_E1000_MQ
|
|
rx_ring->rx_stats.packets++;
|
|
rx_ring->rx_stats.bytes += length;
|
|
#endif
|
|
|
|
next_desc:
|
|
rx_desc->status = 0;
|
|
|
|
/* return some buffers to hardware, one at a time is too slow */
|
|
if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
|
|
adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
|
|
cleaned_count = 0;
|
|
}
|
|
|
|
rx_desc = next_rxd;
|
|
buffer_info = next_buffer;
|
|
}
|
|
rx_ring->next_to_clean = i;
|
|
|
|
cleaned_count = E1000_DESC_UNUSED(rx_ring);
|
|
if (cleaned_count)
|
|
adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
|
|
|
|
return cleaned;
|
|
}
|
|
|
|
/**
|
|
* e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
|
|
* @adapter: board private structure
|
|
**/
|
|
|
|
static boolean_t
|
|
#ifdef CONFIG_E1000_NAPI
|
|
e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
|
|
struct e1000_rx_ring *rx_ring,
|
|
int *work_done, int work_to_do)
|
|
#else
|
|
e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
|
|
struct e1000_rx_ring *rx_ring)
|
|
#endif
|
|
{
|
|
union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
|
|
struct net_device *netdev = adapter->netdev;
|
|
struct pci_dev *pdev = adapter->pdev;
|
|
struct e1000_buffer *buffer_info, *next_buffer;
|
|
struct e1000_ps_page *ps_page;
|
|
struct e1000_ps_page_dma *ps_page_dma;
|
|
struct sk_buff *skb, *next_skb;
|
|
unsigned int i, j;
|
|
uint32_t length, staterr;
|
|
int cleaned_count = 0;
|
|
boolean_t cleaned = FALSE;
|
|
|
|
i = rx_ring->next_to_clean;
|
|
rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
|
|
staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
|
|
buffer_info = &rx_ring->buffer_info[i];
|
|
|
|
while (staterr & E1000_RXD_STAT_DD) {
|
|
ps_page = &rx_ring->ps_page[i];
|
|
ps_page_dma = &rx_ring->ps_page_dma[i];
|
|
#ifdef CONFIG_E1000_NAPI
|
|
if (unlikely(*work_done >= work_to_do))
|
|
break;
|
|
(*work_done)++;
|
|
#endif
|
|
skb = buffer_info->skb;
|
|
|
|
if (++i == rx_ring->count) i = 0;
|
|
next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
|
|
next_buffer = &rx_ring->buffer_info[i];
|
|
next_skb = next_buffer->skb;
|
|
|
|
cleaned = TRUE;
|
|
cleaned_count++;
|
|
pci_unmap_single(pdev, buffer_info->dma,
|
|
buffer_info->length,
|
|
PCI_DMA_FROMDEVICE);
|
|
|
|
if (unlikely(!(staterr & E1000_RXD_STAT_EOP))) {
|
|
E1000_DBG("%s: Packet Split buffers didn't pick up"
|
|
" the full packet\n", netdev->name);
|
|
dev_kfree_skb_irq(skb);
|
|
goto next_desc;
|
|
}
|
|
|
|
if (unlikely(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
|
|
dev_kfree_skb_irq(skb);
|
|
goto next_desc;
|
|
}
|
|
|
|
length = le16_to_cpu(rx_desc->wb.middle.length0);
|
|
|
|
if (unlikely(!length)) {
|
|
E1000_DBG("%s: Last part of the packet spanning"
|
|
" multiple descriptors\n", netdev->name);
|
|
dev_kfree_skb_irq(skb);
|
|
goto next_desc;
|
|
}
|
|
|
|
/* Good Receive */
|
|
skb_put(skb, length);
|
|
|
|
for (j = 0; j < adapter->rx_ps_pages; j++) {
|
|
if (!(length = le16_to_cpu(rx_desc->wb.upper.length[j])))
|
|
break;
|
|
|
|
pci_unmap_page(pdev, ps_page_dma->ps_page_dma[j],
|
|
PAGE_SIZE, PCI_DMA_FROMDEVICE);
|
|
ps_page_dma->ps_page_dma[j] = 0;
|
|
skb_shinfo(skb)->frags[j].page =
|
|
ps_page->ps_page[j];
|
|
ps_page->ps_page[j] = NULL;
|
|
skb_shinfo(skb)->frags[j].page_offset = 0;
|
|
skb_shinfo(skb)->frags[j].size = length;
|
|
skb_shinfo(skb)->nr_frags++;
|
|
skb->len += length;
|
|
skb->data_len += length;
|
|
}
|
|
|
|
e1000_rx_checksum(adapter, staterr,
|
|
rx_desc->wb.lower.hi_dword.csum_ip.csum, skb);
|
|
skb->protocol = eth_type_trans(skb, netdev);
|
|
|
|
if (likely(rx_desc->wb.upper.header_status &
|
|
E1000_RXDPS_HDRSTAT_HDRSP))
|
|
adapter->rx_hdr_split++;
|
|
#ifdef CONFIG_E1000_NAPI
|
|
if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
|
|
vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
|
|
le16_to_cpu(rx_desc->wb.middle.vlan) &
|
|
E1000_RXD_SPC_VLAN_MASK);
|
|
} else {
|
|
netif_receive_skb(skb);
|
|
}
|
|
#else /* CONFIG_E1000_NAPI */
|
|
if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
|
|
vlan_hwaccel_rx(skb, adapter->vlgrp,
|
|
le16_to_cpu(rx_desc->wb.middle.vlan) &
|
|
E1000_RXD_SPC_VLAN_MASK);
|
|
} else {
|
|
netif_rx(skb);
|
|
}
|
|
#endif /* CONFIG_E1000_NAPI */
|
|
netdev->last_rx = jiffies;
|
|
#ifdef CONFIG_E1000_MQ
|
|
rx_ring->rx_stats.packets++;
|
|
rx_ring->rx_stats.bytes += length;
|
|
#endif
|
|
|
|
next_desc:
|
|
rx_desc->wb.middle.status_error &= ~0xFF;
|
|
buffer_info->skb = NULL;
|
|
|
|
/* return some buffers to hardware, one at a time is too slow */
|
|
if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
|
|
adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
|
|
cleaned_count = 0;
|
|
}
|
|
|
|
rx_desc = next_rxd;
|
|
buffer_info = next_buffer;
|
|
|
|
staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
|
|
}
|
|
rx_ring->next_to_clean = i;
|
|
|
|
cleaned_count = E1000_DESC_UNUSED(rx_ring);
|
|
if (cleaned_count)
|
|
adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
|
|
|
|
return cleaned;
|
|
}
|
|
|
|
/**
|
|
* e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
|
|
* @adapter: address of board private structure
|
|
**/
|
|
|
|
static void
|
|
e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
|
|
struct e1000_rx_ring *rx_ring,
|
|
int cleaned_count)
|
|
{
|
|
struct net_device *netdev = adapter->netdev;
|
|
struct pci_dev *pdev = adapter->pdev;
|
|
struct e1000_rx_desc *rx_desc;
|
|
struct e1000_buffer *buffer_info;
|
|
struct sk_buff *skb;
|
|
unsigned int i;
|
|
unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
|
|
|
|
i = rx_ring->next_to_use;
|
|
buffer_info = &rx_ring->buffer_info[i];
|
|
|
|
while (cleaned_count--) {
|
|
if (!(skb = buffer_info->skb))
|
|
skb = dev_alloc_skb(bufsz);
|
|
else {
|
|
skb_trim(skb, 0);
|
|
goto map_skb;
|
|
}
|
|
|
|
|
|
if (unlikely(!skb)) {
|
|
/* Better luck next round */
|
|
adapter->alloc_rx_buff_failed++;
|
|
break;
|
|
}
|
|
|
|
/* Fix for errata 23, can't cross 64kB boundary */
|
|
if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
|
|
struct sk_buff *oldskb = skb;
|
|
DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
|
|
"at %p\n", bufsz, skb->data);
|
|
/* Try again, without freeing the previous */
|
|
skb = dev_alloc_skb(bufsz);
|
|
/* Failed allocation, critical failure */
|
|
if (!skb) {
|
|
dev_kfree_skb(oldskb);
|
|
break;
|
|
}
|
|
|
|
if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
|
|
/* give up */
|
|
dev_kfree_skb(skb);
|
|
dev_kfree_skb(oldskb);
|
|
break; /* while !buffer_info->skb */
|
|
} else {
|
|
/* Use new allocation */
|
|
dev_kfree_skb(oldskb);
|
|
}
|
|
}
|
|
/* Make buffer alignment 2 beyond a 16 byte boundary
|
|
* this will result in a 16 byte aligned IP header after
|
|
* the 14 byte MAC header is removed
|
|
*/
|
|
skb_reserve(skb, NET_IP_ALIGN);
|
|
|
|
skb->dev = netdev;
|
|
|
|
buffer_info->skb = skb;
|
|
buffer_info->length = adapter->rx_buffer_len;
|
|
map_skb:
|
|
buffer_info->dma = pci_map_single(pdev,
|
|
skb->data,
|
|
adapter->rx_buffer_len,
|
|
PCI_DMA_FROMDEVICE);
|
|
|
|
/* Fix for errata 23, can't cross 64kB boundary */
|
|
if (!e1000_check_64k_bound(adapter,
|
|
(void *)(unsigned long)buffer_info->dma,
|
|
adapter->rx_buffer_len)) {
|
|
DPRINTK(RX_ERR, ERR,
|
|
"dma align check failed: %u bytes at %p\n",
|
|
adapter->rx_buffer_len,
|
|
(void *)(unsigned long)buffer_info->dma);
|
|
dev_kfree_skb(skb);
|
|
buffer_info->skb = NULL;
|
|
|
|
pci_unmap_single(pdev, buffer_info->dma,
|
|
adapter->rx_buffer_len,
|
|
PCI_DMA_FROMDEVICE);
|
|
|
|
break; /* while !buffer_info->skb */
|
|
}
|
|
rx_desc = E1000_RX_DESC(*rx_ring, i);
|
|
rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
|
|
|
|
if (unlikely(++i == rx_ring->count))
|
|
i = 0;
|
|
buffer_info = &rx_ring->buffer_info[i];
|
|
}
|
|
|
|
if (likely(rx_ring->next_to_use != i)) {
|
|
rx_ring->next_to_use = i;
|
|
if (unlikely(i-- == 0))
|
|
i = (rx_ring->count - 1);
|
|
|
|
/* Force memory writes to complete before letting h/w
|
|
* know there are new descriptors to fetch. (Only
|
|
* applicable for weak-ordered memory model archs,
|
|
* such as IA-64). */
|
|
wmb();
|
|
writel(i, adapter->hw.hw_addr + rx_ring->rdt);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
|
|
* @adapter: address of board private structure
|
|
**/
|
|
|
|
static void
|
|
e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
|
|
struct e1000_rx_ring *rx_ring,
|
|
int cleaned_count)
|
|
{
|
|
struct net_device *netdev = adapter->netdev;
|
|
struct pci_dev *pdev = adapter->pdev;
|
|
union e1000_rx_desc_packet_split *rx_desc;
|
|
struct e1000_buffer *buffer_info;
|
|
struct e1000_ps_page *ps_page;
|
|
struct e1000_ps_page_dma *ps_page_dma;
|
|
struct sk_buff *skb;
|
|
unsigned int i, j;
|
|
|
|
i = rx_ring->next_to_use;
|
|
buffer_info = &rx_ring->buffer_info[i];
|
|
ps_page = &rx_ring->ps_page[i];
|
|
ps_page_dma = &rx_ring->ps_page_dma[i];
|
|
|
|
while (cleaned_count--) {
|
|
rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
|
|
|
|
for (j = 0; j < PS_PAGE_BUFFERS; j++) {
|
|
if (j < adapter->rx_ps_pages) {
|
|
if (likely(!ps_page->ps_page[j])) {
|
|
ps_page->ps_page[j] =
|
|
alloc_page(GFP_ATOMIC);
|
|
if (unlikely(!ps_page->ps_page[j])) {
|
|
adapter->alloc_rx_buff_failed++;
|
|
goto no_buffers;
|
|
}
|
|
ps_page_dma->ps_page_dma[j] =
|
|
pci_map_page(pdev,
|
|
ps_page->ps_page[j],
|
|
0, PAGE_SIZE,
|
|
PCI_DMA_FROMDEVICE);
|
|
}
|
|
/* Refresh the desc even if buffer_addrs didn't
|
|
* change because each write-back erases
|
|
* this info.
|
|
*/
|
|
rx_desc->read.buffer_addr[j+1] =
|
|
cpu_to_le64(ps_page_dma->ps_page_dma[j]);
|
|
} else
|
|
rx_desc->read.buffer_addr[j+1] = ~0;
|
|
}
|
|
|
|
skb = dev_alloc_skb(adapter->rx_ps_bsize0 + NET_IP_ALIGN);
|
|
|
|
if (unlikely(!skb)) {
|
|
adapter->alloc_rx_buff_failed++;
|
|
break;
|
|
}
|
|
|
|
/* Make buffer alignment 2 beyond a 16 byte boundary
|
|
* this will result in a 16 byte aligned IP header after
|
|
* the 14 byte MAC header is removed
|
|
*/
|
|
skb_reserve(skb, NET_IP_ALIGN);
|
|
|
|
skb->dev = netdev;
|
|
|
|
buffer_info->skb = skb;
|
|
buffer_info->length = adapter->rx_ps_bsize0;
|
|
buffer_info->dma = pci_map_single(pdev, skb->data,
|
|
adapter->rx_ps_bsize0,
|
|
PCI_DMA_FROMDEVICE);
|
|
|
|
rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
|
|
|
|
if (unlikely(++i == rx_ring->count)) i = 0;
|
|
buffer_info = &rx_ring->buffer_info[i];
|
|
ps_page = &rx_ring->ps_page[i];
|
|
ps_page_dma = &rx_ring->ps_page_dma[i];
|
|
}
|
|
|
|
no_buffers:
|
|
if (likely(rx_ring->next_to_use != i)) {
|
|
rx_ring->next_to_use = i;
|
|
if (unlikely(i-- == 0)) i = (rx_ring->count - 1);
|
|
|
|
/* Force memory writes to complete before letting h/w
|
|
* know there are new descriptors to fetch. (Only
|
|
* applicable for weak-ordered memory model archs,
|
|
* such as IA-64). */
|
|
wmb();
|
|
/* Hardware increments by 16 bytes, but packet split
|
|
* descriptors are 32 bytes...so we increment tail
|
|
* twice as much.
|
|
*/
|
|
writel(i<<1, adapter->hw.hw_addr + rx_ring->rdt);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
|
|
* @adapter:
|
|
**/
|
|
|
|
static void
|
|
e1000_smartspeed(struct e1000_adapter *adapter)
|
|
{
|
|
uint16_t phy_status;
|
|
uint16_t phy_ctrl;
|
|
|
|
if ((adapter->hw.phy_type != e1000_phy_igp) || !adapter->hw.autoneg ||
|
|
!(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL))
|
|
return;
|
|
|
|
if (adapter->smartspeed == 0) {
|
|
/* If Master/Slave config fault is asserted twice,
|
|
* we assume back-to-back */
|
|
e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
|
|
if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
|
|
e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
|
|
if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
|
|
e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
|
|
if (phy_ctrl & CR_1000T_MS_ENABLE) {
|
|
phy_ctrl &= ~CR_1000T_MS_ENABLE;
|
|
e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL,
|
|
phy_ctrl);
|
|
adapter->smartspeed++;
|
|
if (!e1000_phy_setup_autoneg(&adapter->hw) &&
|
|
!e1000_read_phy_reg(&adapter->hw, PHY_CTRL,
|
|
&phy_ctrl)) {
|
|
phy_ctrl |= (MII_CR_AUTO_NEG_EN |
|
|
MII_CR_RESTART_AUTO_NEG);
|
|
e1000_write_phy_reg(&adapter->hw, PHY_CTRL,
|
|
phy_ctrl);
|
|
}
|
|
}
|
|
return;
|
|
} else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
|
|
/* If still no link, perhaps using 2/3 pair cable */
|
|
e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
|
|
phy_ctrl |= CR_1000T_MS_ENABLE;
|
|
e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_ctrl);
|
|
if (!e1000_phy_setup_autoneg(&adapter->hw) &&
|
|
!e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_ctrl)) {
|
|
phy_ctrl |= (MII_CR_AUTO_NEG_EN |
|
|
MII_CR_RESTART_AUTO_NEG);
|
|
e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_ctrl);
|
|
}
|
|
}
|
|
/* Restart process after E1000_SMARTSPEED_MAX iterations */
|
|
if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
|
|
adapter->smartspeed = 0;
|
|
}
|
|
|
|
/**
|
|
* e1000_ioctl -
|
|
* @netdev:
|
|
* @ifreq:
|
|
* @cmd:
|
|
**/
|
|
|
|
static int
|
|
e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
|
|
{
|
|
switch (cmd) {
|
|
case SIOCGMIIPHY:
|
|
case SIOCGMIIREG:
|
|
case SIOCSMIIREG:
|
|
return e1000_mii_ioctl(netdev, ifr, cmd);
|
|
default:
|
|
return -EOPNOTSUPP;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* e1000_mii_ioctl -
|
|
* @netdev:
|
|
* @ifreq:
|
|
* @cmd:
|
|
**/
|
|
|
|
static int
|
|
e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
|
|
{
|
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
|
struct mii_ioctl_data *data = if_mii(ifr);
|
|
int retval;
|
|
uint16_t mii_reg;
|
|
uint16_t spddplx;
|
|
unsigned long flags;
|
|
|
|
if (adapter->hw.media_type != e1000_media_type_copper)
|
|
return -EOPNOTSUPP;
|
|
|
|
switch (cmd) {
|
|
case SIOCGMIIPHY:
|
|
data->phy_id = adapter->hw.phy_addr;
|
|
break;
|
|
case SIOCGMIIREG:
|
|
if (!capable(CAP_NET_ADMIN))
|
|
return -EPERM;
|
|
spin_lock_irqsave(&adapter->stats_lock, flags);
|
|
if (e1000_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
|
|
&data->val_out)) {
|
|
spin_unlock_irqrestore(&adapter->stats_lock, flags);
|
|
return -EIO;
|
|
}
|
|
spin_unlock_irqrestore(&adapter->stats_lock, flags);
|
|
break;
|
|
case SIOCSMIIREG:
|
|
if (!capable(CAP_NET_ADMIN))
|
|
return -EPERM;
|
|
if (data->reg_num & ~(0x1F))
|
|
return -EFAULT;
|
|
mii_reg = data->val_in;
|
|
spin_lock_irqsave(&adapter->stats_lock, flags);
|
|
if (e1000_write_phy_reg(&adapter->hw, data->reg_num,
|
|
mii_reg)) {
|
|
spin_unlock_irqrestore(&adapter->stats_lock, flags);
|
|
return -EIO;
|
|
}
|
|
if (adapter->hw.phy_type == e1000_phy_m88) {
|
|
switch (data->reg_num) {
|
|
case PHY_CTRL:
|
|
if (mii_reg & MII_CR_POWER_DOWN)
|
|
break;
|
|
if (mii_reg & MII_CR_AUTO_NEG_EN) {
|
|
adapter->hw.autoneg = 1;
|
|
adapter->hw.autoneg_advertised = 0x2F;
|
|
} else {
|
|
if (mii_reg & 0x40)
|
|
spddplx = SPEED_1000;
|
|
else if (mii_reg & 0x2000)
|
|
spddplx = SPEED_100;
|
|
else
|
|
spddplx = SPEED_10;
|
|
spddplx += (mii_reg & 0x100)
|
|
? FULL_DUPLEX :
|
|
HALF_DUPLEX;
|
|
retval = e1000_set_spd_dplx(adapter,
|
|
spddplx);
|
|
if (retval) {
|
|
spin_unlock_irqrestore(
|
|
&adapter->stats_lock,
|
|
flags);
|
|
return retval;
|
|
}
|
|
}
|
|
if (netif_running(adapter->netdev)) {
|
|
e1000_down(adapter);
|
|
e1000_up(adapter);
|
|
} else
|
|
e1000_reset(adapter);
|
|
break;
|
|
case M88E1000_PHY_SPEC_CTRL:
|
|
case M88E1000_EXT_PHY_SPEC_CTRL:
|
|
if (e1000_phy_reset(&adapter->hw)) {
|
|
spin_unlock_irqrestore(
|
|
&adapter->stats_lock, flags);
|
|
return -EIO;
|
|
}
|
|
break;
|
|
}
|
|
} else {
|
|
switch (data->reg_num) {
|
|
case PHY_CTRL:
|
|
if (mii_reg & MII_CR_POWER_DOWN)
|
|
break;
|
|
if (netif_running(adapter->netdev)) {
|
|
e1000_down(adapter);
|
|
e1000_up(adapter);
|
|
} else
|
|
e1000_reset(adapter);
|
|
break;
|
|
}
|
|
}
|
|
spin_unlock_irqrestore(&adapter->stats_lock, flags);
|
|
break;
|
|
default:
|
|
return -EOPNOTSUPP;
|
|
}
|
|
return E1000_SUCCESS;
|
|
}
|
|
|
|
void
|
|
e1000_pci_set_mwi(struct e1000_hw *hw)
|
|
{
|
|
struct e1000_adapter *adapter = hw->back;
|
|
int ret_val = pci_set_mwi(adapter->pdev);
|
|
|
|
if (ret_val)
|
|
DPRINTK(PROBE, ERR, "Error in setting MWI\n");
|
|
}
|
|
|
|
void
|
|
e1000_pci_clear_mwi(struct e1000_hw *hw)
|
|
{
|
|
struct e1000_adapter *adapter = hw->back;
|
|
|
|
pci_clear_mwi(adapter->pdev);
|
|
}
|
|
|
|
void
|
|
e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
|
|
{
|
|
struct e1000_adapter *adapter = hw->back;
|
|
|
|
pci_read_config_word(adapter->pdev, reg, value);
|
|
}
|
|
|
|
void
|
|
e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
|
|
{
|
|
struct e1000_adapter *adapter = hw->back;
|
|
|
|
pci_write_config_word(adapter->pdev, reg, *value);
|
|
}
|
|
|
|
uint32_t
|
|
e1000_io_read(struct e1000_hw *hw, unsigned long port)
|
|
{
|
|
return inl(port);
|
|
}
|
|
|
|
void
|
|
e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value)
|
|
{
|
|
outl(value, port);
|
|
}
|
|
|
|
static void
|
|
e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp)
|
|
{
|
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
|
uint32_t ctrl, rctl;
|
|
|
|
e1000_irq_disable(adapter);
|
|
adapter->vlgrp = grp;
|
|
|
|
if (grp) {
|
|
/* enable VLAN tag insert/strip */
|
|
ctrl = E1000_READ_REG(&adapter->hw, CTRL);
|
|
ctrl |= E1000_CTRL_VME;
|
|
E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
|
|
|
|
/* enable VLAN receive filtering */
|
|
rctl = E1000_READ_REG(&adapter->hw, RCTL);
|
|
rctl |= E1000_RCTL_VFE;
|
|
rctl &= ~E1000_RCTL_CFIEN;
|
|
E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
|
|
e1000_update_mng_vlan(adapter);
|
|
} else {
|
|
/* disable VLAN tag insert/strip */
|
|
ctrl = E1000_READ_REG(&adapter->hw, CTRL);
|
|
ctrl &= ~E1000_CTRL_VME;
|
|
E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
|
|
|
|
/* disable VLAN filtering */
|
|
rctl = E1000_READ_REG(&adapter->hw, RCTL);
|
|
rctl &= ~E1000_RCTL_VFE;
|
|
E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
|
|
if (adapter->mng_vlan_id != (uint16_t)E1000_MNG_VLAN_NONE) {
|
|
e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
|
|
adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
|
|
}
|
|
}
|
|
|
|
e1000_irq_enable(adapter);
|
|
}
|
|
|
|
static void
|
|
e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid)
|
|
{
|
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
|
uint32_t vfta, index;
|
|
|
|
if ((adapter->hw.mng_cookie.status &
|
|
E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
|
|
(vid == adapter->mng_vlan_id))
|
|
return;
|
|
/* add VID to filter table */
|
|
index = (vid >> 5) & 0x7F;
|
|
vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
|
|
vfta |= (1 << (vid & 0x1F));
|
|
e1000_write_vfta(&adapter->hw, index, vfta);
|
|
}
|
|
|
|
static void
|
|
e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid)
|
|
{
|
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
|
uint32_t vfta, index;
|
|
|
|
e1000_irq_disable(adapter);
|
|
|
|
if (adapter->vlgrp)
|
|
adapter->vlgrp->vlan_devices[vid] = NULL;
|
|
|
|
e1000_irq_enable(adapter);
|
|
|
|
if ((adapter->hw.mng_cookie.status &
|
|
E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
|
|
(vid == adapter->mng_vlan_id)) {
|
|
/* release control to f/w */
|
|
e1000_release_hw_control(adapter);
|
|
return;
|
|
}
|
|
|
|
/* remove VID from filter table */
|
|
index = (vid >> 5) & 0x7F;
|
|
vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
|
|
vfta &= ~(1 << (vid & 0x1F));
|
|
e1000_write_vfta(&adapter->hw, index, vfta);
|
|
}
|
|
|
|
static void
|
|
e1000_restore_vlan(struct e1000_adapter *adapter)
|
|
{
|
|
e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
|
|
|
|
if (adapter->vlgrp) {
|
|
uint16_t vid;
|
|
for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
|
|
if (!adapter->vlgrp->vlan_devices[vid])
|
|
continue;
|
|
e1000_vlan_rx_add_vid(adapter->netdev, vid);
|
|
}
|
|
}
|
|
}
|
|
|
|
int
|
|
e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx)
|
|
{
|
|
adapter->hw.autoneg = 0;
|
|
|
|
/* Fiber NICs only allow 1000 gbps Full duplex */
|
|
if ((adapter->hw.media_type == e1000_media_type_fiber) &&
|
|
spddplx != (SPEED_1000 + DUPLEX_FULL)) {
|
|
DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
switch (spddplx) {
|
|
case SPEED_10 + DUPLEX_HALF:
|
|
adapter->hw.forced_speed_duplex = e1000_10_half;
|
|
break;
|
|
case SPEED_10 + DUPLEX_FULL:
|
|
adapter->hw.forced_speed_duplex = e1000_10_full;
|
|
break;
|
|
case SPEED_100 + DUPLEX_HALF:
|
|
adapter->hw.forced_speed_duplex = e1000_100_half;
|
|
break;
|
|
case SPEED_100 + DUPLEX_FULL:
|
|
adapter->hw.forced_speed_duplex = e1000_100_full;
|
|
break;
|
|
case SPEED_1000 + DUPLEX_FULL:
|
|
adapter->hw.autoneg = 1;
|
|
adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
|
|
break;
|
|
case SPEED_1000 + DUPLEX_HALF: /* not supported */
|
|
default:
|
|
DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
|
|
return -EINVAL;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_PM
|
|
/* these functions save and restore 16 or 64 dwords (64-256 bytes) of config
|
|
* space versus the 64 bytes that pci_[save|restore]_state handle
|
|
*/
|
|
#define PCIE_CONFIG_SPACE_LEN 256
|
|
#define PCI_CONFIG_SPACE_LEN 64
|
|
static int
|
|
e1000_pci_save_state(struct e1000_adapter *adapter)
|
|
{
|
|
struct pci_dev *dev = adapter->pdev;
|
|
int size;
|
|
int i;
|
|
if (adapter->hw.mac_type >= e1000_82571)
|
|
size = PCIE_CONFIG_SPACE_LEN;
|
|
else
|
|
size = PCI_CONFIG_SPACE_LEN;
|
|
|
|
WARN_ON(adapter->config_space != NULL);
|
|
|
|
adapter->config_space = kmalloc(size, GFP_KERNEL);
|
|
if (!adapter->config_space) {
|
|
DPRINTK(PROBE, ERR, "unable to allocate %d bytes\n", size);
|
|
return -ENOMEM;
|
|
}
|
|
for (i = 0; i < (size / 4); i++)
|
|
pci_read_config_dword(dev, i * 4, &adapter->config_space[i]);
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
e1000_pci_restore_state(struct e1000_adapter *adapter)
|
|
{
|
|
struct pci_dev *dev = adapter->pdev;
|
|
int size;
|
|
int i;
|
|
if (adapter->config_space == NULL)
|
|
return;
|
|
if (adapter->hw.mac_type >= e1000_82571)
|
|
size = PCIE_CONFIG_SPACE_LEN;
|
|
else
|
|
size = PCI_CONFIG_SPACE_LEN;
|
|
for (i = 0; i < (size / 4); i++)
|
|
pci_write_config_dword(dev, i * 4, adapter->config_space[i]);
|
|
kfree(adapter->config_space);
|
|
adapter->config_space = NULL;
|
|
return;
|
|
}
|
|
#endif /* CONFIG_PM */
|
|
|
|
static int
|
|
e1000_suspend(struct pci_dev *pdev, pm_message_t state)
|
|
{
|
|
struct net_device *netdev = pci_get_drvdata(pdev);
|
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
|
uint32_t ctrl, ctrl_ext, rctl, manc, status;
|
|
uint32_t wufc = adapter->wol;
|
|
int retval = 0;
|
|
|
|
netif_device_detach(netdev);
|
|
|
|
if (netif_running(netdev))
|
|
e1000_down(adapter);
|
|
|
|
#ifdef CONFIG_PM
|
|
/* implement our own version of pci_save_state(pdev) because pci
|
|
* express adapters have larger 256 byte config spaces */
|
|
retval = e1000_pci_save_state(adapter);
|
|
if (retval)
|
|
return retval;
|
|
#endif
|
|
|
|
status = E1000_READ_REG(&adapter->hw, STATUS);
|
|
if (status & E1000_STATUS_LU)
|
|
wufc &= ~E1000_WUFC_LNKC;
|
|
|
|
if (wufc) {
|
|
e1000_setup_rctl(adapter);
|
|
e1000_set_multi(netdev);
|
|
|
|
/* turn on all-multi mode if wake on multicast is enabled */
|
|
if (adapter->wol & E1000_WUFC_MC) {
|
|
rctl = E1000_READ_REG(&adapter->hw, RCTL);
|
|
rctl |= E1000_RCTL_MPE;
|
|
E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
|
|
}
|
|
|
|
if (adapter->hw.mac_type >= e1000_82540) {
|
|
ctrl = E1000_READ_REG(&adapter->hw, CTRL);
|
|
/* advertise wake from D3Cold */
|
|
#define E1000_CTRL_ADVD3WUC 0x00100000
|
|
/* phy power management enable */
|
|
#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
|
|
ctrl |= E1000_CTRL_ADVD3WUC |
|
|
E1000_CTRL_EN_PHY_PWR_MGMT;
|
|
E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
|
|
}
|
|
|
|
if (adapter->hw.media_type == e1000_media_type_fiber ||
|
|
adapter->hw.media_type == e1000_media_type_internal_serdes) {
|
|
/* keep the laser running in D3 */
|
|
ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
|
|
ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
|
|
E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext);
|
|
}
|
|
|
|
/* Allow time for pending master requests to run */
|
|
e1000_disable_pciex_master(&adapter->hw);
|
|
|
|
E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN);
|
|
E1000_WRITE_REG(&adapter->hw, WUFC, wufc);
|
|
retval = pci_enable_wake(pdev, PCI_D3hot, 1);
|
|
if (retval)
|
|
DPRINTK(PROBE, ERR, "Error enabling D3 wake\n");
|
|
retval = pci_enable_wake(pdev, PCI_D3cold, 1);
|
|
if (retval)
|
|
DPRINTK(PROBE, ERR, "Error enabling D3 cold wake\n");
|
|
} else {
|
|
E1000_WRITE_REG(&adapter->hw, WUC, 0);
|
|
E1000_WRITE_REG(&adapter->hw, WUFC, 0);
|
|
retval = pci_enable_wake(pdev, PCI_D3hot, 0);
|
|
if (retval)
|
|
DPRINTK(PROBE, ERR, "Error enabling D3 wake\n");
|
|
retval = pci_enable_wake(pdev, PCI_D3cold, 0); /* 4 == D3 cold */
|
|
if (retval)
|
|
DPRINTK(PROBE, ERR, "Error enabling D3 cold wake\n");
|
|
}
|
|
|
|
if (adapter->hw.mac_type >= e1000_82540 &&
|
|
adapter->hw.media_type == e1000_media_type_copper) {
|
|
manc = E1000_READ_REG(&adapter->hw, MANC);
|
|
if (manc & E1000_MANC_SMBUS_EN) {
|
|
manc |= E1000_MANC_ARP_EN;
|
|
E1000_WRITE_REG(&adapter->hw, MANC, manc);
|
|
retval = pci_enable_wake(pdev, PCI_D3hot, 1);
|
|
if (retval)
|
|
DPRINTK(PROBE, ERR, "Error enabling D3 wake\n");
|
|
retval = pci_enable_wake(pdev, PCI_D3cold, 1);
|
|
if (retval)
|
|
DPRINTK(PROBE, ERR, "Error enabling D3 cold wake\n");
|
|
}
|
|
}
|
|
|
|
/* Release control of h/w to f/w. If f/w is AMT enabled, this
|
|
* would have already happened in close and is redundant. */
|
|
e1000_release_hw_control(adapter);
|
|
|
|
pci_disable_device(pdev);
|
|
|
|
retval = pci_set_power_state(pdev, pci_choose_state(pdev, state));
|
|
if (retval)
|
|
DPRINTK(PROBE, ERR, "Error in setting power state\n");
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_PM
|
|
static int
|
|
e1000_resume(struct pci_dev *pdev)
|
|
{
|
|
struct net_device *netdev = pci_get_drvdata(pdev);
|
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
|
int retval;
|
|
uint32_t manc, ret_val;
|
|
|
|
retval = pci_set_power_state(pdev, PCI_D0);
|
|
if (retval)
|
|
DPRINTK(PROBE, ERR, "Error in setting power state\n");
|
|
e1000_pci_restore_state(adapter);
|
|
ret_val = pci_enable_device(pdev);
|
|
pci_set_master(pdev);
|
|
|
|
retval = pci_enable_wake(pdev, PCI_D3hot, 0);
|
|
if (retval)
|
|
DPRINTK(PROBE, ERR, "Error enabling D3 wake\n");
|
|
retval = pci_enable_wake(pdev, PCI_D3cold, 0);
|
|
if (retval)
|
|
DPRINTK(PROBE, ERR, "Error enabling D3 cold wake\n");
|
|
|
|
e1000_reset(adapter);
|
|
E1000_WRITE_REG(&adapter->hw, WUS, ~0);
|
|
|
|
if (netif_running(netdev))
|
|
e1000_up(adapter);
|
|
|
|
netif_device_attach(netdev);
|
|
|
|
if (adapter->hw.mac_type >= e1000_82540 &&
|
|
adapter->hw.media_type == e1000_media_type_copper) {
|
|
manc = E1000_READ_REG(&adapter->hw, MANC);
|
|
manc &= ~(E1000_MANC_ARP_EN);
|
|
E1000_WRITE_REG(&adapter->hw, MANC, manc);
|
|
}
|
|
|
|
/* If the controller is 82573 and f/w is AMT, do not set
|
|
* DRV_LOAD until the interface is up. For all other cases,
|
|
* let the f/w know that the h/w is now under the control
|
|
* of the driver. */
|
|
if (adapter->hw.mac_type != e1000_82573 ||
|
|
!e1000_check_mng_mode(&adapter->hw))
|
|
e1000_get_hw_control(adapter);
|
|
|
|
return 0;
|
|
}
|
|
#endif
|
|
#ifdef CONFIG_NET_POLL_CONTROLLER
|
|
/*
|
|
* Polling 'interrupt' - used by things like netconsole to send skbs
|
|
* without having to re-enable interrupts. It's not called while
|
|
* the interrupt routine is executing.
|
|
*/
|
|
static void
|
|
e1000_netpoll(struct net_device *netdev)
|
|
{
|
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
|
disable_irq(adapter->pdev->irq);
|
|
e1000_intr(adapter->pdev->irq, netdev, NULL);
|
|
e1000_clean_tx_irq(adapter, adapter->tx_ring);
|
|
#ifndef CONFIG_E1000_NAPI
|
|
adapter->clean_rx(adapter, adapter->rx_ring);
|
|
#endif
|
|
enable_irq(adapter->pdev->irq);
|
|
}
|
|
#endif
|
|
|
|
/* e1000_main.c */
|